Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Pass to verify generated machine code. The following is checked:
     11 //
     12 // Operand counts: All explicit operands must be present.
     13 //
     14 // Register classes: All physical and virtual register operands must be
     15 // compatible with the register class required by the instruction descriptor.
     16 //
     17 // Register live intervals: Registers must be defined only once, and must be
     18 // defined before use.
     19 //
     20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
     21 // command-line option -verify-machineinstrs, or by defining the environment
     22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
     23 // the verifier errors.
     24 //===----------------------------------------------------------------------===//
     25 
     26 #include "llvm/Instructions.h"
     27 #include "llvm/Function.h"
     28 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     29 #include "llvm/CodeGen/LiveVariables.h"
     30 #include "llvm/CodeGen/LiveStackAnalysis.h"
     31 #include "llvm/CodeGen/MachineInstrBundle.h"
     32 #include "llvm/CodeGen/MachineFunctionPass.h"
     33 #include "llvm/CodeGen/MachineFrameInfo.h"
     34 #include "llvm/CodeGen/MachineMemOperand.h"
     35 #include "llvm/CodeGen/MachineRegisterInfo.h"
     36 #include "llvm/CodeGen/Passes.h"
     37 #include "llvm/MC/MCAsmInfo.h"
     38 #include "llvm/Target/TargetMachine.h"
     39 #include "llvm/Target/TargetRegisterInfo.h"
     40 #include "llvm/Target/TargetInstrInfo.h"
     41 #include "llvm/ADT/DenseSet.h"
     42 #include "llvm/ADT/SetOperations.h"
     43 #include "llvm/ADT/SmallVector.h"
     44 #include "llvm/Support/Debug.h"
     45 #include "llvm/Support/ErrorHandling.h"
     46 #include "llvm/Support/raw_ostream.h"
     47 using namespace llvm;
     48 
     49 namespace {
     50   struct MachineVerifier {
     51 
     52     MachineVerifier(Pass *pass, const char *b) :
     53       PASS(pass),
     54       Banner(b),
     55       OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
     56       {}
     57 
     58     bool runOnMachineFunction(MachineFunction &MF);
     59 
     60     Pass *const PASS;
     61     const char *Banner;
     62     const char *const OutFileName;
     63     raw_ostream *OS;
     64     const MachineFunction *MF;
     65     const TargetMachine *TM;
     66     const TargetInstrInfo *TII;
     67     const TargetRegisterInfo *TRI;
     68     const MachineRegisterInfo *MRI;
     69 
     70     unsigned foundErrors;
     71 
     72     typedef SmallVector<unsigned, 16> RegVector;
     73     typedef SmallVector<const uint32_t*, 4> RegMaskVector;
     74     typedef DenseSet<unsigned> RegSet;
     75     typedef DenseMap<unsigned, const MachineInstr*> RegMap;
     76 
     77     const MachineInstr *FirstTerminator;
     78 
     79     BitVector regsReserved;
     80     BitVector regsAllocatable;
     81     RegSet regsLive;
     82     RegVector regsDefined, regsDead, regsKilled;
     83     RegMaskVector regMasks;
     84     RegSet regsLiveInButUnused;
     85 
     86     SlotIndex lastIndex;
     87 
     88     // Add Reg and any sub-registers to RV
     89     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
     90       RV.push_back(Reg);
     91       if (TargetRegisterInfo::isPhysicalRegister(Reg))
     92         for (const uint16_t *R = TRI->getSubRegisters(Reg); *R; R++)
     93           RV.push_back(*R);
     94     }
     95 
     96     struct BBInfo {
     97       // Is this MBB reachable from the MF entry point?
     98       bool reachable;
     99 
    100       // Vregs that must be live in because they are used without being
    101       // defined. Map value is the user.
    102       RegMap vregsLiveIn;
    103 
    104       // Regs killed in MBB. They may be defined again, and will then be in both
    105       // regsKilled and regsLiveOut.
    106       RegSet regsKilled;
    107 
    108       // Regs defined in MBB and live out. Note that vregs passing through may
    109       // be live out without being mentioned here.
    110       RegSet regsLiveOut;
    111 
    112       // Vregs that pass through MBB untouched. This set is disjoint from
    113       // regsKilled and regsLiveOut.
    114       RegSet vregsPassed;
    115 
    116       // Vregs that must pass through MBB because they are needed by a successor
    117       // block. This set is disjoint from regsLiveOut.
    118       RegSet vregsRequired;
    119 
    120       BBInfo() : reachable(false) {}
    121 
    122       // Add register to vregsPassed if it belongs there. Return true if
    123       // anything changed.
    124       bool addPassed(unsigned Reg) {
    125         if (!TargetRegisterInfo::isVirtualRegister(Reg))
    126           return false;
    127         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
    128           return false;
    129         return vregsPassed.insert(Reg).second;
    130       }
    131 
    132       // Same for a full set.
    133       bool addPassed(const RegSet &RS) {
    134         bool changed = false;
    135         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
    136           if (addPassed(*I))
    137             changed = true;
    138         return changed;
    139       }
    140 
    141       // Add register to vregsRequired if it belongs there. Return true if
    142       // anything changed.
    143       bool addRequired(unsigned Reg) {
    144         if (!TargetRegisterInfo::isVirtualRegister(Reg))
    145           return false;
    146         if (regsLiveOut.count(Reg))
    147           return false;
    148         return vregsRequired.insert(Reg).second;
    149       }
    150 
    151       // Same for a full set.
    152       bool addRequired(const RegSet &RS) {
    153         bool changed = false;
    154         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
    155           if (addRequired(*I))
    156             changed = true;
    157         return changed;
    158       }
    159 
    160       // Same for a full map.
    161       bool addRequired(const RegMap &RM) {
    162         bool changed = false;
    163         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
    164           if (addRequired(I->first))
    165             changed = true;
    166         return changed;
    167       }
    168 
    169       // Live-out registers are either in regsLiveOut or vregsPassed.
    170       bool isLiveOut(unsigned Reg) const {
    171         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
    172       }
    173     };
    174 
    175     // Extra register info per MBB.
    176     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
    177 
    178     bool isReserved(unsigned Reg) {
    179       return Reg < regsReserved.size() && regsReserved.test(Reg);
    180     }
    181 
    182     bool isAllocatable(unsigned Reg) {
    183       return Reg < regsAllocatable.size() && regsAllocatable.test(Reg);
    184     }
    185 
    186     // Analysis information if available
    187     LiveVariables *LiveVars;
    188     LiveIntervals *LiveInts;
    189     LiveStacks *LiveStks;
    190     SlotIndexes *Indexes;
    191 
    192     void visitMachineFunctionBefore();
    193     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
    194     void visitMachineInstrBefore(const MachineInstr *MI);
    195     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
    196     void visitMachineInstrAfter(const MachineInstr *MI);
    197     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
    198     void visitMachineFunctionAfter();
    199 
    200     void report(const char *msg, const MachineFunction *MF);
    201     void report(const char *msg, const MachineBasicBlock *MBB);
    202     void report(const char *msg, const MachineInstr *MI);
    203     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
    204 
    205     void checkLiveness(const MachineOperand *MO, unsigned MONum);
    206     void markReachable(const MachineBasicBlock *MBB);
    207     void calcRegsPassed();
    208     void checkPHIOps(const MachineBasicBlock *MBB);
    209 
    210     void calcRegsRequired();
    211     void verifyLiveVariables();
    212     void verifyLiveIntervals();
    213   };
    214 
    215   struct MachineVerifierPass : public MachineFunctionPass {
    216     static char ID; // Pass ID, replacement for typeid
    217     const char *const Banner;
    218 
    219     MachineVerifierPass(const char *b = 0)
    220       : MachineFunctionPass(ID), Banner(b) {
    221         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
    222       }
    223 
    224     void getAnalysisUsage(AnalysisUsage &AU) const {
    225       AU.setPreservesAll();
    226       MachineFunctionPass::getAnalysisUsage(AU);
    227     }
    228 
    229     bool runOnMachineFunction(MachineFunction &MF) {
    230       MF.verify(this, Banner);
    231       return false;
    232     }
    233   };
    234 
    235 }
    236 
    237 char MachineVerifierPass::ID = 0;
    238 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
    239                 "Verify generated machine code", false, false)
    240 
    241 FunctionPass *llvm::createMachineVerifierPass(const char *Banner) {
    242   return new MachineVerifierPass(Banner);
    243 }
    244 
    245 void MachineFunction::verify(Pass *p, const char *Banner) const {
    246   MachineVerifier(p, Banner)
    247     .runOnMachineFunction(const_cast<MachineFunction&>(*this));
    248 }
    249 
    250 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
    251   raw_ostream *OutFile = 0;
    252   if (OutFileName) {
    253     std::string ErrorInfo;
    254     OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
    255                                  raw_fd_ostream::F_Append);
    256     if (!ErrorInfo.empty()) {
    257       errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
    258       exit(1);
    259     }
    260 
    261     OS = OutFile;
    262   } else {
    263     OS = &errs();
    264   }
    265 
    266   foundErrors = 0;
    267 
    268   this->MF = &MF;
    269   TM = &MF.getTarget();
    270   TII = TM->getInstrInfo();
    271   TRI = TM->getRegisterInfo();
    272   MRI = &MF.getRegInfo();
    273 
    274   LiveVars = NULL;
    275   LiveInts = NULL;
    276   LiveStks = NULL;
    277   Indexes = NULL;
    278   if (PASS) {
    279     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
    280     // We don't want to verify LiveVariables if LiveIntervals is available.
    281     if (!LiveInts)
    282       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
    283     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
    284     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
    285   }
    286 
    287   visitMachineFunctionBefore();
    288   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
    289        MFI!=MFE; ++MFI) {
    290     visitMachineBasicBlockBefore(MFI);
    291     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
    292            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
    293       if (MBBI->getParent() != MFI) {
    294         report("Bad instruction parent pointer", MFI);
    295         *OS << "Instruction: " << *MBBI;
    296         continue;
    297       }
    298       // Skip BUNDLE instruction for now. FIXME: We should add code to verify
    299       // the BUNDLE's specifically.
    300       if (MBBI->isBundle())
    301         continue;
    302       visitMachineInstrBefore(MBBI);
    303       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
    304         visitMachineOperand(&MBBI->getOperand(I), I);
    305       visitMachineInstrAfter(MBBI);
    306     }
    307     visitMachineBasicBlockAfter(MFI);
    308   }
    309   visitMachineFunctionAfter();
    310 
    311   if (OutFile)
    312     delete OutFile;
    313   else if (foundErrors)
    314     report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
    315 
    316   // Clean up.
    317   regsLive.clear();
    318   regsDefined.clear();
    319   regsDead.clear();
    320   regsKilled.clear();
    321   regMasks.clear();
    322   regsLiveInButUnused.clear();
    323   MBBInfoMap.clear();
    324 
    325   return false;                 // no changes
    326 }
    327 
    328 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
    329   assert(MF);
    330   *OS << '\n';
    331   if (!foundErrors++) {
    332     if (Banner)
    333       *OS << "# " << Banner << '\n';
    334     MF->print(*OS, Indexes);
    335   }
    336   *OS << "*** Bad machine code: " << msg << " ***\n"
    337       << "- function:    " << MF->getFunction()->getName() << "\n";
    338 }
    339 
    340 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
    341   assert(MBB);
    342   report(msg, MBB->getParent());
    343   *OS << "- basic block: " << MBB->getName()
    344       << " " << (void*)MBB
    345       << " (BB#" << MBB->getNumber() << ")";
    346   if (Indexes)
    347     *OS << " [" << Indexes->getMBBStartIdx(MBB)
    348         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
    349   *OS << '\n';
    350 }
    351 
    352 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
    353   assert(MI);
    354   report(msg, MI->getParent());
    355   *OS << "- instruction: ";
    356   if (Indexes && Indexes->hasIndex(MI))
    357     *OS << Indexes->getInstructionIndex(MI) << '\t';
    358   MI->print(*OS, TM);
    359 }
    360 
    361 void MachineVerifier::report(const char *msg,
    362                              const MachineOperand *MO, unsigned MONum) {
    363   assert(MO);
    364   report(msg, MO->getParent());
    365   *OS << "- operand " << MONum << ":   ";
    366   MO->print(*OS, TM);
    367   *OS << "\n";
    368 }
    369 
    370 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
    371   BBInfo &MInfo = MBBInfoMap[MBB];
    372   if (!MInfo.reachable) {
    373     MInfo.reachable = true;
    374     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
    375            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
    376       markReachable(*SuI);
    377   }
    378 }
    379 
    380 void MachineVerifier::visitMachineFunctionBefore() {
    381   lastIndex = SlotIndex();
    382   regsReserved = TRI->getReservedRegs(*MF);
    383 
    384   // A sub-register of a reserved register is also reserved
    385   for (int Reg = regsReserved.find_first(); Reg>=0;
    386        Reg = regsReserved.find_next(Reg)) {
    387     for (const uint16_t *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) {
    388       // FIXME: This should probably be:
    389       // assert(regsReserved.test(*Sub) && "Non-reserved sub-register");
    390       regsReserved.set(*Sub);
    391     }
    392   }
    393 
    394   regsAllocatable = TRI->getAllocatableSet(*MF);
    395 
    396   markReachable(&MF->front());
    397 }
    398 
    399 // Does iterator point to a and b as the first two elements?
    400 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
    401                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
    402   if (*i == a)
    403     return *++i == b;
    404   if (*i == b)
    405     return *++i == a;
    406   return false;
    407 }
    408 
    409 void
    410 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
    411   FirstTerminator = 0;
    412 
    413   if (MRI->isSSA()) {
    414     // If this block has allocatable physical registers live-in, check that
    415     // it is an entry block or landing pad.
    416     for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
    417            LE = MBB->livein_end();
    418          LI != LE; ++LI) {
    419       unsigned reg = *LI;
    420       if (isAllocatable(reg) && !MBB->isLandingPad() &&
    421           MBB != MBB->getParent()->begin()) {
    422         report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
    423       }
    424     }
    425   }
    426 
    427   // Count the number of landing pad successors.
    428   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
    429   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
    430        E = MBB->succ_end(); I != E; ++I) {
    431     if ((*I)->isLandingPad())
    432       LandingPadSuccs.insert(*I);
    433   }
    434 
    435   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
    436   const BasicBlock *BB = MBB->getBasicBlock();
    437   if (LandingPadSuccs.size() > 1 &&
    438       !(AsmInfo &&
    439         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
    440         BB && isa<SwitchInst>(BB->getTerminator())))
    441     report("MBB has more than one landing pad successor", MBB);
    442 
    443   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
    444   MachineBasicBlock *TBB = 0, *FBB = 0;
    445   SmallVector<MachineOperand, 4> Cond;
    446   if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
    447                           TBB, FBB, Cond)) {
    448     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
    449     // check whether its answers match up with reality.
    450     if (!TBB && !FBB) {
    451       // Block falls through to its successor.
    452       MachineFunction::const_iterator MBBI = MBB;
    453       ++MBBI;
    454       if (MBBI == MF->end()) {
    455         // It's possible that the block legitimately ends with a noreturn
    456         // call or an unreachable, in which case it won't actually fall
    457         // out the bottom of the function.
    458       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
    459         // It's possible that the block legitimately ends with a noreturn
    460         // call or an unreachable, in which case it won't actuall fall
    461         // out of the block.
    462       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
    463         report("MBB exits via unconditional fall-through but doesn't have "
    464                "exactly one CFG successor!", MBB);
    465       } else if (!MBB->isSuccessor(MBBI)) {
    466         report("MBB exits via unconditional fall-through but its successor "
    467                "differs from its CFG successor!", MBB);
    468       }
    469       if (!MBB->empty() && MBB->back().isBarrier() &&
    470           !TII->isPredicated(&MBB->back())) {
    471         report("MBB exits via unconditional fall-through but ends with a "
    472                "barrier instruction!", MBB);
    473       }
    474       if (!Cond.empty()) {
    475         report("MBB exits via unconditional fall-through but has a condition!",
    476                MBB);
    477       }
    478     } else if (TBB && !FBB && Cond.empty()) {
    479       // Block unconditionally branches somewhere.
    480       if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
    481         report("MBB exits via unconditional branch but doesn't have "
    482                "exactly one CFG successor!", MBB);
    483       } else if (!MBB->isSuccessor(TBB)) {
    484         report("MBB exits via unconditional branch but the CFG "
    485                "successor doesn't match the actual successor!", MBB);
    486       }
    487       if (MBB->empty()) {
    488         report("MBB exits via unconditional branch but doesn't contain "
    489                "any instructions!", MBB);
    490       } else if (!MBB->back().isBarrier()) {
    491         report("MBB exits via unconditional branch but doesn't end with a "
    492                "barrier instruction!", MBB);
    493       } else if (!MBB->back().isTerminator()) {
    494         report("MBB exits via unconditional branch but the branch isn't a "
    495                "terminator instruction!", MBB);
    496       }
    497     } else if (TBB && !FBB && !Cond.empty()) {
    498       // Block conditionally branches somewhere, otherwise falls through.
    499       MachineFunction::const_iterator MBBI = MBB;
    500       ++MBBI;
    501       if (MBBI == MF->end()) {
    502         report("MBB conditionally falls through out of function!", MBB);
    503       } if (MBB->succ_size() != 2) {
    504         report("MBB exits via conditional branch/fall-through but doesn't have "
    505                "exactly two CFG successors!", MBB);
    506       } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
    507         report("MBB exits via conditional branch/fall-through but the CFG "
    508                "successors don't match the actual successors!", MBB);
    509       }
    510       if (MBB->empty()) {
    511         report("MBB exits via conditional branch/fall-through but doesn't "
    512                "contain any instructions!", MBB);
    513       } else if (MBB->back().isBarrier()) {
    514         report("MBB exits via conditional branch/fall-through but ends with a "
    515                "barrier instruction!", MBB);
    516       } else if (!MBB->back().isTerminator()) {
    517         report("MBB exits via conditional branch/fall-through but the branch "
    518                "isn't a terminator instruction!", MBB);
    519       }
    520     } else if (TBB && FBB) {
    521       // Block conditionally branches somewhere, otherwise branches
    522       // somewhere else.
    523       if (MBB->succ_size() != 2) {
    524         report("MBB exits via conditional branch/branch but doesn't have "
    525                "exactly two CFG successors!", MBB);
    526       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
    527         report("MBB exits via conditional branch/branch but the CFG "
    528                "successors don't match the actual successors!", MBB);
    529       }
    530       if (MBB->empty()) {
    531         report("MBB exits via conditional branch/branch but doesn't "
    532                "contain any instructions!", MBB);
    533       } else if (!MBB->back().isBarrier()) {
    534         report("MBB exits via conditional branch/branch but doesn't end with a "
    535                "barrier instruction!", MBB);
    536       } else if (!MBB->back().isTerminator()) {
    537         report("MBB exits via conditional branch/branch but the branch "
    538                "isn't a terminator instruction!", MBB);
    539       }
    540       if (Cond.empty()) {
    541         report("MBB exits via conditinal branch/branch but there's no "
    542                "condition!", MBB);
    543       }
    544     } else {
    545       report("AnalyzeBranch returned invalid data!", MBB);
    546     }
    547   }
    548 
    549   regsLive.clear();
    550   for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
    551          E = MBB->livein_end(); I != E; ++I) {
    552     if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
    553       report("MBB live-in list contains non-physical register", MBB);
    554       continue;
    555     }
    556     regsLive.insert(*I);
    557     for (const uint16_t *R = TRI->getSubRegisters(*I); *R; R++)
    558       regsLive.insert(*R);
    559   }
    560   regsLiveInButUnused = regsLive;
    561 
    562   const MachineFrameInfo *MFI = MF->getFrameInfo();
    563   assert(MFI && "Function has no frame info");
    564   BitVector PR = MFI->getPristineRegs(MBB);
    565   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
    566     regsLive.insert(I);
    567     for (const uint16_t *R = TRI->getSubRegisters(I); *R; R++)
    568       regsLive.insert(*R);
    569   }
    570 
    571   regsKilled.clear();
    572   regsDefined.clear();
    573 
    574   if (Indexes)
    575     lastIndex = Indexes->getMBBStartIdx(MBB);
    576 }
    577 
    578 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
    579   const MCInstrDesc &MCID = MI->getDesc();
    580   if (MI->getNumOperands() < MCID.getNumOperands()) {
    581     report("Too few operands", MI);
    582     *OS << MCID.getNumOperands() << " operands expected, but "
    583         << MI->getNumExplicitOperands() << " given.\n";
    584   }
    585 
    586   // Check the MachineMemOperands for basic consistency.
    587   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
    588        E = MI->memoperands_end(); I != E; ++I) {
    589     if ((*I)->isLoad() && !MI->mayLoad())
    590       report("Missing mayLoad flag", MI);
    591     if ((*I)->isStore() && !MI->mayStore())
    592       report("Missing mayStore flag", MI);
    593   }
    594 
    595   // Debug values must not have a slot index.
    596   // Other instructions must have one, unless they are inside a bundle.
    597   if (LiveInts) {
    598     bool mapped = !LiveInts->isNotInMIMap(MI);
    599     if (MI->isDebugValue()) {
    600       if (mapped)
    601         report("Debug instruction has a slot index", MI);
    602     } else if (MI->isInsideBundle()) {
    603       if (mapped)
    604         report("Instruction inside bundle has a slot index", MI);
    605     } else {
    606       if (!mapped)
    607         report("Missing slot index", MI);
    608     }
    609   }
    610 
    611   // Ensure non-terminators don't follow terminators.
    612   // Ignore predicated terminators formed by if conversion.
    613   // FIXME: If conversion shouldn't need to violate this rule.
    614   if (MI->isTerminator() && !TII->isPredicated(MI)) {
    615     if (!FirstTerminator)
    616       FirstTerminator = MI;
    617   } else if (FirstTerminator) {
    618     report("Non-terminator instruction after the first terminator", MI);
    619     *OS << "First terminator was:\t" << *FirstTerminator;
    620   }
    621 
    622   StringRef ErrorInfo;
    623   if (!TII->verifyInstruction(MI, ErrorInfo))
    624     report(ErrorInfo.data(), MI);
    625 }
    626 
    627 void
    628 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
    629   const MachineInstr *MI = MO->getParent();
    630   const MCInstrDesc &MCID = MI->getDesc();
    631   const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
    632 
    633   // The first MCID.NumDefs operands must be explicit register defines
    634   if (MONum < MCID.getNumDefs()) {
    635     if (!MO->isReg())
    636       report("Explicit definition must be a register", MO, MONum);
    637     else if (!MO->isDef())
    638       report("Explicit definition marked as use", MO, MONum);
    639     else if (MO->isImplicit())
    640       report("Explicit definition marked as implicit", MO, MONum);
    641   } else if (MONum < MCID.getNumOperands()) {
    642     // Don't check if it's the last operand in a variadic instruction. See,
    643     // e.g., LDM_RET in the arm back end.
    644     if (MO->isReg() &&
    645         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
    646       if (MO->isDef() && !MCOI.isOptionalDef())
    647           report("Explicit operand marked as def", MO, MONum);
    648       if (MO->isImplicit())
    649         report("Explicit operand marked as implicit", MO, MONum);
    650     }
    651   } else {
    652     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
    653     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
    654       report("Extra explicit operand on non-variadic instruction", MO, MONum);
    655   }
    656 
    657   switch (MO->getType()) {
    658   case MachineOperand::MO_Register: {
    659     const unsigned Reg = MO->getReg();
    660     if (!Reg)
    661       return;
    662     if (MRI->tracksLiveness() && !MI->isDebugValue())
    663       checkLiveness(MO, MONum);
    664 
    665 
    666     // Check register classes.
    667     if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
    668       unsigned SubIdx = MO->getSubReg();
    669 
    670       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    671         if (SubIdx) {
    672           report("Illegal subregister index for physical register", MO, MONum);
    673           return;
    674         }
    675         if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) {
    676           if (!DRC->contains(Reg)) {
    677             report("Illegal physical register for instruction", MO, MONum);
    678             *OS << TRI->getName(Reg) << " is not a "
    679                 << DRC->getName() << " register.\n";
    680           }
    681         }
    682       } else {
    683         // Virtual register.
    684         const TargetRegisterClass *RC = MRI->getRegClass(Reg);
    685         if (SubIdx) {
    686           const TargetRegisterClass *SRC =
    687             TRI->getSubClassWithSubReg(RC, SubIdx);
    688           if (!SRC) {
    689             report("Invalid subregister index for virtual register", MO, MONum);
    690             *OS << "Register class " << RC->getName()
    691                 << " does not support subreg index " << SubIdx << "\n";
    692             return;
    693           }
    694           if (RC != SRC) {
    695             report("Invalid register class for subregister index", MO, MONum);
    696             *OS << "Register class " << RC->getName()
    697                 << " does not fully support subreg index " << SubIdx << "\n";
    698             return;
    699           }
    700         }
    701         if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) {
    702           if (SubIdx) {
    703             const TargetRegisterClass *SuperRC =
    704               TRI->getLargestLegalSuperClass(RC);
    705             if (!SuperRC) {
    706               report("No largest legal super class exists.", MO, MONum);
    707               return;
    708             }
    709             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
    710             if (!DRC) {
    711               report("No matching super-reg register class.", MO, MONum);
    712               return;
    713             }
    714           }
    715           if (!RC->hasSuperClassEq(DRC)) {
    716             report("Illegal virtual register for instruction", MO, MONum);
    717             *OS << "Expected a " << DRC->getName() << " register, but got a "
    718                 << RC->getName() << " register\n";
    719           }
    720         }
    721       }
    722     }
    723     break;
    724   }
    725 
    726   case MachineOperand::MO_RegisterMask:
    727     regMasks.push_back(MO->getRegMask());
    728     break;
    729 
    730   case MachineOperand::MO_MachineBasicBlock:
    731     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
    732       report("PHI operand is not in the CFG", MO, MONum);
    733     break;
    734 
    735   case MachineOperand::MO_FrameIndex:
    736     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
    737         LiveInts && !LiveInts->isNotInMIMap(MI)) {
    738       LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
    739       SlotIndex Idx = LiveInts->getInstructionIndex(MI);
    740       if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) {
    741         report("Instruction loads from dead spill slot", MO, MONum);
    742         *OS << "Live stack: " << LI << '\n';
    743       }
    744       if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) {
    745         report("Instruction stores to dead spill slot", MO, MONum);
    746         *OS << "Live stack: " << LI << '\n';
    747       }
    748     }
    749     break;
    750 
    751   default:
    752     break;
    753   }
    754 }
    755 
    756 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
    757   const MachineInstr *MI = MO->getParent();
    758   const unsigned Reg = MO->getReg();
    759 
    760   // Both use and def operands can read a register.
    761   if (MO->readsReg()) {
    762     regsLiveInButUnused.erase(Reg);
    763 
    764     bool isKill = false;
    765     unsigned defIdx;
    766     if (MI->isRegTiedToDefOperand(MONum, &defIdx)) {
    767       // A two-addr use counts as a kill if use and def are the same.
    768       unsigned DefReg = MI->getOperand(defIdx).getReg();
    769       if (Reg == DefReg)
    770         isKill = true;
    771       else if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    772         report("Two-address instruction operands must be identical", MO, MONum);
    773       }
    774     } else
    775       isKill = MO->isKill();
    776 
    777     if (isKill)
    778       addRegWithSubRegs(regsKilled, Reg);
    779 
    780     // Check that LiveVars knows this kill.
    781     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
    782         MO->isKill()) {
    783       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
    784       if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
    785         report("Kill missing from LiveVariables", MO, MONum);
    786     }
    787 
    788     // Check LiveInts liveness and kill.
    789     if (TargetRegisterInfo::isVirtualRegister(Reg) &&
    790         LiveInts && !LiveInts->isNotInMIMap(MI)) {
    791       SlotIndex UseIdx = LiveInts->getInstructionIndex(MI).getRegSlot(true);
    792       if (LiveInts->hasInterval(Reg)) {
    793         const LiveInterval &LI = LiveInts->getInterval(Reg);
    794         if (!LI.liveAt(UseIdx)) {
    795           report("No live range at use", MO, MONum);
    796           *OS << UseIdx << " is not live in " << LI << '\n';
    797         }
    798         // Check for extra kill flags.
    799         // Note that we allow missing kill flags for now.
    800         if (MO->isKill() && !LI.killedAt(UseIdx.getRegSlot())) {
    801           report("Live range continues after kill flag", MO, MONum);
    802           *OS << "Live range: " << LI << '\n';
    803         }
    804       } else {
    805         report("Virtual register has no Live interval", MO, MONum);
    806       }
    807     }
    808 
    809     // Use of a dead register.
    810     if (!regsLive.count(Reg)) {
    811       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    812         // Reserved registers may be used even when 'dead'.
    813         if (!isReserved(Reg))
    814           report("Using an undefined physical register", MO, MONum);
    815       } else {
    816         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
    817         // We don't know which virtual registers are live in, so only complain
    818         // if vreg was killed in this MBB. Otherwise keep track of vregs that
    819         // must be live in. PHI instructions are handled separately.
    820         if (MInfo.regsKilled.count(Reg))
    821           report("Using a killed virtual register", MO, MONum);
    822         else if (!MI->isPHI())
    823           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
    824       }
    825     }
    826   }
    827 
    828   if (MO->isDef()) {
    829     // Register defined.
    830     // TODO: verify that earlyclobber ops are not used.
    831     if (MO->isDead())
    832       addRegWithSubRegs(regsDead, Reg);
    833     else
    834       addRegWithSubRegs(regsDefined, Reg);
    835 
    836     // Verify SSA form.
    837     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
    838         llvm::next(MRI->def_begin(Reg)) != MRI->def_end())
    839       report("Multiple virtual register defs in SSA form", MO, MONum);
    840 
    841     // Check LiveInts for a live range, but only for virtual registers.
    842     if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
    843         !LiveInts->isNotInMIMap(MI)) {
    844       SlotIndex DefIdx = LiveInts->getInstructionIndex(MI).getRegSlot();
    845       if (LiveInts->hasInterval(Reg)) {
    846         const LiveInterval &LI = LiveInts->getInterval(Reg);
    847         if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
    848           assert(VNI && "NULL valno is not allowed");
    849           if (VNI->def != DefIdx && !MO->isEarlyClobber()) {
    850             report("Inconsistent valno->def", MO, MONum);
    851             *OS << "Valno " << VNI->id << " is not defined at "
    852               << DefIdx << " in " << LI << '\n';
    853           }
    854         } else {
    855           report("No live range at def", MO, MONum);
    856           *OS << DefIdx << " is not live in " << LI << '\n';
    857         }
    858       } else {
    859         report("Virtual register has no Live interval", MO, MONum);
    860       }
    861     }
    862   }
    863 }
    864 
    865 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
    866   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
    867   set_union(MInfo.regsKilled, regsKilled);
    868   set_subtract(regsLive, regsKilled); regsKilled.clear();
    869   // Kill any masked registers.
    870   while (!regMasks.empty()) {
    871     const uint32_t *Mask = regMasks.pop_back_val();
    872     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
    873       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
    874           MachineOperand::clobbersPhysReg(Mask, *I))
    875         regsDead.push_back(*I);
    876   }
    877   set_subtract(regsLive, regsDead);   regsDead.clear();
    878   set_union(regsLive, regsDefined);   regsDefined.clear();
    879 
    880   if (Indexes && Indexes->hasIndex(MI)) {
    881     SlotIndex idx = Indexes->getInstructionIndex(MI);
    882     if (!(idx > lastIndex)) {
    883       report("Instruction index out of order", MI);
    884       *OS << "Last instruction was at " << lastIndex << '\n';
    885     }
    886     lastIndex = idx;
    887   }
    888 }
    889 
    890 void
    891 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
    892   MBBInfoMap[MBB].regsLiveOut = regsLive;
    893   regsLive.clear();
    894 
    895   if (Indexes) {
    896     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
    897     if (!(stop > lastIndex)) {
    898       report("Block ends before last instruction index", MBB);
    899       *OS << "Block ends at " << stop
    900           << " last instruction was at " << lastIndex << '\n';
    901     }
    902     lastIndex = stop;
    903   }
    904 }
    905 
    906 // Calculate the largest possible vregsPassed sets. These are the registers that
    907 // can pass through an MBB live, but may not be live every time. It is assumed
    908 // that all vregsPassed sets are empty before the call.
    909 void MachineVerifier::calcRegsPassed() {
    910   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
    911   // have any vregsPassed.
    912   SmallPtrSet<const MachineBasicBlock*, 8> todo;
    913   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
    914        MFI != MFE; ++MFI) {
    915     const MachineBasicBlock &MBB(*MFI);
    916     BBInfo &MInfo = MBBInfoMap[&MBB];
    917     if (!MInfo.reachable)
    918       continue;
    919     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
    920            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
    921       BBInfo &SInfo = MBBInfoMap[*SuI];
    922       if (SInfo.addPassed(MInfo.regsLiveOut))
    923         todo.insert(*SuI);
    924     }
    925   }
    926 
    927   // Iteratively push vregsPassed to successors. This will converge to the same
    928   // final state regardless of DenseSet iteration order.
    929   while (!todo.empty()) {
    930     const MachineBasicBlock *MBB = *todo.begin();
    931     todo.erase(MBB);
    932     BBInfo &MInfo = MBBInfoMap[MBB];
    933     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
    934            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
    935       if (*SuI == MBB)
    936         continue;
    937       BBInfo &SInfo = MBBInfoMap[*SuI];
    938       if (SInfo.addPassed(MInfo.vregsPassed))
    939         todo.insert(*SuI);
    940     }
    941   }
    942 }
    943 
    944 // Calculate the set of virtual registers that must be passed through each basic
    945 // block in order to satisfy the requirements of successor blocks. This is very
    946 // similar to calcRegsPassed, only backwards.
    947 void MachineVerifier::calcRegsRequired() {
    948   // First push live-in regs to predecessors' vregsRequired.
    949   SmallPtrSet<const MachineBasicBlock*, 8> todo;
    950   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
    951        MFI != MFE; ++MFI) {
    952     const MachineBasicBlock &MBB(*MFI);
    953     BBInfo &MInfo = MBBInfoMap[&MBB];
    954     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
    955            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
    956       BBInfo &PInfo = MBBInfoMap[*PrI];
    957       if (PInfo.addRequired(MInfo.vregsLiveIn))
    958         todo.insert(*PrI);
    959     }
    960   }
    961 
    962   // Iteratively push vregsRequired to predecessors. This will converge to the
    963   // same final state regardless of DenseSet iteration order.
    964   while (!todo.empty()) {
    965     const MachineBasicBlock *MBB = *todo.begin();
    966     todo.erase(MBB);
    967     BBInfo &MInfo = MBBInfoMap[MBB];
    968     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
    969            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
    970       if (*PrI == MBB)
    971         continue;
    972       BBInfo &SInfo = MBBInfoMap[*PrI];
    973       if (SInfo.addRequired(MInfo.vregsRequired))
    974         todo.insert(*PrI);
    975     }
    976   }
    977 }
    978 
    979 // Check PHI instructions at the beginning of MBB. It is assumed that
    980 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
    981 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
    982   SmallPtrSet<const MachineBasicBlock*, 8> seen;
    983   for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
    984        BBI != BBE && BBI->isPHI(); ++BBI) {
    985     seen.clear();
    986 
    987     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
    988       unsigned Reg = BBI->getOperand(i).getReg();
    989       const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
    990       if (!Pre->isSuccessor(MBB))
    991         continue;
    992       seen.insert(Pre);
    993       BBInfo &PrInfo = MBBInfoMap[Pre];
    994       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
    995         report("PHI operand is not live-out from predecessor",
    996                &BBI->getOperand(i), i);
    997     }
    998 
    999     // Did we see all predecessors?
   1000     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
   1001            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
   1002       if (!seen.count(*PrI)) {
   1003         report("Missing PHI operand", BBI);
   1004         *OS << "BB#" << (*PrI)->getNumber()
   1005             << " is a predecessor according to the CFG.\n";
   1006       }
   1007     }
   1008   }
   1009 }
   1010 
   1011 void MachineVerifier::visitMachineFunctionAfter() {
   1012   calcRegsPassed();
   1013 
   1014   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
   1015        MFI != MFE; ++MFI) {
   1016     BBInfo &MInfo = MBBInfoMap[MFI];
   1017 
   1018     // Skip unreachable MBBs.
   1019     if (!MInfo.reachable)
   1020       continue;
   1021 
   1022     checkPHIOps(MFI);
   1023   }
   1024 
   1025   // Now check liveness info if available
   1026   calcRegsRequired();
   1027 
   1028   if (MRI->isSSA() && !MF->empty()) {
   1029     BBInfo &MInfo = MBBInfoMap[&MF->front()];
   1030     for (RegSet::iterator
   1031          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
   1032          ++I)
   1033       report("Virtual register def doesn't dominate all uses.",
   1034              MRI->getVRegDef(*I));
   1035   }
   1036 
   1037   if (LiveVars)
   1038     verifyLiveVariables();
   1039   if (LiveInts)
   1040     verifyLiveIntervals();
   1041 }
   1042 
   1043 void MachineVerifier::verifyLiveVariables() {
   1044   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
   1045   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
   1046     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
   1047     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
   1048     for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
   1049          MFI != MFE; ++MFI) {
   1050       BBInfo &MInfo = MBBInfoMap[MFI];
   1051 
   1052       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
   1053       if (MInfo.vregsRequired.count(Reg)) {
   1054         if (!VI.AliveBlocks.test(MFI->getNumber())) {
   1055           report("LiveVariables: Block missing from AliveBlocks", MFI);
   1056           *OS << "Virtual register " << PrintReg(Reg)
   1057               << " must be live through the block.\n";
   1058         }
   1059       } else {
   1060         if (VI.AliveBlocks.test(MFI->getNumber())) {
   1061           report("LiveVariables: Block should not be in AliveBlocks", MFI);
   1062           *OS << "Virtual register " << PrintReg(Reg)
   1063               << " is not needed live through the block.\n";
   1064         }
   1065       }
   1066     }
   1067   }
   1068 }
   1069 
   1070 void MachineVerifier::verifyLiveIntervals() {
   1071   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
   1072   for (LiveIntervals::const_iterator LVI = LiveInts->begin(),
   1073        LVE = LiveInts->end(); LVI != LVE; ++LVI) {
   1074     const LiveInterval &LI = *LVI->second;
   1075 
   1076     // Spilling and splitting may leave unused registers around. Skip them.
   1077     if (MRI->use_empty(LI.reg))
   1078       continue;
   1079 
   1080     // Physical registers have much weirdness going on, mostly from coalescing.
   1081     // We should probably fix it, but for now just ignore them.
   1082     if (TargetRegisterInfo::isPhysicalRegister(LI.reg))
   1083       continue;
   1084 
   1085     assert(LVI->first == LI.reg && "Invalid reg to interval mapping");
   1086 
   1087     for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
   1088          I!=E; ++I) {
   1089       VNInfo *VNI = *I;
   1090       const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def);
   1091 
   1092       if (!DefVNI) {
   1093         if (!VNI->isUnused()) {
   1094           report("Valno not live at def and not marked unused", MF);
   1095           *OS << "Valno #" << VNI->id << " in " << LI << '\n';
   1096         }
   1097         continue;
   1098       }
   1099 
   1100       if (VNI->isUnused())
   1101         continue;
   1102 
   1103       if (DefVNI != VNI) {
   1104         report("Live range at def has different valno", MF);
   1105         *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
   1106             << " where valno #" << DefVNI->id << " is live in " << LI << '\n';
   1107         continue;
   1108       }
   1109 
   1110       const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
   1111       if (!MBB) {
   1112         report("Invalid definition index", MF);
   1113         *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
   1114             << " in " << LI << '\n';
   1115         continue;
   1116       }
   1117 
   1118       if (VNI->isPHIDef()) {
   1119         if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
   1120           report("PHIDef value is not defined at MBB start", MF);
   1121           *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
   1122               << ", not at the beginning of BB#" << MBB->getNumber()
   1123               << " in " << LI << '\n';
   1124         }
   1125       } else {
   1126         // Non-PHI def.
   1127         const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
   1128         if (!MI) {
   1129           report("No instruction at def index", MF);
   1130           *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
   1131               << " in " << LI << '\n';
   1132           continue;
   1133         }
   1134 
   1135         bool hasDef = false;
   1136         bool isEarlyClobber = false;
   1137         for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
   1138           if (!MOI->isReg() || !MOI->isDef())
   1139             continue;
   1140           if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
   1141             if (MOI->getReg() != LI.reg)
   1142               continue;
   1143           } else {
   1144             if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
   1145                 !TRI->regsOverlap(LI.reg, MOI->getReg()))
   1146               continue;
   1147           }
   1148           hasDef = true;
   1149           if (MOI->isEarlyClobber())
   1150             isEarlyClobber = true;
   1151         }
   1152 
   1153         if (!hasDef) {
   1154           report("Defining instruction does not modify register", MI);
   1155           *OS << "Valno #" << VNI->id << " in " << LI << '\n';
   1156         }
   1157 
   1158         // Early clobber defs begin at USE slots, but other defs must begin at
   1159         // DEF slots.
   1160         if (isEarlyClobber) {
   1161           if (!VNI->def.isEarlyClobber()) {
   1162             report("Early clobber def must be at an early-clobber slot", MF);
   1163             *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
   1164                 << " in " << LI << '\n';
   1165           }
   1166         } else if (!VNI->def.isRegister()) {
   1167           report("Non-PHI, non-early clobber def must be at a register slot",
   1168                  MF);
   1169           *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
   1170               << " in " << LI << '\n';
   1171         }
   1172       }
   1173     }
   1174 
   1175     for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) {
   1176       const VNInfo *VNI = I->valno;
   1177       assert(VNI && "Live range has no valno");
   1178 
   1179       if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) {
   1180         report("Foreign valno in live range", MF);
   1181         I->print(*OS);
   1182         *OS << " has a valno not in " << LI << '\n';
   1183       }
   1184 
   1185       if (VNI->isUnused()) {
   1186         report("Live range valno is marked unused", MF);
   1187         I->print(*OS);
   1188         *OS << " in " << LI << '\n';
   1189       }
   1190 
   1191       const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start);
   1192       if (!MBB) {
   1193         report("Bad start of live segment, no basic block", MF);
   1194         I->print(*OS);
   1195         *OS << " in " << LI << '\n';
   1196         continue;
   1197       }
   1198       SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
   1199       if (I->start != MBBStartIdx && I->start != VNI->def) {
   1200         report("Live segment must begin at MBB entry or valno def", MBB);
   1201         I->print(*OS);
   1202         *OS << " in " << LI << '\n' << "Basic block starts at "
   1203             << MBBStartIdx << '\n';
   1204       }
   1205 
   1206       const MachineBasicBlock *EndMBB =
   1207                                 LiveInts->getMBBFromIndex(I->end.getPrevSlot());
   1208       if (!EndMBB) {
   1209         report("Bad end of live segment, no basic block", MF);
   1210         I->print(*OS);
   1211         *OS << " in " << LI << '\n';
   1212         continue;
   1213       }
   1214 
   1215       // No more checks for live-out segments.
   1216       if (I->end == LiveInts->getMBBEndIdx(EndMBB))
   1217         continue;
   1218 
   1219       // The live segment is ending inside EndMBB
   1220       const MachineInstr *MI =
   1221         LiveInts->getInstructionFromIndex(I->end.getPrevSlot());
   1222       if (!MI) {
   1223         report("Live segment doesn't end at a valid instruction", EndMBB);
   1224         I->print(*OS);
   1225         *OS << " in " << LI << '\n' << "Basic block starts at "
   1226           << MBBStartIdx << '\n';
   1227         continue;
   1228       }
   1229 
   1230       // The block slot must refer to a basic block boundary.
   1231       if (I->end.isBlock()) {
   1232         report("Live segment ends at B slot of an instruction", MI);
   1233         I->print(*OS);
   1234         *OS << " in " << LI << '\n';
   1235       }
   1236 
   1237       if (I->end.isDead()) {
   1238         // Segment ends on the dead slot.
   1239         // That means there must be a dead def.
   1240         if (!SlotIndex::isSameInstr(I->start, I->end)) {
   1241           report("Live segment ending at dead slot spans instructions", MI);
   1242           I->print(*OS);
   1243           *OS << " in " << LI << '\n';
   1244         }
   1245       }
   1246 
   1247       // A live segment can only end at an early-clobber slot if it is being
   1248       // redefined by an early-clobber def.
   1249       if (I->end.isEarlyClobber()) {
   1250         if (I+1 == E || (I+1)->start != I->end) {
   1251           report("Live segment ending at early clobber slot must be "
   1252                  "redefined by an EC def in the same instruction", MI);
   1253           I->print(*OS);
   1254           *OS << " in " << LI << '\n';
   1255         }
   1256       }
   1257 
   1258       // The following checks only apply to virtual registers. Physreg liveness
   1259       // is too weird to check.
   1260       if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
   1261         // A live range can end with either a redefinition, a kill flag on a
   1262         // use, or a dead flag on a def.
   1263         bool hasRead = false;
   1264         bool hasDeadDef = false;
   1265         for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
   1266           if (!MOI->isReg() || MOI->getReg() != LI.reg)
   1267             continue;
   1268           if (MOI->readsReg())
   1269             hasRead = true;
   1270           if (MOI->isDef() && MOI->isDead())
   1271             hasDeadDef = true;
   1272         }
   1273 
   1274         if (I->end.isDead()) {
   1275           if (!hasDeadDef) {
   1276             report("Instruction doesn't have a dead def operand", MI);
   1277             I->print(*OS);
   1278             *OS << " in " << LI << '\n';
   1279           }
   1280         } else {
   1281           if (!hasRead) {
   1282             report("Instruction ending live range doesn't read the register",
   1283                    MI);
   1284             I->print(*OS);
   1285             *OS << " in " << LI << '\n';
   1286           }
   1287         }
   1288       }
   1289 
   1290       // Now check all the basic blocks in this live segment.
   1291       MachineFunction::const_iterator MFI = MBB;
   1292       // Is this live range the beginning of a non-PHIDef VN?
   1293       if (I->start == VNI->def && !VNI->isPHIDef()) {
   1294         // Not live-in to any blocks.
   1295         if (MBB == EndMBB)
   1296           continue;
   1297         // Skip this block.
   1298         ++MFI;
   1299       }
   1300       for (;;) {
   1301         assert(LiveInts->isLiveInToMBB(LI, MFI));
   1302         // We don't know how to track physregs into a landing pad.
   1303         if (TargetRegisterInfo::isPhysicalRegister(LI.reg) &&
   1304             MFI->isLandingPad()) {
   1305           if (&*MFI == EndMBB)
   1306             break;
   1307           ++MFI;
   1308           continue;
   1309         }
   1310         // Check that VNI is live-out of all predecessors.
   1311         for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
   1312              PE = MFI->pred_end(); PI != PE; ++PI) {
   1313           SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
   1314           const VNInfo *PVNI = LI.getVNInfoBefore(PEnd);
   1315 
   1316           if (VNI->isPHIDef() && VNI->def == LiveInts->getMBBStartIdx(MFI))
   1317             continue;
   1318 
   1319           if (!PVNI) {
   1320             report("Register not marked live out of predecessor", *PI);
   1321             *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
   1322                 << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
   1323                 << PEnd << " in " << LI << '\n';
   1324             continue;
   1325           }
   1326 
   1327           if (PVNI != VNI) {
   1328             report("Different value live out of predecessor", *PI);
   1329             *OS << "Valno #" << PVNI->id << " live out of BB#"
   1330                 << (*PI)->getNumber() << '@' << PEnd
   1331                 << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
   1332                 << '@' << LiveInts->getMBBStartIdx(MFI) << " in " << LI << '\n';
   1333           }
   1334         }
   1335         if (&*MFI == EndMBB)
   1336           break;
   1337         ++MFI;
   1338       }
   1339     }
   1340 
   1341     // Check the LI only has one connected component.
   1342     if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
   1343       ConnectedVNInfoEqClasses ConEQ(*LiveInts);
   1344       unsigned NumComp = ConEQ.Classify(&LI);
   1345       if (NumComp > 1) {
   1346         report("Multiple connected components in live interval", MF);
   1347         *OS << NumComp << " components in " << LI << '\n';
   1348         for (unsigned comp = 0; comp != NumComp; ++comp) {
   1349           *OS << comp << ": valnos";
   1350           for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
   1351                E = LI.vni_end(); I!=E; ++I)
   1352             if (comp == ConEQ.getEqClass(*I))
   1353               *OS << ' ' << (*I)->id;
   1354           *OS << '\n';
   1355         }
   1356       }
   1357     }
   1358   }
   1359 }
   1360 
   1361