1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "VirtRegMap.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 20 #include "llvm/CodeGen/LiveRangeEdit.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Target/TargetInstrInfo.h" 28 #include "llvm/Target/TargetMachine.h" 29 30 using namespace llvm; 31 32 STATISTIC(NumFinished, "Number of splits finished"); 33 STATISTIC(NumSimple, "Number of splits that were simple"); 34 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 35 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 36 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 37 38 //===----------------------------------------------------------------------===// 39 // Split Analysis 40 //===----------------------------------------------------------------------===// 41 42 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 43 const LiveIntervals &lis, 44 const MachineLoopInfo &mli) 45 : MF(vrm.getMachineFunction()), 46 VRM(vrm), 47 LIS(lis), 48 Loops(mli), 49 TII(*MF.getTarget().getInstrInfo()), 50 CurLI(0), 51 LastSplitPoint(MF.getNumBlockIDs()) {} 52 53 void SplitAnalysis::clear() { 54 UseSlots.clear(); 55 UseBlocks.clear(); 56 ThroughBlocks.clear(); 57 CurLI = 0; 58 DidRepairRange = false; 59 } 60 61 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 62 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 63 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 64 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 65 SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB); 66 67 // Compute split points on the first call. The pair is independent of the 68 // current live interval. 69 if (!LSP.first.isValid()) { 70 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 71 if (FirstTerm == MBB->end()) 72 LSP.first = MBBEnd; 73 else 74 LSP.first = LIS.getInstructionIndex(FirstTerm); 75 76 // If there is a landing pad successor, also find the call instruction. 77 if (!LPad) 78 return LSP.first; 79 // There may not be a call instruction (?) in which case we ignore LPad. 80 LSP.second = LSP.first; 81 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin(); 82 I != E;) { 83 --I; 84 if (I->isCall()) { 85 LSP.second = LIS.getInstructionIndex(I); 86 break; 87 } 88 } 89 } 90 91 // If CurLI is live into a landing pad successor, move the last split point 92 // back to the call that may throw. 93 if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad)) 94 return LSP.first; 95 96 // Find the value leaving MBB. 97 const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd); 98 if (!VNI) 99 return LSP.first; 100 101 // If the value leaving MBB was defined after the call in MBB, it can't 102 // really be live-in to the landing pad. This can happen if the landing pad 103 // has a PHI, and this register is undef on the exceptional edge. 104 // <rdar://problem/10664933> 105 if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd) 106 return LSP.first; 107 108 // Value is properly live-in to the landing pad. 109 // Only allow splits before the call. 110 return LSP.second; 111 } 112 113 MachineBasicBlock::iterator 114 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) { 115 SlotIndex LSP = getLastSplitPoint(MBB->getNumber()); 116 if (LSP == LIS.getMBBEndIdx(MBB)) 117 return MBB->end(); 118 return LIS.getInstructionFromIndex(LSP); 119 } 120 121 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 122 void SplitAnalysis::analyzeUses() { 123 assert(UseSlots.empty() && "Call clear first"); 124 125 // First get all the defs from the interval values. This provides the correct 126 // slots for early clobbers. 127 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 128 E = CurLI->vni_end(); I != E; ++I) 129 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 130 UseSlots.push_back((*I)->def); 131 132 // Get use slots form the use-def chain. 133 const MachineRegisterInfo &MRI = MF.getRegInfo(); 134 for (MachineRegisterInfo::use_nodbg_iterator 135 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E; 136 ++I) 137 if (!I.getOperand().isUndef()) 138 UseSlots.push_back(LIS.getInstructionIndex(&*I).getRegSlot()); 139 140 array_pod_sort(UseSlots.begin(), UseSlots.end()); 141 142 // Remove duplicates, keeping the smaller slot for each instruction. 143 // That is what we want for early clobbers. 144 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 145 SlotIndex::isSameInstr), 146 UseSlots.end()); 147 148 // Compute per-live block info. 149 if (!calcLiveBlockInfo()) { 150 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 151 // I am looking at you, RegisterCoalescer! 152 DidRepairRange = true; 153 ++NumRepairs; 154 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 155 const_cast<LiveIntervals&>(LIS) 156 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 157 UseBlocks.clear(); 158 ThroughBlocks.clear(); 159 bool fixed = calcLiveBlockInfo(); 160 (void)fixed; 161 assert(fixed && "Couldn't fix broken live interval"); 162 } 163 164 DEBUG(dbgs() << "Analyze counted " 165 << UseSlots.size() << " instrs in " 166 << UseBlocks.size() << " blocks, through " 167 << NumThroughBlocks << " blocks.\n"); 168 } 169 170 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 171 /// where CurLI is live. 172 bool SplitAnalysis::calcLiveBlockInfo() { 173 ThroughBlocks.resize(MF.getNumBlockIDs()); 174 NumThroughBlocks = NumGapBlocks = 0; 175 if (CurLI->empty()) 176 return true; 177 178 LiveInterval::const_iterator LVI = CurLI->begin(); 179 LiveInterval::const_iterator LVE = CurLI->end(); 180 181 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 182 UseI = UseSlots.begin(); 183 UseE = UseSlots.end(); 184 185 // Loop over basic blocks where CurLI is live. 186 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 187 for (;;) { 188 BlockInfo BI; 189 BI.MBB = MFI; 190 SlotIndex Start, Stop; 191 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 192 193 // If the block contains no uses, the range must be live through. At one 194 // point, RegisterCoalescer could create dangling ranges that ended 195 // mid-block. 196 if (UseI == UseE || *UseI >= Stop) { 197 ++NumThroughBlocks; 198 ThroughBlocks.set(BI.MBB->getNumber()); 199 // The range shouldn't end mid-block if there are no uses. This shouldn't 200 // happen. 201 if (LVI->end < Stop) 202 return false; 203 } else { 204 // This block has uses. Find the first and last uses in the block. 205 BI.FirstInstr = *UseI; 206 assert(BI.FirstInstr >= Start); 207 do ++UseI; 208 while (UseI != UseE && *UseI < Stop); 209 BI.LastInstr = UseI[-1]; 210 assert(BI.LastInstr < Stop); 211 212 // LVI is the first live segment overlapping MBB. 213 BI.LiveIn = LVI->start <= Start; 214 215 // When not live in, the first use should be a def. 216 if (!BI.LiveIn) { 217 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 218 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 219 BI.FirstDef = BI.FirstInstr; 220 } 221 222 // Look for gaps in the live range. 223 BI.LiveOut = true; 224 while (LVI->end < Stop) { 225 SlotIndex LastStop = LVI->end; 226 if (++LVI == LVE || LVI->start >= Stop) { 227 BI.LiveOut = false; 228 BI.LastInstr = LastStop; 229 break; 230 } 231 232 if (LastStop < LVI->start) { 233 // There is a gap in the live range. Create duplicate entries for the 234 // live-in snippet and the live-out snippet. 235 ++NumGapBlocks; 236 237 // Push the Live-in part. 238 BI.LiveOut = false; 239 UseBlocks.push_back(BI); 240 UseBlocks.back().LastInstr = LastStop; 241 242 // Set up BI for the live-out part. 243 BI.LiveIn = false; 244 BI.LiveOut = true; 245 BI.FirstInstr = BI.FirstDef = LVI->start; 246 } 247 248 // A LiveRange that starts in the middle of the block must be a def. 249 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start"); 250 if (!BI.FirstDef) 251 BI.FirstDef = LVI->start; 252 } 253 254 UseBlocks.push_back(BI); 255 256 // LVI is now at LVE or LVI->end >= Stop. 257 if (LVI == LVE) 258 break; 259 } 260 261 // Live segment ends exactly at Stop. Move to the next segment. 262 if (LVI->end == Stop && ++LVI == LVE) 263 break; 264 265 // Pick the next basic block. 266 if (LVI->start < Stop) 267 ++MFI; 268 else 269 MFI = LIS.getMBBFromIndex(LVI->start); 270 } 271 272 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 273 return true; 274 } 275 276 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 277 if (cli->empty()) 278 return 0; 279 LiveInterval *li = const_cast<LiveInterval*>(cli); 280 LiveInterval::iterator LVI = li->begin(); 281 LiveInterval::iterator LVE = li->end(); 282 unsigned Count = 0; 283 284 // Loop over basic blocks where li is live. 285 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start); 286 SlotIndex Stop = LIS.getMBBEndIdx(MFI); 287 for (;;) { 288 ++Count; 289 LVI = li->advanceTo(LVI, Stop); 290 if (LVI == LVE) 291 return Count; 292 do { 293 ++MFI; 294 Stop = LIS.getMBBEndIdx(MFI); 295 } while (Stop <= LVI->start); 296 } 297 } 298 299 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 300 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 301 const LiveInterval &Orig = LIS.getInterval(OrigReg); 302 assert(!Orig.empty() && "Splitting empty interval?"); 303 LiveInterval::const_iterator I = Orig.find(Idx); 304 305 // Range containing Idx should begin at Idx. 306 if (I != Orig.end() && I->start <= Idx) 307 return I->start == Idx; 308 309 // Range does not contain Idx, previous must end at Idx. 310 return I != Orig.begin() && (--I)->end == Idx; 311 } 312 313 void SplitAnalysis::analyze(const LiveInterval *li) { 314 clear(); 315 CurLI = li; 316 analyzeUses(); 317 } 318 319 320 //===----------------------------------------------------------------------===// 321 // Split Editor 322 //===----------------------------------------------------------------------===// 323 324 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 325 SplitEditor::SplitEditor(SplitAnalysis &sa, 326 LiveIntervals &lis, 327 VirtRegMap &vrm, 328 MachineDominatorTree &mdt) 329 : SA(sa), LIS(lis), VRM(vrm), 330 MRI(vrm.getMachineFunction().getRegInfo()), 331 MDT(mdt), 332 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 333 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 334 Edit(0), 335 OpenIdx(0), 336 SpillMode(SM_Partition), 337 RegAssign(Allocator) 338 {} 339 340 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 341 Edit = &LRE; 342 SpillMode = SM; 343 OpenIdx = 0; 344 RegAssign.clear(); 345 Values.clear(); 346 347 // Reset the LiveRangeCalc instances needed for this spill mode. 348 LRCalc[0].reset(&VRM.getMachineFunction()); 349 if (SpillMode) 350 LRCalc[1].reset(&VRM.getMachineFunction()); 351 352 // We don't need an AliasAnalysis since we will only be performing 353 // cheap-as-a-copy remats anyway. 354 Edit->anyRematerializable(0); 355 } 356 357 void SplitEditor::dump() const { 358 if (RegAssign.empty()) { 359 dbgs() << " empty\n"; 360 return; 361 } 362 363 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 364 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 365 dbgs() << '\n'; 366 } 367 368 VNInfo *SplitEditor::defValue(unsigned RegIdx, 369 const VNInfo *ParentVNI, 370 SlotIndex Idx) { 371 assert(ParentVNI && "Mapping NULL value"); 372 assert(Idx.isValid() && "Invalid SlotIndex"); 373 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 374 LiveInterval *LI = Edit->get(RegIdx); 375 376 // Create a new value. 377 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 378 379 // Use insert for lookup, so we can add missing values with a second lookup. 380 std::pair<ValueMap::iterator, bool> InsP = 381 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), 382 ValueForcePair(VNI, false))); 383 384 // This was the first time (RegIdx, ParentVNI) was mapped. 385 // Keep it as a simple def without any liveness. 386 if (InsP.second) 387 return VNI; 388 389 // If the previous value was a simple mapping, add liveness for it now. 390 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 391 SlotIndex Def = OldVNI->def; 392 LI->addRange(LiveRange(Def, Def.getDeadSlot(), OldVNI)); 393 // No longer a simple mapping. Switch to a complex, non-forced mapping. 394 InsP.first->second = ValueForcePair(); 395 } 396 397 // This is a complex mapping, add liveness for VNI 398 SlotIndex Def = VNI->def; 399 LI->addRange(LiveRange(Def, Def.getDeadSlot(), VNI)); 400 401 return VNI; 402 } 403 404 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) { 405 assert(ParentVNI && "Mapping NULL value"); 406 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)]; 407 VNInfo *VNI = VFP.getPointer(); 408 409 // ParentVNI was either unmapped or already complex mapped. Either way, just 410 // set the force bit. 411 if (!VNI) { 412 VFP.setInt(true); 413 return; 414 } 415 416 // This was previously a single mapping. Make sure the old def is represented 417 // by a trivial live range. 418 SlotIndex Def = VNI->def; 419 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getDeadSlot(), VNI)); 420 // Mark as complex mapped, forced. 421 VFP = ValueForcePair(0, true); 422 } 423 424 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 425 VNInfo *ParentVNI, 426 SlotIndex UseIdx, 427 MachineBasicBlock &MBB, 428 MachineBasicBlock::iterator I) { 429 MachineInstr *CopyMI = 0; 430 SlotIndex Def; 431 LiveInterval *LI = Edit->get(RegIdx); 432 433 // We may be trying to avoid interference that ends at a deleted instruction, 434 // so always begin RegIdx 0 early and all others late. 435 bool Late = RegIdx != 0; 436 437 // Attempt cheap-as-a-copy rematerialization. 438 LiveRangeEdit::Remat RM(ParentVNI); 439 if (Edit->canRematerializeAt(RM, UseIdx, true)) { 440 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late); 441 ++NumRemats; 442 } else { 443 // Can't remat, just insert a copy from parent. 444 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 445 .addReg(Edit->getReg()); 446 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late) 447 .getRegSlot(); 448 ++NumCopies; 449 } 450 451 // Define the value in Reg. 452 return defValue(RegIdx, ParentVNI, Def); 453 } 454 455 /// Create a new virtual register and live interval. 456 unsigned SplitEditor::openIntv() { 457 // Create the complement as index 0. 458 if (Edit->empty()) 459 Edit->create(); 460 461 // Create the open interval. 462 OpenIdx = Edit->size(); 463 Edit->create(); 464 return OpenIdx; 465 } 466 467 void SplitEditor::selectIntv(unsigned Idx) { 468 assert(Idx != 0 && "Cannot select the complement interval"); 469 assert(Idx < Edit->size() && "Can only select previously opened interval"); 470 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 471 OpenIdx = Idx; 472 } 473 474 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 475 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 476 DEBUG(dbgs() << " enterIntvBefore " << Idx); 477 Idx = Idx.getBaseIndex(); 478 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 479 if (!ParentVNI) { 480 DEBUG(dbgs() << ": not live\n"); 481 return Idx; 482 } 483 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 484 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 485 assert(MI && "enterIntvBefore called with invalid index"); 486 487 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 488 return VNI->def; 489 } 490 491 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 492 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 493 DEBUG(dbgs() << " enterIntvAfter " << Idx); 494 Idx = Idx.getBoundaryIndex(); 495 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 496 if (!ParentVNI) { 497 DEBUG(dbgs() << ": not live\n"); 498 return Idx; 499 } 500 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 501 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 502 assert(MI && "enterIntvAfter called with invalid index"); 503 504 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 505 llvm::next(MachineBasicBlock::iterator(MI))); 506 return VNI->def; 507 } 508 509 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 510 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 511 SlotIndex End = LIS.getMBBEndIdx(&MBB); 512 SlotIndex Last = End.getPrevSlot(); 513 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 514 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 515 if (!ParentVNI) { 516 DEBUG(dbgs() << ": not live\n"); 517 return End; 518 } 519 DEBUG(dbgs() << ": valno " << ParentVNI->id); 520 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 521 SA.getLastSplitPointIter(&MBB)); 522 RegAssign.insert(VNI->def, End, OpenIdx); 523 DEBUG(dump()); 524 return VNI->def; 525 } 526 527 /// useIntv - indicate that all instructions in MBB should use OpenLI. 528 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 529 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 530 } 531 532 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 533 assert(OpenIdx && "openIntv not called before useIntv"); 534 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 535 RegAssign.insert(Start, End, OpenIdx); 536 DEBUG(dump()); 537 } 538 539 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 540 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 541 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 542 543 // The interval must be live beyond the instruction at Idx. 544 SlotIndex Boundary = Idx.getBoundaryIndex(); 545 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 546 if (!ParentVNI) { 547 DEBUG(dbgs() << ": not live\n"); 548 return Boundary.getNextSlot(); 549 } 550 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 551 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 552 assert(MI && "No instruction at index"); 553 554 // In spill mode, make live ranges as short as possible by inserting the copy 555 // before MI. This is only possible if that instruction doesn't redefine the 556 // value. The inserted COPY is not a kill, and we don't need to recompute 557 // the source live range. The spiller also won't try to hoist this copy. 558 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 559 MI->readsVirtualRegister(Edit->getReg())) { 560 forceRecompute(0, ParentVNI); 561 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 562 return Idx; 563 } 564 565 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 566 llvm::next(MachineBasicBlock::iterator(MI))); 567 return VNI->def; 568 } 569 570 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 571 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 572 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 573 574 // The interval must be live into the instruction at Idx. 575 Idx = Idx.getBaseIndex(); 576 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 577 if (!ParentVNI) { 578 DEBUG(dbgs() << ": not live\n"); 579 return Idx.getNextSlot(); 580 } 581 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 582 583 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 584 assert(MI && "No instruction at index"); 585 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 586 return VNI->def; 587 } 588 589 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 590 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 591 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 592 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 593 594 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 595 if (!ParentVNI) { 596 DEBUG(dbgs() << ": not live\n"); 597 return Start; 598 } 599 600 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 601 MBB.SkipPHIsAndLabels(MBB.begin())); 602 RegAssign.insert(Start, VNI->def, OpenIdx); 603 DEBUG(dump()); 604 return VNI->def; 605 } 606 607 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 608 assert(OpenIdx && "openIntv not called before overlapIntv"); 609 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 610 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 611 "Parent changes value in extended range"); 612 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 613 "Range cannot span basic blocks"); 614 615 // The complement interval will be extended as needed by LRCalc.extend(). 616 if (ParentVNI) 617 forceRecompute(0, ParentVNI); 618 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 619 RegAssign.insert(Start, End, OpenIdx); 620 DEBUG(dump()); 621 } 622 623 //===----------------------------------------------------------------------===// 624 // Spill modes 625 //===----------------------------------------------------------------------===// 626 627 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 628 LiveInterval *LI = Edit->get(0); 629 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 630 RegAssignMap::iterator AssignI; 631 AssignI.setMap(RegAssign); 632 633 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 634 VNInfo *VNI = Copies[i]; 635 SlotIndex Def = VNI->def; 636 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 637 assert(MI && "No instruction for back-copy"); 638 639 MachineBasicBlock *MBB = MI->getParent(); 640 MachineBasicBlock::iterator MBBI(MI); 641 bool AtBegin; 642 do AtBegin = MBBI == MBB->begin(); 643 while (!AtBegin && (--MBBI)->isDebugValue()); 644 645 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 646 LI->removeValNo(VNI); 647 LIS.RemoveMachineInstrFromMaps(MI); 648 MI->eraseFromParent(); 649 650 // Adjust RegAssign if a register assignment is killed at VNI->def. We 651 // want to avoid calculating the live range of the source register if 652 // possible. 653 AssignI.find(VNI->def.getPrevSlot()); 654 if (!AssignI.valid() || AssignI.start() >= Def) 655 continue; 656 // If MI doesn't kill the assigned register, just leave it. 657 if (AssignI.stop() != Def) 658 continue; 659 unsigned RegIdx = AssignI.value(); 660 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 661 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); 662 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def)); 663 } else { 664 SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot(); 665 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 666 AssignI.setStop(Kill); 667 } 668 } 669 } 670 671 MachineBasicBlock* 672 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 673 MachineBasicBlock *DefMBB) { 674 if (MBB == DefMBB) 675 return MBB; 676 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 677 678 const MachineLoopInfo &Loops = SA.Loops; 679 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 680 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 681 682 // Best candidate so far. 683 MachineBasicBlock *BestMBB = MBB; 684 unsigned BestDepth = UINT_MAX; 685 686 for (;;) { 687 const MachineLoop *Loop = Loops.getLoopFor(MBB); 688 689 // MBB isn't in a loop, it doesn't get any better. All dominators have a 690 // higher frequency by definition. 691 if (!Loop) { 692 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 693 << MBB->getNumber() << " at depth 0\n"); 694 return MBB; 695 } 696 697 // We'll never be able to exit the DefLoop. 698 if (Loop == DefLoop) { 699 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 700 << MBB->getNumber() << " in the same loop\n"); 701 return MBB; 702 } 703 704 // Least busy dominator seen so far. 705 unsigned Depth = Loop->getLoopDepth(); 706 if (Depth < BestDepth) { 707 BestMBB = MBB; 708 BestDepth = Depth; 709 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 710 << MBB->getNumber() << " at depth " << Depth << '\n'); 711 } 712 713 // Leave loop by going to the immediate dominator of the loop header. 714 // This is a bigger stride than simply walking up the dominator tree. 715 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 716 717 // Too far up the dominator tree? 718 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 719 return BestMBB; 720 721 MBB = IDom->getBlock(); 722 } 723 } 724 725 void SplitEditor::hoistCopiesForSize() { 726 // Get the complement interval, always RegIdx 0. 727 LiveInterval *LI = Edit->get(0); 728 LiveInterval *Parent = &Edit->getParent(); 729 730 // Track the nearest common dominator for all back-copies for each ParentVNI, 731 // indexed by ParentVNI->id. 732 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair; 733 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 734 735 // Find the nearest common dominator for parent values with multiple 736 // back-copies. If a single back-copy dominates, put it in DomPair.second. 737 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 738 VI != VE; ++VI) { 739 VNInfo *VNI = *VI; 740 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 741 assert(ParentVNI && "Parent not live at complement def"); 742 743 // Don't hoist remats. The complement is probably going to disappear 744 // completely anyway. 745 if (Edit->didRematerialize(ParentVNI)) 746 continue; 747 748 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 749 DomPair &Dom = NearestDom[ParentVNI->id]; 750 751 // Keep directly defined parent values. This is either a PHI or an 752 // instruction in the complement range. All other copies of ParentVNI 753 // should be eliminated. 754 if (VNI->def == ParentVNI->def) { 755 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 756 Dom = DomPair(ValMBB, VNI->def); 757 continue; 758 } 759 // Skip the singly mapped values. There is nothing to gain from hoisting a 760 // single back-copy. 761 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 762 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 763 continue; 764 } 765 766 if (!Dom.first) { 767 // First time we see ParentVNI. VNI dominates itself. 768 Dom = DomPair(ValMBB, VNI->def); 769 } else if (Dom.first == ValMBB) { 770 // Two defs in the same block. Pick the earlier def. 771 if (!Dom.second.isValid() || VNI->def < Dom.second) 772 Dom.second = VNI->def; 773 } else { 774 // Different basic blocks. Check if one dominates. 775 MachineBasicBlock *Near = 776 MDT.findNearestCommonDominator(Dom.first, ValMBB); 777 if (Near == ValMBB) 778 // Def ValMBB dominates. 779 Dom = DomPair(ValMBB, VNI->def); 780 else if (Near != Dom.first) 781 // None dominate. Hoist to common dominator, need new def. 782 Dom = DomPair(Near, SlotIndex()); 783 } 784 785 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def 786 << " for parent " << ParentVNI->id << '@' << ParentVNI->def 787 << " hoist to BB#" << Dom.first->getNumber() << ' ' 788 << Dom.second << '\n'); 789 } 790 791 // Insert the hoisted copies. 792 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 793 DomPair &Dom = NearestDom[i]; 794 if (!Dom.first || Dom.second.isValid()) 795 continue; 796 // This value needs a hoisted copy inserted at the end of Dom.first. 797 VNInfo *ParentVNI = Parent->getValNumInfo(i); 798 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 799 // Get a less loopy dominator than Dom.first. 800 Dom.first = findShallowDominator(Dom.first, DefMBB); 801 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 802 Dom.second = 803 defFromParent(0, ParentVNI, Last, *Dom.first, 804 SA.getLastSplitPointIter(Dom.first))->def; 805 } 806 807 // Remove redundant back-copies that are now known to be dominated by another 808 // def with the same value. 809 SmallVector<VNInfo*, 8> BackCopies; 810 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 811 VI != VE; ++VI) { 812 VNInfo *VNI = *VI; 813 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 814 const DomPair &Dom = NearestDom[ParentVNI->id]; 815 if (!Dom.first || Dom.second == VNI->def) 816 continue; 817 BackCopies.push_back(VNI); 818 forceRecompute(0, ParentVNI); 819 } 820 removeBackCopies(BackCopies); 821 } 822 823 824 /// transferValues - Transfer all possible values to the new live ranges. 825 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 826 bool SplitEditor::transferValues() { 827 bool Skipped = false; 828 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 829 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 830 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 831 DEBUG(dbgs() << " blit " << *ParentI << ':'); 832 VNInfo *ParentVNI = ParentI->valno; 833 // RegAssign has holes where RegIdx 0 should be used. 834 SlotIndex Start = ParentI->start; 835 AssignI.advanceTo(Start); 836 do { 837 unsigned RegIdx; 838 SlotIndex End = ParentI->end; 839 if (!AssignI.valid()) { 840 RegIdx = 0; 841 } else if (AssignI.start() <= Start) { 842 RegIdx = AssignI.value(); 843 if (AssignI.stop() < End) { 844 End = AssignI.stop(); 845 ++AssignI; 846 } 847 } else { 848 RegIdx = 0; 849 End = std::min(End, AssignI.start()); 850 } 851 852 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 853 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 854 LiveInterval *LI = Edit->get(RegIdx); 855 856 // Check for a simply defined value that can be blitted directly. 857 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 858 if (VNInfo *VNI = VFP.getPointer()) { 859 DEBUG(dbgs() << ':' << VNI->id); 860 LI->addRange(LiveRange(Start, End, VNI)); 861 Start = End; 862 continue; 863 } 864 865 // Skip values with forced recomputation. 866 if (VFP.getInt()) { 867 DEBUG(dbgs() << "(recalc)"); 868 Skipped = true; 869 Start = End; 870 continue; 871 } 872 873 LiveRangeCalc &LRC = getLRCalc(RegIdx); 874 875 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 876 // so the live range is accurate. Add live-in blocks in [Start;End) to the 877 // LiveInBlocks. 878 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 879 SlotIndex BlockStart, BlockEnd; 880 tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB); 881 882 // The first block may be live-in, or it may have its own def. 883 if (Start != BlockStart) { 884 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 885 assert(VNI && "Missing def for complex mapped value"); 886 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 887 // MBB has its own def. Is it also live-out? 888 if (BlockEnd <= End) 889 LRC.setLiveOutValue(MBB, VNI); 890 891 // Skip to the next block for live-in. 892 ++MBB; 893 BlockStart = BlockEnd; 894 } 895 896 // Handle the live-in blocks covered by [Start;End). 897 assert(Start <= BlockStart && "Expected live-in block"); 898 while (BlockStart < End) { 899 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 900 BlockEnd = LIS.getMBBEndIdx(MBB); 901 if (BlockStart == ParentVNI->def) { 902 // This block has the def of a parent PHI, so it isn't live-in. 903 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 904 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End)); 905 assert(VNI && "Missing def for complex mapped parent PHI"); 906 if (End >= BlockEnd) 907 LRC.setLiveOutValue(MBB, VNI); // Live-out as well. 908 } else { 909 // This block needs a live-in value. The last block covered may not 910 // be live-out. 911 if (End < BlockEnd) 912 LRC.addLiveInBlock(LI, MDT[MBB], End); 913 else { 914 // Live-through, and we don't know the value. 915 LRC.addLiveInBlock(LI, MDT[MBB]); 916 LRC.setLiveOutValue(MBB, 0); 917 } 918 } 919 BlockStart = BlockEnd; 920 ++MBB; 921 } 922 Start = End; 923 } while (Start != ParentI->end); 924 DEBUG(dbgs() << '\n'); 925 } 926 927 LRCalc[0].calculateValues(LIS.getSlotIndexes(), &MDT, 928 &LIS.getVNInfoAllocator()); 929 if (SpillMode) 930 LRCalc[1].calculateValues(LIS.getSlotIndexes(), &MDT, 931 &LIS.getVNInfoAllocator()); 932 933 return Skipped; 934 } 935 936 void SplitEditor::extendPHIKillRanges() { 937 // Extend live ranges to be live-out for successor PHI values. 938 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 939 E = Edit->getParent().vni_end(); I != E; ++I) { 940 const VNInfo *PHIVNI = *I; 941 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 942 continue; 943 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 944 LiveInterval *LI = Edit->get(RegIdx); 945 LiveRangeCalc &LRC = getLRCalc(RegIdx); 946 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 947 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 948 PE = MBB->pred_end(); PI != PE; ++PI) { 949 SlotIndex End = LIS.getMBBEndIdx(*PI); 950 SlotIndex LastUse = End.getPrevSlot(); 951 // The predecessor may not have a live-out value. That is OK, like an 952 // undef PHI operand. 953 if (Edit->getParent().liveAt(LastUse)) { 954 assert(RegAssign.lookup(LastUse) == RegIdx && 955 "Different register assignment in phi predecessor"); 956 LRC.extend(LI, End, 957 LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator()); 958 } 959 } 960 } 961 } 962 963 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 964 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 965 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 966 RE = MRI.reg_end(); RI != RE;) { 967 MachineOperand &MO = RI.getOperand(); 968 MachineInstr *MI = MO.getParent(); 969 ++RI; 970 // LiveDebugVariables should have handled all DBG_VALUE instructions. 971 if (MI->isDebugValue()) { 972 DEBUG(dbgs() << "Zapping " << *MI); 973 MO.setReg(0); 974 continue; 975 } 976 977 // <undef> operands don't really read the register, so it doesn't matter 978 // which register we choose. When the use operand is tied to a def, we must 979 // use the same register as the def, so just do that always. 980 SlotIndex Idx = LIS.getInstructionIndex(MI); 981 if (MO.isDef() || MO.isUndef()) 982 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 983 984 // Rewrite to the mapped register at Idx. 985 unsigned RegIdx = RegAssign.lookup(Idx); 986 LiveInterval *LI = Edit->get(RegIdx); 987 MO.setReg(LI->reg); 988 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 989 << Idx << ':' << RegIdx << '\t' << *MI); 990 991 // Extend liveness to Idx if the instruction reads reg. 992 if (!ExtendRanges || MO.isUndef()) 993 continue; 994 995 // Skip instructions that don't read Reg. 996 if (MO.isDef()) { 997 if (!MO.getSubReg() && !MO.isEarlyClobber()) 998 continue; 999 // We may wan't to extend a live range for a partial redef, or for a use 1000 // tied to an early clobber. 1001 Idx = Idx.getPrevSlot(); 1002 if (!Edit->getParent().liveAt(Idx)) 1003 continue; 1004 } else 1005 Idx = Idx.getRegSlot(true); 1006 1007 getLRCalc(RegIdx).extend(LI, Idx.getNextSlot(), LIS.getSlotIndexes(), 1008 &MDT, &LIS.getVNInfoAllocator()); 1009 } 1010 } 1011 1012 void SplitEditor::deleteRematVictims() { 1013 SmallVector<MachineInstr*, 8> Dead; 1014 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 1015 LiveInterval *LI = *I; 1016 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 1017 LII != LIE; ++LII) { 1018 // Dead defs end at the dead slot. 1019 if (LII->end != LII->valno->def.getDeadSlot()) 1020 continue; 1021 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 1022 assert(MI && "Missing instruction for dead def"); 1023 MI->addRegisterDead(LI->reg, &TRI); 1024 1025 if (!MI->allDefsAreDead()) 1026 continue; 1027 1028 DEBUG(dbgs() << "All defs dead: " << *MI); 1029 Dead.push_back(MI); 1030 } 1031 } 1032 1033 if (Dead.empty()) 1034 return; 1035 1036 Edit->eliminateDeadDefs(Dead); 1037 } 1038 1039 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1040 ++NumFinished; 1041 1042 // At this point, the live intervals in Edit contain VNInfos corresponding to 1043 // the inserted copies. 1044 1045 // Add the original defs from the parent interval. 1046 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 1047 E = Edit->getParent().vni_end(); I != E; ++I) { 1048 const VNInfo *ParentVNI = *I; 1049 if (ParentVNI->isUnused()) 1050 continue; 1051 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1052 VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def); 1053 VNI->setIsPHIDef(ParentVNI->isPHIDef()); 1054 1055 // Force rematted values to be recomputed everywhere. 1056 // The new live ranges may be truncated. 1057 if (Edit->didRematerialize(ParentVNI)) 1058 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1059 forceRecompute(i, ParentVNI); 1060 } 1061 1062 // Hoist back-copies to the complement interval when in spill mode. 1063 switch (SpillMode) { 1064 case SM_Partition: 1065 // Leave all back-copies as is. 1066 break; 1067 case SM_Size: 1068 hoistCopiesForSize(); 1069 break; 1070 case SM_Speed: 1071 llvm_unreachable("Spill mode 'speed' not implemented yet"); 1072 } 1073 1074 // Transfer the simply mapped values, check if any are skipped. 1075 bool Skipped = transferValues(); 1076 if (Skipped) 1077 extendPHIKillRanges(); 1078 else 1079 ++NumSimple; 1080 1081 // Rewrite virtual registers, possibly extending ranges. 1082 rewriteAssigned(Skipped); 1083 1084 // Delete defs that were rematted everywhere. 1085 if (Skipped) 1086 deleteRematVictims(); 1087 1088 // Get rid of unused values and set phi-kill flags. 1089 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) 1090 (*I)->RenumberValues(LIS); 1091 1092 // Provide a reverse mapping from original indices to Edit ranges. 1093 if (LRMap) { 1094 LRMap->clear(); 1095 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1096 LRMap->push_back(i); 1097 } 1098 1099 // Now check if any registers were separated into multiple components. 1100 ConnectedVNInfoEqClasses ConEQ(LIS); 1101 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1102 // Don't use iterators, they are invalidated by create() below. 1103 LiveInterval *li = Edit->get(i); 1104 unsigned NumComp = ConEQ.Classify(li); 1105 if (NumComp <= 1) 1106 continue; 1107 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 1108 SmallVector<LiveInterval*, 8> dups; 1109 dups.push_back(li); 1110 for (unsigned j = 1; j != NumComp; ++j) 1111 dups.push_back(&Edit->create()); 1112 ConEQ.Distribute(&dups[0], MRI); 1113 // The new intervals all map back to i. 1114 if (LRMap) 1115 LRMap->resize(Edit->size(), i); 1116 } 1117 1118 // Calculate spill weight and allocation hints for new intervals. 1119 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops); 1120 1121 assert(!LRMap || LRMap->size() == Edit->size()); 1122 } 1123 1124 1125 //===----------------------------------------------------------------------===// 1126 // Single Block Splitting 1127 //===----------------------------------------------------------------------===// 1128 1129 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1130 bool SingleInstrs) const { 1131 // Always split for multiple instructions. 1132 if (!BI.isOneInstr()) 1133 return true; 1134 // Don't split for single instructions unless explicitly requested. 1135 if (!SingleInstrs) 1136 return false; 1137 // Splitting a live-through range always makes progress. 1138 if (BI.LiveIn && BI.LiveOut) 1139 return true; 1140 // No point in isolating a copy. It has no register class constraints. 1141 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1142 return false; 1143 // Finally, don't isolate an end point that was created by earlier splits. 1144 return isOriginalEndpoint(BI.FirstInstr); 1145 } 1146 1147 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1148 openIntv(); 1149 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1150 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1151 LastSplitPoint)); 1152 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1153 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1154 } else { 1155 // The last use is after the last valid split point. 1156 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1157 useIntv(SegStart, SegStop); 1158 overlapIntv(SegStop, BI.LastInstr); 1159 } 1160 } 1161 1162 1163 //===----------------------------------------------------------------------===// 1164 // Global Live Range Splitting Support 1165 //===----------------------------------------------------------------------===// 1166 1167 // These methods support a method of global live range splitting that uses a 1168 // global algorithm to decide intervals for CFG edges. They will insert split 1169 // points and color intervals in basic blocks while avoiding interference. 1170 // 1171 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1172 // are on the stack. 1173 1174 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1175 unsigned IntvIn, SlotIndex LeaveBefore, 1176 unsigned IntvOut, SlotIndex EnterAfter){ 1177 SlotIndex Start, Stop; 1178 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1179 1180 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 1181 << ") intf " << LeaveBefore << '-' << EnterAfter 1182 << ", live-through " << IntvIn << " -> " << IntvOut); 1183 1184 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1185 1186 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1187 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1188 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1189 1190 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1191 1192 if (!IntvOut) { 1193 DEBUG(dbgs() << ", spill on entry.\n"); 1194 // 1195 // <<<<<<<<< Possible LeaveBefore interference. 1196 // |-----------| Live through. 1197 // -____________ Spill on entry. 1198 // 1199 selectIntv(IntvIn); 1200 SlotIndex Idx = leaveIntvAtTop(*MBB); 1201 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1202 (void)Idx; 1203 return; 1204 } 1205 1206 if (!IntvIn) { 1207 DEBUG(dbgs() << ", reload on exit.\n"); 1208 // 1209 // >>>>>>> Possible EnterAfter interference. 1210 // |-----------| Live through. 1211 // ___________-- Reload on exit. 1212 // 1213 selectIntv(IntvOut); 1214 SlotIndex Idx = enterIntvAtEnd(*MBB); 1215 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1216 (void)Idx; 1217 return; 1218 } 1219 1220 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1221 DEBUG(dbgs() << ", straight through.\n"); 1222 // 1223 // |-----------| Live through. 1224 // ------------- Straight through, same intv, no interference. 1225 // 1226 selectIntv(IntvOut); 1227 useIntv(Start, Stop); 1228 return; 1229 } 1230 1231 // We cannot legally insert splits after LSP. 1232 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1233 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1234 1235 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1236 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1237 DEBUG(dbgs() << ", switch avoiding interference.\n"); 1238 // 1239 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1240 // |-----------| Live through. 1241 // ------======= Switch intervals between interference. 1242 // 1243 selectIntv(IntvOut); 1244 SlotIndex Idx; 1245 if (LeaveBefore && LeaveBefore < LSP) { 1246 Idx = enterIntvBefore(LeaveBefore); 1247 useIntv(Idx, Stop); 1248 } else { 1249 Idx = enterIntvAtEnd(*MBB); 1250 } 1251 selectIntv(IntvIn); 1252 useIntv(Start, Idx); 1253 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1254 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1255 return; 1256 } 1257 1258 DEBUG(dbgs() << ", create local intv for interference.\n"); 1259 // 1260 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1261 // |-----------| Live through. 1262 // ==---------== Switch intervals before/after interference. 1263 // 1264 assert(LeaveBefore <= EnterAfter && "Missed case"); 1265 1266 selectIntv(IntvOut); 1267 SlotIndex Idx = enterIntvAfter(EnterAfter); 1268 useIntv(Idx, Stop); 1269 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1270 1271 selectIntv(IntvIn); 1272 Idx = leaveIntvBefore(LeaveBefore); 1273 useIntv(Start, Idx); 1274 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1275 } 1276 1277 1278 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1279 unsigned IntvIn, SlotIndex LeaveBefore) { 1280 SlotIndex Start, Stop; 1281 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1282 1283 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1284 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1285 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1286 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1287 1288 assert(IntvIn && "Must have register in"); 1289 assert(BI.LiveIn && "Must be live-in"); 1290 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1291 1292 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1293 DEBUG(dbgs() << " before interference.\n"); 1294 // 1295 // <<< Interference after kill. 1296 // |---o---x | Killed in block. 1297 // ========= Use IntvIn everywhere. 1298 // 1299 selectIntv(IntvIn); 1300 useIntv(Start, BI.LastInstr); 1301 return; 1302 } 1303 1304 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1305 1306 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1307 // 1308 // <<< Possible interference after last use. 1309 // |---o---o---| Live-out on stack. 1310 // =========____ Leave IntvIn after last use. 1311 // 1312 // < Interference after last use. 1313 // |---o---o--o| Live-out on stack, late last use. 1314 // ============ Copy to stack after LSP, overlap IntvIn. 1315 // \_____ Stack interval is live-out. 1316 // 1317 if (BI.LastInstr < LSP) { 1318 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1319 selectIntv(IntvIn); 1320 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1321 useIntv(Start, Idx); 1322 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1323 } else { 1324 DEBUG(dbgs() << ", spill before last split point.\n"); 1325 selectIntv(IntvIn); 1326 SlotIndex Idx = leaveIntvBefore(LSP); 1327 overlapIntv(Idx, BI.LastInstr); 1328 useIntv(Start, Idx); 1329 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1330 } 1331 return; 1332 } 1333 1334 // The interference is overlapping somewhere we wanted to use IntvIn. That 1335 // means we need to create a local interval that can be allocated a 1336 // different register. 1337 unsigned LocalIntv = openIntv(); 1338 (void)LocalIntv; 1339 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1340 1341 if (!BI.LiveOut || BI.LastInstr < LSP) { 1342 // 1343 // <<<<<<< Interference overlapping uses. 1344 // |---o---o---| Live-out on stack. 1345 // =====----____ Leave IntvIn before interference, then spill. 1346 // 1347 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1348 SlotIndex From = enterIntvBefore(LeaveBefore); 1349 useIntv(From, To); 1350 selectIntv(IntvIn); 1351 useIntv(Start, From); 1352 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1353 return; 1354 } 1355 1356 // <<<<<<< Interference overlapping uses. 1357 // |---o---o--o| Live-out on stack, late last use. 1358 // =====------- Copy to stack before LSP, overlap LocalIntv. 1359 // \_____ Stack interval is live-out. 1360 // 1361 SlotIndex To = leaveIntvBefore(LSP); 1362 overlapIntv(To, BI.LastInstr); 1363 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1364 useIntv(From, To); 1365 selectIntv(IntvIn); 1366 useIntv(Start, From); 1367 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1368 } 1369 1370 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1371 unsigned IntvOut, SlotIndex EnterAfter) { 1372 SlotIndex Start, Stop; 1373 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1374 1375 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1376 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1377 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1378 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1379 1380 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1381 1382 assert(IntvOut && "Must have register out"); 1383 assert(BI.LiveOut && "Must be live-out"); 1384 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1385 1386 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1387 DEBUG(dbgs() << " after interference.\n"); 1388 // 1389 // >>>> Interference before def. 1390 // | o---o---| Defined in block. 1391 // ========= Use IntvOut everywhere. 1392 // 1393 selectIntv(IntvOut); 1394 useIntv(BI.FirstInstr, Stop); 1395 return; 1396 } 1397 1398 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1399 DEBUG(dbgs() << ", reload after interference.\n"); 1400 // 1401 // >>>> Interference before def. 1402 // |---o---o---| Live-through, stack-in. 1403 // ____========= Enter IntvOut before first use. 1404 // 1405 selectIntv(IntvOut); 1406 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1407 useIntv(Idx, Stop); 1408 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1409 return; 1410 } 1411 1412 // The interference is overlapping somewhere we wanted to use IntvOut. That 1413 // means we need to create a local interval that can be allocated a 1414 // different register. 1415 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1416 // 1417 // >>>>>>> Interference overlapping uses. 1418 // |---o---o---| Live-through, stack-in. 1419 // ____---====== Create local interval for interference range. 1420 // 1421 selectIntv(IntvOut); 1422 SlotIndex Idx = enterIntvAfter(EnterAfter); 1423 useIntv(Idx, Stop); 1424 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1425 1426 openIntv(); 1427 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1428 useIntv(From, Idx); 1429 } 1430