1 //===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for Objective-C expressions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "clang/Sema/Lookup.h" 16 #include "clang/Sema/Scope.h" 17 #include "clang/Sema/ScopeInfo.h" 18 #include "clang/Sema/Initialization.h" 19 #include "clang/Analysis/DomainSpecific/CocoaConventions.h" 20 #include "clang/Edit/Rewriters.h" 21 #include "clang/Edit/Commit.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/ExprObjC.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/AST/TypeLoc.h" 27 #include "llvm/ADT/SmallString.h" 28 #include "clang/Lex/Preprocessor.h" 29 30 using namespace clang; 31 using namespace sema; 32 using llvm::makeArrayRef; 33 34 ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs, 35 Expr **strings, 36 unsigned NumStrings) { 37 StringLiteral **Strings = reinterpret_cast<StringLiteral**>(strings); 38 39 // Most ObjC strings are formed out of a single piece. However, we *can* 40 // have strings formed out of multiple @ strings with multiple pptokens in 41 // each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one 42 // StringLiteral for ObjCStringLiteral to hold onto. 43 StringLiteral *S = Strings[0]; 44 45 // If we have a multi-part string, merge it all together. 46 if (NumStrings != 1) { 47 // Concatenate objc strings. 48 SmallString<128> StrBuf; 49 SmallVector<SourceLocation, 8> StrLocs; 50 51 for (unsigned i = 0; i != NumStrings; ++i) { 52 S = Strings[i]; 53 54 // ObjC strings can't be wide or UTF. 55 if (!S->isAscii()) { 56 Diag(S->getLocStart(), diag::err_cfstring_literal_not_string_constant) 57 << S->getSourceRange(); 58 return true; 59 } 60 61 // Append the string. 62 StrBuf += S->getString(); 63 64 // Get the locations of the string tokens. 65 StrLocs.append(S->tokloc_begin(), S->tokloc_end()); 66 } 67 68 // Create the aggregate string with the appropriate content and location 69 // information. 70 S = StringLiteral::Create(Context, StrBuf, 71 StringLiteral::Ascii, /*Pascal=*/false, 72 Context.getPointerType(Context.CharTy), 73 &StrLocs[0], StrLocs.size()); 74 } 75 76 return BuildObjCStringLiteral(AtLocs[0], S); 77 } 78 79 ExprResult Sema::BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S){ 80 // Verify that this composite string is acceptable for ObjC strings. 81 if (CheckObjCString(S)) 82 return true; 83 84 // Initialize the constant string interface lazily. This assumes 85 // the NSString interface is seen in this translation unit. Note: We 86 // don't use NSConstantString, since the runtime team considers this 87 // interface private (even though it appears in the header files). 88 QualType Ty = Context.getObjCConstantStringInterface(); 89 if (!Ty.isNull()) { 90 Ty = Context.getObjCObjectPointerType(Ty); 91 } else if (getLangOpts().NoConstantCFStrings) { 92 IdentifierInfo *NSIdent=0; 93 std::string StringClass(getLangOpts().ObjCConstantStringClass); 94 95 if (StringClass.empty()) 96 NSIdent = &Context.Idents.get("NSConstantString"); 97 else 98 NSIdent = &Context.Idents.get(StringClass); 99 100 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, 101 LookupOrdinaryName); 102 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { 103 Context.setObjCConstantStringInterface(StrIF); 104 Ty = Context.getObjCConstantStringInterface(); 105 Ty = Context.getObjCObjectPointerType(Ty); 106 } else { 107 // If there is no NSConstantString interface defined then treat this 108 // as error and recover from it. 109 Diag(S->getLocStart(), diag::err_no_nsconstant_string_class) << NSIdent 110 << S->getSourceRange(); 111 Ty = Context.getObjCIdType(); 112 } 113 } else { 114 IdentifierInfo *NSIdent = NSAPIObj->getNSClassId(NSAPI::ClassId_NSString); 115 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, 116 LookupOrdinaryName); 117 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { 118 Context.setObjCConstantStringInterface(StrIF); 119 Ty = Context.getObjCConstantStringInterface(); 120 Ty = Context.getObjCObjectPointerType(Ty); 121 } else { 122 // If there is no NSString interface defined, implicitly declare 123 // a @class NSString; and use that instead. This is to make sure 124 // type of an NSString literal is represented correctly, instead of 125 // being an 'id' type. 126 Ty = Context.getObjCNSStringType(); 127 if (Ty.isNull()) { 128 ObjCInterfaceDecl *NSStringIDecl = 129 ObjCInterfaceDecl::Create (Context, 130 Context.getTranslationUnitDecl(), 131 SourceLocation(), NSIdent, 132 0, SourceLocation()); 133 Ty = Context.getObjCInterfaceType(NSStringIDecl); 134 Context.setObjCNSStringType(Ty); 135 } 136 Ty = Context.getObjCObjectPointerType(Ty); 137 } 138 } 139 140 return new (Context) ObjCStringLiteral(S, Ty, AtLoc); 141 } 142 143 /// \brief Retrieve the NSNumber factory method that should be used to create 144 /// an Objective-C literal for the given type. 145 static ObjCMethodDecl *getNSNumberFactoryMethod(Sema &S, SourceLocation Loc, 146 QualType NumberType, 147 bool isLiteral = false, 148 SourceRange R = SourceRange()) { 149 llvm::Optional<NSAPI::NSNumberLiteralMethodKind> Kind 150 = S.NSAPIObj->getNSNumberFactoryMethodKind(NumberType); 151 152 if (!Kind) { 153 if (isLiteral) { 154 S.Diag(Loc, diag::err_invalid_nsnumber_type) 155 << NumberType << R; 156 } 157 return 0; 158 } 159 160 // If we already looked up this method, we're done. 161 if (S.NSNumberLiteralMethods[*Kind]) 162 return S.NSNumberLiteralMethods[*Kind]; 163 164 Selector Sel = S.NSAPIObj->getNSNumberLiteralSelector(*Kind, 165 /*Instance=*/false); 166 167 ASTContext &CX = S.Context; 168 169 // Look up the NSNumber class, if we haven't done so already. It's cached 170 // in the Sema instance. 171 if (!S.NSNumberDecl) { 172 IdentifierInfo *NSNumberId = S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSNumber); 173 NamedDecl *IF = S.LookupSingleName(S.TUScope, NSNumberId, 174 Loc, Sema::LookupOrdinaryName); 175 S.NSNumberDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 176 if (!S.NSNumberDecl) { 177 if (S.getLangOpts().DebuggerObjCLiteral) { 178 // Create a stub definition of NSNumber. 179 S.NSNumberDecl = ObjCInterfaceDecl::Create (CX, 180 CX.getTranslationUnitDecl(), 181 SourceLocation(), NSNumberId, 182 0, SourceLocation()); 183 } else { 184 // Otherwise, require a declaration of NSNumber. 185 S.Diag(Loc, diag::err_undeclared_nsnumber); 186 return 0; 187 } 188 } else if (!S.NSNumberDecl->hasDefinition()) { 189 S.Diag(Loc, diag::err_undeclared_nsnumber); 190 return 0; 191 } 192 193 // generate the pointer to NSNumber type. 194 S.NSNumberPointer = CX.getObjCObjectPointerType(CX.getObjCInterfaceType(S.NSNumberDecl)); 195 } 196 197 // Look for the appropriate method within NSNumber. 198 ObjCMethodDecl *Method = S.NSNumberDecl->lookupClassMethod(Sel);; 199 if (!Method && S.getLangOpts().DebuggerObjCLiteral) { 200 // create a stub definition this NSNumber factory method. 201 TypeSourceInfo *ResultTInfo = 0; 202 Method = ObjCMethodDecl::Create(CX, SourceLocation(), SourceLocation(), Sel, 203 S.NSNumberPointer, ResultTInfo, S.NSNumberDecl, 204 /*isInstance=*/false, /*isVariadic=*/false, 205 /*isSynthesized=*/false, 206 /*isImplicitlyDeclared=*/true, 207 /*isDefined=*/false, ObjCMethodDecl::Required, 208 /*HasRelatedResultType=*/false); 209 ParmVarDecl *value = ParmVarDecl::Create(S.Context, Method, 210 SourceLocation(), SourceLocation(), 211 &CX.Idents.get("value"), 212 NumberType, /*TInfo=*/0, SC_None, SC_None, 0); 213 Method->setMethodParams(S.Context, value, ArrayRef<SourceLocation>()); 214 } 215 216 if (!Method) { 217 S.Diag(Loc, diag::err_undeclared_nsnumber_method) << Sel; 218 return 0; 219 } 220 221 // Make sure the return type is reasonable. 222 if (!Method->getResultType()->isObjCObjectPointerType()) { 223 S.Diag(Loc, diag::err_objc_literal_method_sig) 224 << Sel; 225 S.Diag(Method->getLocation(), diag::note_objc_literal_method_return) 226 << Method->getResultType(); 227 return 0; 228 } 229 230 // Note: if the parameter type is out-of-line, we'll catch it later in the 231 // implicit conversion. 232 233 S.NSNumberLiteralMethods[*Kind] = Method; 234 return Method; 235 } 236 237 /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the 238 /// numeric literal expression. Type of the expression will be "NSNumber *". 239 ExprResult Sema::BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number) { 240 // compute the effective range of the literal, including the leading '@'. 241 SourceRange SR(AtLoc, Number->getSourceRange().getEnd()); 242 243 // Determine the type of the literal. 244 QualType NumberType = Number->getType(); 245 if (CharacterLiteral *Char = dyn_cast<CharacterLiteral>(Number)) { 246 // In C, character literals have type 'int'. That's not the type we want 247 // to use to determine the Objective-c literal kind. 248 switch (Char->getKind()) { 249 case CharacterLiteral::Ascii: 250 NumberType = Context.CharTy; 251 break; 252 253 case CharacterLiteral::Wide: 254 NumberType = Context.getWCharType(); 255 break; 256 257 case CharacterLiteral::UTF16: 258 NumberType = Context.Char16Ty; 259 break; 260 261 case CharacterLiteral::UTF32: 262 NumberType = Context.Char32Ty; 263 break; 264 } 265 } 266 267 // Look for the appropriate method within NSNumber. 268 // Construct the literal. 269 ObjCMethodDecl *Method = getNSNumberFactoryMethod(*this, AtLoc, NumberType, 270 true, Number->getSourceRange()); 271 if (!Method) 272 return ExprError(); 273 274 // Convert the number to the type that the parameter expects. 275 QualType ArgType = Method->param_begin()[0]->getType(); 276 ExprResult ConvertedNumber = PerformImplicitConversion(Number, ArgType, 277 AA_Sending); 278 if (ConvertedNumber.isInvalid()) 279 return ExprError(); 280 Number = ConvertedNumber.get(); 281 282 return MaybeBindToTemporary( 283 new (Context) ObjCBoxedExpr(Number, NSNumberPointer, Method, SR)); 284 } 285 286 ExprResult Sema::ActOnObjCBoolLiteral(SourceLocation AtLoc, 287 SourceLocation ValueLoc, 288 bool Value) { 289 ExprResult Inner; 290 if (getLangOpts().CPlusPlus) { 291 Inner = ActOnCXXBoolLiteral(ValueLoc, Value? tok::kw_true : tok::kw_false); 292 } else { 293 // C doesn't actually have a way to represent literal values of type 294 // _Bool. So, we'll use 0/1 and implicit cast to _Bool. 295 Inner = ActOnIntegerConstant(ValueLoc, Value? 1 : 0); 296 Inner = ImpCastExprToType(Inner.get(), Context.BoolTy, 297 CK_IntegralToBoolean); 298 } 299 300 return BuildObjCNumericLiteral(AtLoc, Inner.get()); 301 } 302 303 /// \brief Check that the given expression is a valid element of an Objective-C 304 /// collection literal. 305 static ExprResult CheckObjCCollectionLiteralElement(Sema &S, Expr *Element, 306 QualType T) { 307 // If the expression is type-dependent, there's nothing for us to do. 308 if (Element->isTypeDependent()) 309 return Element; 310 311 ExprResult Result = S.CheckPlaceholderExpr(Element); 312 if (Result.isInvalid()) 313 return ExprError(); 314 Element = Result.get(); 315 316 // In C++, check for an implicit conversion to an Objective-C object pointer 317 // type. 318 if (S.getLangOpts().CPlusPlus && Element->getType()->isRecordType()) { 319 InitializedEntity Entity 320 = InitializedEntity::InitializeParameter(S.Context, T, /*Consumed=*/false); 321 InitializationKind Kind 322 = InitializationKind::CreateCopy(Element->getLocStart(), SourceLocation()); 323 InitializationSequence Seq(S, Entity, Kind, &Element, 1); 324 if (!Seq.Failed()) 325 return Seq.Perform(S, Entity, Kind, MultiExprArg(S, &Element, 1)); 326 } 327 328 Expr *OrigElement = Element; 329 330 // Perform lvalue-to-rvalue conversion. 331 Result = S.DefaultLvalueConversion(Element); 332 if (Result.isInvalid()) 333 return ExprError(); 334 Element = Result.get(); 335 336 // Make sure that we have an Objective-C pointer type or block. 337 if (!Element->getType()->isObjCObjectPointerType() && 338 !Element->getType()->isBlockPointerType()) { 339 bool Recovered = false; 340 341 // If this is potentially an Objective-C numeric literal, add the '@'. 342 if (isa<IntegerLiteral>(OrigElement) || 343 isa<CharacterLiteral>(OrigElement) || 344 isa<FloatingLiteral>(OrigElement) || 345 isa<ObjCBoolLiteralExpr>(OrigElement) || 346 isa<CXXBoolLiteralExpr>(OrigElement)) { 347 if (S.NSAPIObj->getNSNumberFactoryMethodKind(OrigElement->getType())) { 348 int Which = isa<CharacterLiteral>(OrigElement) ? 1 349 : (isa<CXXBoolLiteralExpr>(OrigElement) || 350 isa<ObjCBoolLiteralExpr>(OrigElement)) ? 2 351 : 3; 352 353 S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection) 354 << Which << OrigElement->getSourceRange() 355 << FixItHint::CreateInsertion(OrigElement->getLocStart(), "@"); 356 357 Result = S.BuildObjCNumericLiteral(OrigElement->getLocStart(), 358 OrigElement); 359 if (Result.isInvalid()) 360 return ExprError(); 361 362 Element = Result.get(); 363 Recovered = true; 364 } 365 } 366 // If this is potentially an Objective-C string literal, add the '@'. 367 else if (StringLiteral *String = dyn_cast<StringLiteral>(OrigElement)) { 368 if (String->isAscii()) { 369 S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection) 370 << 0 << OrigElement->getSourceRange() 371 << FixItHint::CreateInsertion(OrigElement->getLocStart(), "@"); 372 373 Result = S.BuildObjCStringLiteral(OrigElement->getLocStart(), String); 374 if (Result.isInvalid()) 375 return ExprError(); 376 377 Element = Result.get(); 378 Recovered = true; 379 } 380 } 381 382 if (!Recovered) { 383 S.Diag(Element->getLocStart(), diag::err_invalid_collection_element) 384 << Element->getType(); 385 return ExprError(); 386 } 387 } 388 389 // Make sure that the element has the type that the container factory 390 // function expects. 391 return S.PerformCopyInitialization( 392 InitializedEntity::InitializeParameter(S.Context, T, 393 /*Consumed=*/false), 394 Element->getLocStart(), Element); 395 } 396 397 ExprResult Sema::BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) { 398 if (ValueExpr->isTypeDependent()) { 399 ObjCBoxedExpr *BoxedExpr = 400 new (Context) ObjCBoxedExpr(ValueExpr, Context.DependentTy, NULL, SR); 401 return Owned(BoxedExpr); 402 } 403 ObjCMethodDecl *BoxingMethod = NULL; 404 QualType BoxedType; 405 // Convert the expression to an RValue, so we can check for pointer types... 406 ExprResult RValue = DefaultFunctionArrayLvalueConversion(ValueExpr); 407 if (RValue.isInvalid()) { 408 return ExprError(); 409 } 410 ValueExpr = RValue.get(); 411 QualType ValueType(ValueExpr->getType().getCanonicalType()); 412 if (const PointerType *PT = ValueType->getAs<PointerType>()) { 413 QualType PointeeType = PT->getPointeeType(); 414 if (Context.hasSameUnqualifiedType(PointeeType, Context.CharTy)) { 415 416 if (!NSStringDecl) { 417 IdentifierInfo *NSStringId = 418 NSAPIObj->getNSClassId(NSAPI::ClassId_NSString); 419 NamedDecl *Decl = LookupSingleName(TUScope, NSStringId, 420 SR.getBegin(), LookupOrdinaryName); 421 NSStringDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Decl); 422 if (!NSStringDecl) { 423 if (getLangOpts().DebuggerObjCLiteral) { 424 // Support boxed expressions in the debugger w/o NSString declaration. 425 NSStringDecl = ObjCInterfaceDecl::Create(Context, 426 Context.getTranslationUnitDecl(), 427 SourceLocation(), NSStringId, 428 0, SourceLocation()); 429 } else { 430 Diag(SR.getBegin(), diag::err_undeclared_nsstring); 431 return ExprError(); 432 } 433 } else if (!NSStringDecl->hasDefinition()) { 434 Diag(SR.getBegin(), diag::err_undeclared_nsstring); 435 return ExprError(); 436 } 437 assert(NSStringDecl && "NSStringDecl should not be NULL"); 438 NSStringPointer = 439 Context.getObjCObjectPointerType(Context.getObjCInterfaceType(NSStringDecl)); 440 } 441 442 if (!StringWithUTF8StringMethod) { 443 IdentifierInfo *II = &Context.Idents.get("stringWithUTF8String"); 444 Selector stringWithUTF8String = Context.Selectors.getUnarySelector(II); 445 446 // Look for the appropriate method within NSString. 447 StringWithUTF8StringMethod = NSStringDecl->lookupClassMethod(stringWithUTF8String); 448 if (!StringWithUTF8StringMethod && getLangOpts().DebuggerObjCLiteral) { 449 // Debugger needs to work even if NSString hasn't been defined. 450 TypeSourceInfo *ResultTInfo = 0; 451 ObjCMethodDecl *M = 452 ObjCMethodDecl::Create(Context, SourceLocation(), SourceLocation(), 453 stringWithUTF8String, NSStringPointer, 454 ResultTInfo, NSStringDecl, 455 /*isInstance=*/false, /*isVariadic=*/false, 456 /*isSynthesized=*/false, 457 /*isImplicitlyDeclared=*/true, 458 /*isDefined=*/false, 459 ObjCMethodDecl::Required, 460 /*HasRelatedResultType=*/false); 461 ParmVarDecl *value = 462 ParmVarDecl::Create(Context, M, 463 SourceLocation(), SourceLocation(), 464 &Context.Idents.get("value"), 465 Context.getPointerType(Context.CharTy.withConst()), 466 /*TInfo=*/0, 467 SC_None, SC_None, 0); 468 M->setMethodParams(Context, value, ArrayRef<SourceLocation>()); 469 StringWithUTF8StringMethod = M; 470 } 471 assert(StringWithUTF8StringMethod && 472 "StringWithUTF8StringMethod should not be NULL"); 473 } 474 475 BoxingMethod = StringWithUTF8StringMethod; 476 BoxedType = NSStringPointer; 477 } 478 } else if (isa<BuiltinType>(ValueType)) { 479 // The other types we support are numeric, char and BOOL/bool. We could also 480 // provide limited support for structure types, such as NSRange, NSRect, and 481 // NSSize. See NSValue (NSValueGeometryExtensions) in <Foundation/NSGeometry.h> 482 // for more details. 483 484 // Check for a top-level character literal. 485 if (const CharacterLiteral *Char = 486 dyn_cast<CharacterLiteral>(ValueExpr->IgnoreParens())) { 487 // In C, character literals have type 'int'. That's not the type we want 488 // to use to determine the Objective-c literal kind. 489 switch (Char->getKind()) { 490 case CharacterLiteral::Ascii: 491 ValueType = Context.CharTy; 492 break; 493 494 case CharacterLiteral::Wide: 495 ValueType = Context.getWCharType(); 496 break; 497 498 case CharacterLiteral::UTF16: 499 ValueType = Context.Char16Ty; 500 break; 501 502 case CharacterLiteral::UTF32: 503 ValueType = Context.Char32Ty; 504 break; 505 } 506 } 507 508 // FIXME: Do I need to do anything special with BoolTy expressions? 509 510 // Look for the appropriate method within NSNumber. 511 BoxingMethod = getNSNumberFactoryMethod(*this, SR.getBegin(), ValueType); 512 BoxedType = NSNumberPointer; 513 } 514 515 if (!BoxingMethod) { 516 Diag(SR.getBegin(), diag::err_objc_illegal_boxed_expression_type) 517 << ValueType << ValueExpr->getSourceRange(); 518 return ExprError(); 519 } 520 521 // Convert the expression to the type that the parameter requires. 522 QualType ArgType = BoxingMethod->param_begin()[0]->getType(); 523 ExprResult ConvertedValueExpr = PerformImplicitConversion(ValueExpr, ArgType, 524 AA_Sending); 525 if (ConvertedValueExpr.isInvalid()) 526 return ExprError(); 527 ValueExpr = ConvertedValueExpr.get(); 528 529 ObjCBoxedExpr *BoxedExpr = 530 new (Context) ObjCBoxedExpr(ValueExpr, BoxedType, 531 BoxingMethod, SR); 532 return MaybeBindToTemporary(BoxedExpr); 533 } 534 535 ExprResult Sema::BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr, 536 Expr *IndexExpr, 537 ObjCMethodDecl *getterMethod, 538 ObjCMethodDecl *setterMethod) { 539 // Feature support is for modern abi. 540 if (!LangOpts.ObjCNonFragileABI) 541 return ExprError(); 542 // If the expression is type-dependent, there's nothing for us to do. 543 assert ((!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) && 544 "base or index cannot have dependent type here"); 545 ExprResult Result = CheckPlaceholderExpr(IndexExpr); 546 if (Result.isInvalid()) 547 return ExprError(); 548 IndexExpr = Result.get(); 549 550 // Perform lvalue-to-rvalue conversion. 551 Result = DefaultLvalueConversion(BaseExpr); 552 if (Result.isInvalid()) 553 return ExprError(); 554 BaseExpr = Result.get(); 555 return Owned(ObjCSubscriptRefExpr::Create(Context, 556 BaseExpr, 557 IndexExpr, 558 Context.PseudoObjectTy, 559 getterMethod, 560 setterMethod, RB)); 561 562 } 563 564 ExprResult Sema::BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements) { 565 // Look up the NSArray class, if we haven't done so already. 566 if (!NSArrayDecl) { 567 NamedDecl *IF = LookupSingleName(TUScope, 568 NSAPIObj->getNSClassId(NSAPI::ClassId_NSArray), 569 SR.getBegin(), 570 LookupOrdinaryName); 571 NSArrayDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 572 if (!NSArrayDecl && getLangOpts().DebuggerObjCLiteral) 573 NSArrayDecl = ObjCInterfaceDecl::Create (Context, 574 Context.getTranslationUnitDecl(), 575 SourceLocation(), 576 NSAPIObj->getNSClassId(NSAPI::ClassId_NSArray), 577 0, SourceLocation()); 578 579 if (!NSArrayDecl) { 580 Diag(SR.getBegin(), diag::err_undeclared_nsarray); 581 return ExprError(); 582 } 583 } 584 585 // Find the arrayWithObjects:count: method, if we haven't done so already. 586 QualType IdT = Context.getObjCIdType(); 587 if (!ArrayWithObjectsMethod) { 588 Selector 589 Sel = NSAPIObj->getNSArraySelector(NSAPI::NSArr_arrayWithObjectsCount); 590 ArrayWithObjectsMethod = NSArrayDecl->lookupClassMethod(Sel); 591 if (!ArrayWithObjectsMethod && getLangOpts().DebuggerObjCLiteral) { 592 TypeSourceInfo *ResultTInfo = 0; 593 ArrayWithObjectsMethod = 594 ObjCMethodDecl::Create(Context, 595 SourceLocation(), SourceLocation(), Sel, 596 IdT, 597 ResultTInfo, 598 Context.getTranslationUnitDecl(), 599 false /*Instance*/, false/*isVariadic*/, 600 /*isSynthesized=*/false, 601 /*isImplicitlyDeclared=*/true, /*isDefined=*/false, 602 ObjCMethodDecl::Required, 603 false); 604 SmallVector<ParmVarDecl *, 2> Params; 605 ParmVarDecl *objects = ParmVarDecl::Create(Context, ArrayWithObjectsMethod, 606 SourceLocation(), SourceLocation(), 607 &Context.Idents.get("objects"), 608 Context.getPointerType(IdT), 609 /*TInfo=*/0, 610 SC_None, 611 SC_None, 612 0); 613 Params.push_back(objects); 614 ParmVarDecl *cnt = ParmVarDecl::Create(Context, ArrayWithObjectsMethod, 615 SourceLocation(), SourceLocation(), 616 &Context.Idents.get("cnt"), 617 Context.UnsignedLongTy, 618 /*TInfo=*/0, 619 SC_None, 620 SC_None, 621 0); 622 Params.push_back(cnt); 623 ArrayWithObjectsMethod->setMethodParams(Context, Params, 624 ArrayRef<SourceLocation>()); 625 626 627 } 628 629 if (!ArrayWithObjectsMethod) { 630 Diag(SR.getBegin(), diag::err_undeclared_arraywithobjects) << Sel; 631 return ExprError(); 632 } 633 } 634 635 // Make sure the return type is reasonable. 636 if (!ArrayWithObjectsMethod->getResultType()->isObjCObjectPointerType()) { 637 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 638 << ArrayWithObjectsMethod->getSelector(); 639 Diag(ArrayWithObjectsMethod->getLocation(), 640 diag::note_objc_literal_method_return) 641 << ArrayWithObjectsMethod->getResultType(); 642 return ExprError(); 643 } 644 645 // Dig out the type that all elements should be converted to. 646 QualType T = ArrayWithObjectsMethod->param_begin()[0]->getType(); 647 const PointerType *PtrT = T->getAs<PointerType>(); 648 if (!PtrT || 649 !Context.hasSameUnqualifiedType(PtrT->getPointeeType(), IdT)) { 650 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 651 << ArrayWithObjectsMethod->getSelector(); 652 Diag(ArrayWithObjectsMethod->param_begin()[0]->getLocation(), 653 diag::note_objc_literal_method_param) 654 << 0 << T 655 << Context.getPointerType(IdT.withConst()); 656 return ExprError(); 657 } 658 T = PtrT->getPointeeType(); 659 660 // Check that the 'count' parameter is integral. 661 if (!ArrayWithObjectsMethod->param_begin()[1]->getType()->isIntegerType()) { 662 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 663 << ArrayWithObjectsMethod->getSelector(); 664 Diag(ArrayWithObjectsMethod->param_begin()[1]->getLocation(), 665 diag::note_objc_literal_method_param) 666 << 1 667 << ArrayWithObjectsMethod->param_begin()[1]->getType() 668 << "integral"; 669 return ExprError(); 670 } 671 672 // Check that each of the elements provided is valid in a collection literal, 673 // performing conversions as necessary. 674 Expr **ElementsBuffer = Elements.get(); 675 for (unsigned I = 0, N = Elements.size(); I != N; ++I) { 676 ExprResult Converted = CheckObjCCollectionLiteralElement(*this, 677 ElementsBuffer[I], 678 T); 679 if (Converted.isInvalid()) 680 return ExprError(); 681 682 ElementsBuffer[I] = Converted.get(); 683 } 684 685 QualType Ty 686 = Context.getObjCObjectPointerType( 687 Context.getObjCInterfaceType(NSArrayDecl)); 688 689 return MaybeBindToTemporary( 690 ObjCArrayLiteral::Create(Context, 691 llvm::makeArrayRef(Elements.get(), 692 Elements.size()), 693 Ty, ArrayWithObjectsMethod, SR)); 694 } 695 696 ExprResult Sema::BuildObjCDictionaryLiteral(SourceRange SR, 697 ObjCDictionaryElement *Elements, 698 unsigned NumElements) { 699 // Look up the NSDictionary class, if we haven't done so already. 700 if (!NSDictionaryDecl) { 701 NamedDecl *IF = LookupSingleName(TUScope, 702 NSAPIObj->getNSClassId(NSAPI::ClassId_NSDictionary), 703 SR.getBegin(), LookupOrdinaryName); 704 NSDictionaryDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 705 if (!NSDictionaryDecl && getLangOpts().DebuggerObjCLiteral) 706 NSDictionaryDecl = ObjCInterfaceDecl::Create (Context, 707 Context.getTranslationUnitDecl(), 708 SourceLocation(), 709 NSAPIObj->getNSClassId(NSAPI::ClassId_NSDictionary), 710 0, SourceLocation()); 711 712 if (!NSDictionaryDecl) { 713 Diag(SR.getBegin(), diag::err_undeclared_nsdictionary); 714 return ExprError(); 715 } 716 } 717 718 // Find the dictionaryWithObjects:forKeys:count: method, if we haven't done 719 // so already. 720 QualType IdT = Context.getObjCIdType(); 721 if (!DictionaryWithObjectsMethod) { 722 Selector Sel = NSAPIObj->getNSDictionarySelector( 723 NSAPI::NSDict_dictionaryWithObjectsForKeysCount); 724 DictionaryWithObjectsMethod = NSDictionaryDecl->lookupClassMethod(Sel); 725 if (!DictionaryWithObjectsMethod && getLangOpts().DebuggerObjCLiteral) { 726 DictionaryWithObjectsMethod = 727 ObjCMethodDecl::Create(Context, 728 SourceLocation(), SourceLocation(), Sel, 729 IdT, 730 0 /*TypeSourceInfo */, 731 Context.getTranslationUnitDecl(), 732 false /*Instance*/, false/*isVariadic*/, 733 /*isSynthesized=*/false, 734 /*isImplicitlyDeclared=*/true, /*isDefined=*/false, 735 ObjCMethodDecl::Required, 736 false); 737 SmallVector<ParmVarDecl *, 3> Params; 738 ParmVarDecl *objects = ParmVarDecl::Create(Context, DictionaryWithObjectsMethod, 739 SourceLocation(), SourceLocation(), 740 &Context.Idents.get("objects"), 741 Context.getPointerType(IdT), 742 /*TInfo=*/0, 743 SC_None, 744 SC_None, 745 0); 746 Params.push_back(objects); 747 ParmVarDecl *keys = ParmVarDecl::Create(Context, DictionaryWithObjectsMethod, 748 SourceLocation(), SourceLocation(), 749 &Context.Idents.get("keys"), 750 Context.getPointerType(IdT), 751 /*TInfo=*/0, 752 SC_None, 753 SC_None, 754 0); 755 Params.push_back(keys); 756 ParmVarDecl *cnt = ParmVarDecl::Create(Context, DictionaryWithObjectsMethod, 757 SourceLocation(), SourceLocation(), 758 &Context.Idents.get("cnt"), 759 Context.UnsignedLongTy, 760 /*TInfo=*/0, 761 SC_None, 762 SC_None, 763 0); 764 Params.push_back(cnt); 765 DictionaryWithObjectsMethod->setMethodParams(Context, Params, 766 ArrayRef<SourceLocation>()); 767 } 768 769 if (!DictionaryWithObjectsMethod) { 770 Diag(SR.getBegin(), diag::err_undeclared_dictwithobjects) << Sel; 771 return ExprError(); 772 } 773 } 774 775 // Make sure the return type is reasonable. 776 if (!DictionaryWithObjectsMethod->getResultType()->isObjCObjectPointerType()){ 777 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 778 << DictionaryWithObjectsMethod->getSelector(); 779 Diag(DictionaryWithObjectsMethod->getLocation(), 780 diag::note_objc_literal_method_return) 781 << DictionaryWithObjectsMethod->getResultType(); 782 return ExprError(); 783 } 784 785 // Dig out the type that all values should be converted to. 786 QualType ValueT = DictionaryWithObjectsMethod->param_begin()[0]->getType(); 787 const PointerType *PtrValue = ValueT->getAs<PointerType>(); 788 if (!PtrValue || 789 !Context.hasSameUnqualifiedType(PtrValue->getPointeeType(), IdT)) { 790 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 791 << DictionaryWithObjectsMethod->getSelector(); 792 Diag(DictionaryWithObjectsMethod->param_begin()[0]->getLocation(), 793 diag::note_objc_literal_method_param) 794 << 0 << ValueT 795 << Context.getPointerType(IdT.withConst()); 796 return ExprError(); 797 } 798 ValueT = PtrValue->getPointeeType(); 799 800 // Dig out the type that all keys should be converted to. 801 QualType KeyT = DictionaryWithObjectsMethod->param_begin()[1]->getType(); 802 const PointerType *PtrKey = KeyT->getAs<PointerType>(); 803 if (!PtrKey || 804 !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), 805 IdT)) { 806 bool err = true; 807 if (PtrKey) { 808 if (QIDNSCopying.isNull()) { 809 // key argument of selector is id<NSCopying>? 810 if (ObjCProtocolDecl *NSCopyingPDecl = 811 LookupProtocol(&Context.Idents.get("NSCopying"), SR.getBegin())) { 812 ObjCProtocolDecl *PQ[] = {NSCopyingPDecl}; 813 QIDNSCopying = 814 Context.getObjCObjectType(Context.ObjCBuiltinIdTy, 815 (ObjCProtocolDecl**) PQ,1); 816 QIDNSCopying = Context.getObjCObjectPointerType(QIDNSCopying); 817 } 818 } 819 if (!QIDNSCopying.isNull()) 820 err = !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), 821 QIDNSCopying); 822 } 823 824 if (err) { 825 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 826 << DictionaryWithObjectsMethod->getSelector(); 827 Diag(DictionaryWithObjectsMethod->param_begin()[1]->getLocation(), 828 diag::note_objc_literal_method_param) 829 << 1 << KeyT 830 << Context.getPointerType(IdT.withConst()); 831 return ExprError(); 832 } 833 } 834 KeyT = PtrKey->getPointeeType(); 835 836 // Check that the 'count' parameter is integral. 837 if (!DictionaryWithObjectsMethod->param_begin()[2]->getType() 838 ->isIntegerType()) { 839 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 840 << DictionaryWithObjectsMethod->getSelector(); 841 Diag(DictionaryWithObjectsMethod->param_begin()[2]->getLocation(), 842 diag::note_objc_literal_method_param) 843 << 2 844 << DictionaryWithObjectsMethod->param_begin()[2]->getType() 845 << "integral"; 846 return ExprError(); 847 } 848 849 // Check that each of the keys and values provided is valid in a collection 850 // literal, performing conversions as necessary. 851 bool HasPackExpansions = false; 852 for (unsigned I = 0, N = NumElements; I != N; ++I) { 853 // Check the key. 854 ExprResult Key = CheckObjCCollectionLiteralElement(*this, Elements[I].Key, 855 KeyT); 856 if (Key.isInvalid()) 857 return ExprError(); 858 859 // Check the value. 860 ExprResult Value 861 = CheckObjCCollectionLiteralElement(*this, Elements[I].Value, ValueT); 862 if (Value.isInvalid()) 863 return ExprError(); 864 865 Elements[I].Key = Key.get(); 866 Elements[I].Value = Value.get(); 867 868 if (Elements[I].EllipsisLoc.isInvalid()) 869 continue; 870 871 if (!Elements[I].Key->containsUnexpandedParameterPack() && 872 !Elements[I].Value->containsUnexpandedParameterPack()) { 873 Diag(Elements[I].EllipsisLoc, 874 diag::err_pack_expansion_without_parameter_packs) 875 << SourceRange(Elements[I].Key->getLocStart(), 876 Elements[I].Value->getLocEnd()); 877 return ExprError(); 878 } 879 880 HasPackExpansions = true; 881 } 882 883 884 QualType Ty 885 = Context.getObjCObjectPointerType( 886 Context.getObjCInterfaceType(NSDictionaryDecl)); 887 return MaybeBindToTemporary( 888 ObjCDictionaryLiteral::Create(Context, 889 llvm::makeArrayRef(Elements, 890 NumElements), 891 HasPackExpansions, 892 Ty, 893 DictionaryWithObjectsMethod, SR)); 894 } 895 896 ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc, 897 TypeSourceInfo *EncodedTypeInfo, 898 SourceLocation RParenLoc) { 899 QualType EncodedType = EncodedTypeInfo->getType(); 900 QualType StrTy; 901 if (EncodedType->isDependentType()) 902 StrTy = Context.DependentTy; 903 else { 904 if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled. 905 !EncodedType->isVoidType()) // void is handled too. 906 if (RequireCompleteType(AtLoc, EncodedType, 907 PDiag(diag::err_incomplete_type_objc_at_encode) 908 << EncodedTypeInfo->getTypeLoc().getSourceRange())) 909 return ExprError(); 910 911 std::string Str; 912 Context.getObjCEncodingForType(EncodedType, Str); 913 914 // The type of @encode is the same as the type of the corresponding string, 915 // which is an array type. 916 StrTy = Context.CharTy; 917 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). 918 if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings) 919 StrTy.addConst(); 920 StrTy = Context.getConstantArrayType(StrTy, llvm::APInt(32, Str.size()+1), 921 ArrayType::Normal, 0); 922 } 923 924 return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc); 925 } 926 927 ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc, 928 SourceLocation EncodeLoc, 929 SourceLocation LParenLoc, 930 ParsedType ty, 931 SourceLocation RParenLoc) { 932 // FIXME: Preserve type source info ? 933 TypeSourceInfo *TInfo; 934 QualType EncodedType = GetTypeFromParser(ty, &TInfo); 935 if (!TInfo) 936 TInfo = Context.getTrivialTypeSourceInfo(EncodedType, 937 PP.getLocForEndOfToken(LParenLoc)); 938 939 return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc); 940 } 941 942 ExprResult Sema::ParseObjCSelectorExpression(Selector Sel, 943 SourceLocation AtLoc, 944 SourceLocation SelLoc, 945 SourceLocation LParenLoc, 946 SourceLocation RParenLoc) { 947 ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel, 948 SourceRange(LParenLoc, RParenLoc), false, false); 949 if (!Method) 950 Method = LookupFactoryMethodInGlobalPool(Sel, 951 SourceRange(LParenLoc, RParenLoc)); 952 if (!Method) 953 Diag(SelLoc, diag::warn_undeclared_selector) << Sel; 954 955 if (!Method || 956 Method->getImplementationControl() != ObjCMethodDecl::Optional) { 957 llvm::DenseMap<Selector, SourceLocation>::iterator Pos 958 = ReferencedSelectors.find(Sel); 959 if (Pos == ReferencedSelectors.end()) 960 ReferencedSelectors.insert(std::make_pair(Sel, SelLoc)); 961 } 962 963 // In ARC, forbid the user from using @selector for 964 // retain/release/autorelease/dealloc/retainCount. 965 if (getLangOpts().ObjCAutoRefCount) { 966 switch (Sel.getMethodFamily()) { 967 case OMF_retain: 968 case OMF_release: 969 case OMF_autorelease: 970 case OMF_retainCount: 971 case OMF_dealloc: 972 Diag(AtLoc, diag::err_arc_illegal_selector) << 973 Sel << SourceRange(LParenLoc, RParenLoc); 974 break; 975 976 case OMF_None: 977 case OMF_alloc: 978 case OMF_copy: 979 case OMF_finalize: 980 case OMF_init: 981 case OMF_mutableCopy: 982 case OMF_new: 983 case OMF_self: 984 case OMF_performSelector: 985 break; 986 } 987 } 988 QualType Ty = Context.getObjCSelType(); 989 return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc); 990 } 991 992 ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId, 993 SourceLocation AtLoc, 994 SourceLocation ProtoLoc, 995 SourceLocation LParenLoc, 996 SourceLocation RParenLoc) { 997 ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoLoc); 998 if (!PDecl) { 999 Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId; 1000 return true; 1001 } 1002 1003 QualType Ty = Context.getObjCProtoType(); 1004 if (Ty.isNull()) 1005 return true; 1006 Ty = Context.getObjCObjectPointerType(Ty); 1007 return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, RParenLoc); 1008 } 1009 1010 /// Try to capture an implicit reference to 'self'. 1011 ObjCMethodDecl *Sema::tryCaptureObjCSelf(SourceLocation Loc) { 1012 DeclContext *DC = getFunctionLevelDeclContext(); 1013 1014 // If we're not in an ObjC method, error out. Note that, unlike the 1015 // C++ case, we don't require an instance method --- class methods 1016 // still have a 'self', and we really do still need to capture it! 1017 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC); 1018 if (!method) 1019 return 0; 1020 1021 tryCaptureVariable(method->getSelfDecl(), Loc); 1022 1023 return method; 1024 } 1025 1026 static QualType stripObjCInstanceType(ASTContext &Context, QualType T) { 1027 if (T == Context.getObjCInstanceType()) 1028 return Context.getObjCIdType(); 1029 1030 return T; 1031 } 1032 1033 QualType Sema::getMessageSendResultType(QualType ReceiverType, 1034 ObjCMethodDecl *Method, 1035 bool isClassMessage, bool isSuperMessage) { 1036 assert(Method && "Must have a method"); 1037 if (!Method->hasRelatedResultType()) 1038 return Method->getSendResultType(); 1039 1040 // If a method has a related return type: 1041 // - if the method found is an instance method, but the message send 1042 // was a class message send, T is the declared return type of the method 1043 // found 1044 if (Method->isInstanceMethod() && isClassMessage) 1045 return stripObjCInstanceType(Context, Method->getSendResultType()); 1046 1047 // - if the receiver is super, T is a pointer to the class of the 1048 // enclosing method definition 1049 if (isSuperMessage) { 1050 if (ObjCMethodDecl *CurMethod = getCurMethodDecl()) 1051 if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface()) 1052 return Context.getObjCObjectPointerType( 1053 Context.getObjCInterfaceType(Class)); 1054 } 1055 1056 // - if the receiver is the name of a class U, T is a pointer to U 1057 if (ReceiverType->getAs<ObjCInterfaceType>() || 1058 ReceiverType->isObjCQualifiedInterfaceType()) 1059 return Context.getObjCObjectPointerType(ReceiverType); 1060 // - if the receiver is of type Class or qualified Class type, 1061 // T is the declared return type of the method. 1062 if (ReceiverType->isObjCClassType() || 1063 ReceiverType->isObjCQualifiedClassType()) 1064 return stripObjCInstanceType(Context, Method->getSendResultType()); 1065 1066 // - if the receiver is id, qualified id, Class, or qualified Class, T 1067 // is the receiver type, otherwise 1068 // - T is the type of the receiver expression. 1069 return ReceiverType; 1070 } 1071 1072 void Sema::EmitRelatedResultTypeNote(const Expr *E) { 1073 E = E->IgnoreParenImpCasts(); 1074 const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E); 1075 if (!MsgSend) 1076 return; 1077 1078 const ObjCMethodDecl *Method = MsgSend->getMethodDecl(); 1079 if (!Method) 1080 return; 1081 1082 if (!Method->hasRelatedResultType()) 1083 return; 1084 1085 if (Context.hasSameUnqualifiedType(Method->getResultType() 1086 .getNonReferenceType(), 1087 MsgSend->getType())) 1088 return; 1089 1090 if (!Context.hasSameUnqualifiedType(Method->getResultType(), 1091 Context.getObjCInstanceType())) 1092 return; 1093 1094 Diag(Method->getLocation(), diag::note_related_result_type_inferred) 1095 << Method->isInstanceMethod() << Method->getSelector() 1096 << MsgSend->getType(); 1097 } 1098 1099 bool Sema::CheckMessageArgumentTypes(QualType ReceiverType, 1100 Expr **Args, unsigned NumArgs, 1101 Selector Sel, ObjCMethodDecl *Method, 1102 bool isClassMessage, bool isSuperMessage, 1103 SourceLocation lbrac, SourceLocation rbrac, 1104 QualType &ReturnType, ExprValueKind &VK) { 1105 if (!Method) { 1106 // Apply default argument promotion as for (C99 6.5.2.2p6). 1107 for (unsigned i = 0; i != NumArgs; i++) { 1108 if (Args[i]->isTypeDependent()) 1109 continue; 1110 1111 ExprResult Result = DefaultArgumentPromotion(Args[i]); 1112 if (Result.isInvalid()) 1113 return true; 1114 Args[i] = Result.take(); 1115 } 1116 1117 unsigned DiagID; 1118 if (getLangOpts().ObjCAutoRefCount) 1119 DiagID = diag::err_arc_method_not_found; 1120 else 1121 DiagID = isClassMessage ? diag::warn_class_method_not_found 1122 : diag::warn_inst_method_not_found; 1123 if (!getLangOpts().DebuggerSupport) 1124 Diag(lbrac, DiagID) 1125 << Sel << isClassMessage << SourceRange(lbrac, rbrac); 1126 1127 // In debuggers, we want to use __unknown_anytype for these 1128 // results so that clients can cast them. 1129 if (getLangOpts().DebuggerSupport) { 1130 ReturnType = Context.UnknownAnyTy; 1131 } else { 1132 ReturnType = Context.getObjCIdType(); 1133 } 1134 VK = VK_RValue; 1135 return false; 1136 } 1137 1138 ReturnType = getMessageSendResultType(ReceiverType, Method, isClassMessage, 1139 isSuperMessage); 1140 VK = Expr::getValueKindForType(Method->getResultType()); 1141 1142 unsigned NumNamedArgs = Sel.getNumArgs(); 1143 // Method might have more arguments than selector indicates. This is due 1144 // to addition of c-style arguments in method. 1145 if (Method->param_size() > Sel.getNumArgs()) 1146 NumNamedArgs = Method->param_size(); 1147 // FIXME. This need be cleaned up. 1148 if (NumArgs < NumNamedArgs) { 1149 Diag(lbrac, diag::err_typecheck_call_too_few_args) 1150 << 2 << NumNamedArgs << NumArgs; 1151 return false; 1152 } 1153 1154 bool IsError = false; 1155 for (unsigned i = 0; i < NumNamedArgs; i++) { 1156 // We can't do any type-checking on a type-dependent argument. 1157 if (Args[i]->isTypeDependent()) 1158 continue; 1159 1160 Expr *argExpr = Args[i]; 1161 1162 ParmVarDecl *param = Method->param_begin()[i]; 1163 assert(argExpr && "CheckMessageArgumentTypes(): missing expression"); 1164 1165 // Strip the unbridged-cast placeholder expression off unless it's 1166 // a consumed argument. 1167 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && 1168 !param->hasAttr<CFConsumedAttr>()) 1169 argExpr = stripARCUnbridgedCast(argExpr); 1170 1171 if (RequireCompleteType(argExpr->getSourceRange().getBegin(), 1172 param->getType(), 1173 PDiag(diag::err_call_incomplete_argument) 1174 << argExpr->getSourceRange())) 1175 return true; 1176 1177 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 1178 param); 1179 ExprResult ArgE = PerformCopyInitialization(Entity, lbrac, Owned(argExpr)); 1180 if (ArgE.isInvalid()) 1181 IsError = true; 1182 else 1183 Args[i] = ArgE.takeAs<Expr>(); 1184 } 1185 1186 // Promote additional arguments to variadic methods. 1187 if (Method->isVariadic()) { 1188 for (unsigned i = NumNamedArgs; i < NumArgs; ++i) { 1189 if (Args[i]->isTypeDependent()) 1190 continue; 1191 1192 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0); 1193 IsError |= Arg.isInvalid(); 1194 Args[i] = Arg.take(); 1195 } 1196 } else { 1197 // Check for extra arguments to non-variadic methods. 1198 if (NumArgs != NumNamedArgs) { 1199 Diag(Args[NumNamedArgs]->getLocStart(), 1200 diag::err_typecheck_call_too_many_args) 1201 << 2 /*method*/ << NumNamedArgs << NumArgs 1202 << Method->getSourceRange() 1203 << SourceRange(Args[NumNamedArgs]->getLocStart(), 1204 Args[NumArgs-1]->getLocEnd()); 1205 } 1206 } 1207 1208 DiagnoseSentinelCalls(Method, lbrac, Args, NumArgs); 1209 1210 // Do additional checkings on method. 1211 IsError |= CheckObjCMethodCall(Method, lbrac, Args, NumArgs); 1212 1213 return IsError; 1214 } 1215 1216 bool Sema::isSelfExpr(Expr *receiver) { 1217 // 'self' is objc 'self' in an objc method only. 1218 ObjCMethodDecl *method = 1219 dyn_cast<ObjCMethodDecl>(CurContext->getNonClosureAncestor()); 1220 if (!method) return false; 1221 1222 receiver = receiver->IgnoreParenLValueCasts(); 1223 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver)) 1224 if (DRE->getDecl() == method->getSelfDecl()) 1225 return true; 1226 return false; 1227 } 1228 1229 // Helper method for ActOnClassMethod/ActOnInstanceMethod. 1230 // Will search "local" class/category implementations for a method decl. 1231 // If failed, then we search in class's root for an instance method. 1232 // Returns 0 if no method is found. 1233 ObjCMethodDecl *Sema::LookupPrivateClassMethod(Selector Sel, 1234 ObjCInterfaceDecl *ClassDecl) { 1235 ObjCMethodDecl *Method = 0; 1236 // lookup in class and all superclasses 1237 while (ClassDecl && !Method) { 1238 if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation()) 1239 Method = ImpDecl->getClassMethod(Sel); 1240 1241 // Look through local category implementations associated with the class. 1242 if (!Method) 1243 Method = ClassDecl->getCategoryClassMethod(Sel); 1244 1245 // Before we give up, check if the selector is an instance method. 1246 // But only in the root. This matches gcc's behaviour and what the 1247 // runtime expects. 1248 if (!Method && !ClassDecl->getSuperClass()) { 1249 Method = ClassDecl->lookupInstanceMethod(Sel); 1250 // Look through local category implementations associated 1251 // with the root class. 1252 if (!Method) 1253 Method = LookupPrivateInstanceMethod(Sel, ClassDecl); 1254 } 1255 1256 ClassDecl = ClassDecl->getSuperClass(); 1257 } 1258 return Method; 1259 } 1260 1261 ObjCMethodDecl *Sema::LookupPrivateInstanceMethod(Selector Sel, 1262 ObjCInterfaceDecl *ClassDecl) { 1263 if (!ClassDecl->hasDefinition()) 1264 return 0; 1265 1266 ObjCMethodDecl *Method = 0; 1267 while (ClassDecl && !Method) { 1268 // If we have implementations in scope, check "private" methods. 1269 if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation()) 1270 Method = ImpDecl->getInstanceMethod(Sel); 1271 1272 // Look through local category implementations associated with the class. 1273 if (!Method) 1274 Method = ClassDecl->getCategoryInstanceMethod(Sel); 1275 ClassDecl = ClassDecl->getSuperClass(); 1276 } 1277 return Method; 1278 } 1279 1280 /// LookupMethodInType - Look up a method in an ObjCObjectType. 1281 ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type, 1282 bool isInstance) { 1283 const ObjCObjectType *objType = type->castAs<ObjCObjectType>(); 1284 if (ObjCInterfaceDecl *iface = objType->getInterface()) { 1285 // Look it up in the main interface (and categories, etc.) 1286 if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance)) 1287 return method; 1288 1289 // Okay, look for "private" methods declared in any 1290 // @implementations we've seen. 1291 if (isInstance) { 1292 if (ObjCMethodDecl *method = LookupPrivateInstanceMethod(sel, iface)) 1293 return method; 1294 } else { 1295 if (ObjCMethodDecl *method = LookupPrivateClassMethod(sel, iface)) 1296 return method; 1297 } 1298 } 1299 1300 // Check qualifiers. 1301 for (ObjCObjectType::qual_iterator 1302 i = objType->qual_begin(), e = objType->qual_end(); i != e; ++i) 1303 if (ObjCMethodDecl *method = (*i)->lookupMethod(sel, isInstance)) 1304 return method; 1305 1306 return 0; 1307 } 1308 1309 /// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier 1310 /// list of a qualified objective pointer type. 1311 ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel, 1312 const ObjCObjectPointerType *OPT, 1313 bool Instance) 1314 { 1315 ObjCMethodDecl *MD = 0; 1316 for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(), 1317 E = OPT->qual_end(); I != E; ++I) { 1318 ObjCProtocolDecl *PROTO = (*I); 1319 if ((MD = PROTO->lookupMethod(Sel, Instance))) { 1320 return MD; 1321 } 1322 } 1323 return 0; 1324 } 1325 1326 /// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an 1327 /// objective C interface. This is a property reference expression. 1328 ExprResult Sema:: 1329 HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT, 1330 Expr *BaseExpr, SourceLocation OpLoc, 1331 DeclarationName MemberName, 1332 SourceLocation MemberLoc, 1333 SourceLocation SuperLoc, QualType SuperType, 1334 bool Super) { 1335 const ObjCInterfaceType *IFaceT = OPT->getInterfaceType(); 1336 ObjCInterfaceDecl *IFace = IFaceT->getDecl(); 1337 1338 if (MemberName.getNameKind() != DeclarationName::Identifier) { 1339 Diag(MemberLoc, diag::err_invalid_property_name) 1340 << MemberName << QualType(OPT, 0); 1341 return ExprError(); 1342 } 1343 1344 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1345 SourceRange BaseRange = Super? SourceRange(SuperLoc) 1346 : BaseExpr->getSourceRange(); 1347 if (RequireCompleteType(MemberLoc, OPT->getPointeeType(), 1348 PDiag(diag::err_property_not_found_forward_class) 1349 << MemberName << BaseRange)) 1350 return ExprError(); 1351 1352 // Search for a declared property first. 1353 if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) { 1354 // Check whether we can reference this property. 1355 if (DiagnoseUseOfDecl(PD, MemberLoc)) 1356 return ExprError(); 1357 1358 if (Super) 1359 return Owned(new (Context) ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, 1360 VK_LValue, OK_ObjCProperty, 1361 MemberLoc, 1362 SuperLoc, SuperType)); 1363 else 1364 return Owned(new (Context) ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, 1365 VK_LValue, OK_ObjCProperty, 1366 MemberLoc, BaseExpr)); 1367 } 1368 // Check protocols on qualified interfaces. 1369 for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(), 1370 E = OPT->qual_end(); I != E; ++I) 1371 if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) { 1372 // Check whether we can reference this property. 1373 if (DiagnoseUseOfDecl(PD, MemberLoc)) 1374 return ExprError(); 1375 1376 if (Super) 1377 return Owned(new (Context) ObjCPropertyRefExpr(PD, 1378 Context.PseudoObjectTy, 1379 VK_LValue, 1380 OK_ObjCProperty, 1381 MemberLoc, 1382 SuperLoc, SuperType)); 1383 else 1384 return Owned(new (Context) ObjCPropertyRefExpr(PD, 1385 Context.PseudoObjectTy, 1386 VK_LValue, 1387 OK_ObjCProperty, 1388 MemberLoc, 1389 BaseExpr)); 1390 } 1391 // If that failed, look for an "implicit" property by seeing if the nullary 1392 // selector is implemented. 1393 1394 // FIXME: The logic for looking up nullary and unary selectors should be 1395 // shared with the code in ActOnInstanceMessage. 1396 1397 Selector Sel = PP.getSelectorTable().getNullarySelector(Member); 1398 ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel); 1399 1400 // May be founf in property's qualified list. 1401 if (!Getter) 1402 Getter = LookupMethodInQualifiedType(Sel, OPT, true); 1403 1404 // If this reference is in an @implementation, check for 'private' methods. 1405 if (!Getter) 1406 Getter = IFace->lookupPrivateMethod(Sel); 1407 1408 // Look through local category implementations associated with the class. 1409 if (!Getter) 1410 Getter = IFace->getCategoryInstanceMethod(Sel); 1411 if (Getter) { 1412 // Check if we can reference this property. 1413 if (DiagnoseUseOfDecl(Getter, MemberLoc)) 1414 return ExprError(); 1415 } 1416 // If we found a getter then this may be a valid dot-reference, we 1417 // will look for the matching setter, in case it is needed. 1418 Selector SetterSel = 1419 SelectorTable::constructSetterName(PP.getIdentifierTable(), 1420 PP.getSelectorTable(), Member); 1421 ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel); 1422 1423 // May be founf in property's qualified list. 1424 if (!Setter) 1425 Setter = LookupMethodInQualifiedType(SetterSel, OPT, true); 1426 1427 if (!Setter) { 1428 // If this reference is in an @implementation, also check for 'private' 1429 // methods. 1430 Setter = IFace->lookupPrivateMethod(SetterSel); 1431 } 1432 // Look through local category implementations associated with the class. 1433 if (!Setter) 1434 Setter = IFace->getCategoryInstanceMethod(SetterSel); 1435 1436 if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) 1437 return ExprError(); 1438 1439 if (Getter || Setter) { 1440 if (Super) 1441 return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, 1442 Context.PseudoObjectTy, 1443 VK_LValue, OK_ObjCProperty, 1444 MemberLoc, 1445 SuperLoc, SuperType)); 1446 else 1447 return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, 1448 Context.PseudoObjectTy, 1449 VK_LValue, OK_ObjCProperty, 1450 MemberLoc, BaseExpr)); 1451 1452 } 1453 1454 // Attempt to correct for typos in property names. 1455 DeclFilterCCC<ObjCPropertyDecl> Validator; 1456 if (TypoCorrection Corrected = CorrectTypo( 1457 DeclarationNameInfo(MemberName, MemberLoc), LookupOrdinaryName, NULL, 1458 NULL, Validator, IFace, false, OPT)) { 1459 ObjCPropertyDecl *Property = 1460 Corrected.getCorrectionDeclAs<ObjCPropertyDecl>(); 1461 DeclarationName TypoResult = Corrected.getCorrection(); 1462 Diag(MemberLoc, diag::err_property_not_found_suggest) 1463 << MemberName << QualType(OPT, 0) << TypoResult 1464 << FixItHint::CreateReplacement(MemberLoc, TypoResult.getAsString()); 1465 Diag(Property->getLocation(), diag::note_previous_decl) 1466 << Property->getDeclName(); 1467 return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc, 1468 TypoResult, MemberLoc, 1469 SuperLoc, SuperType, Super); 1470 } 1471 ObjCInterfaceDecl *ClassDeclared; 1472 if (ObjCIvarDecl *Ivar = 1473 IFace->lookupInstanceVariable(Member, ClassDeclared)) { 1474 QualType T = Ivar->getType(); 1475 if (const ObjCObjectPointerType * OBJPT = 1476 T->getAsObjCInterfacePointerType()) { 1477 if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(), 1478 PDiag(diag::err_property_not_as_forward_class) 1479 << MemberName << BaseExpr->getSourceRange())) 1480 return ExprError(); 1481 } 1482 Diag(MemberLoc, 1483 diag::err_ivar_access_using_property_syntax_suggest) 1484 << MemberName << QualType(OPT, 0) << Ivar->getDeclName() 1485 << FixItHint::CreateReplacement(OpLoc, "->"); 1486 return ExprError(); 1487 } 1488 1489 Diag(MemberLoc, diag::err_property_not_found) 1490 << MemberName << QualType(OPT, 0); 1491 if (Setter) 1492 Diag(Setter->getLocation(), diag::note_getter_unavailable) 1493 << MemberName << BaseExpr->getSourceRange(); 1494 return ExprError(); 1495 } 1496 1497 1498 1499 ExprResult Sema:: 1500 ActOnClassPropertyRefExpr(IdentifierInfo &receiverName, 1501 IdentifierInfo &propertyName, 1502 SourceLocation receiverNameLoc, 1503 SourceLocation propertyNameLoc) { 1504 1505 IdentifierInfo *receiverNamePtr = &receiverName; 1506 ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr, 1507 receiverNameLoc); 1508 1509 bool IsSuper = false; 1510 if (IFace == 0) { 1511 // If the "receiver" is 'super' in a method, handle it as an expression-like 1512 // property reference. 1513 if (receiverNamePtr->isStr("super")) { 1514 IsSuper = true; 1515 1516 if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf(receiverNameLoc)) { 1517 if (CurMethod->isInstanceMethod()) { 1518 QualType T = 1519 Context.getObjCInterfaceType(CurMethod->getClassInterface()); 1520 T = Context.getObjCObjectPointerType(T); 1521 1522 return HandleExprPropertyRefExpr(T->getAsObjCInterfacePointerType(), 1523 /*BaseExpr*/0, 1524 SourceLocation()/*OpLoc*/, 1525 &propertyName, 1526 propertyNameLoc, 1527 receiverNameLoc, T, true); 1528 } 1529 1530 // Otherwise, if this is a class method, try dispatching to our 1531 // superclass. 1532 IFace = CurMethod->getClassInterface()->getSuperClass(); 1533 } 1534 } 1535 1536 if (IFace == 0) { 1537 Diag(receiverNameLoc, diag::err_expected_ident_or_lparen); 1538 return ExprError(); 1539 } 1540 } 1541 1542 // Search for a declared property first. 1543 Selector Sel = PP.getSelectorTable().getNullarySelector(&propertyName); 1544 ObjCMethodDecl *Getter = IFace->lookupClassMethod(Sel); 1545 1546 // If this reference is in an @implementation, check for 'private' methods. 1547 if (!Getter) 1548 if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) 1549 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) 1550 if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation()) 1551 Getter = ImpDecl->getClassMethod(Sel); 1552 1553 if (Getter) { 1554 // FIXME: refactor/share with ActOnMemberReference(). 1555 // Check if we can reference this property. 1556 if (DiagnoseUseOfDecl(Getter, propertyNameLoc)) 1557 return ExprError(); 1558 } 1559 1560 // Look for the matching setter, in case it is needed. 1561 Selector SetterSel = 1562 SelectorTable::constructSetterName(PP.getIdentifierTable(), 1563 PP.getSelectorTable(), &propertyName); 1564 1565 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); 1566 if (!Setter) { 1567 // If this reference is in an @implementation, also check for 'private' 1568 // methods. 1569 if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) 1570 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) 1571 if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation()) 1572 Setter = ImpDecl->getClassMethod(SetterSel); 1573 } 1574 // Look through local category implementations associated with the class. 1575 if (!Setter) 1576 Setter = IFace->getCategoryClassMethod(SetterSel); 1577 1578 if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc)) 1579 return ExprError(); 1580 1581 if (Getter || Setter) { 1582 if (IsSuper) 1583 return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, 1584 Context.PseudoObjectTy, 1585 VK_LValue, OK_ObjCProperty, 1586 propertyNameLoc, 1587 receiverNameLoc, 1588 Context.getObjCInterfaceType(IFace))); 1589 1590 return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, 1591 Context.PseudoObjectTy, 1592 VK_LValue, OK_ObjCProperty, 1593 propertyNameLoc, 1594 receiverNameLoc, IFace)); 1595 } 1596 return ExprError(Diag(propertyNameLoc, diag::err_property_not_found) 1597 << &propertyName << Context.getObjCInterfaceType(IFace)); 1598 } 1599 1600 namespace { 1601 1602 class ObjCInterfaceOrSuperCCC : public CorrectionCandidateCallback { 1603 public: 1604 ObjCInterfaceOrSuperCCC(ObjCMethodDecl *Method) { 1605 // Determine whether "super" is acceptable in the current context. 1606 if (Method && Method->getClassInterface()) 1607 WantObjCSuper = Method->getClassInterface()->getSuperClass(); 1608 } 1609 1610 virtual bool ValidateCandidate(const TypoCorrection &candidate) { 1611 return candidate.getCorrectionDeclAs<ObjCInterfaceDecl>() || 1612 candidate.isKeyword("super"); 1613 } 1614 }; 1615 1616 } 1617 1618 Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S, 1619 IdentifierInfo *Name, 1620 SourceLocation NameLoc, 1621 bool IsSuper, 1622 bool HasTrailingDot, 1623 ParsedType &ReceiverType) { 1624 ReceiverType = ParsedType(); 1625 1626 // If the identifier is "super" and there is no trailing dot, we're 1627 // messaging super. If the identifier is "super" and there is a 1628 // trailing dot, it's an instance message. 1629 if (IsSuper && S->isInObjcMethodScope()) 1630 return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage; 1631 1632 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 1633 LookupName(Result, S); 1634 1635 switch (Result.getResultKind()) { 1636 case LookupResult::NotFound: 1637 // Normal name lookup didn't find anything. If we're in an 1638 // Objective-C method, look for ivars. If we find one, we're done! 1639 // FIXME: This is a hack. Ivar lookup should be part of normal 1640 // lookup. 1641 if (ObjCMethodDecl *Method = getCurMethodDecl()) { 1642 if (!Method->getClassInterface()) { 1643 // Fall back: let the parser try to parse it as an instance message. 1644 return ObjCInstanceMessage; 1645 } 1646 1647 ObjCInterfaceDecl *ClassDeclared; 1648 if (Method->getClassInterface()->lookupInstanceVariable(Name, 1649 ClassDeclared)) 1650 return ObjCInstanceMessage; 1651 } 1652 1653 // Break out; we'll perform typo correction below. 1654 break; 1655 1656 case LookupResult::NotFoundInCurrentInstantiation: 1657 case LookupResult::FoundOverloaded: 1658 case LookupResult::FoundUnresolvedValue: 1659 case LookupResult::Ambiguous: 1660 Result.suppressDiagnostics(); 1661 return ObjCInstanceMessage; 1662 1663 case LookupResult::Found: { 1664 // If the identifier is a class or not, and there is a trailing dot, 1665 // it's an instance message. 1666 if (HasTrailingDot) 1667 return ObjCInstanceMessage; 1668 // We found something. If it's a type, then we have a class 1669 // message. Otherwise, it's an instance message. 1670 NamedDecl *ND = Result.getFoundDecl(); 1671 QualType T; 1672 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND)) 1673 T = Context.getObjCInterfaceType(Class); 1674 else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND)) 1675 T = Context.getTypeDeclType(Type); 1676 else 1677 return ObjCInstanceMessage; 1678 1679 // We have a class message, and T is the type we're 1680 // messaging. Build source-location information for it. 1681 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); 1682 ReceiverType = CreateParsedType(T, TSInfo); 1683 return ObjCClassMessage; 1684 } 1685 } 1686 1687 ObjCInterfaceOrSuperCCC Validator(getCurMethodDecl()); 1688 if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(), 1689 Result.getLookupKind(), S, NULL, 1690 Validator)) { 1691 if (Corrected.isKeyword()) { 1692 // If we've found the keyword "super" (the only keyword that would be 1693 // returned by CorrectTypo), this is a send to super. 1694 Diag(NameLoc, diag::err_unknown_receiver_suggest) 1695 << Name << Corrected.getCorrection() 1696 << FixItHint::CreateReplacement(SourceRange(NameLoc), "super"); 1697 return ObjCSuperMessage; 1698 } else if (ObjCInterfaceDecl *Class = 1699 Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 1700 // If we found a declaration, correct when it refers to an Objective-C 1701 // class. 1702 Diag(NameLoc, diag::err_unknown_receiver_suggest) 1703 << Name << Corrected.getCorrection() 1704 << FixItHint::CreateReplacement(SourceRange(NameLoc), 1705 Class->getNameAsString()); 1706 Diag(Class->getLocation(), diag::note_previous_decl) 1707 << Corrected.getCorrection(); 1708 1709 QualType T = Context.getObjCInterfaceType(Class); 1710 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); 1711 ReceiverType = CreateParsedType(T, TSInfo); 1712 return ObjCClassMessage; 1713 } 1714 } 1715 1716 // Fall back: let the parser try to parse it as an instance message. 1717 return ObjCInstanceMessage; 1718 } 1719 1720 ExprResult Sema::ActOnSuperMessage(Scope *S, 1721 SourceLocation SuperLoc, 1722 Selector Sel, 1723 SourceLocation LBracLoc, 1724 ArrayRef<SourceLocation> SelectorLocs, 1725 SourceLocation RBracLoc, 1726 MultiExprArg Args) { 1727 // Determine whether we are inside a method or not. 1728 ObjCMethodDecl *Method = tryCaptureObjCSelf(SuperLoc); 1729 if (!Method) { 1730 Diag(SuperLoc, diag::err_invalid_receiver_to_message_super); 1731 return ExprError(); 1732 } 1733 1734 ObjCInterfaceDecl *Class = Method->getClassInterface(); 1735 if (!Class) { 1736 Diag(SuperLoc, diag::error_no_super_class_message) 1737 << Method->getDeclName(); 1738 return ExprError(); 1739 } 1740 1741 ObjCInterfaceDecl *Super = Class->getSuperClass(); 1742 if (!Super) { 1743 // The current class does not have a superclass. 1744 Diag(SuperLoc, diag::error_root_class_cannot_use_super) 1745 << Class->getIdentifier(); 1746 return ExprError(); 1747 } 1748 1749 // We are in a method whose class has a superclass, so 'super' 1750 // is acting as a keyword. 1751 if (Method->isInstanceMethod()) { 1752 if (Sel.getMethodFamily() == OMF_dealloc) 1753 ObjCShouldCallSuperDealloc = false; 1754 if (Sel.getMethodFamily() == OMF_finalize) 1755 ObjCShouldCallSuperFinalize = false; 1756 1757 // Since we are in an instance method, this is an instance 1758 // message to the superclass instance. 1759 QualType SuperTy = Context.getObjCInterfaceType(Super); 1760 SuperTy = Context.getObjCObjectPointerType(SuperTy); 1761 return BuildInstanceMessage(0, SuperTy, SuperLoc, 1762 Sel, /*Method=*/0, 1763 LBracLoc, SelectorLocs, RBracLoc, move(Args)); 1764 } 1765 1766 // Since we are in a class method, this is a class message to 1767 // the superclass. 1768 return BuildClassMessage(/*ReceiverTypeInfo=*/0, 1769 Context.getObjCInterfaceType(Super), 1770 SuperLoc, Sel, /*Method=*/0, 1771 LBracLoc, SelectorLocs, RBracLoc, move(Args)); 1772 } 1773 1774 1775 ExprResult Sema::BuildClassMessageImplicit(QualType ReceiverType, 1776 bool isSuperReceiver, 1777 SourceLocation Loc, 1778 Selector Sel, 1779 ObjCMethodDecl *Method, 1780 MultiExprArg Args) { 1781 TypeSourceInfo *receiverTypeInfo = 0; 1782 if (!ReceiverType.isNull()) 1783 receiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType); 1784 1785 return BuildClassMessage(receiverTypeInfo, ReceiverType, 1786 /*SuperLoc=*/isSuperReceiver ? Loc : SourceLocation(), 1787 Sel, Method, Loc, Loc, Loc, Args, 1788 /*isImplicit=*/true); 1789 1790 } 1791 1792 static void applyCocoaAPICheck(Sema &S, const ObjCMessageExpr *Msg, 1793 unsigned DiagID, 1794 bool (*refactor)(const ObjCMessageExpr *, 1795 const NSAPI &, edit::Commit &)) { 1796 SourceLocation MsgLoc = Msg->getExprLoc(); 1797 if (S.Diags.getDiagnosticLevel(DiagID, MsgLoc) == DiagnosticsEngine::Ignored) 1798 return; 1799 1800 SourceManager &SM = S.SourceMgr; 1801 edit::Commit ECommit(SM, S.LangOpts); 1802 if (refactor(Msg,*S.NSAPIObj, ECommit)) { 1803 DiagnosticBuilder Builder = S.Diag(MsgLoc, DiagID) 1804 << Msg->getSelector() << Msg->getSourceRange(); 1805 // FIXME: Don't emit diagnostic at all if fixits are non-commitable. 1806 if (!ECommit.isCommitable()) 1807 return; 1808 for (edit::Commit::edit_iterator 1809 I = ECommit.edit_begin(), E = ECommit.edit_end(); I != E; ++I) { 1810 const edit::Commit::Edit &Edit = *I; 1811 switch (Edit.Kind) { 1812 case edit::Commit::Act_Insert: 1813 Builder.AddFixItHint(FixItHint::CreateInsertion(Edit.OrigLoc, 1814 Edit.Text, 1815 Edit.BeforePrev)); 1816 break; 1817 case edit::Commit::Act_InsertFromRange: 1818 Builder.AddFixItHint( 1819 FixItHint::CreateInsertionFromRange(Edit.OrigLoc, 1820 Edit.getInsertFromRange(SM), 1821 Edit.BeforePrev)); 1822 break; 1823 case edit::Commit::Act_Remove: 1824 Builder.AddFixItHint(FixItHint::CreateRemoval(Edit.getFileRange(SM))); 1825 break; 1826 } 1827 } 1828 } 1829 } 1830 1831 static void checkCocoaAPI(Sema &S, const ObjCMessageExpr *Msg) { 1832 applyCocoaAPICheck(S, Msg, diag::warn_objc_redundant_literal_use, 1833 edit::rewriteObjCRedundantCallWithLiteral); 1834 } 1835 1836 /// \brief Build an Objective-C class message expression. 1837 /// 1838 /// This routine takes care of both normal class messages and 1839 /// class messages to the superclass. 1840 /// 1841 /// \param ReceiverTypeInfo Type source information that describes the 1842 /// receiver of this message. This may be NULL, in which case we are 1843 /// sending to the superclass and \p SuperLoc must be a valid source 1844 /// location. 1845 1846 /// \param ReceiverType The type of the object receiving the 1847 /// message. When \p ReceiverTypeInfo is non-NULL, this is the same 1848 /// type as that refers to. For a superclass send, this is the type of 1849 /// the superclass. 1850 /// 1851 /// \param SuperLoc The location of the "super" keyword in a 1852 /// superclass message. 1853 /// 1854 /// \param Sel The selector to which the message is being sent. 1855 /// 1856 /// \param Method The method that this class message is invoking, if 1857 /// already known. 1858 /// 1859 /// \param LBracLoc The location of the opening square bracket ']'. 1860 /// 1861 /// \param RBrac The location of the closing square bracket ']'. 1862 /// 1863 /// \param Args The message arguments. 1864 ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo, 1865 QualType ReceiverType, 1866 SourceLocation SuperLoc, 1867 Selector Sel, 1868 ObjCMethodDecl *Method, 1869 SourceLocation LBracLoc, 1870 ArrayRef<SourceLocation> SelectorLocs, 1871 SourceLocation RBracLoc, 1872 MultiExprArg ArgsIn, 1873 bool isImplicit) { 1874 SourceLocation Loc = SuperLoc.isValid()? SuperLoc 1875 : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin(); 1876 if (LBracLoc.isInvalid()) { 1877 Diag(Loc, diag::err_missing_open_square_message_send) 1878 << FixItHint::CreateInsertion(Loc, "["); 1879 LBracLoc = Loc; 1880 } 1881 1882 if (ReceiverType->isDependentType()) { 1883 // If the receiver type is dependent, we can't type-check anything 1884 // at this point. Build a dependent expression. 1885 unsigned NumArgs = ArgsIn.size(); 1886 Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release()); 1887 assert(SuperLoc.isInvalid() && "Message to super with dependent type"); 1888 return Owned(ObjCMessageExpr::Create(Context, ReceiverType, 1889 VK_RValue, LBracLoc, ReceiverTypeInfo, 1890 Sel, SelectorLocs, /*Method=*/0, 1891 makeArrayRef(Args, NumArgs),RBracLoc, 1892 isImplicit)); 1893 } 1894 1895 // Find the class to which we are sending this message. 1896 ObjCInterfaceDecl *Class = 0; 1897 const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>(); 1898 if (!ClassType || !(Class = ClassType->getInterface())) { 1899 Diag(Loc, diag::err_invalid_receiver_class_message) 1900 << ReceiverType; 1901 return ExprError(); 1902 } 1903 assert(Class && "We don't know which class we're messaging?"); 1904 // objc++ diagnoses during typename annotation. 1905 if (!getLangOpts().CPlusPlus) 1906 (void)DiagnoseUseOfDecl(Class, Loc); 1907 // Find the method we are messaging. 1908 if (!Method) { 1909 SourceRange TypeRange 1910 = SuperLoc.isValid()? SourceRange(SuperLoc) 1911 : ReceiverTypeInfo->getTypeLoc().getSourceRange(); 1912 if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class), 1913 (getLangOpts().ObjCAutoRefCount 1914 ? PDiag(diag::err_arc_receiver_forward_class) 1915 : PDiag(diag::warn_receiver_forward_class)) 1916 << TypeRange)) { 1917 // A forward class used in messaging is treated as a 'Class' 1918 Method = LookupFactoryMethodInGlobalPool(Sel, 1919 SourceRange(LBracLoc, RBracLoc)); 1920 if (Method && !getLangOpts().ObjCAutoRefCount) 1921 Diag(Method->getLocation(), diag::note_method_sent_forward_class) 1922 << Method->getDeclName(); 1923 } 1924 if (!Method) 1925 Method = Class->lookupClassMethod(Sel); 1926 1927 // If we have an implementation in scope, check "private" methods. 1928 if (!Method) 1929 Method = LookupPrivateClassMethod(Sel, Class); 1930 1931 if (Method && DiagnoseUseOfDecl(Method, Loc)) 1932 return ExprError(); 1933 } 1934 1935 // Check the argument types and determine the result type. 1936 QualType ReturnType; 1937 ExprValueKind VK = VK_RValue; 1938 1939 unsigned NumArgs = ArgsIn.size(); 1940 Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release()); 1941 if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel, Method, true, 1942 SuperLoc.isValid(), LBracLoc, RBracLoc, 1943 ReturnType, VK)) 1944 return ExprError(); 1945 1946 if (Method && !Method->getResultType()->isVoidType() && 1947 RequireCompleteType(LBracLoc, Method->getResultType(), 1948 diag::err_illegal_message_expr_incomplete_type)) 1949 return ExprError(); 1950 1951 // Construct the appropriate ObjCMessageExpr. 1952 ObjCMessageExpr *Result; 1953 if (SuperLoc.isValid()) 1954 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 1955 SuperLoc, /*IsInstanceSuper=*/false, 1956 ReceiverType, Sel, SelectorLocs, 1957 Method, makeArrayRef(Args, NumArgs), 1958 RBracLoc, isImplicit); 1959 else { 1960 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 1961 ReceiverTypeInfo, Sel, SelectorLocs, 1962 Method, makeArrayRef(Args, NumArgs), 1963 RBracLoc, isImplicit); 1964 if (!isImplicit) 1965 checkCocoaAPI(*this, Result); 1966 } 1967 return MaybeBindToTemporary(Result); 1968 } 1969 1970 // ActOnClassMessage - used for both unary and keyword messages. 1971 // ArgExprs is optional - if it is present, the number of expressions 1972 // is obtained from Sel.getNumArgs(). 1973 ExprResult Sema::ActOnClassMessage(Scope *S, 1974 ParsedType Receiver, 1975 Selector Sel, 1976 SourceLocation LBracLoc, 1977 ArrayRef<SourceLocation> SelectorLocs, 1978 SourceLocation RBracLoc, 1979 MultiExprArg Args) { 1980 TypeSourceInfo *ReceiverTypeInfo; 1981 QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo); 1982 if (ReceiverType.isNull()) 1983 return ExprError(); 1984 1985 1986 if (!ReceiverTypeInfo) 1987 ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc); 1988 1989 return BuildClassMessage(ReceiverTypeInfo, ReceiverType, 1990 /*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0, 1991 LBracLoc, SelectorLocs, RBracLoc, move(Args)); 1992 } 1993 1994 ExprResult Sema::BuildInstanceMessageImplicit(Expr *Receiver, 1995 QualType ReceiverType, 1996 SourceLocation Loc, 1997 Selector Sel, 1998 ObjCMethodDecl *Method, 1999 MultiExprArg Args) { 2000 return BuildInstanceMessage(Receiver, ReceiverType, 2001 /*SuperLoc=*/!Receiver ? Loc : SourceLocation(), 2002 Sel, Method, Loc, Loc, Loc, Args, 2003 /*isImplicit=*/true); 2004 } 2005 2006 /// \brief Build an Objective-C instance message expression. 2007 /// 2008 /// This routine takes care of both normal instance messages and 2009 /// instance messages to the superclass instance. 2010 /// 2011 /// \param Receiver The expression that computes the object that will 2012 /// receive this message. This may be empty, in which case we are 2013 /// sending to the superclass instance and \p SuperLoc must be a valid 2014 /// source location. 2015 /// 2016 /// \param ReceiverType The (static) type of the object receiving the 2017 /// message. When a \p Receiver expression is provided, this is the 2018 /// same type as that expression. For a superclass instance send, this 2019 /// is a pointer to the type of the superclass. 2020 /// 2021 /// \param SuperLoc The location of the "super" keyword in a 2022 /// superclass instance message. 2023 /// 2024 /// \param Sel The selector to which the message is being sent. 2025 /// 2026 /// \param Method The method that this instance message is invoking, if 2027 /// already known. 2028 /// 2029 /// \param LBracLoc The location of the opening square bracket ']'. 2030 /// 2031 /// \param RBrac The location of the closing square bracket ']'. 2032 /// 2033 /// \param Args The message arguments. 2034 ExprResult Sema::BuildInstanceMessage(Expr *Receiver, 2035 QualType ReceiverType, 2036 SourceLocation SuperLoc, 2037 Selector Sel, 2038 ObjCMethodDecl *Method, 2039 SourceLocation LBracLoc, 2040 ArrayRef<SourceLocation> SelectorLocs, 2041 SourceLocation RBracLoc, 2042 MultiExprArg ArgsIn, 2043 bool isImplicit) { 2044 // The location of the receiver. 2045 SourceLocation Loc = SuperLoc.isValid()? SuperLoc : Receiver->getLocStart(); 2046 2047 if (LBracLoc.isInvalid()) { 2048 Diag(Loc, diag::err_missing_open_square_message_send) 2049 << FixItHint::CreateInsertion(Loc, "["); 2050 LBracLoc = Loc; 2051 } 2052 2053 // If we have a receiver expression, perform appropriate promotions 2054 // and determine receiver type. 2055 if (Receiver) { 2056 if (Receiver->hasPlaceholderType()) { 2057 ExprResult Result; 2058 if (Receiver->getType() == Context.UnknownAnyTy) 2059 Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType()); 2060 else 2061 Result = CheckPlaceholderExpr(Receiver); 2062 if (Result.isInvalid()) return ExprError(); 2063 Receiver = Result.take(); 2064 } 2065 2066 if (Receiver->isTypeDependent()) { 2067 // If the receiver is type-dependent, we can't type-check anything 2068 // at this point. Build a dependent expression. 2069 unsigned NumArgs = ArgsIn.size(); 2070 Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release()); 2071 assert(SuperLoc.isInvalid() && "Message to super with dependent type"); 2072 return Owned(ObjCMessageExpr::Create(Context, Context.DependentTy, 2073 VK_RValue, LBracLoc, Receiver, Sel, 2074 SelectorLocs, /*Method=*/0, 2075 makeArrayRef(Args, NumArgs), 2076 RBracLoc, isImplicit)); 2077 } 2078 2079 // If necessary, apply function/array conversion to the receiver. 2080 // C99 6.7.5.3p[7,8]. 2081 ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver); 2082 if (Result.isInvalid()) 2083 return ExprError(); 2084 Receiver = Result.take(); 2085 ReceiverType = Receiver->getType(); 2086 } 2087 2088 if (!Method) { 2089 // Handle messages to id. 2090 bool receiverIsId = ReceiverType->isObjCIdType(); 2091 if (receiverIsId || ReceiverType->isBlockPointerType() || 2092 (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) { 2093 Method = LookupInstanceMethodInGlobalPool(Sel, 2094 SourceRange(LBracLoc, RBracLoc), 2095 receiverIsId); 2096 if (!Method) 2097 Method = LookupFactoryMethodInGlobalPool(Sel, 2098 SourceRange(LBracLoc, RBracLoc), 2099 receiverIsId); 2100 } else if (ReceiverType->isObjCClassType() || 2101 ReceiverType->isObjCQualifiedClassType()) { 2102 // Handle messages to Class. 2103 // We allow sending a message to a qualified Class ("Class<foo>"), which 2104 // is ok as long as one of the protocols implements the selector (if not, warn). 2105 if (const ObjCObjectPointerType *QClassTy 2106 = ReceiverType->getAsObjCQualifiedClassType()) { 2107 // Search protocols for class methods. 2108 Method = LookupMethodInQualifiedType(Sel, QClassTy, false); 2109 if (!Method) { 2110 Method = LookupMethodInQualifiedType(Sel, QClassTy, true); 2111 // warn if instance method found for a Class message. 2112 if (Method) { 2113 Diag(Loc, diag::warn_instance_method_on_class_found) 2114 << Method->getSelector() << Sel; 2115 Diag(Method->getLocation(), diag::note_method_declared_at) 2116 << Method->getDeclName(); 2117 } 2118 } 2119 } else { 2120 if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { 2121 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) { 2122 // First check the public methods in the class interface. 2123 Method = ClassDecl->lookupClassMethod(Sel); 2124 2125 if (!Method) 2126 Method = LookupPrivateClassMethod(Sel, ClassDecl); 2127 } 2128 if (Method && DiagnoseUseOfDecl(Method, Loc)) 2129 return ExprError(); 2130 } 2131 if (!Method) { 2132 // If not messaging 'self', look for any factory method named 'Sel'. 2133 if (!Receiver || !isSelfExpr(Receiver)) { 2134 Method = LookupFactoryMethodInGlobalPool(Sel, 2135 SourceRange(LBracLoc, RBracLoc), 2136 true); 2137 if (!Method) { 2138 // If no class (factory) method was found, check if an _instance_ 2139 // method of the same name exists in the root class only. 2140 Method = LookupInstanceMethodInGlobalPool(Sel, 2141 SourceRange(LBracLoc, RBracLoc), 2142 true); 2143 if (Method) 2144 if (const ObjCInterfaceDecl *ID = 2145 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) { 2146 if (ID->getSuperClass()) 2147 Diag(Loc, diag::warn_root_inst_method_not_found) 2148 << Sel << SourceRange(LBracLoc, RBracLoc); 2149 } 2150 } 2151 } 2152 } 2153 } 2154 } else { 2155 ObjCInterfaceDecl* ClassDecl = 0; 2156 2157 // We allow sending a message to a qualified ID ("id<foo>"), which is ok as 2158 // long as one of the protocols implements the selector (if not, warn). 2159 if (const ObjCObjectPointerType *QIdTy 2160 = ReceiverType->getAsObjCQualifiedIdType()) { 2161 // Search protocols for instance methods. 2162 Method = LookupMethodInQualifiedType(Sel, QIdTy, true); 2163 if (!Method) 2164 Method = LookupMethodInQualifiedType(Sel, QIdTy, false); 2165 } else if (const ObjCObjectPointerType *OCIType 2166 = ReceiverType->getAsObjCInterfacePointerType()) { 2167 // We allow sending a message to a pointer to an interface (an object). 2168 ClassDecl = OCIType->getInterfaceDecl(); 2169 2170 // Try to complete the type. Under ARC, this is a hard error from which 2171 // we don't try to recover. 2172 const ObjCInterfaceDecl *forwardClass = 0; 2173 if (RequireCompleteType(Loc, OCIType->getPointeeType(), 2174 getLangOpts().ObjCAutoRefCount 2175 ? PDiag(diag::err_arc_receiver_forward_instance) 2176 << (Receiver ? Receiver->getSourceRange() 2177 : SourceRange(SuperLoc)) 2178 : PDiag(diag::warn_receiver_forward_instance) 2179 << (Receiver ? Receiver->getSourceRange() 2180 : SourceRange(SuperLoc)))) { 2181 if (getLangOpts().ObjCAutoRefCount) 2182 return ExprError(); 2183 2184 forwardClass = OCIType->getInterfaceDecl(); 2185 Diag(Receiver ? Receiver->getLocStart() 2186 : SuperLoc, diag::note_receiver_is_id); 2187 Method = 0; 2188 } else { 2189 Method = ClassDecl->lookupInstanceMethod(Sel); 2190 } 2191 2192 if (!Method) 2193 // Search protocol qualifiers. 2194 Method = LookupMethodInQualifiedType(Sel, OCIType, true); 2195 2196 if (!Method) { 2197 // If we have implementations in scope, check "private" methods. 2198 Method = LookupPrivateInstanceMethod(Sel, ClassDecl); 2199 2200 if (!Method && getLangOpts().ObjCAutoRefCount) { 2201 Diag(Loc, diag::err_arc_may_not_respond) 2202 << OCIType->getPointeeType() << Sel; 2203 return ExprError(); 2204 } 2205 2206 if (!Method && (!Receiver || !isSelfExpr(Receiver))) { 2207 // If we still haven't found a method, look in the global pool. This 2208 // behavior isn't very desirable, however we need it for GCC 2209 // compatibility. FIXME: should we deviate?? 2210 if (OCIType->qual_empty()) { 2211 Method = LookupInstanceMethodInGlobalPool(Sel, 2212 SourceRange(LBracLoc, RBracLoc)); 2213 if (Method && !forwardClass) 2214 Diag(Loc, diag::warn_maynot_respond) 2215 << OCIType->getInterfaceDecl()->getIdentifier() << Sel; 2216 } 2217 } 2218 } 2219 if (Method && DiagnoseUseOfDecl(Method, Loc, forwardClass)) 2220 return ExprError(); 2221 } else if (!getLangOpts().ObjCAutoRefCount && 2222 !Context.getObjCIdType().isNull() && 2223 (ReceiverType->isPointerType() || 2224 ReceiverType->isIntegerType())) { 2225 // Implicitly convert integers and pointers to 'id' but emit a warning. 2226 // But not in ARC. 2227 Diag(Loc, diag::warn_bad_receiver_type) 2228 << ReceiverType 2229 << Receiver->getSourceRange(); 2230 if (ReceiverType->isPointerType()) 2231 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), 2232 CK_CPointerToObjCPointerCast).take(); 2233 else { 2234 // TODO: specialized warning on null receivers? 2235 bool IsNull = Receiver->isNullPointerConstant(Context, 2236 Expr::NPC_ValueDependentIsNull); 2237 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), 2238 IsNull ? CK_NullToPointer : CK_IntegralToPointer).take(); 2239 } 2240 ReceiverType = Receiver->getType(); 2241 } else { 2242 ExprResult ReceiverRes; 2243 if (getLangOpts().CPlusPlus) 2244 ReceiverRes = PerformContextuallyConvertToObjCPointer(Receiver); 2245 if (ReceiverRes.isUsable()) { 2246 Receiver = ReceiverRes.take(); 2247 return BuildInstanceMessage(Receiver, 2248 ReceiverType, 2249 SuperLoc, 2250 Sel, 2251 Method, 2252 LBracLoc, 2253 SelectorLocs, 2254 RBracLoc, 2255 move(ArgsIn)); 2256 } else { 2257 // Reject other random receiver types (e.g. structs). 2258 Diag(Loc, diag::err_bad_receiver_type) 2259 << ReceiverType << Receiver->getSourceRange(); 2260 return ExprError(); 2261 } 2262 } 2263 } 2264 } 2265 2266 // Check the message arguments. 2267 unsigned NumArgs = ArgsIn.size(); 2268 Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release()); 2269 QualType ReturnType; 2270 ExprValueKind VK = VK_RValue; 2271 bool ClassMessage = (ReceiverType->isObjCClassType() || 2272 ReceiverType->isObjCQualifiedClassType()); 2273 if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel, Method, 2274 ClassMessage, SuperLoc.isValid(), 2275 LBracLoc, RBracLoc, ReturnType, VK)) 2276 return ExprError(); 2277 2278 if (Method && !Method->getResultType()->isVoidType() && 2279 RequireCompleteType(LBracLoc, Method->getResultType(), 2280 diag::err_illegal_message_expr_incomplete_type)) 2281 return ExprError(); 2282 2283 SourceLocation SelLoc = SelectorLocs.front(); 2284 2285 // In ARC, forbid the user from sending messages to 2286 // retain/release/autorelease/dealloc/retainCount explicitly. 2287 if (getLangOpts().ObjCAutoRefCount) { 2288 ObjCMethodFamily family = 2289 (Method ? Method->getMethodFamily() : Sel.getMethodFamily()); 2290 switch (family) { 2291 case OMF_init: 2292 if (Method) 2293 checkInitMethod(Method, ReceiverType); 2294 2295 case OMF_None: 2296 case OMF_alloc: 2297 case OMF_copy: 2298 case OMF_finalize: 2299 case OMF_mutableCopy: 2300 case OMF_new: 2301 case OMF_self: 2302 break; 2303 2304 case OMF_dealloc: 2305 case OMF_retain: 2306 case OMF_release: 2307 case OMF_autorelease: 2308 case OMF_retainCount: 2309 Diag(Loc, diag::err_arc_illegal_explicit_message) 2310 << Sel << SelLoc; 2311 break; 2312 2313 case OMF_performSelector: 2314 if (Method && NumArgs >= 1) { 2315 if (ObjCSelectorExpr *SelExp = dyn_cast<ObjCSelectorExpr>(Args[0])) { 2316 Selector ArgSel = SelExp->getSelector(); 2317 ObjCMethodDecl *SelMethod = 2318 LookupInstanceMethodInGlobalPool(ArgSel, 2319 SelExp->getSourceRange()); 2320 if (!SelMethod) 2321 SelMethod = 2322 LookupFactoryMethodInGlobalPool(ArgSel, 2323 SelExp->getSourceRange()); 2324 if (SelMethod) { 2325 ObjCMethodFamily SelFamily = SelMethod->getMethodFamily(); 2326 switch (SelFamily) { 2327 case OMF_alloc: 2328 case OMF_copy: 2329 case OMF_mutableCopy: 2330 case OMF_new: 2331 case OMF_self: 2332 case OMF_init: 2333 // Issue error, unless ns_returns_not_retained. 2334 if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) { 2335 // selector names a +1 method 2336 Diag(SelLoc, 2337 diag::err_arc_perform_selector_retains); 2338 Diag(SelMethod->getLocation(), diag::note_method_declared_at) 2339 << SelMethod->getDeclName(); 2340 } 2341 break; 2342 default: 2343 // +0 call. OK. unless ns_returns_retained. 2344 if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) { 2345 // selector names a +1 method 2346 Diag(SelLoc, 2347 diag::err_arc_perform_selector_retains); 2348 Diag(SelMethod->getLocation(), diag::note_method_declared_at) 2349 << SelMethod->getDeclName(); 2350 } 2351 break; 2352 } 2353 } 2354 } else { 2355 // error (may leak). 2356 Diag(SelLoc, diag::warn_arc_perform_selector_leaks); 2357 Diag(Args[0]->getExprLoc(), diag::note_used_here); 2358 } 2359 } 2360 break; 2361 } 2362 } 2363 2364 // Construct the appropriate ObjCMessageExpr instance. 2365 ObjCMessageExpr *Result; 2366 if (SuperLoc.isValid()) 2367 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2368 SuperLoc, /*IsInstanceSuper=*/true, 2369 ReceiverType, Sel, SelectorLocs, Method, 2370 makeArrayRef(Args, NumArgs), RBracLoc, 2371 isImplicit); 2372 else { 2373 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2374 Receiver, Sel, SelectorLocs, Method, 2375 makeArrayRef(Args, NumArgs), RBracLoc, 2376 isImplicit); 2377 if (!isImplicit) 2378 checkCocoaAPI(*this, Result); 2379 } 2380 2381 if (getLangOpts().ObjCAutoRefCount) { 2382 if (Receiver && 2383 (Receiver->IgnoreParenImpCasts()->getType().getObjCLifetime() 2384 == Qualifiers::OCL_Weak)) 2385 Diag(Receiver->getLocStart(), diag::warn_receiver_is_weak); 2386 2387 // In ARC, annotate delegate init calls. 2388 if (Result->getMethodFamily() == OMF_init && 2389 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 2390 // Only consider init calls *directly* in init implementations, 2391 // not within blocks. 2392 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext); 2393 if (method && method->getMethodFamily() == OMF_init) { 2394 // The implicit assignment to self means we also don't want to 2395 // consume the result. 2396 Result->setDelegateInitCall(true); 2397 return Owned(Result); 2398 } 2399 } 2400 2401 // In ARC, check for message sends which are likely to introduce 2402 // retain cycles. 2403 checkRetainCycles(Result); 2404 } 2405 2406 return MaybeBindToTemporary(Result); 2407 } 2408 2409 // ActOnInstanceMessage - used for both unary and keyword messages. 2410 // ArgExprs is optional - if it is present, the number of expressions 2411 // is obtained from Sel.getNumArgs(). 2412 ExprResult Sema::ActOnInstanceMessage(Scope *S, 2413 Expr *Receiver, 2414 Selector Sel, 2415 SourceLocation LBracLoc, 2416 ArrayRef<SourceLocation> SelectorLocs, 2417 SourceLocation RBracLoc, 2418 MultiExprArg Args) { 2419 if (!Receiver) 2420 return ExprError(); 2421 2422 return BuildInstanceMessage(Receiver, Receiver->getType(), 2423 /*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0, 2424 LBracLoc, SelectorLocs, RBracLoc, move(Args)); 2425 } 2426 2427 enum ARCConversionTypeClass { 2428 /// int, void, struct A 2429 ACTC_none, 2430 2431 /// id, void (^)() 2432 ACTC_retainable, 2433 2434 /// id*, id***, void (^*)(), 2435 ACTC_indirectRetainable, 2436 2437 /// void* might be a normal C type, or it might a CF type. 2438 ACTC_voidPtr, 2439 2440 /// struct A* 2441 ACTC_coreFoundation 2442 }; 2443 static bool isAnyRetainable(ARCConversionTypeClass ACTC) { 2444 return (ACTC == ACTC_retainable || 2445 ACTC == ACTC_coreFoundation || 2446 ACTC == ACTC_voidPtr); 2447 } 2448 static bool isAnyCLike(ARCConversionTypeClass ACTC) { 2449 return ACTC == ACTC_none || 2450 ACTC == ACTC_voidPtr || 2451 ACTC == ACTC_coreFoundation; 2452 } 2453 2454 static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) { 2455 bool isIndirect = false; 2456 2457 // Ignore an outermost reference type. 2458 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 2459 type = ref->getPointeeType(); 2460 isIndirect = true; 2461 } 2462 2463 // Drill through pointers and arrays recursively. 2464 while (true) { 2465 if (const PointerType *ptr = type->getAs<PointerType>()) { 2466 type = ptr->getPointeeType(); 2467 2468 // The first level of pointer may be the innermost pointer on a CF type. 2469 if (!isIndirect) { 2470 if (type->isVoidType()) return ACTC_voidPtr; 2471 if (type->isRecordType()) return ACTC_coreFoundation; 2472 } 2473 } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) { 2474 type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0); 2475 } else { 2476 break; 2477 } 2478 isIndirect = true; 2479 } 2480 2481 if (isIndirect) { 2482 if (type->isObjCARCBridgableType()) 2483 return ACTC_indirectRetainable; 2484 return ACTC_none; 2485 } 2486 2487 if (type->isObjCARCBridgableType()) 2488 return ACTC_retainable; 2489 2490 return ACTC_none; 2491 } 2492 2493 namespace { 2494 /// A result from the cast checker. 2495 enum ACCResult { 2496 /// Cannot be casted. 2497 ACC_invalid, 2498 2499 /// Can be safely retained or not retained. 2500 ACC_bottom, 2501 2502 /// Can be casted at +0. 2503 ACC_plusZero, 2504 2505 /// Can be casted at +1. 2506 ACC_plusOne 2507 }; 2508 ACCResult merge(ACCResult left, ACCResult right) { 2509 if (left == right) return left; 2510 if (left == ACC_bottom) return right; 2511 if (right == ACC_bottom) return left; 2512 return ACC_invalid; 2513 } 2514 2515 /// A checker which white-lists certain expressions whose conversion 2516 /// to or from retainable type would otherwise be forbidden in ARC. 2517 class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> { 2518 typedef StmtVisitor<ARCCastChecker, ACCResult> super; 2519 2520 ASTContext &Context; 2521 ARCConversionTypeClass SourceClass; 2522 ARCConversionTypeClass TargetClass; 2523 2524 static bool isCFType(QualType type) { 2525 // Someday this can use ns_bridged. For now, it has to do this. 2526 return type->isCARCBridgableType(); 2527 } 2528 2529 public: 2530 ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source, 2531 ARCConversionTypeClass target) 2532 : Context(Context), SourceClass(source), TargetClass(target) {} 2533 2534 using super::Visit; 2535 ACCResult Visit(Expr *e) { 2536 return super::Visit(e->IgnoreParens()); 2537 } 2538 2539 ACCResult VisitStmt(Stmt *s) { 2540 return ACC_invalid; 2541 } 2542 2543 /// Null pointer constants can be casted however you please. 2544 ACCResult VisitExpr(Expr *e) { 2545 if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) 2546 return ACC_bottom; 2547 return ACC_invalid; 2548 } 2549 2550 /// Objective-C string literals can be safely casted. 2551 ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) { 2552 // If we're casting to any retainable type, go ahead. Global 2553 // strings are immune to retains, so this is bottom. 2554 if (isAnyRetainable(TargetClass)) return ACC_bottom; 2555 2556 return ACC_invalid; 2557 } 2558 2559 /// Look through certain implicit and explicit casts. 2560 ACCResult VisitCastExpr(CastExpr *e) { 2561 switch (e->getCastKind()) { 2562 case CK_NullToPointer: 2563 return ACC_bottom; 2564 2565 case CK_NoOp: 2566 case CK_LValueToRValue: 2567 case CK_BitCast: 2568 case CK_CPointerToObjCPointerCast: 2569 case CK_BlockPointerToObjCPointerCast: 2570 case CK_AnyPointerToBlockPointerCast: 2571 return Visit(e->getSubExpr()); 2572 2573 default: 2574 return ACC_invalid; 2575 } 2576 } 2577 2578 /// Look through unary extension. 2579 ACCResult VisitUnaryExtension(UnaryOperator *e) { 2580 return Visit(e->getSubExpr()); 2581 } 2582 2583 /// Ignore the LHS of a comma operator. 2584 ACCResult VisitBinComma(BinaryOperator *e) { 2585 return Visit(e->getRHS()); 2586 } 2587 2588 /// Conditional operators are okay if both sides are okay. 2589 ACCResult VisitConditionalOperator(ConditionalOperator *e) { 2590 ACCResult left = Visit(e->getTrueExpr()); 2591 if (left == ACC_invalid) return ACC_invalid; 2592 return merge(left, Visit(e->getFalseExpr())); 2593 } 2594 2595 /// Look through pseudo-objects. 2596 ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) { 2597 // If we're getting here, we should always have a result. 2598 return Visit(e->getResultExpr()); 2599 } 2600 2601 /// Statement expressions are okay if their result expression is okay. 2602 ACCResult VisitStmtExpr(StmtExpr *e) { 2603 return Visit(e->getSubStmt()->body_back()); 2604 } 2605 2606 /// Some declaration references are okay. 2607 ACCResult VisitDeclRefExpr(DeclRefExpr *e) { 2608 // References to global constants from system headers are okay. 2609 // These are things like 'kCFStringTransformToLatin'. They are 2610 // can also be assumed to be immune to retains. 2611 VarDecl *var = dyn_cast<VarDecl>(e->getDecl()); 2612 if (isAnyRetainable(TargetClass) && 2613 isAnyRetainable(SourceClass) && 2614 var && 2615 var->getStorageClass() == SC_Extern && 2616 var->getType().isConstQualified() && 2617 Context.getSourceManager().isInSystemHeader(var->getLocation())) { 2618 return ACC_bottom; 2619 } 2620 2621 // Nothing else. 2622 return ACC_invalid; 2623 } 2624 2625 /// Some calls are okay. 2626 ACCResult VisitCallExpr(CallExpr *e) { 2627 if (FunctionDecl *fn = e->getDirectCallee()) 2628 if (ACCResult result = checkCallToFunction(fn)) 2629 return result; 2630 2631 return super::VisitCallExpr(e); 2632 } 2633 2634 ACCResult checkCallToFunction(FunctionDecl *fn) { 2635 // Require a CF*Ref return type. 2636 if (!isCFType(fn->getResultType())) 2637 return ACC_invalid; 2638 2639 if (!isAnyRetainable(TargetClass)) 2640 return ACC_invalid; 2641 2642 // Honor an explicit 'not retained' attribute. 2643 if (fn->hasAttr<CFReturnsNotRetainedAttr>()) 2644 return ACC_plusZero; 2645 2646 // Honor an explicit 'retained' attribute, except that for 2647 // now we're not going to permit implicit handling of +1 results, 2648 // because it's a bit frightening. 2649 if (fn->hasAttr<CFReturnsRetainedAttr>()) 2650 return ACC_invalid; // ACC_plusOne if we start accepting this 2651 2652 // Recognize this specific builtin function, which is used by CFSTR. 2653 unsigned builtinID = fn->getBuiltinID(); 2654 if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString) 2655 return ACC_bottom; 2656 2657 // Otherwise, don't do anything implicit with an unaudited function. 2658 if (!fn->hasAttr<CFAuditedTransferAttr>()) 2659 return ACC_invalid; 2660 2661 // Otherwise, it's +0 unless it follows the create convention. 2662 if (ento::coreFoundation::followsCreateRule(fn)) 2663 return ACC_invalid; // ACC_plusOne if we start accepting this 2664 2665 return ACC_plusZero; 2666 } 2667 2668 ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) { 2669 return checkCallToMethod(e->getMethodDecl()); 2670 } 2671 2672 ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) { 2673 ObjCMethodDecl *method; 2674 if (e->isExplicitProperty()) 2675 method = e->getExplicitProperty()->getGetterMethodDecl(); 2676 else 2677 method = e->getImplicitPropertyGetter(); 2678 return checkCallToMethod(method); 2679 } 2680 2681 ACCResult checkCallToMethod(ObjCMethodDecl *method) { 2682 if (!method) return ACC_invalid; 2683 2684 // Check for message sends to functions returning CF types. We 2685 // just obey the Cocoa conventions with these, even though the 2686 // return type is CF. 2687 if (!isAnyRetainable(TargetClass) || !isCFType(method->getResultType())) 2688 return ACC_invalid; 2689 2690 // If the method is explicitly marked not-retained, it's +0. 2691 if (method->hasAttr<CFReturnsNotRetainedAttr>()) 2692 return ACC_plusZero; 2693 2694 // If the method is explicitly marked as returning retained, or its 2695 // selector follows a +1 Cocoa convention, treat it as +1. 2696 if (method->hasAttr<CFReturnsRetainedAttr>()) 2697 return ACC_plusOne; 2698 2699 switch (method->getSelector().getMethodFamily()) { 2700 case OMF_alloc: 2701 case OMF_copy: 2702 case OMF_mutableCopy: 2703 case OMF_new: 2704 return ACC_plusOne; 2705 2706 default: 2707 // Otherwise, treat it as +0. 2708 return ACC_plusZero; 2709 } 2710 } 2711 }; 2712 } 2713 2714 static bool 2715 KnownName(Sema &S, const char *name) { 2716 LookupResult R(S, &S.Context.Idents.get(name), SourceLocation(), 2717 Sema::LookupOrdinaryName); 2718 return S.LookupName(R, S.TUScope, false); 2719 } 2720 2721 static void addFixitForObjCARCConversion(Sema &S, 2722 DiagnosticBuilder &DiagB, 2723 Sema::CheckedConversionKind CCK, 2724 SourceLocation afterLParen, 2725 QualType castType, 2726 Expr *castExpr, 2727 const char *bridgeKeyword, 2728 const char *CFBridgeName) { 2729 // We handle C-style and implicit casts here. 2730 switch (CCK) { 2731 case Sema::CCK_ImplicitConversion: 2732 case Sema::CCK_CStyleCast: 2733 break; 2734 case Sema::CCK_FunctionalCast: 2735 case Sema::CCK_OtherCast: 2736 return; 2737 } 2738 2739 if (CFBridgeName) { 2740 Expr *castedE = castExpr; 2741 if (CStyleCastExpr *CCE = dyn_cast<CStyleCastExpr>(castedE)) 2742 castedE = CCE->getSubExpr(); 2743 castedE = castedE->IgnoreImpCasts(); 2744 SourceRange range = castedE->getSourceRange(); 2745 if (isa<ParenExpr>(castedE)) { 2746 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 2747 CFBridgeName)); 2748 } else { 2749 std::string namePlusParen = CFBridgeName; 2750 namePlusParen += "("; 2751 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 2752 namePlusParen)); 2753 DiagB.AddFixItHint(FixItHint::CreateInsertion( 2754 S.PP.getLocForEndOfToken(range.getEnd()), 2755 ")")); 2756 } 2757 return; 2758 } 2759 2760 if (CCK == Sema::CCK_CStyleCast) { 2761 DiagB.AddFixItHint(FixItHint::CreateInsertion(afterLParen, bridgeKeyword)); 2762 } else { 2763 std::string castCode = "("; 2764 castCode += bridgeKeyword; 2765 castCode += castType.getAsString(); 2766 castCode += ")"; 2767 Expr *castedE = castExpr->IgnoreImpCasts(); 2768 SourceRange range = castedE->getSourceRange(); 2769 if (isa<ParenExpr>(castedE)) { 2770 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 2771 castCode)); 2772 } else { 2773 castCode += "("; 2774 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 2775 castCode)); 2776 DiagB.AddFixItHint(FixItHint::CreateInsertion( 2777 S.PP.getLocForEndOfToken(range.getEnd()), 2778 ")")); 2779 } 2780 } 2781 } 2782 2783 static void 2784 diagnoseObjCARCConversion(Sema &S, SourceRange castRange, 2785 QualType castType, ARCConversionTypeClass castACTC, 2786 Expr *castExpr, ARCConversionTypeClass exprACTC, 2787 Sema::CheckedConversionKind CCK) { 2788 SourceLocation loc = 2789 (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc()); 2790 2791 if (S.makeUnavailableInSystemHeader(loc, 2792 "converts between Objective-C and C pointers in -fobjc-arc")) 2793 return; 2794 2795 QualType castExprType = castExpr->getType(); 2796 2797 unsigned srcKind = 0; 2798 switch (exprACTC) { 2799 case ACTC_none: 2800 case ACTC_coreFoundation: 2801 case ACTC_voidPtr: 2802 srcKind = (castExprType->isPointerType() ? 1 : 0); 2803 break; 2804 case ACTC_retainable: 2805 srcKind = (castExprType->isBlockPointerType() ? 2 : 3); 2806 break; 2807 case ACTC_indirectRetainable: 2808 srcKind = 4; 2809 break; 2810 } 2811 2812 // Check whether this could be fixed with a bridge cast. 2813 SourceLocation afterLParen = S.PP.getLocForEndOfToken(castRange.getBegin()); 2814 SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc; 2815 2816 // Bridge from an ARC type to a CF type. 2817 if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) { 2818 2819 S.Diag(loc, diag::err_arc_cast_requires_bridge) 2820 << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit 2821 << 2 // of C pointer type 2822 << castExprType 2823 << unsigned(castType->isBlockPointerType()) // to ObjC|block type 2824 << castType 2825 << castRange 2826 << castExpr->getSourceRange(); 2827 bool br = KnownName(S, "CFBridgingRelease"); 2828 { 2829 DiagnosticBuilder DiagB = S.Diag(noteLoc, diag::note_arc_bridge); 2830 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 2831 castType, castExpr, "__bridge ", 0); 2832 } 2833 { 2834 DiagnosticBuilder DiagB = S.Diag(noteLoc, diag::note_arc_bridge_transfer) 2835 << castExprType << br; 2836 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 2837 castType, castExpr, "__bridge_transfer ", 2838 br ? "CFBridgingRelease" : 0); 2839 } 2840 2841 return; 2842 } 2843 2844 // Bridge from a CF type to an ARC type. 2845 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) { 2846 bool br = KnownName(S, "CFBridgingRetain"); 2847 S.Diag(loc, diag::err_arc_cast_requires_bridge) 2848 << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit 2849 << unsigned(castExprType->isBlockPointerType()) // of ObjC|block type 2850 << castExprType 2851 << 2 // to C pointer type 2852 << castType 2853 << castRange 2854 << castExpr->getSourceRange(); 2855 2856 { 2857 DiagnosticBuilder DiagB = S.Diag(noteLoc, diag::note_arc_bridge); 2858 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 2859 castType, castExpr, "__bridge ", 0); 2860 } 2861 { 2862 DiagnosticBuilder DiagB = S.Diag(noteLoc, diag::note_arc_bridge_retained) 2863 << castType << br; 2864 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 2865 castType, castExpr, "__bridge_retained ", 2866 br ? "CFBridgingRetain" : 0); 2867 } 2868 2869 return; 2870 } 2871 2872 S.Diag(loc, diag::err_arc_mismatched_cast) 2873 << (CCK != Sema::CCK_ImplicitConversion) 2874 << srcKind << castExprType << castType 2875 << castRange << castExpr->getSourceRange(); 2876 } 2877 2878 Sema::ARCConversionResult 2879 Sema::CheckObjCARCConversion(SourceRange castRange, QualType castType, 2880 Expr *&castExpr, CheckedConversionKind CCK) { 2881 QualType castExprType = castExpr->getType(); 2882 2883 // For the purposes of the classification, we assume reference types 2884 // will bind to temporaries. 2885 QualType effCastType = castType; 2886 if (const ReferenceType *ref = castType->getAs<ReferenceType>()) 2887 effCastType = ref->getPointeeType(); 2888 2889 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType); 2890 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType); 2891 if (exprACTC == castACTC) { 2892 // check for viablity and report error if casting an rvalue to a 2893 // life-time qualifier. 2894 if ((castACTC == ACTC_retainable) && 2895 (CCK == CCK_CStyleCast || CCK == CCK_OtherCast) && 2896 (castType != castExprType)) { 2897 const Type *DT = castType.getTypePtr(); 2898 QualType QDT = castType; 2899 // We desugar some types but not others. We ignore those 2900 // that cannot happen in a cast; i.e. auto, and those which 2901 // should not be de-sugared; i.e typedef. 2902 if (const ParenType *PT = dyn_cast<ParenType>(DT)) 2903 QDT = PT->desugar(); 2904 else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT)) 2905 QDT = TP->desugar(); 2906 else if (const AttributedType *AT = dyn_cast<AttributedType>(DT)) 2907 QDT = AT->desugar(); 2908 if (QDT != castType && 2909 QDT.getObjCLifetime() != Qualifiers::OCL_None) { 2910 SourceLocation loc = 2911 (castRange.isValid() ? castRange.getBegin() 2912 : castExpr->getExprLoc()); 2913 Diag(loc, diag::err_arc_nolifetime_behavior); 2914 } 2915 } 2916 return ACR_okay; 2917 } 2918 2919 if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay; 2920 2921 // Allow all of these types to be cast to integer types (but not 2922 // vice-versa). 2923 if (castACTC == ACTC_none && castType->isIntegralType(Context)) 2924 return ACR_okay; 2925 2926 // Allow casts between pointers to lifetime types (e.g., __strong id*) 2927 // and pointers to void (e.g., cv void *). Casting from void* to lifetime* 2928 // must be explicit. 2929 if (exprACTC == ACTC_indirectRetainable && castACTC == ACTC_voidPtr) 2930 return ACR_okay; 2931 if (castACTC == ACTC_indirectRetainable && exprACTC == ACTC_voidPtr && 2932 CCK != CCK_ImplicitConversion) 2933 return ACR_okay; 2934 2935 switch (ARCCastChecker(Context, exprACTC, castACTC).Visit(castExpr)) { 2936 // For invalid casts, fall through. 2937 case ACC_invalid: 2938 break; 2939 2940 // Do nothing for both bottom and +0. 2941 case ACC_bottom: 2942 case ACC_plusZero: 2943 return ACR_okay; 2944 2945 // If the result is +1, consume it here. 2946 case ACC_plusOne: 2947 castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(), 2948 CK_ARCConsumeObject, castExpr, 2949 0, VK_RValue); 2950 ExprNeedsCleanups = true; 2951 return ACR_okay; 2952 } 2953 2954 // If this is a non-implicit cast from id or block type to a 2955 // CoreFoundation type, delay complaining in case the cast is used 2956 // in an acceptable context. 2957 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) && 2958 CCK != CCK_ImplicitConversion) 2959 return ACR_unbridged; 2960 2961 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, 2962 castExpr, exprACTC, CCK); 2963 return ACR_okay; 2964 } 2965 2966 /// Given that we saw an expression with the ARCUnbridgedCastTy 2967 /// placeholder type, complain bitterly. 2968 void Sema::diagnoseARCUnbridgedCast(Expr *e) { 2969 // We expect the spurious ImplicitCastExpr to already have been stripped. 2970 assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 2971 CastExpr *realCast = cast<CastExpr>(e->IgnoreParens()); 2972 2973 SourceRange castRange; 2974 QualType castType; 2975 CheckedConversionKind CCK; 2976 2977 if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) { 2978 castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc()); 2979 castType = cast->getTypeAsWritten(); 2980 CCK = CCK_CStyleCast; 2981 } else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) { 2982 castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange(); 2983 castType = cast->getTypeAsWritten(); 2984 CCK = CCK_OtherCast; 2985 } else { 2986 castType = cast->getType(); 2987 CCK = CCK_ImplicitConversion; 2988 } 2989 2990 ARCConversionTypeClass castACTC = 2991 classifyTypeForARCConversion(castType.getNonReferenceType()); 2992 2993 Expr *castExpr = realCast->getSubExpr(); 2994 assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable); 2995 2996 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, 2997 castExpr, ACTC_retainable, CCK); 2998 } 2999 3000 /// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast 3001 /// type, remove the placeholder cast. 3002 Expr *Sema::stripARCUnbridgedCast(Expr *e) { 3003 assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 3004 3005 if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) { 3006 Expr *sub = stripARCUnbridgedCast(pe->getSubExpr()); 3007 return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub); 3008 } else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) { 3009 assert(uo->getOpcode() == UO_Extension); 3010 Expr *sub = stripARCUnbridgedCast(uo->getSubExpr()); 3011 return new (Context) UnaryOperator(sub, UO_Extension, sub->getType(), 3012 sub->getValueKind(), sub->getObjectKind(), 3013 uo->getOperatorLoc()); 3014 } else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) { 3015 assert(!gse->isResultDependent()); 3016 3017 unsigned n = gse->getNumAssocs(); 3018 SmallVector<Expr*, 4> subExprs(n); 3019 SmallVector<TypeSourceInfo*, 4> subTypes(n); 3020 for (unsigned i = 0; i != n; ++i) { 3021 subTypes[i] = gse->getAssocTypeSourceInfo(i); 3022 Expr *sub = gse->getAssocExpr(i); 3023 if (i == gse->getResultIndex()) 3024 sub = stripARCUnbridgedCast(sub); 3025 subExprs[i] = sub; 3026 } 3027 3028 return new (Context) GenericSelectionExpr(Context, gse->getGenericLoc(), 3029 gse->getControllingExpr(), 3030 subTypes.data(), subExprs.data(), 3031 n, gse->getDefaultLoc(), 3032 gse->getRParenLoc(), 3033 gse->containsUnexpandedParameterPack(), 3034 gse->getResultIndex()); 3035 } else { 3036 assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!"); 3037 return cast<ImplicitCastExpr>(e)->getSubExpr(); 3038 } 3039 } 3040 3041 bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType, 3042 QualType exprType) { 3043 QualType canCastType = 3044 Context.getCanonicalType(castType).getUnqualifiedType(); 3045 QualType canExprType = 3046 Context.getCanonicalType(exprType).getUnqualifiedType(); 3047 if (isa<ObjCObjectPointerType>(canCastType) && 3048 castType.getObjCLifetime() == Qualifiers::OCL_Weak && 3049 canExprType->isObjCObjectPointerType()) { 3050 if (const ObjCObjectPointerType *ObjT = 3051 canExprType->getAs<ObjCObjectPointerType>()) 3052 if (ObjT->getInterfaceDecl()->isArcWeakrefUnavailable()) 3053 return false; 3054 } 3055 return true; 3056 } 3057 3058 /// Look for an ObjCReclaimReturnedObject cast and destroy it. 3059 static Expr *maybeUndoReclaimObject(Expr *e) { 3060 // For now, we just undo operands that are *immediately* reclaim 3061 // expressions, which prevents the vast majority of potential 3062 // problems here. To catch them all, we'd need to rebuild arbitrary 3063 // value-propagating subexpressions --- we can't reliably rebuild 3064 // in-place because of expression sharing. 3065 if (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 3066 if (ice->getCastKind() == CK_ARCReclaimReturnedObject) 3067 return ice->getSubExpr(); 3068 3069 return e; 3070 } 3071 3072 ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc, 3073 ObjCBridgeCastKind Kind, 3074 SourceLocation BridgeKeywordLoc, 3075 TypeSourceInfo *TSInfo, 3076 Expr *SubExpr) { 3077 ExprResult SubResult = UsualUnaryConversions(SubExpr); 3078 if (SubResult.isInvalid()) return ExprError(); 3079 SubExpr = SubResult.take(); 3080 3081 QualType T = TSInfo->getType(); 3082 QualType FromType = SubExpr->getType(); 3083 3084 CastKind CK; 3085 3086 bool MustConsume = false; 3087 if (T->isDependentType() || SubExpr->isTypeDependent()) { 3088 // Okay: we'll build a dependent expression type. 3089 CK = CK_Dependent; 3090 } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) { 3091 // Casting CF -> id 3092 CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast 3093 : CK_CPointerToObjCPointerCast); 3094 switch (Kind) { 3095 case OBC_Bridge: 3096 break; 3097 3098 case OBC_BridgeRetained: { 3099 bool br = KnownName(*this, "CFBridgingRelease"); 3100 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) 3101 << 2 3102 << FromType 3103 << (T->isBlockPointerType()? 1 : 0) 3104 << T 3105 << SubExpr->getSourceRange() 3106 << Kind; 3107 Diag(BridgeKeywordLoc, diag::note_arc_bridge) 3108 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge"); 3109 Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer) 3110 << FromType << br 3111 << FixItHint::CreateReplacement(BridgeKeywordLoc, 3112 br ? "CFBridgingRelease " 3113 : "__bridge_transfer "); 3114 3115 Kind = OBC_Bridge; 3116 break; 3117 } 3118 3119 case OBC_BridgeTransfer: 3120 // We must consume the Objective-C object produced by the cast. 3121 MustConsume = true; 3122 break; 3123 } 3124 } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) { 3125 // Okay: id -> CF 3126 CK = CK_BitCast; 3127 switch (Kind) { 3128 case OBC_Bridge: 3129 // Reclaiming a value that's going to be __bridge-casted to CF 3130 // is very dangerous, so we don't do it. 3131 SubExpr = maybeUndoReclaimObject(SubExpr); 3132 break; 3133 3134 case OBC_BridgeRetained: 3135 // Produce the object before casting it. 3136 SubExpr = ImplicitCastExpr::Create(Context, FromType, 3137 CK_ARCProduceObject, 3138 SubExpr, 0, VK_RValue); 3139 break; 3140 3141 case OBC_BridgeTransfer: { 3142 bool br = KnownName(*this, "CFBridgingRetain"); 3143 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) 3144 << (FromType->isBlockPointerType()? 1 : 0) 3145 << FromType 3146 << 2 3147 << T 3148 << SubExpr->getSourceRange() 3149 << Kind; 3150 3151 Diag(BridgeKeywordLoc, diag::note_arc_bridge) 3152 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge "); 3153 Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained) 3154 << T << br 3155 << FixItHint::CreateReplacement(BridgeKeywordLoc, 3156 br ? "CFBridgingRetain " : "__bridge_retained"); 3157 3158 Kind = OBC_Bridge; 3159 break; 3160 } 3161 } 3162 } else { 3163 Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible) 3164 << FromType << T << Kind 3165 << SubExpr->getSourceRange() 3166 << TSInfo->getTypeLoc().getSourceRange(); 3167 return ExprError(); 3168 } 3169 3170 Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK, 3171 BridgeKeywordLoc, 3172 TSInfo, SubExpr); 3173 3174 if (MustConsume) { 3175 ExprNeedsCleanups = true; 3176 Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result, 3177 0, VK_RValue); 3178 } 3179 3180 return Result; 3181 } 3182 3183 ExprResult Sema::ActOnObjCBridgedCast(Scope *S, 3184 SourceLocation LParenLoc, 3185 ObjCBridgeCastKind Kind, 3186 SourceLocation BridgeKeywordLoc, 3187 ParsedType Type, 3188 SourceLocation RParenLoc, 3189 Expr *SubExpr) { 3190 TypeSourceInfo *TSInfo = 0; 3191 QualType T = GetTypeFromParser(Type, &TSInfo); 3192 if (!TSInfo) 3193 TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc); 3194 return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo, 3195 SubExpr); 3196 } 3197