1 // Copyright 2007, 2008 Google Inc. 2 // Authors: Jeff Dean, Sanjay Ghemawat, Lincoln Smith 3 // 4 // Licensed under the Apache License, Version 2.0 (the "License"); 5 // you may not use this file except in compliance with the License. 6 // You may obtain a copy of the License at 7 // 8 // http://www.apache.org/licenses/LICENSE-2.0 9 // 10 // Unless required by applicable law or agreed to in writing, software 11 // distributed under the License is distributed on an "AS IS" BASIS, 12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 // See the License for the specific language governing permissions and 14 // limitations under the License. 15 16 #ifndef OPEN_VCDIFF_ROLLING_HASH_H_ 17 #define OPEN_VCDIFF_ROLLING_HASH_H_ 18 19 #include <config.h> 20 #include <stdint.h> // uint32_t 21 #include "logging.h" 22 23 namespace open_vcdiff { 24 25 // Rabin-Karp hasher module -- this is a faster version with different 26 // constants, so it's not quite Rabin-Karp fingerprinting, but its behavior is 27 // close enough for most applications. 28 29 // Definitions common to all hash window sizes. 30 class RollingHashUtil { 31 public: 32 // Multiplier for incremental hashing. The compiler should be smart enough to 33 // convert (val * kMult) into ((val << 8) + val). 34 static const uint32_t kMult = 257; 35 36 // All hashes are returned modulo "kBase". Current implementation requires 37 // kBase <= 2^32/kMult to avoid overflow. Also, kBase must be a power of two 38 // so that we can compute modulus efficiently. 39 static const uint32_t kBase = (1 << 23); 40 41 // Returns operand % kBase, assuming that kBase is a power of two. 42 static inline uint32_t ModBase(uint32_t operand) { 43 return operand & (kBase - 1); 44 } 45 46 // Given an unsigned integer "operand", returns an unsigned integer "result" 47 // such that 48 // result < kBase 49 // and 50 // ModBase(operand + result) == 0 51 static inline uint32_t FindModBaseInverse(uint32_t operand) { 52 // The subtraction (0 - operand) produces an unsigned underflow for any 53 // operand except 0. The underflow results in a (very large) unsigned 54 // number. Binary subtraction is used instead of unary negation because 55 // some compilers (e.g. Visual Studio 7+) produce a warning if an unsigned 56 // value is negated. 57 // 58 // The C++ mod operation (operand % kBase) may produce different results for 59 // different compilers if operand is negative. That is not a problem in 60 // this case, since all numbers used are unsigned, and ModBase does its work 61 // using bitwise arithmetic rather than the % operator. 62 return ModBase(uint32_t(0) - operand); 63 } 64 65 // Here's the heart of the hash algorithm. Start with a partial_hash value of 66 // 0, and run this HashStep once against each byte in the data window to be 67 // hashed. The result will be the hash value for the entire data window. The 68 // Hash() function, below, does exactly this, albeit with some refinements. 69 static inline uint32_t HashStep(uint32_t partial_hash, 70 unsigned char next_byte) { 71 return ModBase((partial_hash * kMult) + next_byte); 72 } 73 74 // Use this function to start computing a new hash value based on the first 75 // two bytes in the window. It is equivalent to calling 76 // HashStep(HashStep(0, ptr[0]), ptr[1]) 77 // but takes advantage of the fact that the maximum value of 78 // (ptr[0] * kMult) + ptr[1] is not large enough to exceed kBase, thus 79 // avoiding an unnecessary ModBase operation. 80 static inline uint32_t HashFirstTwoBytes(const char* ptr) { 81 return (static_cast<unsigned char>(ptr[0]) * kMult) 82 + static_cast<unsigned char>(ptr[1]); 83 } 84 private: 85 // Making these private avoids copy constructor and assignment operator. 86 // No objects of this type should be constructed. 87 RollingHashUtil(); 88 RollingHashUtil(const RollingHashUtil&); // NOLINT 89 void operator=(const RollingHashUtil&); 90 }; 91 92 // window_size must be >= 2. 93 template<int window_size> 94 class RollingHash { 95 public: 96 // Perform global initialization that is required in order to instantiate a 97 // RollingHash. This function *must* be called (preferably on startup) by any 98 // program that uses a RollingHash. It is harmless to call this function more 99 // than once. It is not thread-safe, but calling it from two different 100 // threads at the same time can only cause a memory leak, not incorrect 101 // behavior. Make sure to call it before spawning any threads that could use 102 // RollingHash. The function returns true if initialization succeeds, or 103 // false if initialization fails, in which case the caller should not proceed 104 // to construct any objects of type RollingHash. 105 static bool Init(); 106 107 // Initialize hasher to maintain a window of the specified size. You need an 108 // instance of this type to use UpdateHash(), but Hash() does not depend on 109 // remove_table_, so it is static. 110 RollingHash() { 111 if (!remove_table_) { 112 LOG(DFATAL) << "RollingHash object instantiated" 113 " before calling RollingHash::Init()" << LOG_ENDL; 114 } 115 } 116 117 // Compute a hash of the window "ptr[0, window_size - 1]". 118 static uint32_t Hash(const char* ptr) { 119 uint32_t h = RollingHashUtil::HashFirstTwoBytes(ptr); 120 for (int i = 2; i < window_size; ++i) { 121 h = RollingHashUtil::HashStep(h, ptr[i]); 122 } 123 return h; 124 } 125 126 // Update a hash by removing the oldest byte and adding a new byte. 127 // 128 // UpdateHash takes the hash value of buffer[0] ... buffer[window_size -1] 129 // along with the value of buffer[0] (the "old_first_byte" argument) 130 // and the value of buffer[window_size] (the "new_last_byte" argument). 131 // It quickly computes the hash value of buffer[1] ... buffer[window_size] 132 // without having to run Hash() on the entire window. 133 // 134 // The larger the window, the more advantage comes from using UpdateHash() 135 // (which runs in time independent of window_size) instead of Hash(). 136 // Each time window_size doubles, the time to execute Hash() also doubles, 137 // while the time to execute UpdateHash() remains constant. Empirical tests 138 // have borne out this statement. 139 uint32_t UpdateHash(uint32_t old_hash, 140 const char old_first_byte, 141 const char new_last_byte) const { 142 uint32_t partial_hash = RemoveFirstByteFromHash(old_hash, old_first_byte); 143 return RollingHashUtil::HashStep(partial_hash, new_last_byte); 144 } 145 146 protected: 147 // Given a full hash value for buffer[0] ... buffer[window_size -1], plus the 148 // value of the first byte buffer[0], this function returns a *partial* hash 149 // value for buffer[1] ... buffer[window_size -1]. See the comments in 150 // Init(), below, for a description of how the contents of remove_table_ are 151 // computed. 152 static uint32_t RemoveFirstByteFromHash(uint32_t full_hash, 153 unsigned char first_byte) { 154 return RollingHashUtil::ModBase(full_hash + remove_table_[first_byte]); 155 } 156 157 private: 158 // We keep a table that maps from any byte "b" to 159 // (- b * pow(kMult, window_size - 1)) % kBase 160 static const uint32_t* remove_table_; 161 }; 162 163 // For each window_size, fill a 256-entry table such that 164 // the hash value of buffer[0] ... buffer[window_size - 1] 165 // + remove_table_[buffer[0]] 166 // == the hash value of buffer[1] ... buffer[window_size - 1] 167 // See the comments in Init(), below, for a description of how the contents of 168 // remove_table_ are computed. 169 template<int window_size> 170 const uint32_t* RollingHash<window_size>::remove_table_ = NULL; 171 172 // Init() checks to make sure that the static object remove_table_ has been 173 // initialized; if not, it does the considerable work of populating it. Once 174 // it's ready, the table can be used for any number of RollingHash objects of 175 // the same window_size. 176 // 177 template<int window_size> 178 bool RollingHash<window_size>::Init() { 179 if (window_size < 2) { 180 LOG(ERROR) << "RollingHash window size " << window_size 181 << " is too small" << LOG_ENDL; 182 return false; 183 } 184 if (remove_table_ == NULL) { 185 // The new object is placed into a local pointer instead of directly into 186 // remove_table_, for two reasons: 187 // 1. remove_table_ is a pointer to const. The table is populated using 188 // the non-const local pointer and then assigned to the global const 189 // pointer once it's ready. 190 // 2. No other thread will ever see remove_table_ pointing to a 191 // partially-initialized table. If two threads happen to call Init() 192 // at the same time, two tables with the same contents may be created 193 // (causing a memory leak), but the results will be consistent 194 // no matter which of the two tables is used. 195 uint32_t* new_remove_table = new uint32_t[256]; 196 // Compute multiplier. Concisely, it is: 197 // pow(kMult, (window_size - 1)) % kBase, 198 // but we compute the power in integer form. 199 uint32_t multiplier = 1; 200 for (int i = 0; i < window_size - 1; ++i) { 201 multiplier = 202 RollingHashUtil::ModBase(multiplier * RollingHashUtil::kMult); 203 } 204 // For each character removed_byte, compute 205 // remove_table_[removed_byte] == 206 // (- (removed_byte * pow(kMult, (window_size - 1)))) % kBase 207 // where the power operator "pow" is taken in integer form. 208 // 209 // If you take a hash value fp representing the hash of 210 // buffer[0] ... buffer[window_size - 1] 211 // and add the value of remove_table_[buffer[0]] to it, the result will be 212 // a partial hash value for 213 // buffer[1] ... buffer[window_size - 1] 214 // that is to say, it no longer includes buffer[0]. 215 // 216 // The following byte at buffer[window_size] can then be merged with this 217 // partial hash value to arrive quickly at the hash value for a window that 218 // has advanced by one byte, to 219 // buffer[1] ... buffer[window_size] 220 // In fact, that is precisely what happens in UpdateHash, above. 221 uint32_t byte_times_multiplier = 0; 222 for (int removed_byte = 0; removed_byte < 256; ++removed_byte) { 223 new_remove_table[removed_byte] = 224 RollingHashUtil::FindModBaseInverse(byte_times_multiplier); 225 // Iteratively adding the multiplier in this loop is equivalent to 226 // computing (removed_byte * multiplier), and is faster 227 byte_times_multiplier = 228 RollingHashUtil::ModBase(byte_times_multiplier + multiplier); 229 } 230 remove_table_ = new_remove_table; 231 } 232 return true; 233 } 234 235 } // namespace open_vcdiff 236 237 #endif // OPEN_VCDIFF_ROLLING_HASH_H_ 238