Home | History | Annotate | Download | only in Support
      1 //===--- YAMLParser.cpp - Simple YAML parser ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements a YAML parser.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Support/YAMLParser.h"
     15 
     16 #include "llvm/ADT/ilist.h"
     17 #include "llvm/ADT/ilist_node.h"
     18 #include "llvm/ADT/SmallVector.h"
     19 #include "llvm/ADT/StringExtras.h"
     20 #include "llvm/ADT/Twine.h"
     21 #include "llvm/Support/ErrorHandling.h"
     22 #include "llvm/Support/MemoryBuffer.h"
     23 #include "llvm/Support/raw_ostream.h"
     24 #include "llvm/Support/SourceMgr.h"
     25 
     26 using namespace llvm;
     27 using namespace yaml;
     28 
     29 enum UnicodeEncodingForm {
     30   UEF_UTF32_LE, //< UTF-32 Little Endian
     31   UEF_UTF32_BE, //< UTF-32 Big Endian
     32   UEF_UTF16_LE, //< UTF-16 Little Endian
     33   UEF_UTF16_BE, //< UTF-16 Big Endian
     34   UEF_UTF8,     //< UTF-8 or ascii.
     35   UEF_Unknown   //< Not a valid Unicode encoding.
     36 };
     37 
     38 /// EncodingInfo - Holds the encoding type and length of the byte order mark if
     39 ///                it exists. Length is in {0, 2, 3, 4}.
     40 typedef std::pair<UnicodeEncodingForm, unsigned> EncodingInfo;
     41 
     42 /// getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode
     43 ///                      encoding form of \a Input.
     44 ///
     45 /// @param Input A string of length 0 or more.
     46 /// @returns An EncodingInfo indicating the Unicode encoding form of the input
     47 ///          and how long the byte order mark is if one exists.
     48 static EncodingInfo getUnicodeEncoding(StringRef Input) {
     49   if (Input.size() == 0)
     50     return std::make_pair(UEF_Unknown, 0);
     51 
     52   switch (uint8_t(Input[0])) {
     53   case 0x00:
     54     if (Input.size() >= 4) {
     55       if (  Input[1] == 0
     56          && uint8_t(Input[2]) == 0xFE
     57          && uint8_t(Input[3]) == 0xFF)
     58         return std::make_pair(UEF_UTF32_BE, 4);
     59       if (Input[1] == 0 && Input[2] == 0 && Input[3] != 0)
     60         return std::make_pair(UEF_UTF32_BE, 0);
     61     }
     62 
     63     if (Input.size() >= 2 && Input[1] != 0)
     64       return std::make_pair(UEF_UTF16_BE, 0);
     65     return std::make_pair(UEF_Unknown, 0);
     66   case 0xFF:
     67     if (  Input.size() >= 4
     68        && uint8_t(Input[1]) == 0xFE
     69        && Input[2] == 0
     70        && Input[3] == 0)
     71       return std::make_pair(UEF_UTF32_LE, 4);
     72 
     73     if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFE)
     74       return std::make_pair(UEF_UTF16_LE, 2);
     75     return std::make_pair(UEF_Unknown, 0);
     76   case 0xFE:
     77     if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFF)
     78       return std::make_pair(UEF_UTF16_BE, 2);
     79     return std::make_pair(UEF_Unknown, 0);
     80   case 0xEF:
     81     if (  Input.size() >= 3
     82        && uint8_t(Input[1]) == 0xBB
     83        && uint8_t(Input[2]) == 0xBF)
     84       return std::make_pair(UEF_UTF8, 3);
     85     return std::make_pair(UEF_Unknown, 0);
     86   }
     87 
     88   // It could still be utf-32 or utf-16.
     89   if (Input.size() >= 4 && Input[1] == 0 && Input[2] == 0 && Input[3] == 0)
     90     return std::make_pair(UEF_UTF32_LE, 0);
     91 
     92   if (Input.size() >= 2 && Input[1] == 0)
     93     return std::make_pair(UEF_UTF16_LE, 0);
     94 
     95   return std::make_pair(UEF_UTF8, 0);
     96 }
     97 
     98 namespace llvm {
     99 namespace yaml {
    100 /// Token - A single YAML token.
    101 struct Token : ilist_node<Token> {
    102   enum TokenKind {
    103     TK_Error, // Uninitialized token.
    104     TK_StreamStart,
    105     TK_StreamEnd,
    106     TK_VersionDirective,
    107     TK_TagDirective,
    108     TK_DocumentStart,
    109     TK_DocumentEnd,
    110     TK_BlockEntry,
    111     TK_BlockEnd,
    112     TK_BlockSequenceStart,
    113     TK_BlockMappingStart,
    114     TK_FlowEntry,
    115     TK_FlowSequenceStart,
    116     TK_FlowSequenceEnd,
    117     TK_FlowMappingStart,
    118     TK_FlowMappingEnd,
    119     TK_Key,
    120     TK_Value,
    121     TK_Scalar,
    122     TK_Alias,
    123     TK_Anchor,
    124     TK_Tag
    125   } Kind;
    126 
    127   /// A string of length 0 or more whose begin() points to the logical location
    128   /// of the token in the input.
    129   StringRef Range;
    130 
    131   Token() : Kind(TK_Error) {}
    132 };
    133 }
    134 }
    135 
    136 namespace llvm {
    137 template<>
    138 struct ilist_sentinel_traits<Token> {
    139   Token *createSentinel() const {
    140     return &Sentinel;
    141   }
    142   static void destroySentinel(Token*) {}
    143 
    144   Token *provideInitialHead() const { return createSentinel(); }
    145   Token *ensureHead(Token*) const { return createSentinel(); }
    146   static void noteHead(Token*, Token*) {}
    147 
    148 private:
    149   mutable Token Sentinel;
    150 };
    151 
    152 template<>
    153 struct ilist_node_traits<Token> {
    154   Token *createNode(const Token &V) {
    155     return new (Alloc.Allocate<Token>()) Token(V);
    156   }
    157   static void deleteNode(Token *V) {}
    158 
    159   void addNodeToList(Token *) {}
    160   void removeNodeFromList(Token *) {}
    161   void transferNodesFromList(ilist_node_traits &    /*SrcTraits*/,
    162                              ilist_iterator<Token> /*first*/,
    163                              ilist_iterator<Token> /*last*/) {}
    164 
    165   BumpPtrAllocator Alloc;
    166 };
    167 }
    168 
    169 typedef ilist<Token> TokenQueueT;
    170 
    171 namespace {
    172 /// @brief This struct is used to track simple keys.
    173 ///
    174 /// Simple keys are handled by creating an entry in SimpleKeys for each Token
    175 /// which could legally be the start of a simple key. When peekNext is called,
    176 /// if the Token To be returned is referenced by a SimpleKey, we continue
    177 /// tokenizing until that potential simple key has either been found to not be
    178 /// a simple key (we moved on to the next line or went further than 1024 chars).
    179 /// Or when we run into a Value, and then insert a Key token (and possibly
    180 /// others) before the SimpleKey's Tok.
    181 struct SimpleKey {
    182   TokenQueueT::iterator Tok;
    183   unsigned Column;
    184   unsigned Line;
    185   unsigned FlowLevel;
    186   bool IsRequired;
    187 
    188   bool operator ==(const SimpleKey &Other) {
    189     return Tok == Other.Tok;
    190   }
    191 };
    192 }
    193 
    194 /// @brief The Unicode scalar value of a UTF-8 minimal well-formed code unit
    195 ///        subsequence and the subsequence's length in code units (uint8_t).
    196 ///        A length of 0 represents an error.
    197 typedef std::pair<uint32_t, unsigned> UTF8Decoded;
    198 
    199 static UTF8Decoded decodeUTF8(StringRef Range) {
    200   StringRef::iterator Position= Range.begin();
    201   StringRef::iterator End = Range.end();
    202   // 1 byte: [0x00, 0x7f]
    203   // Bit pattern: 0xxxxxxx
    204   if ((*Position & 0x80) == 0) {
    205      return std::make_pair(*Position, 1);
    206   }
    207   // 2 bytes: [0x80, 0x7ff]
    208   // Bit pattern: 110xxxxx 10xxxxxx
    209   if (Position + 1 != End &&
    210       ((*Position & 0xE0) == 0xC0) &&
    211       ((*(Position + 1) & 0xC0) == 0x80)) {
    212     uint32_t codepoint = ((*Position & 0x1F) << 6) |
    213                           (*(Position + 1) & 0x3F);
    214     if (codepoint >= 0x80)
    215       return std::make_pair(codepoint, 2);
    216   }
    217   // 3 bytes: [0x8000, 0xffff]
    218   // Bit pattern: 1110xxxx 10xxxxxx 10xxxxxx
    219   if (Position + 2 != End &&
    220       ((*Position & 0xF0) == 0xE0) &&
    221       ((*(Position + 1) & 0xC0) == 0x80) &&
    222       ((*(Position + 2) & 0xC0) == 0x80)) {
    223     uint32_t codepoint = ((*Position & 0x0F) << 12) |
    224                          ((*(Position + 1) & 0x3F) << 6) |
    225                           (*(Position + 2) & 0x3F);
    226     // Codepoints between 0xD800 and 0xDFFF are invalid, as
    227     // they are high / low surrogate halves used by UTF-16.
    228     if (codepoint >= 0x800 &&
    229         (codepoint < 0xD800 || codepoint > 0xDFFF))
    230       return std::make_pair(codepoint, 3);
    231   }
    232   // 4 bytes: [0x10000, 0x10FFFF]
    233   // Bit pattern: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
    234   if (Position + 3 != End &&
    235       ((*Position & 0xF8) == 0xF0) &&
    236       ((*(Position + 1) & 0xC0) == 0x80) &&
    237       ((*(Position + 2) & 0xC0) == 0x80) &&
    238       ((*(Position + 3) & 0xC0) == 0x80)) {
    239     uint32_t codepoint = ((*Position & 0x07) << 18) |
    240                          ((*(Position + 1) & 0x3F) << 12) |
    241                          ((*(Position + 2) & 0x3F) << 6) |
    242                           (*(Position + 3) & 0x3F);
    243     if (codepoint >= 0x10000 && codepoint <= 0x10FFFF)
    244       return std::make_pair(codepoint, 4);
    245   }
    246   return std::make_pair(0, 0);
    247 }
    248 
    249 namespace llvm {
    250 namespace yaml {
    251 /// @brief Scans YAML tokens from a MemoryBuffer.
    252 class Scanner {
    253 public:
    254   Scanner(const StringRef Input, SourceMgr &SM);
    255 
    256   /// @brief Parse the next token and return it without popping it.
    257   Token &peekNext();
    258 
    259   /// @brief Parse the next token and pop it from the queue.
    260   Token getNext();
    261 
    262   void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message,
    263                   ArrayRef<SMRange> Ranges = ArrayRef<SMRange>()) {
    264     SM.PrintMessage(Loc, Kind, Message, Ranges);
    265   }
    266 
    267   void setError(const Twine &Message, StringRef::iterator Position) {
    268     if (Current >= End)
    269       Current = End - 1;
    270 
    271     // Don't print out more errors after the first one we encounter. The rest
    272     // are just the result of the first, and have no meaning.
    273     if (!Failed)
    274       printError(SMLoc::getFromPointer(Current), SourceMgr::DK_Error, Message);
    275     Failed = true;
    276   }
    277 
    278   void setError(const Twine &Message) {
    279     setError(Message, Current);
    280   }
    281 
    282   /// @brief Returns true if an error occurred while parsing.
    283   bool failed() {
    284     return Failed;
    285   }
    286 
    287 private:
    288   StringRef currentInput() {
    289     return StringRef(Current, End - Current);
    290   }
    291 
    292   /// @brief Decode a UTF-8 minimal well-formed code unit subsequence starting
    293   ///        at \a Position.
    294   ///
    295   /// If the UTF-8 code units starting at Position do not form a well-formed
    296   /// code unit subsequence, then the Unicode scalar value is 0, and the length
    297   /// is 0.
    298   UTF8Decoded decodeUTF8(StringRef::iterator Position) {
    299     return ::decodeUTF8(StringRef(Position, End - Position));
    300   }
    301 
    302   // The following functions are based on the gramar rules in the YAML spec. The
    303   // style of the function names it meant to closely match how they are written
    304   // in the spec. The number within the [] is the number of the grammar rule in
    305   // the spec.
    306   //
    307   // See 4.2 [Production Naming Conventions] for the meaning of the prefixes.
    308   //
    309   // c-
    310   //   A production starting and ending with a special character.
    311   // b-
    312   //   A production matching a single line break.
    313   // nb-
    314   //   A production starting and ending with a non-break character.
    315   // s-
    316   //   A production starting and ending with a white space character.
    317   // ns-
    318   //   A production starting and ending with a non-space character.
    319   // l-
    320   //   A production matching complete line(s).
    321 
    322   /// @brief Skip a single nb-char[27] starting at Position.
    323   ///
    324   /// A nb-char is 0x9 | [0x20-0x7E] | 0x85 | [0xA0-0xD7FF] | [0xE000-0xFEFE]
    325   ///                  | [0xFF00-0xFFFD] | [0x10000-0x10FFFF]
    326   ///
    327   /// @returns The code unit after the nb-char, or Position if it's not an
    328   ///          nb-char.
    329   StringRef::iterator skip_nb_char(StringRef::iterator Position);
    330 
    331   /// @brief Skip a single b-break[28] starting at Position.
    332   ///
    333   /// A b-break is 0xD 0xA | 0xD | 0xA
    334   ///
    335   /// @returns The code unit after the b-break, or Position if it's not a
    336   ///          b-break.
    337   StringRef::iterator skip_b_break(StringRef::iterator Position);
    338 
    339   /// @brief Skip a single s-white[33] starting at Position.
    340   ///
    341   /// A s-white is 0x20 | 0x9
    342   ///
    343   /// @returns The code unit after the s-white, or Position if it's not a
    344   ///          s-white.
    345   StringRef::iterator skip_s_white(StringRef::iterator Position);
    346 
    347   /// @brief Skip a single ns-char[34] starting at Position.
    348   ///
    349   /// A ns-char is nb-char - s-white
    350   ///
    351   /// @returns The code unit after the ns-char, or Position if it's not a
    352   ///          ns-char.
    353   StringRef::iterator skip_ns_char(StringRef::iterator Position);
    354 
    355   typedef StringRef::iterator (Scanner::*SkipWhileFunc)(StringRef::iterator);
    356   /// @brief Skip minimal well-formed code unit subsequences until Func
    357   ///        returns its input.
    358   ///
    359   /// @returns The code unit after the last minimal well-formed code unit
    360   ///          subsequence that Func accepted.
    361   StringRef::iterator skip_while( SkipWhileFunc Func
    362                                 , StringRef::iterator Position);
    363 
    364   /// @brief Scan ns-uri-char[39]s starting at Cur.
    365   ///
    366   /// This updates Cur and Column while scanning.
    367   ///
    368   /// @returns A StringRef starting at Cur which covers the longest contiguous
    369   ///          sequence of ns-uri-char.
    370   StringRef scan_ns_uri_char();
    371 
    372   /// @brief Scan ns-plain-one-line[133] starting at \a Cur.
    373   StringRef scan_ns_plain_one_line();
    374 
    375   /// @brief Consume a minimal well-formed code unit subsequence starting at
    376   ///        \a Cur. Return false if it is not the same Unicode scalar value as
    377   ///        \a Expected. This updates \a Column.
    378   bool consume(uint32_t Expected);
    379 
    380   /// @brief Skip \a Distance UTF-8 code units. Updates \a Cur and \a Column.
    381   void skip(uint32_t Distance);
    382 
    383   /// @brief Return true if the minimal well-formed code unit subsequence at
    384   ///        Pos is whitespace or a new line
    385   bool isBlankOrBreak(StringRef::iterator Position);
    386 
    387   /// @brief If IsSimpleKeyAllowed, create and push_back a new SimpleKey.
    388   void saveSimpleKeyCandidate( TokenQueueT::iterator Tok
    389                              , unsigned AtColumn
    390                              , bool IsRequired);
    391 
    392   /// @brief Remove simple keys that can no longer be valid simple keys.
    393   ///
    394   /// Invalid simple keys are not on the current line or are further than 1024
    395   /// columns back.
    396   void removeStaleSimpleKeyCandidates();
    397 
    398   /// @brief Remove all simple keys on FlowLevel \a Level.
    399   void removeSimpleKeyCandidatesOnFlowLevel(unsigned Level);
    400 
    401   /// @brief Unroll indentation in \a Indents back to \a Col. Creates BlockEnd
    402   ///        tokens if needed.
    403   bool unrollIndent(int ToColumn);
    404 
    405   /// @brief Increase indent to \a Col. Creates \a Kind token at \a InsertPoint
    406   ///        if needed.
    407   bool rollIndent( int ToColumn
    408                  , Token::TokenKind Kind
    409                  , TokenQueueT::iterator InsertPoint);
    410 
    411   /// @brief Skip whitespace and comments until the start of the next token.
    412   void scanToNextToken();
    413 
    414   /// @brief Must be the first token generated.
    415   bool scanStreamStart();
    416 
    417   /// @brief Generate tokens needed to close out the stream.
    418   bool scanStreamEnd();
    419 
    420   /// @brief Scan a %BLAH directive.
    421   bool scanDirective();
    422 
    423   /// @brief Scan a ... or ---.
    424   bool scanDocumentIndicator(bool IsStart);
    425 
    426   /// @brief Scan a [ or { and generate the proper flow collection start token.
    427   bool scanFlowCollectionStart(bool IsSequence);
    428 
    429   /// @brief Scan a ] or } and generate the proper flow collection end token.
    430   bool scanFlowCollectionEnd(bool IsSequence);
    431 
    432   /// @brief Scan the , that separates entries in a flow collection.
    433   bool scanFlowEntry();
    434 
    435   /// @brief Scan the - that starts block sequence entries.
    436   bool scanBlockEntry();
    437 
    438   /// @brief Scan an explicit ? indicating a key.
    439   bool scanKey();
    440 
    441   /// @brief Scan an explicit : indicating a value.
    442   bool scanValue();
    443 
    444   /// @brief Scan a quoted scalar.
    445   bool scanFlowScalar(bool IsDoubleQuoted);
    446 
    447   /// @brief Scan an unquoted scalar.
    448   bool scanPlainScalar();
    449 
    450   /// @brief Scan an Alias or Anchor starting with * or &.
    451   bool scanAliasOrAnchor(bool IsAlias);
    452 
    453   /// @brief Scan a block scalar starting with | or >.
    454   bool scanBlockScalar(bool IsLiteral);
    455 
    456   /// @brief Scan a tag of the form !stuff.
    457   bool scanTag();
    458 
    459   /// @brief Dispatch to the next scanning function based on \a *Cur.
    460   bool fetchMoreTokens();
    461 
    462   /// @brief The SourceMgr used for diagnostics and buffer management.
    463   SourceMgr &SM;
    464 
    465   /// @brief The original input.
    466   MemoryBuffer *InputBuffer;
    467 
    468   /// @brief The current position of the scanner.
    469   StringRef::iterator Current;
    470 
    471   /// @brief The end of the input (one past the last character).
    472   StringRef::iterator End;
    473 
    474   /// @brief Current YAML indentation level in spaces.
    475   int Indent;
    476 
    477   /// @brief Current column number in Unicode code points.
    478   unsigned Column;
    479 
    480   /// @brief Current line number.
    481   unsigned Line;
    482 
    483   /// @brief How deep we are in flow style containers. 0 Means at block level.
    484   unsigned FlowLevel;
    485 
    486   /// @brief Are we at the start of the stream?
    487   bool IsStartOfStream;
    488 
    489   /// @brief Can the next token be the start of a simple key?
    490   bool IsSimpleKeyAllowed;
    491 
    492   /// @brief Is the next token required to start a simple key?
    493   bool IsSimpleKeyRequired;
    494 
    495   /// @brief True if an error has occurred.
    496   bool Failed;
    497 
    498   /// @brief Queue of tokens. This is required to queue up tokens while looking
    499   ///        for the end of a simple key. And for cases where a single character
    500   ///        can produce multiple tokens (e.g. BlockEnd).
    501   TokenQueueT TokenQueue;
    502 
    503   /// @brief Indentation levels.
    504   SmallVector<int, 4> Indents;
    505 
    506   /// @brief Potential simple keys.
    507   SmallVector<SimpleKey, 4> SimpleKeys;
    508 };
    509 
    510 } // end namespace yaml
    511 } // end namespace llvm
    512 
    513 /// encodeUTF8 - Encode \a UnicodeScalarValue in UTF-8 and append it to result.
    514 static void encodeUTF8( uint32_t UnicodeScalarValue
    515                       , SmallVectorImpl<char> &Result) {
    516   if (UnicodeScalarValue <= 0x7F) {
    517     Result.push_back(UnicodeScalarValue & 0x7F);
    518   } else if (UnicodeScalarValue <= 0x7FF) {
    519     uint8_t FirstByte = 0xC0 | ((UnicodeScalarValue & 0x7C0) >> 6);
    520     uint8_t SecondByte = 0x80 | (UnicodeScalarValue & 0x3F);
    521     Result.push_back(FirstByte);
    522     Result.push_back(SecondByte);
    523   } else if (UnicodeScalarValue <= 0xFFFF) {
    524     uint8_t FirstByte = 0xE0 | ((UnicodeScalarValue & 0xF000) >> 12);
    525     uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
    526     uint8_t ThirdByte = 0x80 | (UnicodeScalarValue & 0x3F);
    527     Result.push_back(FirstByte);
    528     Result.push_back(SecondByte);
    529     Result.push_back(ThirdByte);
    530   } else if (UnicodeScalarValue <= 0x10FFFF) {
    531     uint8_t FirstByte = 0xF0 | ((UnicodeScalarValue & 0x1F0000) >> 18);
    532     uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0x3F000) >> 12);
    533     uint8_t ThirdByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
    534     uint8_t FourthByte = 0x80 | (UnicodeScalarValue & 0x3F);
    535     Result.push_back(FirstByte);
    536     Result.push_back(SecondByte);
    537     Result.push_back(ThirdByte);
    538     Result.push_back(FourthByte);
    539   }
    540 }
    541 
    542 bool yaml::dumpTokens(StringRef Input, raw_ostream &OS) {
    543   SourceMgr SM;
    544   Scanner scanner(Input, SM);
    545   while (true) {
    546     Token T = scanner.getNext();
    547     switch (T.Kind) {
    548     case Token::TK_StreamStart:
    549       OS << "Stream-Start: ";
    550       break;
    551     case Token::TK_StreamEnd:
    552       OS << "Stream-End: ";
    553       break;
    554     case Token::TK_VersionDirective:
    555       OS << "Version-Directive: ";
    556       break;
    557     case Token::TK_TagDirective:
    558       OS << "Tag-Directive: ";
    559       break;
    560     case Token::TK_DocumentStart:
    561       OS << "Document-Start: ";
    562       break;
    563     case Token::TK_DocumentEnd:
    564       OS << "Document-End: ";
    565       break;
    566     case Token::TK_BlockEntry:
    567       OS << "Block-Entry: ";
    568       break;
    569     case Token::TK_BlockEnd:
    570       OS << "Block-End: ";
    571       break;
    572     case Token::TK_BlockSequenceStart:
    573       OS << "Block-Sequence-Start: ";
    574       break;
    575     case Token::TK_BlockMappingStart:
    576       OS << "Block-Mapping-Start: ";
    577       break;
    578     case Token::TK_FlowEntry:
    579       OS << "Flow-Entry: ";
    580       break;
    581     case Token::TK_FlowSequenceStart:
    582       OS << "Flow-Sequence-Start: ";
    583       break;
    584     case Token::TK_FlowSequenceEnd:
    585       OS << "Flow-Sequence-End: ";
    586       break;
    587     case Token::TK_FlowMappingStart:
    588       OS << "Flow-Mapping-Start: ";
    589       break;
    590     case Token::TK_FlowMappingEnd:
    591       OS << "Flow-Mapping-End: ";
    592       break;
    593     case Token::TK_Key:
    594       OS << "Key: ";
    595       break;
    596     case Token::TK_Value:
    597       OS << "Value: ";
    598       break;
    599     case Token::TK_Scalar:
    600       OS << "Scalar: ";
    601       break;
    602     case Token::TK_Alias:
    603       OS << "Alias: ";
    604       break;
    605     case Token::TK_Anchor:
    606       OS << "Anchor: ";
    607       break;
    608     case Token::TK_Tag:
    609       OS << "Tag: ";
    610       break;
    611     case Token::TK_Error:
    612       break;
    613     }
    614     OS << T.Range << "\n";
    615     if (T.Kind == Token::TK_StreamEnd)
    616       break;
    617     else if (T.Kind == Token::TK_Error)
    618       return false;
    619   }
    620   return true;
    621 }
    622 
    623 bool yaml::scanTokens(StringRef Input) {
    624   llvm::SourceMgr SM;
    625   llvm::yaml::Scanner scanner(Input, SM);
    626   for (;;) {
    627     llvm::yaml::Token T = scanner.getNext();
    628     if (T.Kind == Token::TK_StreamEnd)
    629       break;
    630     else if (T.Kind == Token::TK_Error)
    631       return false;
    632   }
    633   return true;
    634 }
    635 
    636 std::string yaml::escape(StringRef Input) {
    637   std::string EscapedInput;
    638   for (StringRef::iterator i = Input.begin(), e = Input.end(); i != e; ++i) {
    639     if (*i == '\\')
    640       EscapedInput += "\\\\";
    641     else if (*i == '"')
    642       EscapedInput += "\\\"";
    643     else if (*i == 0)
    644       EscapedInput += "\\0";
    645     else if (*i == 0x07)
    646       EscapedInput += "\\a";
    647     else if (*i == 0x08)
    648       EscapedInput += "\\b";
    649     else if (*i == 0x09)
    650       EscapedInput += "\\t";
    651     else if (*i == 0x0A)
    652       EscapedInput += "\\n";
    653     else if (*i == 0x0B)
    654       EscapedInput += "\\v";
    655     else if (*i == 0x0C)
    656       EscapedInput += "\\f";
    657     else if (*i == 0x0D)
    658       EscapedInput += "\\r";
    659     else if (*i == 0x1B)
    660       EscapedInput += "\\e";
    661     else if (*i >= 0 && *i < 0x20) { // Control characters not handled above.
    662       std::string HexStr = utohexstr(*i);
    663       EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
    664     } else if (*i & 0x80) { // UTF-8 multiple code unit subsequence.
    665       UTF8Decoded UnicodeScalarValue
    666         = decodeUTF8(StringRef(i, Input.end() - i));
    667       if (UnicodeScalarValue.second == 0) {
    668         // Found invalid char.
    669         SmallString<4> Val;
    670         encodeUTF8(0xFFFD, Val);
    671         EscapedInput.insert(EscapedInput.end(), Val.begin(), Val.end());
    672         // FIXME: Error reporting.
    673         return EscapedInput;
    674       }
    675       if (UnicodeScalarValue.first == 0x85)
    676         EscapedInput += "\\N";
    677       else if (UnicodeScalarValue.first == 0xA0)
    678         EscapedInput += "\\_";
    679       else if (UnicodeScalarValue.first == 0x2028)
    680         EscapedInput += "\\L";
    681       else if (UnicodeScalarValue.first == 0x2029)
    682         EscapedInput += "\\P";
    683       else {
    684         std::string HexStr = utohexstr(UnicodeScalarValue.first);
    685         if (HexStr.size() <= 2)
    686           EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
    687         else if (HexStr.size() <= 4)
    688           EscapedInput += "\\u" + std::string(4 - HexStr.size(), '0') + HexStr;
    689         else if (HexStr.size() <= 8)
    690           EscapedInput += "\\U" + std::string(8 - HexStr.size(), '0') + HexStr;
    691       }
    692       i += UnicodeScalarValue.second - 1;
    693     } else
    694       EscapedInput.push_back(*i);
    695   }
    696   return EscapedInput;
    697 }
    698 
    699 Scanner::Scanner(StringRef Input, SourceMgr &sm)
    700   : SM(sm)
    701   , Indent(-1)
    702   , Column(0)
    703   , Line(0)
    704   , FlowLevel(0)
    705   , IsStartOfStream(true)
    706   , IsSimpleKeyAllowed(true)
    707   , IsSimpleKeyRequired(false)
    708   , Failed(false) {
    709   InputBuffer = MemoryBuffer::getMemBuffer(Input, "YAML");
    710   SM.AddNewSourceBuffer(InputBuffer, SMLoc());
    711   Current = InputBuffer->getBufferStart();
    712   End = InputBuffer->getBufferEnd();
    713 }
    714 
    715 Token &Scanner::peekNext() {
    716   // If the current token is a possible simple key, keep parsing until we
    717   // can confirm.
    718   bool NeedMore = false;
    719   while (true) {
    720     if (TokenQueue.empty() || NeedMore) {
    721       if (!fetchMoreTokens()) {
    722         TokenQueue.clear();
    723         TokenQueue.push_back(Token());
    724         return TokenQueue.front();
    725       }
    726     }
    727     assert(!TokenQueue.empty() &&
    728             "fetchMoreTokens lied about getting tokens!");
    729 
    730     removeStaleSimpleKeyCandidates();
    731     SimpleKey SK;
    732     SK.Tok = TokenQueue.front();
    733     if (std::find(SimpleKeys.begin(), SimpleKeys.end(), SK)
    734         == SimpleKeys.end())
    735       break;
    736     else
    737       NeedMore = true;
    738   }
    739   return TokenQueue.front();
    740 }
    741 
    742 Token Scanner::getNext() {
    743   Token Ret = peekNext();
    744   // TokenQueue can be empty if there was an error getting the next token.
    745   if (!TokenQueue.empty())
    746     TokenQueue.pop_front();
    747 
    748   // There cannot be any referenced Token's if the TokenQueue is empty. So do a
    749   // quick deallocation of them all.
    750   if (TokenQueue.empty()) {
    751     TokenQueue.Alloc.Reset();
    752   }
    753 
    754   return Ret;
    755 }
    756 
    757 StringRef::iterator Scanner::skip_nb_char(StringRef::iterator Position) {
    758   // Check 7 bit c-printable - b-char.
    759   if (   *Position == 0x09
    760       || (*Position >= 0x20 && *Position <= 0x7E))
    761     return Position + 1;
    762 
    763   // Check for valid UTF-8.
    764   if (uint8_t(*Position) & 0x80) {
    765     UTF8Decoded u8d = decodeUTF8(Position);
    766     if (   u8d.second != 0
    767         && u8d.first != 0xFEFF
    768         && ( u8d.first == 0x85
    769           || ( u8d.first >= 0xA0
    770             && u8d.first <= 0xD7FF)
    771           || ( u8d.first >= 0xE000
    772             && u8d.first <= 0xFFFD)
    773           || ( u8d.first >= 0x10000
    774             && u8d.first <= 0x10FFFF)))
    775       return Position + u8d.second;
    776   }
    777   return Position;
    778 }
    779 
    780 StringRef::iterator Scanner::skip_b_break(StringRef::iterator Position) {
    781   if (*Position == 0x0D) {
    782     if (Position + 1 != End && *(Position + 1) == 0x0A)
    783       return Position + 2;
    784     return Position + 1;
    785   }
    786 
    787   if (*Position == 0x0A)
    788     return Position + 1;
    789   return Position;
    790 }
    791 
    792 
    793 StringRef::iterator Scanner::skip_s_white(StringRef::iterator Position) {
    794   if (Position == End)
    795     return Position;
    796   if (*Position == ' ' || *Position == '\t')
    797     return Position + 1;
    798   return Position;
    799 }
    800 
    801 StringRef::iterator Scanner::skip_ns_char(StringRef::iterator Position) {
    802   if (Position == End)
    803     return Position;
    804   if (*Position == ' ' || *Position == '\t')
    805     return Position;
    806   return skip_nb_char(Position);
    807 }
    808 
    809 StringRef::iterator Scanner::skip_while( SkipWhileFunc Func
    810                                        , StringRef::iterator Position) {
    811   while (true) {
    812     StringRef::iterator i = (this->*Func)(Position);
    813     if (i == Position)
    814       break;
    815     Position = i;
    816   }
    817   return Position;
    818 }
    819 
    820 static bool is_ns_hex_digit(const char C) {
    821   return    (C >= '0' && C <= '9')
    822          || (C >= 'a' && C <= 'z')
    823          || (C >= 'A' && C <= 'Z');
    824 }
    825 
    826 static bool is_ns_word_char(const char C) {
    827   return    C == '-'
    828          || (C >= 'a' && C <= 'z')
    829          || (C >= 'A' && C <= 'Z');
    830 }
    831 
    832 StringRef Scanner::scan_ns_uri_char() {
    833   StringRef::iterator Start = Current;
    834   while (true) {
    835     if (Current == End)
    836       break;
    837     if ((   *Current == '%'
    838           && Current + 2 < End
    839           && is_ns_hex_digit(*(Current + 1))
    840           && is_ns_hex_digit(*(Current + 2)))
    841         || is_ns_word_char(*Current)
    842         || StringRef(Current, 1).find_first_of("#;/?:@&=+$,_.!~*'()[]")
    843           != StringRef::npos) {
    844       ++Current;
    845       ++Column;
    846     } else
    847       break;
    848   }
    849   return StringRef(Start, Current - Start);
    850 }
    851 
    852 StringRef Scanner::scan_ns_plain_one_line() {
    853   StringRef::iterator start = Current;
    854   // The first character must already be verified.
    855   ++Current;
    856   while (true) {
    857     if (Current == End) {
    858       break;
    859     } else if (*Current == ':') {
    860       // Check if the next character is a ns-char.
    861       if (Current + 1 == End)
    862         break;
    863       StringRef::iterator i = skip_ns_char(Current + 1);
    864       if (Current + 1 != i) {
    865         Current = i;
    866         Column += 2; // Consume both the ':' and ns-char.
    867       } else
    868         break;
    869     } else if (*Current == '#') {
    870       // Check if the previous character was a ns-char.
    871       // The & 0x80 check is to check for the trailing byte of a utf-8
    872       if (*(Current - 1) & 0x80 || skip_ns_char(Current - 1) == Current) {
    873         ++Current;
    874         ++Column;
    875       } else
    876         break;
    877     } else {
    878       StringRef::iterator i = skip_nb_char(Current);
    879       if (i == Current)
    880         break;
    881       Current = i;
    882       ++Column;
    883     }
    884   }
    885   return StringRef(start, Current - start);
    886 }
    887 
    888 bool Scanner::consume(uint32_t Expected) {
    889   if (Expected >= 0x80)
    890     report_fatal_error("Not dealing with this yet");
    891   if (Current == End)
    892     return false;
    893   if (uint8_t(*Current) >= 0x80)
    894     report_fatal_error("Not dealing with this yet");
    895   if (uint8_t(*Current) == Expected) {
    896     ++Current;
    897     ++Column;
    898     return true;
    899   }
    900   return false;
    901 }
    902 
    903 void Scanner::skip(uint32_t Distance) {
    904   Current += Distance;
    905   Column += Distance;
    906 }
    907 
    908 bool Scanner::isBlankOrBreak(StringRef::iterator Position) {
    909   if (Position == End)
    910     return false;
    911   if (   *Position == ' ' || *Position == '\t'
    912       || *Position == '\r' || *Position == '\n')
    913     return true;
    914   return false;
    915 }
    916 
    917 void Scanner::saveSimpleKeyCandidate( TokenQueueT::iterator Tok
    918                                     , unsigned AtColumn
    919                                     , bool IsRequired) {
    920   if (IsSimpleKeyAllowed) {
    921     SimpleKey SK;
    922     SK.Tok = Tok;
    923     SK.Line = Line;
    924     SK.Column = AtColumn;
    925     SK.IsRequired = IsRequired;
    926     SK.FlowLevel = FlowLevel;
    927     SimpleKeys.push_back(SK);
    928   }
    929 }
    930 
    931 void Scanner::removeStaleSimpleKeyCandidates() {
    932   for (SmallVectorImpl<SimpleKey>::iterator i = SimpleKeys.begin();
    933                                             i != SimpleKeys.end();) {
    934     if (i->Line != Line || i->Column + 1024 < Column) {
    935       if (i->IsRequired)
    936         setError( "Could not find expected : for simple key"
    937                 , i->Tok->Range.begin());
    938       i = SimpleKeys.erase(i);
    939     } else
    940       ++i;
    941   }
    942 }
    943 
    944 void Scanner::removeSimpleKeyCandidatesOnFlowLevel(unsigned Level) {
    945   if (!SimpleKeys.empty() && (SimpleKeys.end() - 1)->FlowLevel == Level)
    946     SimpleKeys.pop_back();
    947 }
    948 
    949 bool Scanner::unrollIndent(int ToColumn) {
    950   Token T;
    951   // Indentation is ignored in flow.
    952   if (FlowLevel != 0)
    953     return true;
    954 
    955   while (Indent > ToColumn) {
    956     T.Kind = Token::TK_BlockEnd;
    957     T.Range = StringRef(Current, 1);
    958     TokenQueue.push_back(T);
    959     Indent = Indents.pop_back_val();
    960   }
    961 
    962   return true;
    963 }
    964 
    965 bool Scanner::rollIndent( int ToColumn
    966                         , Token::TokenKind Kind
    967                         , TokenQueueT::iterator InsertPoint) {
    968   if (FlowLevel)
    969     return true;
    970   if (Indent < ToColumn) {
    971     Indents.push_back(Indent);
    972     Indent = ToColumn;
    973 
    974     Token T;
    975     T.Kind = Kind;
    976     T.Range = StringRef(Current, 0);
    977     TokenQueue.insert(InsertPoint, T);
    978   }
    979   return true;
    980 }
    981 
    982 void Scanner::scanToNextToken() {
    983   while (true) {
    984     while (*Current == ' ' || *Current == '\t') {
    985       skip(1);
    986     }
    987 
    988     // Skip comment.
    989     if (*Current == '#') {
    990       while (true) {
    991         // This may skip more than one byte, thus Column is only incremented
    992         // for code points.
    993         StringRef::iterator i = skip_nb_char(Current);
    994         if (i == Current)
    995           break;
    996         Current = i;
    997         ++Column;
    998       }
    999     }
   1000 
   1001     // Skip EOL.
   1002     StringRef::iterator i = skip_b_break(Current);
   1003     if (i == Current)
   1004       break;
   1005     Current = i;
   1006     ++Line;
   1007     Column = 0;
   1008     // New lines may start a simple key.
   1009     if (!FlowLevel)
   1010       IsSimpleKeyAllowed = true;
   1011   }
   1012 }
   1013 
   1014 bool Scanner::scanStreamStart() {
   1015   IsStartOfStream = false;
   1016 
   1017   EncodingInfo EI = getUnicodeEncoding(currentInput());
   1018 
   1019   Token T;
   1020   T.Kind = Token::TK_StreamStart;
   1021   T.Range = StringRef(Current, EI.second);
   1022   TokenQueue.push_back(T);
   1023   Current += EI.second;
   1024   return true;
   1025 }
   1026 
   1027 bool Scanner::scanStreamEnd() {
   1028   // Force an ending new line if one isn't present.
   1029   if (Column != 0) {
   1030     Column = 0;
   1031     ++Line;
   1032   }
   1033 
   1034   unrollIndent(-1);
   1035   SimpleKeys.clear();
   1036   IsSimpleKeyAllowed = false;
   1037 
   1038   Token T;
   1039   T.Kind = Token::TK_StreamEnd;
   1040   T.Range = StringRef(Current, 0);
   1041   TokenQueue.push_back(T);
   1042   return true;
   1043 }
   1044 
   1045 bool Scanner::scanDirective() {
   1046   // Reset the indentation level.
   1047   unrollIndent(-1);
   1048   SimpleKeys.clear();
   1049   IsSimpleKeyAllowed = false;
   1050 
   1051   StringRef::iterator Start = Current;
   1052   consume('%');
   1053   StringRef::iterator NameStart = Current;
   1054   Current = skip_while(&Scanner::skip_ns_char, Current);
   1055   StringRef Name(NameStart, Current - NameStart);
   1056   Current = skip_while(&Scanner::skip_s_white, Current);
   1057 
   1058   if (Name == "YAML") {
   1059     Current = skip_while(&Scanner::skip_ns_char, Current);
   1060     Token T;
   1061     T.Kind = Token::TK_VersionDirective;
   1062     T.Range = StringRef(Start, Current - Start);
   1063     TokenQueue.push_back(T);
   1064     return true;
   1065   }
   1066   return false;
   1067 }
   1068 
   1069 bool Scanner::scanDocumentIndicator(bool IsStart) {
   1070   unrollIndent(-1);
   1071   SimpleKeys.clear();
   1072   IsSimpleKeyAllowed = false;
   1073 
   1074   Token T;
   1075   T.Kind = IsStart ? Token::TK_DocumentStart : Token::TK_DocumentEnd;
   1076   T.Range = StringRef(Current, 3);
   1077   skip(3);
   1078   TokenQueue.push_back(T);
   1079   return true;
   1080 }
   1081 
   1082 bool Scanner::scanFlowCollectionStart(bool IsSequence) {
   1083   Token T;
   1084   T.Kind = IsSequence ? Token::TK_FlowSequenceStart
   1085                       : Token::TK_FlowMappingStart;
   1086   T.Range = StringRef(Current, 1);
   1087   skip(1);
   1088   TokenQueue.push_back(T);
   1089 
   1090   // [ and { may begin a simple key.
   1091   saveSimpleKeyCandidate(TokenQueue.back(), Column - 1, false);
   1092 
   1093   // And may also be followed by a simple key.
   1094   IsSimpleKeyAllowed = true;
   1095   ++FlowLevel;
   1096   return true;
   1097 }
   1098 
   1099 bool Scanner::scanFlowCollectionEnd(bool IsSequence) {
   1100   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
   1101   IsSimpleKeyAllowed = false;
   1102   Token T;
   1103   T.Kind = IsSequence ? Token::TK_FlowSequenceEnd
   1104                       : Token::TK_FlowMappingEnd;
   1105   T.Range = StringRef(Current, 1);
   1106   skip(1);
   1107   TokenQueue.push_back(T);
   1108   if (FlowLevel)
   1109     --FlowLevel;
   1110   return true;
   1111 }
   1112 
   1113 bool Scanner::scanFlowEntry() {
   1114   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
   1115   IsSimpleKeyAllowed = true;
   1116   Token T;
   1117   T.Kind = Token::TK_FlowEntry;
   1118   T.Range = StringRef(Current, 1);
   1119   skip(1);
   1120   TokenQueue.push_back(T);
   1121   return true;
   1122 }
   1123 
   1124 bool Scanner::scanBlockEntry() {
   1125   rollIndent(Column, Token::TK_BlockSequenceStart, TokenQueue.end());
   1126   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
   1127   IsSimpleKeyAllowed = true;
   1128   Token T;
   1129   T.Kind = Token::TK_BlockEntry;
   1130   T.Range = StringRef(Current, 1);
   1131   skip(1);
   1132   TokenQueue.push_back(T);
   1133   return true;
   1134 }
   1135 
   1136 bool Scanner::scanKey() {
   1137   if (!FlowLevel)
   1138     rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
   1139 
   1140   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
   1141   IsSimpleKeyAllowed = !FlowLevel;
   1142 
   1143   Token T;
   1144   T.Kind = Token::TK_Key;
   1145   T.Range = StringRef(Current, 1);
   1146   skip(1);
   1147   TokenQueue.push_back(T);
   1148   return true;
   1149 }
   1150 
   1151 bool Scanner::scanValue() {
   1152   // If the previous token could have been a simple key, insert the key token
   1153   // into the token queue.
   1154   if (!SimpleKeys.empty()) {
   1155     SimpleKey SK = SimpleKeys.pop_back_val();
   1156     Token T;
   1157     T.Kind = Token::TK_Key;
   1158     T.Range = SK.Tok->Range;
   1159     TokenQueueT::iterator i, e;
   1160     for (i = TokenQueue.begin(), e = TokenQueue.end(); i != e; ++i) {
   1161       if (i == SK.Tok)
   1162         break;
   1163     }
   1164     assert(i != e && "SimpleKey not in token queue!");
   1165     i = TokenQueue.insert(i, T);
   1166 
   1167     // We may also need to add a Block-Mapping-Start token.
   1168     rollIndent(SK.Column, Token::TK_BlockMappingStart, i);
   1169 
   1170     IsSimpleKeyAllowed = false;
   1171   } else {
   1172     if (!FlowLevel)
   1173       rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
   1174     IsSimpleKeyAllowed = !FlowLevel;
   1175   }
   1176 
   1177   Token T;
   1178   T.Kind = Token::TK_Value;
   1179   T.Range = StringRef(Current, 1);
   1180   skip(1);
   1181   TokenQueue.push_back(T);
   1182   return true;
   1183 }
   1184 
   1185 // Forbidding inlining improves performance by roughly 20%.
   1186 // FIXME: Remove once llvm optimizes this to the faster version without hints.
   1187 LLVM_ATTRIBUTE_NOINLINE static bool
   1188 wasEscaped(StringRef::iterator First, StringRef::iterator Position);
   1189 
   1190 // Returns whether a character at 'Position' was escaped with a leading '\'.
   1191 // 'First' specifies the position of the first character in the string.
   1192 static bool wasEscaped(StringRef::iterator First,
   1193                        StringRef::iterator Position) {
   1194   assert(Position - 1 >= First);
   1195   StringRef::iterator I = Position - 1;
   1196   // We calculate the number of consecutive '\'s before the current position
   1197   // by iterating backwards through our string.
   1198   while (I >= First && *I == '\\') --I;
   1199   // (Position - 1 - I) now contains the number of '\'s before the current
   1200   // position. If it is odd, the character at 'Position' was escaped.
   1201   return (Position - 1 - I) % 2 == 1;
   1202 }
   1203 
   1204 bool Scanner::scanFlowScalar(bool IsDoubleQuoted) {
   1205   StringRef::iterator Start = Current;
   1206   unsigned ColStart = Column;
   1207   if (IsDoubleQuoted) {
   1208     do {
   1209       ++Current;
   1210       while (Current != End && *Current != '"')
   1211         ++Current;
   1212       // Repeat until the previous character was not a '\' or was an escaped
   1213       // backslash.
   1214     } while (*(Current - 1) == '\\' && wasEscaped(Start + 1, Current));
   1215   } else {
   1216     skip(1);
   1217     while (true) {
   1218       // Skip a ' followed by another '.
   1219       if (Current + 1 < End && *Current == '\'' && *(Current + 1) == '\'') {
   1220         skip(2);
   1221         continue;
   1222       } else if (*Current == '\'')
   1223         break;
   1224       StringRef::iterator i = skip_nb_char(Current);
   1225       if (i == Current) {
   1226         i = skip_b_break(Current);
   1227         if (i == Current)
   1228           break;
   1229         Current = i;
   1230         Column = 0;
   1231         ++Line;
   1232       } else {
   1233         if (i == End)
   1234           break;
   1235         Current = i;
   1236         ++Column;
   1237       }
   1238     }
   1239   }
   1240   skip(1); // Skip ending quote.
   1241   Token T;
   1242   T.Kind = Token::TK_Scalar;
   1243   T.Range = StringRef(Start, Current - Start);
   1244   TokenQueue.push_back(T);
   1245 
   1246   saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
   1247 
   1248   IsSimpleKeyAllowed = false;
   1249 
   1250   return true;
   1251 }
   1252 
   1253 bool Scanner::scanPlainScalar() {
   1254   StringRef::iterator Start = Current;
   1255   unsigned ColStart = Column;
   1256   unsigned LeadingBlanks = 0;
   1257   assert(Indent >= -1 && "Indent must be >= -1 !");
   1258   unsigned indent = static_cast<unsigned>(Indent + 1);
   1259   while (true) {
   1260     if (*Current == '#')
   1261       break;
   1262 
   1263     while (!isBlankOrBreak(Current)) {
   1264       if (  FlowLevel && *Current == ':'
   1265           && !(isBlankOrBreak(Current + 1) || *(Current + 1) == ',')) {
   1266         setError("Found unexpected ':' while scanning a plain scalar", Current);
   1267         return false;
   1268       }
   1269 
   1270       // Check for the end of the plain scalar.
   1271       if (  (*Current == ':' && isBlankOrBreak(Current + 1))
   1272           || (  FlowLevel
   1273           && (StringRef(Current, 1).find_first_of(",:?[]{}")
   1274               != StringRef::npos)))
   1275         break;
   1276 
   1277       StringRef::iterator i = skip_nb_char(Current);
   1278       if (i == Current)
   1279         break;
   1280       Current = i;
   1281       ++Column;
   1282     }
   1283 
   1284     // Are we at the end?
   1285     if (!isBlankOrBreak(Current))
   1286       break;
   1287 
   1288     // Eat blanks.
   1289     StringRef::iterator Tmp = Current;
   1290     while (isBlankOrBreak(Tmp)) {
   1291       StringRef::iterator i = skip_s_white(Tmp);
   1292       if (i != Tmp) {
   1293         if (LeadingBlanks && (Column < indent) && *Tmp == '\t') {
   1294           setError("Found invalid tab character in indentation", Tmp);
   1295           return false;
   1296         }
   1297         Tmp = i;
   1298         ++Column;
   1299       } else {
   1300         i = skip_b_break(Tmp);
   1301         if (!LeadingBlanks)
   1302           LeadingBlanks = 1;
   1303         Tmp = i;
   1304         Column = 0;
   1305         ++Line;
   1306       }
   1307     }
   1308 
   1309     if (!FlowLevel && Column < indent)
   1310       break;
   1311 
   1312     Current = Tmp;
   1313   }
   1314   if (Start == Current) {
   1315     setError("Got empty plain scalar", Start);
   1316     return false;
   1317   }
   1318   Token T;
   1319   T.Kind = Token::TK_Scalar;
   1320   T.Range = StringRef(Start, Current - Start);
   1321   TokenQueue.push_back(T);
   1322 
   1323   // Plain scalars can be simple keys.
   1324   saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
   1325 
   1326   IsSimpleKeyAllowed = false;
   1327 
   1328   return true;
   1329 }
   1330 
   1331 bool Scanner::scanAliasOrAnchor(bool IsAlias) {
   1332   StringRef::iterator Start = Current;
   1333   unsigned ColStart = Column;
   1334   skip(1);
   1335   while(true) {
   1336     if (   *Current == '[' || *Current == ']'
   1337         || *Current == '{' || *Current == '}'
   1338         || *Current == ','
   1339         || *Current == ':')
   1340       break;
   1341     StringRef::iterator i = skip_ns_char(Current);
   1342     if (i == Current)
   1343       break;
   1344     Current = i;
   1345     ++Column;
   1346   }
   1347 
   1348   if (Start == Current) {
   1349     setError("Got empty alias or anchor", Start);
   1350     return false;
   1351   }
   1352 
   1353   Token T;
   1354   T.Kind = IsAlias ? Token::TK_Alias : Token::TK_Anchor;
   1355   T.Range = StringRef(Start, Current - Start);
   1356   TokenQueue.push_back(T);
   1357 
   1358   // Alias and anchors can be simple keys.
   1359   saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
   1360 
   1361   IsSimpleKeyAllowed = false;
   1362 
   1363   return true;
   1364 }
   1365 
   1366 bool Scanner::scanBlockScalar(bool IsLiteral) {
   1367   StringRef::iterator Start = Current;
   1368   skip(1); // Eat | or >
   1369   while(true) {
   1370     StringRef::iterator i = skip_nb_char(Current);
   1371     if (i == Current) {
   1372       if (Column == 0)
   1373         break;
   1374       i = skip_b_break(Current);
   1375       if (i != Current) {
   1376         // We got a line break.
   1377         Column = 0;
   1378         ++Line;
   1379         Current = i;
   1380         continue;
   1381       } else {
   1382         // There was an error, which should already have been printed out.
   1383         return false;
   1384       }
   1385     }
   1386     Current = i;
   1387     ++Column;
   1388   }
   1389 
   1390   if (Start == Current) {
   1391     setError("Got empty block scalar", Start);
   1392     return false;
   1393   }
   1394 
   1395   Token T;
   1396   T.Kind = Token::TK_Scalar;
   1397   T.Range = StringRef(Start, Current - Start);
   1398   TokenQueue.push_back(T);
   1399   return true;
   1400 }
   1401 
   1402 bool Scanner::scanTag() {
   1403   StringRef::iterator Start = Current;
   1404   unsigned ColStart = Column;
   1405   skip(1); // Eat !.
   1406   if (Current == End || isBlankOrBreak(Current)); // An empty tag.
   1407   else if (*Current == '<') {
   1408     skip(1);
   1409     scan_ns_uri_char();
   1410     if (!consume('>'))
   1411       return false;
   1412   } else {
   1413     // FIXME: Actually parse the c-ns-shorthand-tag rule.
   1414     Current = skip_while(&Scanner::skip_ns_char, Current);
   1415   }
   1416 
   1417   Token T;
   1418   T.Kind = Token::TK_Tag;
   1419   T.Range = StringRef(Start, Current - Start);
   1420   TokenQueue.push_back(T);
   1421 
   1422   // Tags can be simple keys.
   1423   saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
   1424 
   1425   IsSimpleKeyAllowed = false;
   1426 
   1427   return true;
   1428 }
   1429 
   1430 bool Scanner::fetchMoreTokens() {
   1431   if (IsStartOfStream)
   1432     return scanStreamStart();
   1433 
   1434   scanToNextToken();
   1435 
   1436   if (Current == End)
   1437     return scanStreamEnd();
   1438 
   1439   removeStaleSimpleKeyCandidates();
   1440 
   1441   unrollIndent(Column);
   1442 
   1443   if (Column == 0 && *Current == '%')
   1444     return scanDirective();
   1445 
   1446   if (Column == 0 && Current + 4 <= End
   1447       && *Current == '-'
   1448       && *(Current + 1) == '-'
   1449       && *(Current + 2) == '-'
   1450       && (Current + 3 == End || isBlankOrBreak(Current + 3)))
   1451     return scanDocumentIndicator(true);
   1452 
   1453   if (Column == 0 && Current + 4 <= End
   1454       && *Current == '.'
   1455       && *(Current + 1) == '.'
   1456       && *(Current + 2) == '.'
   1457       && (Current + 3 == End || isBlankOrBreak(Current + 3)))
   1458     return scanDocumentIndicator(false);
   1459 
   1460   if (*Current == '[')
   1461     return scanFlowCollectionStart(true);
   1462 
   1463   if (*Current == '{')
   1464     return scanFlowCollectionStart(false);
   1465 
   1466   if (*Current == ']')
   1467     return scanFlowCollectionEnd(true);
   1468 
   1469   if (*Current == '}')
   1470     return scanFlowCollectionEnd(false);
   1471 
   1472   if (*Current == ',')
   1473     return scanFlowEntry();
   1474 
   1475   if (*Current == '-' && isBlankOrBreak(Current + 1))
   1476     return scanBlockEntry();
   1477 
   1478   if (*Current == '?' && (FlowLevel || isBlankOrBreak(Current + 1)))
   1479     return scanKey();
   1480 
   1481   if (*Current == ':' && (FlowLevel || isBlankOrBreak(Current + 1)))
   1482     return scanValue();
   1483 
   1484   if (*Current == '*')
   1485     return scanAliasOrAnchor(true);
   1486 
   1487   if (*Current == '&')
   1488     return scanAliasOrAnchor(false);
   1489 
   1490   if (*Current == '!')
   1491     return scanTag();
   1492 
   1493   if (*Current == '|' && !FlowLevel)
   1494     return scanBlockScalar(true);
   1495 
   1496   if (*Current == '>' && !FlowLevel)
   1497     return scanBlockScalar(false);
   1498 
   1499   if (*Current == '\'')
   1500     return scanFlowScalar(false);
   1501 
   1502   if (*Current == '"')
   1503     return scanFlowScalar(true);
   1504 
   1505   // Get a plain scalar.
   1506   StringRef FirstChar(Current, 1);
   1507   if (!(isBlankOrBreak(Current)
   1508         || FirstChar.find_first_of("-?:,[]{}#&*!|>'\"%@`") != StringRef::npos)
   1509       || (*Current == '-' && !isBlankOrBreak(Current + 1))
   1510       || (!FlowLevel && (*Current == '?' || *Current == ':')
   1511           && isBlankOrBreak(Current + 1))
   1512       || (!FlowLevel && *Current == ':'
   1513                       && Current + 2 < End
   1514                       && *(Current + 1) == ':'
   1515                       && !isBlankOrBreak(Current + 2)))
   1516     return scanPlainScalar();
   1517 
   1518   setError("Unrecognized character while tokenizing.");
   1519   return false;
   1520 }
   1521 
   1522 Stream::Stream(StringRef Input, SourceMgr &SM)
   1523   : scanner(new Scanner(Input, SM))
   1524   , CurrentDoc(0) {}
   1525 
   1526 Stream::~Stream() {}
   1527 
   1528 bool Stream::failed() { return scanner->failed(); }
   1529 
   1530 void Stream::printError(Node *N, const Twine &Msg) {
   1531   SmallVector<SMRange, 1> Ranges;
   1532   Ranges.push_back(N->getSourceRange());
   1533   scanner->printError( N->getSourceRange().Start
   1534                      , SourceMgr::DK_Error
   1535                      , Msg
   1536                      , Ranges);
   1537 }
   1538 
   1539 void Stream::handleYAMLDirective(const Token &t) {
   1540   // TODO: Ensure version is 1.x.
   1541 }
   1542 
   1543 document_iterator Stream::begin() {
   1544   if (CurrentDoc)
   1545     report_fatal_error("Can only iterate over the stream once");
   1546 
   1547   // Skip Stream-Start.
   1548   scanner->getNext();
   1549 
   1550   CurrentDoc.reset(new Document(*this));
   1551   return document_iterator(CurrentDoc);
   1552 }
   1553 
   1554 document_iterator Stream::end() {
   1555   return document_iterator();
   1556 }
   1557 
   1558 void Stream::skip() {
   1559   for (document_iterator i = begin(), e = end(); i != e; ++i)
   1560     i->skip();
   1561 }
   1562 
   1563 Node::Node(unsigned int Type, OwningPtr<Document> &D, StringRef A)
   1564   : Doc(D)
   1565   , TypeID(Type)
   1566   , Anchor(A) {
   1567   SMLoc Start = SMLoc::getFromPointer(peekNext().Range.begin());
   1568   SourceRange = SMRange(Start, Start);
   1569 }
   1570 
   1571 Token &Node::peekNext() {
   1572   return Doc->peekNext();
   1573 }
   1574 
   1575 Token Node::getNext() {
   1576   return Doc->getNext();
   1577 }
   1578 
   1579 Node *Node::parseBlockNode() {
   1580   return Doc->parseBlockNode();
   1581 }
   1582 
   1583 BumpPtrAllocator &Node::getAllocator() {
   1584   return Doc->NodeAllocator;
   1585 }
   1586 
   1587 void Node::setError(const Twine &Msg, Token &Tok) const {
   1588   Doc->setError(Msg, Tok);
   1589 }
   1590 
   1591 bool Node::failed() const {
   1592   return Doc->failed();
   1593 }
   1594 
   1595 
   1596 
   1597 StringRef ScalarNode::getValue(SmallVectorImpl<char> &Storage) const {
   1598   // TODO: Handle newlines properly. We need to remove leading whitespace.
   1599   if (Value[0] == '"') { // Double quoted.
   1600     // Pull off the leading and trailing "s.
   1601     StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
   1602     // Search for characters that would require unescaping the value.
   1603     StringRef::size_type i = UnquotedValue.find_first_of("\\\r\n");
   1604     if (i != StringRef::npos)
   1605       return unescapeDoubleQuoted(UnquotedValue, i, Storage);
   1606     return UnquotedValue;
   1607   } else if (Value[0] == '\'') { // Single quoted.
   1608     // Pull off the leading and trailing 's.
   1609     StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
   1610     StringRef::size_type i = UnquotedValue.find('\'');
   1611     if (i != StringRef::npos) {
   1612       // We're going to need Storage.
   1613       Storage.clear();
   1614       Storage.reserve(UnquotedValue.size());
   1615       for (; i != StringRef::npos; i = UnquotedValue.find('\'')) {
   1616         StringRef Valid(UnquotedValue.begin(), i);
   1617         Storage.insert(Storage.end(), Valid.begin(), Valid.end());
   1618         Storage.push_back('\'');
   1619         UnquotedValue = UnquotedValue.substr(i + 2);
   1620       }
   1621       Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
   1622       return StringRef(Storage.begin(), Storage.size());
   1623     }
   1624     return UnquotedValue;
   1625   }
   1626   // Plain or block.
   1627   size_t trimtrail = Value.rfind(' ');
   1628   return Value.drop_back(
   1629     trimtrail == StringRef::npos ? 0 : Value.size() - trimtrail);
   1630 }
   1631 
   1632 StringRef ScalarNode::unescapeDoubleQuoted( StringRef UnquotedValue
   1633                                           , StringRef::size_type i
   1634                                           , SmallVectorImpl<char> &Storage)
   1635                                           const {
   1636   // Use Storage to build proper value.
   1637   Storage.clear();
   1638   Storage.reserve(UnquotedValue.size());
   1639   for (; i != StringRef::npos; i = UnquotedValue.find_first_of("\\\r\n")) {
   1640     // Insert all previous chars into Storage.
   1641     StringRef Valid(UnquotedValue.begin(), i);
   1642     Storage.insert(Storage.end(), Valid.begin(), Valid.end());
   1643     // Chop off inserted chars.
   1644     UnquotedValue = UnquotedValue.substr(i);
   1645 
   1646     assert(!UnquotedValue.empty() && "Can't be empty!");
   1647 
   1648     // Parse escape or line break.
   1649     switch (UnquotedValue[0]) {
   1650     case '\r':
   1651     case '\n':
   1652       Storage.push_back('\n');
   1653       if (   UnquotedValue.size() > 1
   1654           && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
   1655         UnquotedValue = UnquotedValue.substr(1);
   1656       UnquotedValue = UnquotedValue.substr(1);
   1657       break;
   1658     default:
   1659       if (UnquotedValue.size() == 1)
   1660         // TODO: Report error.
   1661         break;
   1662       UnquotedValue = UnquotedValue.substr(1);
   1663       switch (UnquotedValue[0]) {
   1664       default: {
   1665           Token T;
   1666           T.Range = StringRef(UnquotedValue.begin(), 1);
   1667           setError("Unrecognized escape code!", T);
   1668           return "";
   1669         }
   1670       case '\r':
   1671       case '\n':
   1672         // Remove the new line.
   1673         if (   UnquotedValue.size() > 1
   1674             && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
   1675           UnquotedValue = UnquotedValue.substr(1);
   1676         // If this was just a single byte newline, it will get skipped
   1677         // below.
   1678         break;
   1679       case '0':
   1680         Storage.push_back(0x00);
   1681         break;
   1682       case 'a':
   1683         Storage.push_back(0x07);
   1684         break;
   1685       case 'b':
   1686         Storage.push_back(0x08);
   1687         break;
   1688       case 't':
   1689       case 0x09:
   1690         Storage.push_back(0x09);
   1691         break;
   1692       case 'n':
   1693         Storage.push_back(0x0A);
   1694         break;
   1695       case 'v':
   1696         Storage.push_back(0x0B);
   1697         break;
   1698       case 'f':
   1699         Storage.push_back(0x0C);
   1700         break;
   1701       case 'r':
   1702         Storage.push_back(0x0D);
   1703         break;
   1704       case 'e':
   1705         Storage.push_back(0x1B);
   1706         break;
   1707       case ' ':
   1708         Storage.push_back(0x20);
   1709         break;
   1710       case '"':
   1711         Storage.push_back(0x22);
   1712         break;
   1713       case '/':
   1714         Storage.push_back(0x2F);
   1715         break;
   1716       case '\\':
   1717         Storage.push_back(0x5C);
   1718         break;
   1719       case 'N':
   1720         encodeUTF8(0x85, Storage);
   1721         break;
   1722       case '_':
   1723         encodeUTF8(0xA0, Storage);
   1724         break;
   1725       case 'L':
   1726         encodeUTF8(0x2028, Storage);
   1727         break;
   1728       case 'P':
   1729         encodeUTF8(0x2029, Storage);
   1730         break;
   1731       case 'x': {
   1732           if (UnquotedValue.size() < 3)
   1733             // TODO: Report error.
   1734             break;
   1735           unsigned int UnicodeScalarValue;
   1736           UnquotedValue.substr(1, 2).getAsInteger(16, UnicodeScalarValue);
   1737           encodeUTF8(UnicodeScalarValue, Storage);
   1738           UnquotedValue = UnquotedValue.substr(2);
   1739           break;
   1740         }
   1741       case 'u': {
   1742           if (UnquotedValue.size() < 5)
   1743             // TODO: Report error.
   1744             break;
   1745           unsigned int UnicodeScalarValue;
   1746           UnquotedValue.substr(1, 4).getAsInteger(16, UnicodeScalarValue);
   1747           encodeUTF8(UnicodeScalarValue, Storage);
   1748           UnquotedValue = UnquotedValue.substr(4);
   1749           break;
   1750         }
   1751       case 'U': {
   1752           if (UnquotedValue.size() < 9)
   1753             // TODO: Report error.
   1754             break;
   1755           unsigned int UnicodeScalarValue;
   1756           UnquotedValue.substr(1, 8).getAsInteger(16, UnicodeScalarValue);
   1757           encodeUTF8(UnicodeScalarValue, Storage);
   1758           UnquotedValue = UnquotedValue.substr(8);
   1759           break;
   1760         }
   1761       }
   1762       UnquotedValue = UnquotedValue.substr(1);
   1763     }
   1764   }
   1765   Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
   1766   return StringRef(Storage.begin(), Storage.size());
   1767 }
   1768 
   1769 Node *KeyValueNode::getKey() {
   1770   if (Key)
   1771     return Key;
   1772   // Handle implicit null keys.
   1773   {
   1774     Token &t = peekNext();
   1775     if (   t.Kind == Token::TK_BlockEnd
   1776         || t.Kind == Token::TK_Value
   1777         || t.Kind == Token::TK_Error) {
   1778       return Key = new (getAllocator()) NullNode(Doc);
   1779     }
   1780     if (t.Kind == Token::TK_Key)
   1781       getNext(); // skip TK_Key.
   1782   }
   1783 
   1784   // Handle explicit null keys.
   1785   Token &t = peekNext();
   1786   if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Value) {
   1787     return Key = new (getAllocator()) NullNode(Doc);
   1788   }
   1789 
   1790   // We've got a normal key.
   1791   return Key = parseBlockNode();
   1792 }
   1793 
   1794 Node *KeyValueNode::getValue() {
   1795   if (Value)
   1796     return Value;
   1797   getKey()->skip();
   1798   if (failed())
   1799     return Value = new (getAllocator()) NullNode(Doc);
   1800 
   1801   // Handle implicit null values.
   1802   {
   1803     Token &t = peekNext();
   1804     if (   t.Kind == Token::TK_BlockEnd
   1805         || t.Kind == Token::TK_FlowMappingEnd
   1806         || t.Kind == Token::TK_Key
   1807         || t.Kind == Token::TK_FlowEntry
   1808         || t.Kind == Token::TK_Error) {
   1809       return Value = new (getAllocator()) NullNode(Doc);
   1810     }
   1811 
   1812     if (t.Kind != Token::TK_Value) {
   1813       setError("Unexpected token in Key Value.", t);
   1814       return Value = new (getAllocator()) NullNode(Doc);
   1815     }
   1816     getNext(); // skip TK_Value.
   1817   }
   1818 
   1819   // Handle explicit null values.
   1820   Token &t = peekNext();
   1821   if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Key) {
   1822     return Value = new (getAllocator()) NullNode(Doc);
   1823   }
   1824 
   1825   // We got a normal value.
   1826   return Value = parseBlockNode();
   1827 }
   1828 
   1829 void MappingNode::increment() {
   1830   if (failed()) {
   1831     IsAtEnd = true;
   1832     CurrentEntry = 0;
   1833     return;
   1834   }
   1835   if (CurrentEntry) {
   1836     CurrentEntry->skip();
   1837     if (Type == MT_Inline) {
   1838       IsAtEnd = true;
   1839       CurrentEntry = 0;
   1840       return;
   1841     }
   1842   }
   1843   Token T = peekNext();
   1844   if (T.Kind == Token::TK_Key || T.Kind == Token::TK_Scalar) {
   1845     // KeyValueNode eats the TK_Key. That way it can detect null keys.
   1846     CurrentEntry = new (getAllocator()) KeyValueNode(Doc);
   1847   } else if (Type == MT_Block) {
   1848     switch (T.Kind) {
   1849     case Token::TK_BlockEnd:
   1850       getNext();
   1851       IsAtEnd = true;
   1852       CurrentEntry = 0;
   1853       break;
   1854     default:
   1855       setError("Unexpected token. Expected Key or Block End", T);
   1856     case Token::TK_Error:
   1857       IsAtEnd = true;
   1858       CurrentEntry = 0;
   1859     }
   1860   } else {
   1861     switch (T.Kind) {
   1862     case Token::TK_FlowEntry:
   1863       // Eat the flow entry and recurse.
   1864       getNext();
   1865       return increment();
   1866     case Token::TK_FlowMappingEnd:
   1867       getNext();
   1868     case Token::TK_Error:
   1869       // Set this to end iterator.
   1870       IsAtEnd = true;
   1871       CurrentEntry = 0;
   1872       break;
   1873     default:
   1874       setError( "Unexpected token. Expected Key, Flow Entry, or Flow "
   1875                 "Mapping End."
   1876               , T);
   1877       IsAtEnd = true;
   1878       CurrentEntry = 0;
   1879     }
   1880   }
   1881 }
   1882 
   1883 void SequenceNode::increment() {
   1884   if (failed()) {
   1885     IsAtEnd = true;
   1886     CurrentEntry = 0;
   1887     return;
   1888   }
   1889   if (CurrentEntry)
   1890     CurrentEntry->skip();
   1891   Token T = peekNext();
   1892   if (SeqType == ST_Block) {
   1893     switch (T.Kind) {
   1894     case Token::TK_BlockEntry:
   1895       getNext();
   1896       CurrentEntry = parseBlockNode();
   1897       if (CurrentEntry == 0) { // An error occurred.
   1898         IsAtEnd = true;
   1899         CurrentEntry = 0;
   1900       }
   1901       break;
   1902     case Token::TK_BlockEnd:
   1903       getNext();
   1904       IsAtEnd = true;
   1905       CurrentEntry = 0;
   1906       break;
   1907     default:
   1908       setError( "Unexpected token. Expected Block Entry or Block End."
   1909               , T);
   1910     case Token::TK_Error:
   1911       IsAtEnd = true;
   1912       CurrentEntry = 0;
   1913     }
   1914   } else if (SeqType == ST_Indentless) {
   1915     switch (T.Kind) {
   1916     case Token::TK_BlockEntry:
   1917       getNext();
   1918       CurrentEntry = parseBlockNode();
   1919       if (CurrentEntry == 0) { // An error occurred.
   1920         IsAtEnd = true;
   1921         CurrentEntry = 0;
   1922       }
   1923       break;
   1924     default:
   1925     case Token::TK_Error:
   1926       IsAtEnd = true;
   1927       CurrentEntry = 0;
   1928     }
   1929   } else if (SeqType == ST_Flow) {
   1930     switch (T.Kind) {
   1931     case Token::TK_FlowEntry:
   1932       // Eat the flow entry and recurse.
   1933       getNext();
   1934       WasPreviousTokenFlowEntry = true;
   1935       return increment();
   1936     case Token::TK_FlowSequenceEnd:
   1937       getNext();
   1938     case Token::TK_Error:
   1939       // Set this to end iterator.
   1940       IsAtEnd = true;
   1941       CurrentEntry = 0;
   1942       break;
   1943     case Token::TK_StreamEnd:
   1944     case Token::TK_DocumentEnd:
   1945     case Token::TK_DocumentStart:
   1946       setError("Could not find closing ]!", T);
   1947       // Set this to end iterator.
   1948       IsAtEnd = true;
   1949       CurrentEntry = 0;
   1950       break;
   1951     default:
   1952       if (!WasPreviousTokenFlowEntry) {
   1953         setError("Expected , between entries!", T);
   1954         IsAtEnd = true;
   1955         CurrentEntry = 0;
   1956         break;
   1957       }
   1958       // Otherwise it must be a flow entry.
   1959       CurrentEntry = parseBlockNode();
   1960       if (!CurrentEntry) {
   1961         IsAtEnd = true;
   1962       }
   1963       WasPreviousTokenFlowEntry = false;
   1964       break;
   1965     }
   1966   }
   1967 }
   1968 
   1969 Document::Document(Stream &S) : stream(S), Root(0) {
   1970   if (parseDirectives())
   1971     expectToken(Token::TK_DocumentStart);
   1972   Token &T = peekNext();
   1973   if (T.Kind == Token::TK_DocumentStart)
   1974     getNext();
   1975 }
   1976 
   1977 bool Document::skip()  {
   1978   if (stream.scanner->failed())
   1979     return false;
   1980   if (!Root)
   1981     getRoot();
   1982   Root->skip();
   1983   Token &T = peekNext();
   1984   if (T.Kind == Token::TK_StreamEnd)
   1985     return false;
   1986   if (T.Kind == Token::TK_DocumentEnd) {
   1987     getNext();
   1988     return skip();
   1989   }
   1990   return true;
   1991 }
   1992 
   1993 Token &Document::peekNext() {
   1994   return stream.scanner->peekNext();
   1995 }
   1996 
   1997 Token Document::getNext() {
   1998   return stream.scanner->getNext();
   1999 }
   2000 
   2001 void Document::setError(const Twine &Message, Token &Location) const {
   2002   stream.scanner->setError(Message, Location.Range.begin());
   2003 }
   2004 
   2005 bool Document::failed() const {
   2006   return stream.scanner->failed();
   2007 }
   2008 
   2009 Node *Document::parseBlockNode() {
   2010   Token T = peekNext();
   2011   // Handle properties.
   2012   Token AnchorInfo;
   2013 parse_property:
   2014   switch (T.Kind) {
   2015   case Token::TK_Alias:
   2016     getNext();
   2017     return new (NodeAllocator) AliasNode(stream.CurrentDoc, T.Range.substr(1));
   2018   case Token::TK_Anchor:
   2019     if (AnchorInfo.Kind == Token::TK_Anchor) {
   2020       setError("Already encountered an anchor for this node!", T);
   2021       return 0;
   2022     }
   2023     AnchorInfo = getNext(); // Consume TK_Anchor.
   2024     T = peekNext();
   2025     goto parse_property;
   2026   case Token::TK_Tag:
   2027     getNext(); // Skip TK_Tag.
   2028     T = peekNext();
   2029     goto parse_property;
   2030   default:
   2031     break;
   2032   }
   2033 
   2034   switch (T.Kind) {
   2035   case Token::TK_BlockEntry:
   2036     // We got an unindented BlockEntry sequence. This is not terminated with
   2037     // a BlockEnd.
   2038     // Don't eat the TK_BlockEntry, SequenceNode needs it.
   2039     return new (NodeAllocator) SequenceNode( stream.CurrentDoc
   2040                                            , AnchorInfo.Range.substr(1)
   2041                                            , SequenceNode::ST_Indentless);
   2042   case Token::TK_BlockSequenceStart:
   2043     getNext();
   2044     return new (NodeAllocator)
   2045       SequenceNode( stream.CurrentDoc
   2046                   , AnchorInfo.Range.substr(1)
   2047                   , SequenceNode::ST_Block);
   2048   case Token::TK_BlockMappingStart:
   2049     getNext();
   2050     return new (NodeAllocator)
   2051       MappingNode( stream.CurrentDoc
   2052                  , AnchorInfo.Range.substr(1)
   2053                  , MappingNode::MT_Block);
   2054   case Token::TK_FlowSequenceStart:
   2055     getNext();
   2056     return new (NodeAllocator)
   2057       SequenceNode( stream.CurrentDoc
   2058                   , AnchorInfo.Range.substr(1)
   2059                   , SequenceNode::ST_Flow);
   2060   case Token::TK_FlowMappingStart:
   2061     getNext();
   2062     return new (NodeAllocator)
   2063       MappingNode( stream.CurrentDoc
   2064                  , AnchorInfo.Range.substr(1)
   2065                  , MappingNode::MT_Flow);
   2066   case Token::TK_Scalar:
   2067     getNext();
   2068     return new (NodeAllocator)
   2069       ScalarNode( stream.CurrentDoc
   2070                 , AnchorInfo.Range.substr(1)
   2071                 , T.Range);
   2072   case Token::TK_Key:
   2073     // Don't eat the TK_Key, KeyValueNode expects it.
   2074     return new (NodeAllocator)
   2075       MappingNode( stream.CurrentDoc
   2076                  , AnchorInfo.Range.substr(1)
   2077                  , MappingNode::MT_Inline);
   2078   case Token::TK_DocumentStart:
   2079   case Token::TK_DocumentEnd:
   2080   case Token::TK_StreamEnd:
   2081   default:
   2082     // TODO: Properly handle tags. "[!!str ]" should resolve to !!str "", not
   2083     //       !!null null.
   2084     return new (NodeAllocator) NullNode(stream.CurrentDoc);
   2085   case Token::TK_Error:
   2086     return 0;
   2087   }
   2088   llvm_unreachable("Control flow shouldn't reach here.");
   2089   return 0;
   2090 }
   2091 
   2092 bool Document::parseDirectives() {
   2093   bool isDirective = false;
   2094   while (true) {
   2095     Token T = peekNext();
   2096     if (T.Kind == Token::TK_TagDirective) {
   2097       handleTagDirective(getNext());
   2098       isDirective = true;
   2099     } else if (T.Kind == Token::TK_VersionDirective) {
   2100       stream.handleYAMLDirective(getNext());
   2101       isDirective = true;
   2102     } else
   2103       break;
   2104   }
   2105   return isDirective;
   2106 }
   2107 
   2108 bool Document::expectToken(int TK) {
   2109   Token T = getNext();
   2110   if (T.Kind != TK) {
   2111     setError("Unexpected token", T);
   2112     return false;
   2113   }
   2114   return true;
   2115 }
   2116 
   2117 OwningPtr<Document> document_iterator::NullDoc;
   2118