Home | History | Annotate | Download | only in IPA
      1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This simple pass provides alias and mod/ref information for global values
     11 // that do not have their address taken, and keeps track of whether functions
     12 // read or write memory (are "pure").  For this simple (but very common) case,
     13 // we can provide pretty accurate and useful information.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #define DEBUG_TYPE "globalsmodref-aa"
     18 #include "llvm/Analysis/Passes.h"
     19 #include "llvm/Module.h"
     20 #include "llvm/Pass.h"
     21 #include "llvm/Instructions.h"
     22 #include "llvm/Constants.h"
     23 #include "llvm/DerivedTypes.h"
     24 #include "llvm/IntrinsicInst.h"
     25 #include "llvm/Analysis/AliasAnalysis.h"
     26 #include "llvm/Analysis/CallGraph.h"
     27 #include "llvm/Analysis/MemoryBuiltins.h"
     28 #include "llvm/Analysis/ValueTracking.h"
     29 #include "llvm/Support/CommandLine.h"
     30 #include "llvm/Support/InstIterator.h"
     31 #include "llvm/ADT/Statistic.h"
     32 #include "llvm/ADT/SCCIterator.h"
     33 #include <set>
     34 using namespace llvm;
     35 
     36 STATISTIC(NumNonAddrTakenGlobalVars,
     37           "Number of global vars without address taken");
     38 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
     39 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
     40 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
     41 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
     42 
     43 namespace {
     44   /// FunctionRecord - One instance of this structure is stored for every
     45   /// function in the program.  Later, the entries for these functions are
     46   /// removed if the function is found to call an external function (in which
     47   /// case we know nothing about it.
     48   struct FunctionRecord {
     49     /// GlobalInfo - Maintain mod/ref info for all of the globals without
     50     /// addresses taken that are read or written (transitively) by this
     51     /// function.
     52     std::map<const GlobalValue*, unsigned> GlobalInfo;
     53 
     54     /// MayReadAnyGlobal - May read global variables, but it is not known which.
     55     bool MayReadAnyGlobal;
     56 
     57     unsigned getInfoForGlobal(const GlobalValue *GV) const {
     58       unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
     59       std::map<const GlobalValue*, unsigned>::const_iterator I =
     60         GlobalInfo.find(GV);
     61       if (I != GlobalInfo.end())
     62         Effect |= I->second;
     63       return Effect;
     64     }
     65 
     66     /// FunctionEffect - Capture whether or not this function reads or writes to
     67     /// ANY memory.  If not, we can do a lot of aggressive analysis on it.
     68     unsigned FunctionEffect;
     69 
     70     FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
     71   };
     72 
     73   /// GlobalsModRef - The actual analysis pass.
     74   class GlobalsModRef : public ModulePass, public AliasAnalysis {
     75     /// NonAddressTakenGlobals - The globals that do not have their addresses
     76     /// taken.
     77     std::set<const GlobalValue*> NonAddressTakenGlobals;
     78 
     79     /// IndirectGlobals - The memory pointed to by this global is known to be
     80     /// 'owned' by the global.
     81     std::set<const GlobalValue*> IndirectGlobals;
     82 
     83     /// AllocsForIndirectGlobals - If an instruction allocates memory for an
     84     /// indirect global, this map indicates which one.
     85     std::map<const Value*, const GlobalValue*> AllocsForIndirectGlobals;
     86 
     87     /// FunctionInfo - For each function, keep track of what globals are
     88     /// modified or read.
     89     std::map<const Function*, FunctionRecord> FunctionInfo;
     90 
     91   public:
     92     static char ID;
     93     GlobalsModRef() : ModulePass(ID) {
     94       initializeGlobalsModRefPass(*PassRegistry::getPassRegistry());
     95     }
     96 
     97     bool runOnModule(Module &M) {
     98       InitializeAliasAnalysis(this);                 // set up super class
     99       AnalyzeGlobals(M);                          // find non-addr taken globals
    100       AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
    101       return false;
    102     }
    103 
    104     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    105       AliasAnalysis::getAnalysisUsage(AU);
    106       AU.addRequired<CallGraph>();
    107       AU.setPreservesAll();                         // Does not transform code
    108     }
    109 
    110     //------------------------------------------------
    111     // Implement the AliasAnalysis API
    112     //
    113     AliasResult alias(const Location &LocA, const Location &LocB);
    114     ModRefResult getModRefInfo(ImmutableCallSite CS,
    115                                const Location &Loc);
    116     ModRefResult getModRefInfo(ImmutableCallSite CS1,
    117                                ImmutableCallSite CS2) {
    118       return AliasAnalysis::getModRefInfo(CS1, CS2);
    119     }
    120 
    121     /// getModRefBehavior - Return the behavior of the specified function if
    122     /// called from the specified call site.  The call site may be null in which
    123     /// case the most generic behavior of this function should be returned.
    124     ModRefBehavior getModRefBehavior(const Function *F) {
    125       ModRefBehavior Min = UnknownModRefBehavior;
    126 
    127       if (FunctionRecord *FR = getFunctionInfo(F)) {
    128         if (FR->FunctionEffect == 0)
    129           Min = DoesNotAccessMemory;
    130         else if ((FR->FunctionEffect & Mod) == 0)
    131           Min = OnlyReadsMemory;
    132       }
    133 
    134       return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
    135     }
    136 
    137     /// getModRefBehavior - Return the behavior of the specified function if
    138     /// called from the specified call site.  The call site may be null in which
    139     /// case the most generic behavior of this function should be returned.
    140     ModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
    141       ModRefBehavior Min = UnknownModRefBehavior;
    142 
    143       if (const Function* F = CS.getCalledFunction())
    144         if (FunctionRecord *FR = getFunctionInfo(F)) {
    145           if (FR->FunctionEffect == 0)
    146             Min = DoesNotAccessMemory;
    147           else if ((FR->FunctionEffect & Mod) == 0)
    148             Min = OnlyReadsMemory;
    149         }
    150 
    151       return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
    152     }
    153 
    154     virtual void deleteValue(Value *V);
    155     virtual void copyValue(Value *From, Value *To);
    156     virtual void addEscapingUse(Use &U);
    157 
    158     /// getAdjustedAnalysisPointer - This method is used when a pass implements
    159     /// an analysis interface through multiple inheritance.  If needed, it
    160     /// should override this to adjust the this pointer as needed for the
    161     /// specified pass info.
    162     virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
    163       if (PI == &AliasAnalysis::ID)
    164         return (AliasAnalysis*)this;
    165       return this;
    166     }
    167 
    168   private:
    169     /// getFunctionInfo - Return the function info for the function, or null if
    170     /// we don't have anything useful to say about it.
    171     FunctionRecord *getFunctionInfo(const Function *F) {
    172       std::map<const Function*, FunctionRecord>::iterator I =
    173         FunctionInfo.find(F);
    174       if (I != FunctionInfo.end())
    175         return &I->second;
    176       return 0;
    177     }
    178 
    179     void AnalyzeGlobals(Module &M);
    180     void AnalyzeCallGraph(CallGraph &CG, Module &M);
    181     bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
    182                               std::vector<Function*> &Writers,
    183                               GlobalValue *OkayStoreDest = 0);
    184     bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
    185   };
    186 }
    187 
    188 char GlobalsModRef::ID = 0;
    189 INITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis,
    190                 "globalsmodref-aa", "Simple mod/ref analysis for globals",
    191                 false, true, false)
    192 INITIALIZE_AG_DEPENDENCY(CallGraph)
    193 INITIALIZE_AG_PASS_END(GlobalsModRef, AliasAnalysis,
    194                 "globalsmodref-aa", "Simple mod/ref analysis for globals",
    195                 false, true, false)
    196 
    197 Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
    198 
    199 /// AnalyzeGlobals - Scan through the users of all of the internal
    200 /// GlobalValue's in the program.  If none of them have their "address taken"
    201 /// (really, their address passed to something nontrivial), record this fact,
    202 /// and record the functions that they are used directly in.
    203 void GlobalsModRef::AnalyzeGlobals(Module &M) {
    204   std::vector<Function*> Readers, Writers;
    205   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
    206     if (I->hasLocalLinkage()) {
    207       if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
    208         // Remember that we are tracking this global.
    209         NonAddressTakenGlobals.insert(I);
    210         ++NumNonAddrTakenFunctions;
    211       }
    212       Readers.clear(); Writers.clear();
    213     }
    214 
    215   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
    216        I != E; ++I)
    217     if (I->hasLocalLinkage()) {
    218       if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
    219         // Remember that we are tracking this global, and the mod/ref fns
    220         NonAddressTakenGlobals.insert(I);
    221 
    222         for (unsigned i = 0, e = Readers.size(); i != e; ++i)
    223           FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
    224 
    225         if (!I->isConstant())  // No need to keep track of writers to constants
    226           for (unsigned i = 0, e = Writers.size(); i != e; ++i)
    227             FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
    228         ++NumNonAddrTakenGlobalVars;
    229 
    230         // If this global holds a pointer type, see if it is an indirect global.
    231         if (I->getType()->getElementType()->isPointerTy() &&
    232             AnalyzeIndirectGlobalMemory(I))
    233           ++NumIndirectGlobalVars;
    234       }
    235       Readers.clear(); Writers.clear();
    236     }
    237 }
    238 
    239 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
    240 /// If this is used by anything complex (i.e., the address escapes), return
    241 /// true.  Also, while we are at it, keep track of those functions that read and
    242 /// write to the value.
    243 ///
    244 /// If OkayStoreDest is non-null, stores into this global are allowed.
    245 bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
    246                                          std::vector<Function*> &Readers,
    247                                          std::vector<Function*> &Writers,
    248                                          GlobalValue *OkayStoreDest) {
    249   if (!V->getType()->isPointerTy()) return true;
    250 
    251   for (Value::use_iterator UI = V->use_begin(), E=V->use_end(); UI != E; ++UI) {
    252     User *U = *UI;
    253     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
    254       Readers.push_back(LI->getParent()->getParent());
    255     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
    256       if (V == SI->getOperand(1)) {
    257         Writers.push_back(SI->getParent()->getParent());
    258       } else if (SI->getOperand(1) != OkayStoreDest) {
    259         return true;  // Storing the pointer
    260       }
    261     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
    262       if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
    263     } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
    264       if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest))
    265         return true;
    266     } else if (isFreeCall(U)) {
    267       Writers.push_back(cast<Instruction>(U)->getParent()->getParent());
    268     } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
    269       // Make sure that this is just the function being called, not that it is
    270       // passing into the function.
    271       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
    272         if (CI->getArgOperand(i) == V) return true;
    273     } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
    274       // Make sure that this is just the function being called, not that it is
    275       // passing into the function.
    276       for (unsigned i = 0, e = II->getNumArgOperands(); i != e; ++i)
    277         if (II->getArgOperand(i) == V) return true;
    278     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
    279       if (CE->getOpcode() == Instruction::GetElementPtr ||
    280           CE->getOpcode() == Instruction::BitCast) {
    281         if (AnalyzeUsesOfPointer(CE, Readers, Writers))
    282           return true;
    283       } else {
    284         return true;
    285       }
    286     } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
    287       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
    288         return true;  // Allow comparison against null.
    289     } else {
    290       return true;
    291     }
    292   }
    293 
    294   return false;
    295 }
    296 
    297 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
    298 /// which holds a pointer type.  See if the global always points to non-aliased
    299 /// heap memory: that is, all initializers of the globals are allocations, and
    300 /// those allocations have no use other than initialization of the global.
    301 /// Further, all loads out of GV must directly use the memory, not store the
    302 /// pointer somewhere.  If this is true, we consider the memory pointed to by
    303 /// GV to be owned by GV and can disambiguate other pointers from it.
    304 bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
    305   // Keep track of values related to the allocation of the memory, f.e. the
    306   // value produced by the malloc call and any casts.
    307   std::vector<Value*> AllocRelatedValues;
    308 
    309   // Walk the user list of the global.  If we find anything other than a direct
    310   // load or store, bail out.
    311   for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
    312     User *U = *I;
    313     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
    314       // The pointer loaded from the global can only be used in simple ways:
    315       // we allow addressing of it and loading storing to it.  We do *not* allow
    316       // storing the loaded pointer somewhere else or passing to a function.
    317       std::vector<Function*> ReadersWriters;
    318       if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
    319         return false;  // Loaded pointer escapes.
    320       // TODO: Could try some IP mod/ref of the loaded pointer.
    321     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
    322       // Storing the global itself.
    323       if (SI->getOperand(0) == GV) return false;
    324 
    325       // If storing the null pointer, ignore it.
    326       if (isa<ConstantPointerNull>(SI->getOperand(0)))
    327         continue;
    328 
    329       // Check the value being stored.
    330       Value *Ptr = GetUnderlyingObject(SI->getOperand(0));
    331 
    332       if (isMalloc(Ptr)) {
    333         // Okay, easy case.
    334       } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
    335         Function *F = CI->getCalledFunction();
    336         if (!F || !F->isDeclaration()) return false;     // Too hard to analyze.
    337         if (F->getName() != "calloc") return false;   // Not calloc.
    338       } else {
    339         return false;  // Too hard to analyze.
    340       }
    341 
    342       // Analyze all uses of the allocation.  If any of them are used in a
    343       // non-simple way (e.g. stored to another global) bail out.
    344       std::vector<Function*> ReadersWriters;
    345       if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
    346         return false;  // Loaded pointer escapes.
    347 
    348       // Remember that this allocation is related to the indirect global.
    349       AllocRelatedValues.push_back(Ptr);
    350     } else {
    351       // Something complex, bail out.
    352       return false;
    353     }
    354   }
    355 
    356   // Okay, this is an indirect global.  Remember all of the allocations for
    357   // this global in AllocsForIndirectGlobals.
    358   while (!AllocRelatedValues.empty()) {
    359     AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
    360     AllocRelatedValues.pop_back();
    361   }
    362   IndirectGlobals.insert(GV);
    363   return true;
    364 }
    365 
    366 /// AnalyzeCallGraph - At this point, we know the functions where globals are
    367 /// immediately stored to and read from.  Propagate this information up the call
    368 /// graph to all callers and compute the mod/ref info for all memory for each
    369 /// function.
    370 void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
    371   // We do a bottom-up SCC traversal of the call graph.  In other words, we
    372   // visit all callees before callers (leaf-first).
    373   for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
    374        ++I) {
    375     std::vector<CallGraphNode *> &SCC = *I;
    376     assert(!SCC.empty() && "SCC with no functions?");
    377 
    378     if (!SCC[0]->getFunction()) {
    379       // Calls externally - can't say anything useful.  Remove any existing
    380       // function records (may have been created when scanning globals).
    381       for (unsigned i = 0, e = SCC.size(); i != e; ++i)
    382         FunctionInfo.erase(SCC[i]->getFunction());
    383       continue;
    384     }
    385 
    386     FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
    387 
    388     bool KnowNothing = false;
    389     unsigned FunctionEffect = 0;
    390 
    391     // Collect the mod/ref properties due to called functions.  We only compute
    392     // one mod-ref set.
    393     for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
    394       Function *F = SCC[i]->getFunction();
    395       if (!F) {
    396         KnowNothing = true;
    397         break;
    398       }
    399 
    400       if (F->isDeclaration()) {
    401         // Try to get mod/ref behaviour from function attributes.
    402         if (F->doesNotAccessMemory()) {
    403           // Can't do better than that!
    404         } else if (F->onlyReadsMemory()) {
    405           FunctionEffect |= Ref;
    406           if (!F->isIntrinsic())
    407             // This function might call back into the module and read a global -
    408             // consider every global as possibly being read by this function.
    409             FR.MayReadAnyGlobal = true;
    410         } else {
    411           FunctionEffect |= ModRef;
    412           // Can't say anything useful unless it's an intrinsic - they don't
    413           // read or write global variables of the kind considered here.
    414           KnowNothing = !F->isIntrinsic();
    415         }
    416         continue;
    417       }
    418 
    419       for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
    420            CI != E && !KnowNothing; ++CI)
    421         if (Function *Callee = CI->second->getFunction()) {
    422           if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
    423             // Propagate function effect up.
    424             FunctionEffect |= CalleeFR->FunctionEffect;
    425 
    426             // Incorporate callee's effects on globals into our info.
    427             for (std::map<const GlobalValue*, unsigned>::iterator GI =
    428                    CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
    429                  GI != E; ++GI)
    430               FR.GlobalInfo[GI->first] |= GI->second;
    431             FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
    432           } else {
    433             // Can't say anything about it.  However, if it is inside our SCC,
    434             // then nothing needs to be done.
    435             CallGraphNode *CalleeNode = CG[Callee];
    436             if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
    437               KnowNothing = true;
    438           }
    439         } else {
    440           KnowNothing = true;
    441         }
    442     }
    443 
    444     // If we can't say anything useful about this SCC, remove all SCC functions
    445     // from the FunctionInfo map.
    446     if (KnowNothing) {
    447       for (unsigned i = 0, e = SCC.size(); i != e; ++i)
    448         FunctionInfo.erase(SCC[i]->getFunction());
    449       continue;
    450     }
    451 
    452     // Scan the function bodies for explicit loads or stores.
    453     for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
    454       for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
    455              E = inst_end(SCC[i]->getFunction());
    456            II != E && FunctionEffect != ModRef; ++II)
    457         if (isa<LoadInst>(*II)) {
    458           FunctionEffect |= Ref;
    459           if (cast<LoadInst>(*II).isVolatile())
    460             // Volatile loads may have side-effects, so mark them as writing
    461             // memory (for example, a flag inside the processor).
    462             FunctionEffect |= Mod;
    463         } else if (isa<StoreInst>(*II)) {
    464           FunctionEffect |= Mod;
    465           if (cast<StoreInst>(*II).isVolatile())
    466             // Treat volatile stores as reading memory somewhere.
    467             FunctionEffect |= Ref;
    468         } else if (isMalloc(&cast<Instruction>(*II)) ||
    469                    isFreeCall(&cast<Instruction>(*II))) {
    470           FunctionEffect |= ModRef;
    471         } else if (IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(&*II)) {
    472           // The callgraph doesn't include intrinsic calls.
    473           Function *Callee = Intrinsic->getCalledFunction();
    474           ModRefBehavior Behaviour = AliasAnalysis::getModRefBehavior(Callee);
    475           FunctionEffect |= (Behaviour & ModRef);
    476         }
    477 
    478     if ((FunctionEffect & Mod) == 0)
    479       ++NumReadMemFunctions;
    480     if (FunctionEffect == 0)
    481       ++NumNoMemFunctions;
    482     FR.FunctionEffect = FunctionEffect;
    483 
    484     // Finally, now that we know the full effect on this SCC, clone the
    485     // information to each function in the SCC.
    486     for (unsigned i = 1, e = SCC.size(); i != e; ++i)
    487       FunctionInfo[SCC[i]->getFunction()] = FR;
    488   }
    489 }
    490 
    491 
    492 
    493 /// alias - If one of the pointers is to a global that we are tracking, and the
    494 /// other is some random pointer, we know there cannot be an alias, because the
    495 /// address of the global isn't taken.
    496 AliasAnalysis::AliasResult
    497 GlobalsModRef::alias(const Location &LocA,
    498                      const Location &LocB) {
    499   // Get the base object these pointers point to.
    500   const Value *UV1 = GetUnderlyingObject(LocA.Ptr);
    501   const Value *UV2 = GetUnderlyingObject(LocB.Ptr);
    502 
    503   // If either of the underlying values is a global, they may be non-addr-taken
    504   // globals, which we can answer queries about.
    505   const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
    506   const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
    507   if (GV1 || GV2) {
    508     // If the global's address is taken, pretend we don't know it's a pointer to
    509     // the global.
    510     if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
    511     if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
    512 
    513     // If the two pointers are derived from two different non-addr-taken
    514     // globals, or if one is and the other isn't, we know these can't alias.
    515     if ((GV1 || GV2) && GV1 != GV2)
    516       return NoAlias;
    517 
    518     // Otherwise if they are both derived from the same addr-taken global, we
    519     // can't know the two accesses don't overlap.
    520   }
    521 
    522   // These pointers may be based on the memory owned by an indirect global.  If
    523   // so, we may be able to handle this.  First check to see if the base pointer
    524   // is a direct load from an indirect global.
    525   GV1 = GV2 = 0;
    526   if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
    527     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
    528       if (IndirectGlobals.count(GV))
    529         GV1 = GV;
    530   if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
    531     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
    532       if (IndirectGlobals.count(GV))
    533         GV2 = GV;
    534 
    535   // These pointers may also be from an allocation for the indirect global.  If
    536   // so, also handle them.
    537   if (AllocsForIndirectGlobals.count(UV1))
    538     GV1 = AllocsForIndirectGlobals[UV1];
    539   if (AllocsForIndirectGlobals.count(UV2))
    540     GV2 = AllocsForIndirectGlobals[UV2];
    541 
    542   // Now that we know whether the two pointers are related to indirect globals,
    543   // use this to disambiguate the pointers.  If either pointer is based on an
    544   // indirect global and if they are not both based on the same indirect global,
    545   // they cannot alias.
    546   if ((GV1 || GV2) && GV1 != GV2)
    547     return NoAlias;
    548 
    549   return AliasAnalysis::alias(LocA, LocB);
    550 }
    551 
    552 AliasAnalysis::ModRefResult
    553 GlobalsModRef::getModRefInfo(ImmutableCallSite CS,
    554                              const Location &Loc) {
    555   unsigned Known = ModRef;
    556 
    557   // If we are asking for mod/ref info of a direct call with a pointer to a
    558   // global we are tracking, return information if we have it.
    559   if (const GlobalValue *GV =
    560         dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr)))
    561     if (GV->hasLocalLinkage())
    562       if (const Function *F = CS.getCalledFunction())
    563         if (NonAddressTakenGlobals.count(GV))
    564           if (const FunctionRecord *FR = getFunctionInfo(F))
    565             Known = FR->getInfoForGlobal(GV);
    566 
    567   if (Known == NoModRef)
    568     return NoModRef; // No need to query other mod/ref analyses
    569   return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, Loc));
    570 }
    571 
    572 
    573 //===----------------------------------------------------------------------===//
    574 // Methods to update the analysis as a result of the client transformation.
    575 //
    576 void GlobalsModRef::deleteValue(Value *V) {
    577   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    578     if (NonAddressTakenGlobals.erase(GV)) {
    579       // This global might be an indirect global.  If so, remove it and remove
    580       // any AllocRelatedValues for it.
    581       if (IndirectGlobals.erase(GV)) {
    582         // Remove any entries in AllocsForIndirectGlobals for this global.
    583         for (std::map<const Value*, const GlobalValue*>::iterator
    584              I = AllocsForIndirectGlobals.begin(),
    585              E = AllocsForIndirectGlobals.end(); I != E; ) {
    586           if (I->second == GV) {
    587             AllocsForIndirectGlobals.erase(I++);
    588           } else {
    589             ++I;
    590           }
    591         }
    592       }
    593     }
    594   }
    595 
    596   // Otherwise, if this is an allocation related to an indirect global, remove
    597   // it.
    598   AllocsForIndirectGlobals.erase(V);
    599 
    600   AliasAnalysis::deleteValue(V);
    601 }
    602 
    603 void GlobalsModRef::copyValue(Value *From, Value *To) {
    604   AliasAnalysis::copyValue(From, To);
    605 }
    606 
    607 void GlobalsModRef::addEscapingUse(Use &U) {
    608   // For the purposes of this analysis, it is conservatively correct to treat
    609   // a newly escaping value equivalently to a deleted one.  We could perhaps
    610   // be more precise by processing the new use and attempting to update our
    611   // saved analysis results to accommodate it.
    612   deleteValue(U);
    613 
    614   AliasAnalysis::addEscapingUse(U);
    615 }
    616