Home | History | Annotate | Download | only in interp
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 #ifdef WITH_JIT
     17 
     18 /*
     19  * Target independent portion of Android's Jit
     20  */
     21 
     22 #include "Dalvik.h"
     23 #include "Jit.h"
     24 
     25 #include "libdex/DexOpcodes.h"
     26 #include <unistd.h>
     27 #include <pthread.h>
     28 #include <sys/time.h>
     29 #include <signal.h>
     30 #include "compiler/Compiler.h"
     31 #include "compiler/CompilerUtility.h"
     32 #include "compiler/CompilerIR.h"
     33 #include <errno.h>
     34 
     35 #if defined(WITH_SELF_VERIFICATION)
     36 /* Allocate space for per-thread ShadowSpace data structures */
     37 void* dvmSelfVerificationShadowSpaceAlloc(Thread* self)
     38 {
     39     self->shadowSpace = (ShadowSpace*) calloc(1, sizeof(ShadowSpace));
     40     if (self->shadowSpace == NULL)
     41         return NULL;
     42 
     43     self->shadowSpace->registerSpaceSize = REG_SPACE;
     44     self->shadowSpace->registerSpace =
     45         (int*) calloc(self->shadowSpace->registerSpaceSize, sizeof(int));
     46 
     47     return self->shadowSpace->registerSpace;
     48 }
     49 
     50 /* Free per-thread ShadowSpace data structures */
     51 void dvmSelfVerificationShadowSpaceFree(Thread* self)
     52 {
     53     free(self->shadowSpace->registerSpace);
     54     free(self->shadowSpace);
     55 }
     56 
     57 /*
     58  * Save out PC, FP, thread state, and registers to shadow space.
     59  * Return a pointer to the shadow space for JIT to use.
     60  *
     61  * The set of saved state from the Thread structure is:
     62  *     pc  (Dalvik PC)
     63  *     fp  (Dalvik FP)
     64  *     retval
     65  *     method
     66  *     methodClassDex
     67  *     interpStackEnd
     68  */
     69 void* dvmSelfVerificationSaveState(const u2* pc, u4* fp,
     70                                    Thread* self, int targetTrace)
     71 {
     72     ShadowSpace *shadowSpace = self->shadowSpace;
     73     unsigned preBytes = self->interpSave.method->outsSize*4 +
     74         sizeof(StackSaveArea);
     75     unsigned postBytes = self->interpSave.method->registersSize*4;
     76 
     77     //ALOGD("### selfVerificationSaveState(%d) pc: %#x fp: %#x",
     78     //    self->threadId, (int)pc, (int)fp);
     79 
     80     if (shadowSpace->selfVerificationState != kSVSIdle) {
     81         ALOGD("~~~ Save: INCORRECT PREVIOUS STATE(%d): %d",
     82             self->threadId, shadowSpace->selfVerificationState);
     83         ALOGD("********** SHADOW STATE DUMP **********");
     84         ALOGD("PC: %#x FP: %#x", (int)pc, (int)fp);
     85     }
     86     shadowSpace->selfVerificationState = kSVSStart;
     87 
     88     // Dynamically grow shadow register space if necessary
     89     if (preBytes + postBytes > shadowSpace->registerSpaceSize * sizeof(u4)) {
     90         free(shadowSpace->registerSpace);
     91         shadowSpace->registerSpaceSize = (preBytes + postBytes) / sizeof(u4);
     92         shadowSpace->registerSpace =
     93             (int*) calloc(shadowSpace->registerSpaceSize, sizeof(u4));
     94     }
     95 
     96     // Remember original state
     97     shadowSpace->startPC = pc;
     98     shadowSpace->fp = fp;
     99     shadowSpace->retval = self->interpSave.retval;
    100     shadowSpace->interpStackEnd = self->interpStackEnd;
    101 
    102     /*
    103      * Store the original method here in case the trace ends with a
    104      * return/invoke, the last method.
    105      */
    106     shadowSpace->method = self->interpSave.method;
    107     shadowSpace->methodClassDex = self->interpSave.methodClassDex;
    108 
    109     shadowSpace->shadowFP = shadowSpace->registerSpace +
    110                             shadowSpace->registerSpaceSize - postBytes/4;
    111 
    112     self->interpSave.curFrame = (u4*)shadowSpace->shadowFP;
    113     self->interpStackEnd = (u1*)shadowSpace->registerSpace;
    114 
    115     // Create a copy of the stack
    116     memcpy(((char*)shadowSpace->shadowFP)-preBytes, ((char*)fp)-preBytes,
    117         preBytes+postBytes);
    118 
    119     // Setup the shadowed heap space
    120     shadowSpace->heapSpaceTail = shadowSpace->heapSpace;
    121 
    122     // Reset trace length
    123     shadowSpace->traceLength = 0;
    124 
    125     return shadowSpace;
    126 }
    127 
    128 /*
    129  * Save ending PC, FP and compiled code exit point to shadow space.
    130  * Return a pointer to the shadow space for JIT to restore state.
    131  */
    132 void* dvmSelfVerificationRestoreState(const u2* pc, u4* fp,
    133                                       SelfVerificationState exitState,
    134                                       Thread* self)
    135 {
    136     ShadowSpace *shadowSpace = self->shadowSpace;
    137     shadowSpace->endPC = pc;
    138     shadowSpace->endShadowFP = fp;
    139     shadowSpace->jitExitState = exitState;
    140 
    141     //ALOGD("### selfVerificationRestoreState(%d) pc: %#x fp: %#x endPC: %#x",
    142     //    self->threadId, (int)shadowSpace->startPC, (int)shadowSpace->fp,
    143     //    (int)pc);
    144 
    145     if (shadowSpace->selfVerificationState != kSVSStart) {
    146         ALOGD("~~~ Restore: INCORRECT PREVIOUS STATE(%d): %d",
    147             self->threadId, shadowSpace->selfVerificationState);
    148         ALOGD("********** SHADOW STATE DUMP **********");
    149         ALOGD("Dalvik PC: %#x endPC: %#x", (int)shadowSpace->startPC,
    150             (int)shadowSpace->endPC);
    151         ALOGD("Interp FP: %#x", (int)shadowSpace->fp);
    152         ALOGD("Shadow FP: %#x endFP: %#x", (int)shadowSpace->shadowFP,
    153             (int)shadowSpace->endShadowFP);
    154     }
    155 
    156     // Special case when punting after a single instruction
    157     if (exitState == kSVSPunt && pc == shadowSpace->startPC) {
    158         shadowSpace->selfVerificationState = kSVSIdle;
    159     } else {
    160         shadowSpace->selfVerificationState = exitState;
    161     }
    162 
    163     /* Restore state before returning */
    164     self->interpSave.pc = shadowSpace->startPC;
    165     self->interpSave.curFrame = shadowSpace->fp;
    166     self->interpSave.method = shadowSpace->method;
    167     self->interpSave.methodClassDex = shadowSpace->methodClassDex;
    168     self->interpSave.retval = shadowSpace->retval;
    169     self->interpStackEnd = shadowSpace->interpStackEnd;
    170 
    171     return shadowSpace;
    172 }
    173 
    174 /* Print contents of virtual registers */
    175 static void selfVerificationPrintRegisters(int* addr, int* addrRef,
    176                                            int numWords)
    177 {
    178     int i;
    179     for (i = 0; i < numWords; i++) {
    180         ALOGD("(v%d) 0x%8x%s", i, addr[i], addr[i] != addrRef[i] ? " X" : "");
    181     }
    182 }
    183 
    184 /* Print values maintained in shadowSpace */
    185 static void selfVerificationDumpState(const u2* pc, Thread* self)
    186 {
    187     ShadowSpace* shadowSpace = self->shadowSpace;
    188     StackSaveArea* stackSave = SAVEAREA_FROM_FP(self->interpSave.curFrame);
    189     int frameBytes = (int) shadowSpace->registerSpace +
    190                      shadowSpace->registerSpaceSize*4 -
    191                      (int) shadowSpace->shadowFP;
    192     int localRegs = 0;
    193     int frameBytes2 = 0;
    194     if ((uintptr_t)self->interpSave.curFrame < (uintptr_t)shadowSpace->fp) {
    195         localRegs = (stackSave->method->registersSize -
    196                      stackSave->method->insSize)*4;
    197         frameBytes2 = (int) shadowSpace->fp -
    198                       (int)self->interpSave.curFrame - localRegs;
    199     }
    200     ALOGD("********** SHADOW STATE DUMP **********");
    201     ALOGD("CurrentPC: %#x, Offset: 0x%04x", (int)pc,
    202         (int)(pc - stackSave->method->insns));
    203     ALOGD("Class: %s", shadowSpace->method->clazz->descriptor);
    204     ALOGD("Method: %s", shadowSpace->method->name);
    205     ALOGD("Dalvik PC: %#x endPC: %#x", (int)shadowSpace->startPC,
    206         (int)shadowSpace->endPC);
    207     ALOGD("Interp FP: %#x endFP: %#x", (int)shadowSpace->fp,
    208         (int)self->interpSave.curFrame);
    209     ALOGD("Shadow FP: %#x endFP: %#x", (int)shadowSpace->shadowFP,
    210         (int)shadowSpace->endShadowFP);
    211     ALOGD("Frame1 Bytes: %d Frame2 Local: %d Bytes: %d", frameBytes,
    212         localRegs, frameBytes2);
    213     ALOGD("Trace length: %d State: %d", shadowSpace->traceLength,
    214         shadowSpace->selfVerificationState);
    215 }
    216 
    217 /* Print decoded instructions in the current trace */
    218 static void selfVerificationDumpTrace(const u2* pc, Thread* self)
    219 {
    220     ShadowSpace* shadowSpace = self->shadowSpace;
    221     StackSaveArea* stackSave = SAVEAREA_FROM_FP(self->interpSave.curFrame);
    222     int i, addr, offset;
    223     DecodedInstruction *decInsn;
    224 
    225     ALOGD("********** SHADOW TRACE DUMP **********");
    226     for (i = 0; i < shadowSpace->traceLength; i++) {
    227         addr = shadowSpace->trace[i].addr;
    228         offset =  (int)((u2*)addr - stackSave->method->insns);
    229         decInsn = &(shadowSpace->trace[i].decInsn);
    230         /* Not properly decoding instruction, some registers may be garbage */
    231         ALOGD("%#x: (0x%04x) %s",
    232             addr, offset, dexGetOpcodeName(decInsn->opcode));
    233     }
    234 }
    235 
    236 /* Code is forced into this spin loop when a divergence is detected */
    237 static void selfVerificationSpinLoop(ShadowSpace *shadowSpace)
    238 {
    239     const u2 *startPC = shadowSpace->startPC;
    240     JitTraceDescription* desc = dvmCopyTraceDescriptor(startPC, NULL);
    241     if (desc) {
    242         dvmCompilerWorkEnqueue(startPC, kWorkOrderTraceDebug, desc);
    243         /*
    244          * This function effectively terminates the VM right here, so not
    245          * freeing the desc pointer when the enqueuing fails is acceptable.
    246          */
    247     }
    248     gDvmJit.selfVerificationSpin = true;
    249     while(gDvmJit.selfVerificationSpin) sleep(10);
    250 }
    251 
    252 /*
    253  * If here, we're re-interpreting an instruction that was included
    254  * in a trace that was just executed.  This routine is called for
    255  * each instruction in the original trace, and compares state
    256  * when it reaches the end point.
    257  *
    258  * TUNING: the interpretation mechanism now supports a counted
    259  * single-step mechanism.  If we were to associate an instruction
    260  * count with each trace exit, we could just single-step the right
    261  * number of cycles and then compare.  This would improve detection
    262  * of control divergences, as well as (slightly) simplify this code.
    263  */
    264 void dvmCheckSelfVerification(const u2* pc, Thread* self)
    265 {
    266     ShadowSpace *shadowSpace = self->shadowSpace;
    267     SelfVerificationState state = shadowSpace->selfVerificationState;
    268 
    269     DecodedInstruction decInsn;
    270     dexDecodeInstruction(pc, &decInsn);
    271 
    272     //ALOGD("### DbgIntp(%d): PC: %#x endPC: %#x state: %d len: %d %s",
    273     //    self->threadId, (int)pc, (int)shadowSpace->endPC, state,
    274     //    shadowSpace->traceLength, dexGetOpcodeName(decInsn.opcode));
    275 
    276     if (state == kSVSIdle || state == kSVSStart) {
    277         ALOGD("~~~ DbgIntrp: INCORRECT PREVIOUS STATE(%d): %d",
    278             self->threadId, state);
    279         selfVerificationDumpState(pc, self);
    280         selfVerificationDumpTrace(pc, self);
    281     }
    282 
    283     /*
    284      * Generalize the self verification state to kSVSDebugInterp unless the
    285      * entry reason is kSVSBackwardBranch or kSVSSingleStep.
    286      */
    287     if (state != kSVSBackwardBranch && state != kSVSSingleStep) {
    288         shadowSpace->selfVerificationState = kSVSDebugInterp;
    289     }
    290 
    291     /*
    292      * Check if the current pc matches the endPC. Only check for non-zero
    293      * trace length when backward branches are involved.
    294      */
    295     if (pc == shadowSpace->endPC &&
    296         (state == kSVSDebugInterp || state == kSVSSingleStep ||
    297          (state == kSVSBackwardBranch && shadowSpace->traceLength != 0))) {
    298 
    299         shadowSpace->selfVerificationState = kSVSIdle;
    300 
    301         /* Check register space */
    302         int frameBytes = (int) shadowSpace->registerSpace +
    303                          shadowSpace->registerSpaceSize*4 -
    304                          (int) shadowSpace->shadowFP;
    305         if (memcmp(shadowSpace->fp, shadowSpace->shadowFP, frameBytes)) {
    306             if (state == kSVSBackwardBranch) {
    307                 /* State mismatch on backward branch - try one more iteration */
    308                 shadowSpace->selfVerificationState = kSVSDebugInterp;
    309                 goto log_and_continue;
    310             }
    311             ALOGD("~~~ DbgIntp(%d): REGISTERS DIVERGENCE!", self->threadId);
    312             selfVerificationDumpState(pc, self);
    313             selfVerificationDumpTrace(pc, self);
    314             ALOGD("*** Interp Registers: addr: %#x bytes: %d",
    315                 (int)shadowSpace->fp, frameBytes);
    316             selfVerificationPrintRegisters((int*)shadowSpace->fp,
    317                                            (int*)shadowSpace->shadowFP,
    318                                            frameBytes/4);
    319             ALOGD("*** Shadow Registers: addr: %#x bytes: %d",
    320                 (int)shadowSpace->shadowFP, frameBytes);
    321             selfVerificationPrintRegisters((int*)shadowSpace->shadowFP,
    322                                            (int*)shadowSpace->fp,
    323                                            frameBytes/4);
    324             selfVerificationSpinLoop(shadowSpace);
    325         }
    326         /* Check new frame if it exists (invokes only) */
    327         if ((uintptr_t)self->interpSave.curFrame < (uintptr_t)shadowSpace->fp) {
    328             StackSaveArea* stackSave =
    329                 SAVEAREA_FROM_FP(self->interpSave.curFrame);
    330             int localRegs = (stackSave->method->registersSize -
    331                              stackSave->method->insSize)*4;
    332             int frameBytes2 = (int) shadowSpace->fp -
    333                               (int) self->interpSave.curFrame - localRegs;
    334             if (memcmp(((char*)self->interpSave.curFrame)+localRegs,
    335                 ((char*)shadowSpace->endShadowFP)+localRegs, frameBytes2)) {
    336                 if (state == kSVSBackwardBranch) {
    337                     /*
    338                      * State mismatch on backward branch - try one more
    339                      * iteration.
    340                      */
    341                     shadowSpace->selfVerificationState = kSVSDebugInterp;
    342                     goto log_and_continue;
    343                 }
    344                 ALOGD("~~~ DbgIntp(%d): REGISTERS (FRAME2) DIVERGENCE!",
    345                     self->threadId);
    346                 selfVerificationDumpState(pc, self);
    347                 selfVerificationDumpTrace(pc, self);
    348                 ALOGD("*** Interp Registers: addr: %#x l: %d bytes: %d",
    349                     (int)self->interpSave.curFrame, localRegs, frameBytes2);
    350                 selfVerificationPrintRegisters((int*)self->interpSave.curFrame,
    351                                                (int*)shadowSpace->endShadowFP,
    352                                                (frameBytes2+localRegs)/4);
    353                 ALOGD("*** Shadow Registers: addr: %#x l: %d bytes: %d",
    354                     (int)shadowSpace->endShadowFP, localRegs, frameBytes2);
    355                 selfVerificationPrintRegisters((int*)shadowSpace->endShadowFP,
    356                                                (int*)self->interpSave.curFrame,
    357                                                (frameBytes2+localRegs)/4);
    358                 selfVerificationSpinLoop(shadowSpace);
    359             }
    360         }
    361 
    362         /* Check memory space */
    363         bool memDiff = false;
    364         ShadowHeap* heapSpacePtr;
    365         for (heapSpacePtr = shadowSpace->heapSpace;
    366              heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
    367             int memData = *((unsigned int*) heapSpacePtr->addr);
    368             if (heapSpacePtr->data != memData) {
    369                 if (state == kSVSBackwardBranch) {
    370                     /*
    371                      * State mismatch on backward branch - try one more
    372                      * iteration.
    373                      */
    374                     shadowSpace->selfVerificationState = kSVSDebugInterp;
    375                     goto log_and_continue;
    376                 }
    377                 ALOGD("~~~ DbgIntp(%d): MEMORY DIVERGENCE!", self->threadId);
    378                 ALOGD("Addr: %#x Intrp Data: %#x Jit Data: %#x",
    379                     heapSpacePtr->addr, memData, heapSpacePtr->data);
    380                 selfVerificationDumpState(pc, self);
    381                 selfVerificationDumpTrace(pc, self);
    382                 memDiff = true;
    383             }
    384         }
    385         if (memDiff) selfVerificationSpinLoop(shadowSpace);
    386 
    387 
    388         /*
    389          * Success.  If this shadowed trace included a single-stepped
    390          * instruction, we need to stay in the interpreter for one
    391          * more interpretation before resuming.
    392          */
    393         if (state == kSVSSingleStep) {
    394             assert(self->jitResumeNPC != NULL);
    395             assert(self->singleStepCount == 0);
    396             self->singleStepCount = 1;
    397             dvmEnableSubMode(self, kSubModeCountedStep);
    398         }
    399 
    400         /*
    401          * Switch off shadow replay mode.  The next shadowed trace
    402          * execution will turn it back on.
    403          */
    404         dvmDisableSubMode(self, kSubModeJitSV);
    405 
    406         self->jitState = kJitDone;
    407         return;
    408     }
    409 log_and_continue:
    410     /* If end not been reached, make sure max length not exceeded */
    411     if (shadowSpace->traceLength >= JIT_MAX_TRACE_LEN) {
    412         ALOGD("~~~ DbgIntp(%d): CONTROL DIVERGENCE!", self->threadId);
    413         ALOGD("startPC: %#x endPC: %#x currPC: %#x",
    414             (int)shadowSpace->startPC, (int)shadowSpace->endPC, (int)pc);
    415         selfVerificationDumpState(pc, self);
    416         selfVerificationDumpTrace(pc, self);
    417         selfVerificationSpinLoop(shadowSpace);
    418         return;
    419     }
    420     /* Log the instruction address and decoded instruction for debug */
    421     shadowSpace->trace[shadowSpace->traceLength].addr = (int)pc;
    422     shadowSpace->trace[shadowSpace->traceLength].decInsn = decInsn;
    423     shadowSpace->traceLength++;
    424 }
    425 #endif
    426 
    427 /*
    428  * If one of our fixed tables or the translation buffer fills up,
    429  * call this routine to avoid wasting cycles on future translation requests.
    430  */
    431 void dvmJitStopTranslationRequests()
    432 {
    433     /*
    434      * Note 1: This won't necessarily stop all translation requests, and
    435      * operates on a delayed mechanism.  Running threads look to the copy
    436      * of this value in their private thread structures and won't see
    437      * this change until it is refreshed (which happens on interpreter
    438      * entry).
    439      * Note 2: This is a one-shot memory leak on this table. Because this is a
    440      * permanent off switch for Jit profiling, it is a one-time leak of 1K
    441      * bytes, and no further attempt will be made to re-allocate it.  Can't
    442      * free it because some thread may be holding a reference.
    443      */
    444     gDvmJit.pProfTable = NULL;
    445     dvmJitUpdateThreadStateAll();
    446 }
    447 
    448 #if defined(WITH_JIT_TUNING)
    449 /* Convenience function to increment counter from assembly code */
    450 void dvmBumpNoChain(int from)
    451 {
    452     gDvmJit.noChainExit[from]++;
    453 }
    454 
    455 /* Convenience function to increment counter from assembly code */
    456 void dvmBumpNormal()
    457 {
    458     gDvmJit.normalExit++;
    459 }
    460 
    461 /* Convenience function to increment counter from assembly code */
    462 void dvmBumpPunt(int from)
    463 {
    464     gDvmJit.puntExit++;
    465 }
    466 #endif
    467 
    468 /* Dumps debugging & tuning stats to the log */
    469 void dvmJitStats()
    470 {
    471     int i;
    472     int hit;
    473     int not_hit;
    474     int chains;
    475     int stubs;
    476     if (gDvmJit.pJitEntryTable) {
    477         for (i=0, stubs=chains=hit=not_hit=0;
    478              i < (int) gDvmJit.jitTableSize;
    479              i++) {
    480             if (gDvmJit.pJitEntryTable[i].dPC != 0) {
    481                 hit++;
    482                 if (gDvmJit.pJitEntryTable[i].codeAddress ==
    483                       dvmCompilerGetInterpretTemplate())
    484                     stubs++;
    485             } else
    486                 not_hit++;
    487             if (gDvmJit.pJitEntryTable[i].u.info.chain != gDvmJit.jitTableSize)
    488                 chains++;
    489         }
    490         ALOGD("JIT: table size is %d, entries used is %d",
    491              gDvmJit.jitTableSize,  gDvmJit.jitTableEntriesUsed);
    492         ALOGD("JIT: %d traces, %d slots, %d chains, %d thresh, %s",
    493              hit, not_hit + hit, chains, gDvmJit.threshold,
    494              gDvmJit.blockingMode ? "Blocking" : "Non-blocking");
    495 
    496 #if defined(WITH_JIT_TUNING)
    497         ALOGD("JIT: Code cache patches: %d", gDvmJit.codeCachePatches);
    498 
    499         ALOGD("JIT: Lookups: %d hits, %d misses; %d normal, %d punt",
    500              gDvmJit.addrLookupsFound, gDvmJit.addrLookupsNotFound,
    501              gDvmJit.normalExit, gDvmJit.puntExit);
    502 
    503         ALOGD("JIT: ICHits: %d", gDvmICHitCount);
    504 
    505         ALOGD("JIT: noChainExit: %d IC miss, %d interp callsite, "
    506              "%d switch overflow",
    507              gDvmJit.noChainExit[kInlineCacheMiss],
    508              gDvmJit.noChainExit[kCallsiteInterpreted],
    509              gDvmJit.noChainExit[kSwitchOverflow]);
    510 
    511         ALOGD("JIT: ICPatch: %d init, %d rejected, %d lock-free, %d queued, "
    512              "%d dropped",
    513              gDvmJit.icPatchInit, gDvmJit.icPatchRejected,
    514              gDvmJit.icPatchLockFree, gDvmJit.icPatchQueued,
    515              gDvmJit.icPatchDropped);
    516 
    517         ALOGD("JIT: Invoke: %d mono, %d poly, %d native, %d return",
    518              gDvmJit.invokeMonomorphic, gDvmJit.invokePolymorphic,
    519              gDvmJit.invokeNative, gDvmJit.returnOp);
    520         ALOGD("JIT: Inline: %d mgetter, %d msetter, %d pgetter, %d psetter",
    521              gDvmJit.invokeMonoGetterInlined, gDvmJit.invokeMonoSetterInlined,
    522              gDvmJit.invokePolyGetterInlined, gDvmJit.invokePolySetterInlined);
    523         ALOGD("JIT: Total compilation time: %llu ms", gDvmJit.jitTime / 1000);
    524         ALOGD("JIT: Avg unit compilation time: %llu us",
    525              gDvmJit.numCompilations == 0 ? 0 :
    526              gDvmJit.jitTime / gDvmJit.numCompilations);
    527         ALOGD("JIT: Potential GC blocked by compiler: max %llu us / "
    528              "avg %llu us (%d)",
    529              gDvmJit.maxCompilerThreadBlockGCTime,
    530              gDvmJit.numCompilerThreadBlockGC == 0 ?
    531                  0 : gDvmJit.compilerThreadBlockGCTime /
    532                      gDvmJit.numCompilerThreadBlockGC,
    533              gDvmJit.numCompilerThreadBlockGC);
    534 #endif
    535 
    536         ALOGD("JIT: %d Translation chains, %d interp stubs",
    537              gDvmJit.translationChains, stubs);
    538         if (gDvmJit.profileMode == kTraceProfilingContinuous) {
    539             dvmCompilerSortAndPrintTraceProfiles();
    540         }
    541     }
    542 }
    543 
    544 
    545 /* End current trace now & don't include current instruction */
    546 void dvmJitEndTraceSelect(Thread* self, const u2* dPC)
    547 {
    548     if (self->jitState == kJitTSelect) {
    549         self->jitState = kJitTSelectEnd;
    550     }
    551     if (self->jitState == kJitTSelectEnd) {
    552         // Clean up and finish now.
    553         dvmCheckJit(dPC, self);
    554     }
    555 }
    556 
    557 /*
    558  * Find an entry in the JitTable, creating if necessary.
    559  * Returns null if table is full.
    560  */
    561 static JitEntry *lookupAndAdd(const u2* dPC, bool callerLocked,
    562                               bool isMethodEntry)
    563 {
    564     u4 chainEndMarker = gDvmJit.jitTableSize;
    565     u4 idx = dvmJitHash(dPC);
    566 
    567     /*
    568      * Walk the bucket chain to find an exact match for our PC and trace/method
    569      * type
    570      */
    571     while ((gDvmJit.pJitEntryTable[idx].u.info.chain != chainEndMarker) &&
    572            ((gDvmJit.pJitEntryTable[idx].dPC != dPC) ||
    573             (gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry !=
    574              isMethodEntry))) {
    575         idx = gDvmJit.pJitEntryTable[idx].u.info.chain;
    576     }
    577 
    578     if (gDvmJit.pJitEntryTable[idx].dPC != dPC ||
    579         gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry != isMethodEntry) {
    580         /*
    581          * No match.  Aquire jitTableLock and find the last
    582          * slot in the chain. Possibly continue the chain walk in case
    583          * some other thread allocated the slot we were looking
    584          * at previuosly (perhaps even the dPC we're trying to enter).
    585          */
    586         if (!callerLocked)
    587             dvmLockMutex(&gDvmJit.tableLock);
    588         /*
    589          * At this point, if .dPC is NULL, then the slot we're
    590          * looking at is the target slot from the primary hash
    591          * (the simple, and common case).  Otherwise we're going
    592          * to have to find a free slot and chain it.
    593          */
    594         ANDROID_MEMBAR_FULL(); /* Make sure we reload [].dPC after lock */
    595         if (gDvmJit.pJitEntryTable[idx].dPC != NULL) {
    596             u4 prev;
    597             while (gDvmJit.pJitEntryTable[idx].u.info.chain != chainEndMarker) {
    598                 if (gDvmJit.pJitEntryTable[idx].dPC == dPC &&
    599                     gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry ==
    600                         isMethodEntry) {
    601                     /* Another thread got there first for this dPC */
    602                     if (!callerLocked)
    603                         dvmUnlockMutex(&gDvmJit.tableLock);
    604                     return &gDvmJit.pJitEntryTable[idx];
    605                 }
    606                 idx = gDvmJit.pJitEntryTable[idx].u.info.chain;
    607             }
    608             /* Here, idx should be pointing to the last cell of an
    609              * active chain whose last member contains a valid dPC */
    610             assert(gDvmJit.pJitEntryTable[idx].dPC != NULL);
    611             /* Linear walk to find a free cell and add it to the end */
    612             prev = idx;
    613             while (true) {
    614                 idx++;
    615                 if (idx == chainEndMarker)
    616                     idx = 0;  /* Wraparound */
    617                 if ((gDvmJit.pJitEntryTable[idx].dPC == NULL) ||
    618                     (idx == prev))
    619                     break;
    620             }
    621             if (idx != prev) {
    622                 JitEntryInfoUnion oldValue;
    623                 JitEntryInfoUnion newValue;
    624                 /*
    625                  * Although we hold the lock so that noone else will
    626                  * be trying to update a chain field, the other fields
    627                  * packed into the word may be in use by other threads.
    628                  */
    629                 do {
    630                     oldValue = gDvmJit.pJitEntryTable[prev].u;
    631                     newValue = oldValue;
    632                     newValue.info.chain = idx;
    633                 } while (android_atomic_release_cas(oldValue.infoWord,
    634                         newValue.infoWord,
    635                         &gDvmJit.pJitEntryTable[prev].u.infoWord) != 0);
    636             }
    637         }
    638         if (gDvmJit.pJitEntryTable[idx].dPC == NULL) {
    639             gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry = isMethodEntry;
    640             /*
    641              * Initialize codeAddress and allocate the slot.  Must
    642              * happen in this order (since dPC is set, the entry is live.
    643              */
    644             android_atomic_release_store((int32_t)dPC,
    645                  (volatile int32_t *)(void *)&gDvmJit.pJitEntryTable[idx].dPC);
    646             gDvmJit.pJitEntryTable[idx].dPC = dPC;
    647             gDvmJit.jitTableEntriesUsed++;
    648         } else {
    649             /* Table is full */
    650             idx = chainEndMarker;
    651         }
    652         if (!callerLocked)
    653             dvmUnlockMutex(&gDvmJit.tableLock);
    654     }
    655     return (idx == chainEndMarker) ? NULL : &gDvmJit.pJitEntryTable[idx];
    656 }
    657 
    658 /* Dump a trace description */
    659 void dvmJitDumpTraceDesc(JitTraceDescription *trace)
    660 {
    661     int i;
    662     bool done = false;
    663     const u2* dpc;
    664     const u2* dpcBase;
    665     int curFrag = 0;
    666     ALOGD("===========================================");
    667     ALOGD("Trace dump %#x, Method %s off %#x",(int)trace,
    668          trace->method->name,trace->trace[curFrag].info.frag.startOffset);
    669     dpcBase = trace->method->insns;
    670     while (!done) {
    671         DecodedInstruction decInsn;
    672         if (trace->trace[curFrag].isCode) {
    673             ALOGD("Frag[%d]- Insts: %d, start: %#x, hint: %#x, end: %d",
    674                  curFrag, trace->trace[curFrag].info.frag.numInsts,
    675                  trace->trace[curFrag].info.frag.startOffset,
    676                  trace->trace[curFrag].info.frag.hint,
    677                  trace->trace[curFrag].info.frag.runEnd);
    678             dpc = dpcBase + trace->trace[curFrag].info.frag.startOffset;
    679             for (i=0; i<trace->trace[curFrag].info.frag.numInsts; i++) {
    680                 dexDecodeInstruction(dpc, &decInsn);
    681                 ALOGD("    0x%04x - %s %#x",(dpc-dpcBase),
    682                      dexGetOpcodeName(decInsn.opcode),(int)dpc);
    683                 dpc += dexGetWidthFromOpcode(decInsn.opcode);
    684             }
    685             if (trace->trace[curFrag].info.frag.runEnd) {
    686                 done = true;
    687             }
    688         } else {
    689             ALOGD("Frag[%d]- META info: 0x%08x", curFrag,
    690                  (int)trace->trace[curFrag].info.meta);
    691         }
    692         curFrag++;
    693     }
    694     ALOGD("-------------------------------------------");
    695 }
    696 
    697 /*
    698  * Append the class ptr of "this" and the current method ptr to the current
    699  * trace. That is, the trace runs will contain the following components:
    700  *  + trace run that ends with an invoke (existing entry)
    701  *  + thisClass (new)
    702  *  + calleeMethod (new)
    703  */
    704 static void insertClassMethodInfo(Thread* self,
    705                                   const ClassObject* thisClass,
    706                                   const Method* calleeMethod,
    707                                   const DecodedInstruction* insn)
    708 {
    709     int currTraceRun = ++self->currTraceRun;
    710     self->trace[currTraceRun].info.meta = thisClass ?
    711                                     (void *) thisClass->descriptor : NULL;
    712     self->trace[currTraceRun].isCode = false;
    713 
    714     currTraceRun = ++self->currTraceRun;
    715     self->trace[currTraceRun].info.meta = thisClass ?
    716                                     (void *) thisClass->classLoader : NULL;
    717     self->trace[currTraceRun].isCode = false;
    718 
    719     currTraceRun = ++self->currTraceRun;
    720     self->trace[currTraceRun].info.meta = (void *) calleeMethod;
    721     self->trace[currTraceRun].isCode = false;
    722 }
    723 
    724 /*
    725  * Check if the next instruction following the invoke is a move-result and if
    726  * so add it to the trace. That is, this will add the trace run that includes
    727  * the move-result to the trace list.
    728  *
    729  *  + trace run that ends with an invoke (existing entry)
    730  *  + thisClass (existing entry)
    731  *  + calleeMethod (existing entry)
    732  *  + move result (new)
    733  *
    734  * lastPC, len, offset are all from the preceding invoke instruction
    735  */
    736 static void insertMoveResult(const u2 *lastPC, int len, int offset,
    737                              Thread *self)
    738 {
    739     DecodedInstruction nextDecInsn;
    740     const u2 *moveResultPC = lastPC + len;
    741 
    742     dexDecodeInstruction(moveResultPC, &nextDecInsn);
    743     if ((nextDecInsn.opcode != OP_MOVE_RESULT) &&
    744         (nextDecInsn.opcode != OP_MOVE_RESULT_WIDE) &&
    745         (nextDecInsn.opcode != OP_MOVE_RESULT_OBJECT))
    746         return;
    747 
    748     /* We need to start a new trace run */
    749     int currTraceRun = ++self->currTraceRun;
    750     self->currRunHead = moveResultPC;
    751     self->trace[currTraceRun].info.frag.startOffset = offset + len;
    752     self->trace[currTraceRun].info.frag.numInsts = 1;
    753     self->trace[currTraceRun].info.frag.runEnd = false;
    754     self->trace[currTraceRun].info.frag.hint = kJitHintNone;
    755     self->trace[currTraceRun].isCode = true;
    756     self->totalTraceLen++;
    757 
    758     self->currRunLen = dexGetWidthFromInstruction(moveResultPC);
    759 }
    760 
    761 /*
    762  * Adds to the current trace request one instruction at a time, just
    763  * before that instruction is interpreted.  This is the primary trace
    764  * selection function.  NOTE: return instruction are handled a little
    765  * differently.  In general, instructions are "proposed" to be added
    766  * to the current trace prior to interpretation.  If the interpreter
    767  * then successfully completes the instruction, is will be considered
    768  * part of the request.  This allows us to examine machine state prior
    769  * to interpretation, and also abort the trace request if the instruction
    770  * throws or does something unexpected.  However, return instructions
    771  * will cause an immediate end to the translation request - which will
    772  * be passed to the compiler before the return completes.  This is done
    773  * in response to special handling of returns by the interpreter (and
    774  * because returns cannot throw in a way that causes problems for the
    775  * translated code.
    776  */
    777 void dvmCheckJit(const u2* pc, Thread* self)
    778 {
    779     const ClassObject *thisClass = self->callsiteClass;
    780     const Method* curMethod = self->methodToCall;
    781     int flags, len;
    782     int allDone = false;
    783     /* Stay in break/single-stop mode for the next instruction */
    784     bool stayOneMoreInst = false;
    785 
    786     /* Prepare to handle last PC and stage the current PC & method*/
    787     const u2 *lastPC = self->lastPC;
    788 
    789     self->lastPC = pc;
    790 
    791     switch (self->jitState) {
    792         int offset;
    793         DecodedInstruction decInsn;
    794         case kJitTSelect:
    795             /* First instruction - just remember the PC and exit */
    796             if (lastPC == NULL) break;
    797             /* Grow the trace around the last PC if jitState is kJitTSelect */
    798             dexDecodeInstruction(lastPC, &decInsn);
    799 
    800             /*
    801              * Treat {PACKED,SPARSE}_SWITCH as trace-ending instructions due
    802              * to the amount of space it takes to generate the chaining
    803              * cells.
    804              */
    805             if (self->totalTraceLen != 0 &&
    806                 (decInsn.opcode == OP_PACKED_SWITCH ||
    807                  decInsn.opcode == OP_SPARSE_SWITCH)) {
    808                 self->jitState = kJitTSelectEnd;
    809                 break;
    810             }
    811 
    812 #if defined(SHOW_TRACE)
    813             ALOGD("TraceGen: adding %s. lpc:%#x, pc:%#x",
    814                  dexGetOpcodeName(decInsn.opcode), (int)lastPC, (int)pc);
    815 #endif
    816             flags = dexGetFlagsFromOpcode(decInsn.opcode);
    817             len = dexGetWidthFromInstruction(lastPC);
    818             offset = lastPC - self->traceMethod->insns;
    819             assert((unsigned) offset <
    820                    dvmGetMethodInsnsSize(self->traceMethod));
    821             if (lastPC != self->currRunHead + self->currRunLen) {
    822                 int currTraceRun;
    823                 /* We need to start a new trace run */
    824                 currTraceRun = ++self->currTraceRun;
    825                 self->currRunLen = 0;
    826                 self->currRunHead = (u2*)lastPC;
    827                 self->trace[currTraceRun].info.frag.startOffset = offset;
    828                 self->trace[currTraceRun].info.frag.numInsts = 0;
    829                 self->trace[currTraceRun].info.frag.runEnd = false;
    830                 self->trace[currTraceRun].info.frag.hint = kJitHintNone;
    831                 self->trace[currTraceRun].isCode = true;
    832             }
    833             self->trace[self->currTraceRun].info.frag.numInsts++;
    834             self->totalTraceLen++;
    835             self->currRunLen += len;
    836 
    837             /*
    838              * If the last instruction is an invoke, we will try to sneak in
    839              * the move-result* (if existent) into a separate trace run.
    840              */
    841             {
    842               int needReservedRun = (flags & kInstrInvoke) ? 1 : 0;
    843 
    844               /* Will probably never hit this with the current trace builder */
    845               if (self->currTraceRun ==
    846                    (MAX_JIT_RUN_LEN - 1 - needReservedRun)) {
    847                 self->jitState = kJitTSelectEnd;
    848               }
    849             }
    850 
    851             if (!dexIsGoto(flags) &&
    852                   ((flags & (kInstrCanBranch |
    853                              kInstrCanSwitch |
    854                              kInstrCanReturn |
    855                              kInstrInvoke)) != 0)) {
    856                     self->jitState = kJitTSelectEnd;
    857 #if defined(SHOW_TRACE)
    858                 ALOGD("TraceGen: ending on %s, basic block end",
    859                      dexGetOpcodeName(decInsn.opcode));
    860 #endif
    861 
    862                 /*
    863                  * If the current invoke is a {virtual,interface}, get the
    864                  * current class/method pair into the trace as well.
    865                  * If the next instruction is a variant of move-result, insert
    866                  * it to the trace too.
    867                  */
    868                 if (flags & kInstrInvoke) {
    869                     insertClassMethodInfo(self, thisClass, curMethod,
    870                                           &decInsn);
    871                     insertMoveResult(lastPC, len, offset, self);
    872                 }
    873             }
    874             /* Break on throw or self-loop */
    875             if ((decInsn.opcode == OP_THROW) || (lastPC == pc)){
    876                 self->jitState = kJitTSelectEnd;
    877             }
    878             if (self->totalTraceLen >= JIT_MAX_TRACE_LEN) {
    879                 self->jitState = kJitTSelectEnd;
    880             }
    881             if ((flags & kInstrCanReturn) != kInstrCanReturn) {
    882                 break;
    883             }
    884             else {
    885                 /*
    886                  * Last instruction is a return - stay in the dbg interpreter
    887                  * for one more instruction if it is a non-void return, since
    888                  * we don't want to start a trace with move-result as the first
    889                  * instruction (which is already included in the trace
    890                  * containing the invoke.
    891                  */
    892                 if (decInsn.opcode != OP_RETURN_VOID) {
    893                     stayOneMoreInst = true;
    894                 }
    895             }
    896             /* NOTE: intentional fallthrough for returns */
    897         case kJitTSelectEnd:
    898             {
    899                 /* Empty trace - set to bail to interpreter */
    900                 if (self->totalTraceLen == 0) {
    901                     dvmJitSetCodeAddr(self->currTraceHead,
    902                                       dvmCompilerGetInterpretTemplate(),
    903                                       dvmCompilerGetInterpretTemplateSet(),
    904                                       false /* Not method entry */, 0);
    905                     self->jitState = kJitDone;
    906                     allDone = true;
    907                     break;
    908                 }
    909 
    910                 int lastTraceDesc = self->currTraceRun;
    911 
    912                 /* Extend a new empty desc if the last slot is meta info */
    913                 if (!self->trace[lastTraceDesc].isCode) {
    914                     lastTraceDesc = ++self->currTraceRun;
    915                     self->trace[lastTraceDesc].info.frag.startOffset = 0;
    916                     self->trace[lastTraceDesc].info.frag.numInsts = 0;
    917                     self->trace[lastTraceDesc].info.frag.hint = kJitHintNone;
    918                     self->trace[lastTraceDesc].isCode = true;
    919                 }
    920 
    921                 /* Mark the end of the trace runs */
    922                 self->trace[lastTraceDesc].info.frag.runEnd = true;
    923 
    924                 JitTraceDescription* desc =
    925                    (JitTraceDescription*)malloc(sizeof(JitTraceDescription) +
    926                      sizeof(JitTraceRun) * (self->currTraceRun+1));
    927 
    928                 if (desc == NULL) {
    929                     ALOGE("Out of memory in trace selection");
    930                     dvmJitStopTranslationRequests();
    931                     self->jitState = kJitDone;
    932                     allDone = true;
    933                     break;
    934                 }
    935 
    936                 desc->method = self->traceMethod;
    937                 memcpy((char*)&(desc->trace[0]),
    938                     (char*)&(self->trace[0]),
    939                     sizeof(JitTraceRun) * (self->currTraceRun+1));
    940 #if defined(SHOW_TRACE)
    941                 ALOGD("TraceGen:  trace done, adding to queue");
    942                 dvmJitDumpTraceDesc(desc);
    943 #endif
    944                 if (dvmCompilerWorkEnqueue(
    945                        self->currTraceHead,kWorkOrderTrace,desc)) {
    946                     /* Work order successfully enqueued */
    947                     if (gDvmJit.blockingMode) {
    948                         dvmCompilerDrainQueue();
    949                     }
    950                 } else {
    951                     /*
    952                      * Make sure the descriptor for the abandoned work order is
    953                      * freed.
    954                      */
    955                     free(desc);
    956                 }
    957                 self->jitState = kJitDone;
    958                 allDone = true;
    959             }
    960             break;
    961         case kJitDone:
    962             allDone = true;
    963             break;
    964         case kJitNot:
    965             allDone = true;
    966             break;
    967         default:
    968             ALOGE("Unexpected JIT state: %d", self->jitState);
    969             dvmAbort();
    970             break;
    971     }
    972 
    973     /*
    974      * If we're done with trace selection, switch off the control flags.
    975      */
    976      if (allDone) {
    977          dvmDisableSubMode(self, kSubModeJitTraceBuild);
    978          if (stayOneMoreInst) {
    979              // Clear jitResumeNPC explicitly since we know we don't need it
    980              // here.
    981              self->jitResumeNPC = NULL;
    982              // Keep going in single-step mode for at least one more inst
    983              if (self->singleStepCount == 0)
    984                  self->singleStepCount = 1;
    985              dvmEnableSubMode(self, kSubModeCountedStep);
    986          }
    987      }
    988      return;
    989 }
    990 
    991 JitEntry *dvmJitFindEntry(const u2* pc, bool isMethodEntry)
    992 {
    993     int idx = dvmJitHash(pc);
    994 
    995     /* Expect a high hit rate on 1st shot */
    996     if ((gDvmJit.pJitEntryTable[idx].dPC == pc) &&
    997         (gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry == isMethodEntry))
    998         return &gDvmJit.pJitEntryTable[idx];
    999     else {
   1000         int chainEndMarker = gDvmJit.jitTableSize;
   1001         while (gDvmJit.pJitEntryTable[idx].u.info.chain != chainEndMarker) {
   1002             idx = gDvmJit.pJitEntryTable[idx].u.info.chain;
   1003             if ((gDvmJit.pJitEntryTable[idx].dPC == pc) &&
   1004                 (gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry ==
   1005                 isMethodEntry))
   1006                 return &gDvmJit.pJitEntryTable[idx];
   1007         }
   1008     }
   1009     return NULL;
   1010 }
   1011 
   1012 /*
   1013  * Walk through the JIT profile table and find the corresponding JIT code, in
   1014  * the specified format (ie trace vs method). This routine needs to be fast.
   1015  */
   1016 void* getCodeAddrCommon(const u2* dPC, bool methodEntry)
   1017 {
   1018     int idx = dvmJitHash(dPC);
   1019     const u2* pc = gDvmJit.pJitEntryTable[idx].dPC;
   1020     if (pc != NULL) {
   1021         bool hideTranslation = dvmJitHideTranslation();
   1022         if (pc == dPC &&
   1023             gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry == methodEntry) {
   1024             int offset = (gDvmJit.profileMode >= kTraceProfilingContinuous) ?
   1025                  0 : gDvmJit.pJitEntryTable[idx].u.info.profileOffset;
   1026             intptr_t codeAddress =
   1027                 (intptr_t)gDvmJit.pJitEntryTable[idx].codeAddress;
   1028 #if defined(WITH_JIT_TUNING)
   1029             gDvmJit.addrLookupsFound++;
   1030 #endif
   1031             return hideTranslation || !codeAddress ?  NULL :
   1032                   (void *)(codeAddress + offset);
   1033         } else {
   1034             int chainEndMarker = gDvmJit.jitTableSize;
   1035             while (gDvmJit.pJitEntryTable[idx].u.info.chain != chainEndMarker) {
   1036                 idx = gDvmJit.pJitEntryTable[idx].u.info.chain;
   1037                 if (gDvmJit.pJitEntryTable[idx].dPC == dPC &&
   1038                     gDvmJit.pJitEntryTable[idx].u.info.isMethodEntry ==
   1039                         methodEntry) {
   1040                     int offset = (gDvmJit.profileMode >=
   1041                         kTraceProfilingContinuous) ? 0 :
   1042                         gDvmJit.pJitEntryTable[idx].u.info.profileOffset;
   1043                     intptr_t codeAddress =
   1044                         (intptr_t)gDvmJit.pJitEntryTable[idx].codeAddress;
   1045 #if defined(WITH_JIT_TUNING)
   1046                     gDvmJit.addrLookupsFound++;
   1047 #endif
   1048                     return hideTranslation || !codeAddress ? NULL :
   1049                         (void *)(codeAddress + offset);
   1050                 }
   1051             }
   1052         }
   1053     }
   1054 #if defined(WITH_JIT_TUNING)
   1055     gDvmJit.addrLookupsNotFound++;
   1056 #endif
   1057     return NULL;
   1058 }
   1059 
   1060 /*
   1061  * If a translated code address, in trace format, exists for the davik byte code
   1062  * pointer return it.
   1063  */
   1064 void* dvmJitGetTraceAddr(const u2* dPC)
   1065 {
   1066     return getCodeAddrCommon(dPC, false /* method entry */);
   1067 }
   1068 
   1069 /*
   1070  * If a translated code address, in whole-method format, exists for the davik
   1071  * byte code pointer return it.
   1072  */
   1073 void* dvmJitGetMethodAddr(const u2* dPC)
   1074 {
   1075     return getCodeAddrCommon(dPC, true /* method entry */);
   1076 }
   1077 
   1078 /*
   1079  * Similar to dvmJitGetTraceAddr, but returns null if the calling
   1080  * thread is in a single-step mode.
   1081  */
   1082 void* dvmJitGetTraceAddrThread(const u2* dPC, Thread* self)
   1083 {
   1084     return (self->interpBreak.ctl.breakFlags != 0) ? NULL :
   1085             getCodeAddrCommon(dPC, false /* method entry */);
   1086 }
   1087 
   1088 /*
   1089  * Similar to dvmJitGetMethodAddr, but returns null if the calling
   1090  * thread is in a single-step mode.
   1091  */
   1092 void* dvmJitGetMethodAddrThread(const u2* dPC, Thread* self)
   1093 {
   1094     return (self->interpBreak.ctl.breakFlags != 0) ? NULL :
   1095             getCodeAddrCommon(dPC, true /* method entry */);
   1096 }
   1097 
   1098 /*
   1099  * Register the translated code pointer into the JitTable.
   1100  * NOTE: Once a codeAddress field transitions from initial state to
   1101  * JIT'd code, it must not be altered without first halting all
   1102  * threads.  We defer the setting of the profile prefix size until
   1103  * after the new code address is set to ensure that the prefix offset
   1104  * is never applied to the initial interpret-only translation.  All
   1105  * translations with non-zero profile prefixes will still be correct
   1106  * if entered as if the profile offset is 0, but the interpret-only
   1107  * template cannot handle a non-zero prefix.
   1108  * NOTE: JitTable must not be in danger of reset while this
   1109  * code is executing. see Issue 4271784 for details.
   1110  */
   1111 void dvmJitSetCodeAddr(const u2* dPC, void *nPC, JitInstructionSetType set,
   1112                        bool isMethodEntry, int profilePrefixSize)
   1113 {
   1114     JitEntryInfoUnion oldValue;
   1115     JitEntryInfoUnion newValue;
   1116     /*
   1117      * Get the JitTable slot for this dPC (or create one if JitTable
   1118      * has been reset between the time the trace was requested and
   1119      * now.
   1120      */
   1121     JitEntry *jitEntry = isMethodEntry ?
   1122         lookupAndAdd(dPC, false /* caller holds tableLock */, isMethodEntry) :
   1123                      dvmJitFindEntry(dPC, isMethodEntry);
   1124     assert(jitEntry);
   1125     /* Note: order of update is important */
   1126     do {
   1127         oldValue = jitEntry->u;
   1128         newValue = oldValue;
   1129         newValue.info.isMethodEntry = isMethodEntry;
   1130         newValue.info.instructionSet = set;
   1131         newValue.info.profileOffset = profilePrefixSize;
   1132     } while (android_atomic_release_cas(
   1133              oldValue.infoWord, newValue.infoWord,
   1134              &jitEntry->u.infoWord) != 0);
   1135     jitEntry->codeAddress = nPC;
   1136 }
   1137 
   1138 /*
   1139  * Determine if valid trace-bulding request is active.  If so, set
   1140  * the proper flags in interpBreak and return.  Trace selection will
   1141  * then begin normally via dvmCheckBefore.
   1142  */
   1143 void dvmJitCheckTraceRequest(Thread* self)
   1144 {
   1145     int i;
   1146     /*
   1147      * A note on trace "hotness" filtering:
   1148      *
   1149      * Our first level trigger is intentionally loose - we need it to
   1150      * fire easily not just to identify potential traces to compile, but
   1151      * also to allow re-entry into the code cache.
   1152      *
   1153      * The 2nd level filter (done here) exists to be selective about
   1154      * what we actually compile.  It works by requiring the same
   1155      * trace head "key" (defined as filterKey below) to appear twice in
   1156      * a relatively short period of time.   The difficulty is defining the
   1157      * shape of the filterKey.  Unfortunately, there is no "one size fits
   1158      * all" approach.
   1159      *
   1160      * For spiky execution profiles dominated by a smallish
   1161      * number of very hot loops, we would want the second-level filter
   1162      * to be very selective.  A good selective filter is requiring an
   1163      * exact match of the Dalvik PC.  In other words, defining filterKey as:
   1164      *     intptr_t filterKey = (intptr_t)self->interpSave.pc
   1165      *
   1166      * However, for flat execution profiles we do best when aggressively
   1167      * translating.  A heuristically decent proxy for this is to use
   1168      * the value of the method pointer containing the trace as the filterKey.
   1169      * Intuitively, this is saying that once any trace in a method appears hot,
   1170      * immediately translate any other trace from that same method that
   1171      * survives the first-level filter.  Here, filterKey would be defined as:
   1172      *     intptr_t filterKey = (intptr_t)self->interpSave.method
   1173      *
   1174      * The problem is that we can't easily detect whether we're dealing
   1175      * with a spiky or flat profile.  If we go with the "pc" match approach,
   1176      * flat profiles perform poorly.  If we go with the loose "method" match,
   1177      * we end up generating a lot of useless translations.  Probably the
   1178      * best approach in the future will be to retain profile information
   1179      * across runs of each application in order to determine it's profile,
   1180      * and then choose once we have enough history.
   1181      *
   1182      * However, for now we've decided to chose a compromise filter scheme that
   1183      * includes elements of both.  The high order bits of the filter key
   1184      * are drawn from the enclosing method, and are combined with a slice
   1185      * of the low-order bits of the Dalvik pc of the trace head.  The
   1186      * looseness of the filter can be adjusted by changing with width of
   1187      * the Dalvik pc slice (JIT_TRACE_THRESH_FILTER_PC_BITS).  The wider
   1188      * the slice, the tighter the filter.
   1189      *
   1190      * Note: the fixed shifts in the function below reflect assumed word
   1191      * alignment for method pointers, and half-word alignment of the Dalvik pc.
   1192      * for method pointers and half-word alignment for dalvik pc.
   1193      */
   1194     u4 methodKey = (u4)self->interpSave.method <<
   1195                    (JIT_TRACE_THRESH_FILTER_PC_BITS - 2);
   1196     u4 pcKey = ((u4)self->interpSave.pc >> 1) &
   1197                ((1 << JIT_TRACE_THRESH_FILTER_PC_BITS) - 1);
   1198     intptr_t filterKey = (intptr_t)(methodKey | pcKey);
   1199 
   1200     // Shouldn't be here if already building a trace.
   1201     assert((self->interpBreak.ctl.subMode & kSubModeJitTraceBuild)==0);
   1202 
   1203     /* Check if the JIT request can be handled now */
   1204     if ((gDvmJit.pJitEntryTable != NULL) &&
   1205         ((self->interpBreak.ctl.breakFlags & kInterpSingleStep) == 0)){
   1206         /* Bypass the filter for hot trace requests or during stress mode */
   1207         if (self->jitState == kJitTSelectRequest &&
   1208             gDvmJit.threshold > 6) {
   1209             /* Two-level filtering scheme */
   1210             for (i=0; i< JIT_TRACE_THRESH_FILTER_SIZE; i++) {
   1211                 if (filterKey == self->threshFilter[i]) {
   1212                     self->threshFilter[i] = 0; // Reset filter entry
   1213                     break;
   1214                 }
   1215             }
   1216             if (i == JIT_TRACE_THRESH_FILTER_SIZE) {
   1217                 /*
   1218                  * Use random replacement policy - otherwise we could miss a
   1219                  * large loop that contains more traces than the size of our
   1220                  * filter array.
   1221                  */
   1222                 i = rand() % JIT_TRACE_THRESH_FILTER_SIZE;
   1223                 self->threshFilter[i] = filterKey;
   1224                 self->jitState = kJitDone;
   1225             }
   1226         }
   1227 
   1228         /* If the compiler is backlogged, cancel any JIT actions */
   1229         if (gDvmJit.compilerQueueLength >= gDvmJit.compilerHighWater) {
   1230             self->jitState = kJitDone;
   1231         }
   1232 
   1233         /*
   1234          * Check for additional reasons that might force the trace select
   1235          * request to be dropped
   1236          */
   1237         if (self->jitState == kJitTSelectRequest ||
   1238             self->jitState == kJitTSelectRequestHot) {
   1239             if (dvmJitFindEntry(self->interpSave.pc, false)) {
   1240                 /* In progress - nothing do do */
   1241                self->jitState = kJitDone;
   1242             } else {
   1243                 JitEntry *slot = lookupAndAdd(self->interpSave.pc,
   1244                                               false /* lock */,
   1245                                               false /* method entry */);
   1246                 if (slot == NULL) {
   1247                     /*
   1248                      * Table is full.  This should have been
   1249                      * detected by the compiler thread and the table
   1250                      * resized before we run into it here.  Assume bad things
   1251                      * are afoot and disable profiling.
   1252                      */
   1253                     self->jitState = kJitDone;
   1254                     ALOGD("JIT: JitTable full, disabling profiling");
   1255                     dvmJitStopTranslationRequests();
   1256                 }
   1257             }
   1258         }
   1259 
   1260         switch (self->jitState) {
   1261             case kJitTSelectRequest:
   1262             case kJitTSelectRequestHot:
   1263                 self->jitState = kJitTSelect;
   1264                 self->traceMethod = self->interpSave.method;
   1265                 self->currTraceHead = self->interpSave.pc;
   1266                 self->currTraceRun = 0;
   1267                 self->totalTraceLen = 0;
   1268                 self->currRunHead = self->interpSave.pc;
   1269                 self->currRunLen = 0;
   1270                 self->trace[0].info.frag.startOffset =
   1271                      self->interpSave.pc - self->interpSave.method->insns;
   1272                 self->trace[0].info.frag.numInsts = 0;
   1273                 self->trace[0].info.frag.runEnd = false;
   1274                 self->trace[0].info.frag.hint = kJitHintNone;
   1275                 self->trace[0].isCode = true;
   1276                 self->lastPC = 0;
   1277                 /* Turn on trace selection mode */
   1278                 dvmEnableSubMode(self, kSubModeJitTraceBuild);
   1279 #if defined(SHOW_TRACE)
   1280                 ALOGD("Starting trace for %s at %#x",
   1281                      self->interpSave.method->name, (int)self->interpSave.pc);
   1282 #endif
   1283                 break;
   1284             case kJitDone:
   1285                 break;
   1286             default:
   1287                 ALOGE("Unexpected JIT state: %d", self->jitState);
   1288                 dvmAbort();
   1289         }
   1290     } else {
   1291         /* Cannot build trace this time */
   1292         self->jitState = kJitDone;
   1293     }
   1294 }
   1295 
   1296 /*
   1297  * Resizes the JitTable.  Must be a power of 2, and returns true on failure.
   1298  * Stops all threads, and thus is a heavyweight operation. May only be called
   1299  * by the compiler thread.
   1300  */
   1301 bool dvmJitResizeJitTable( unsigned int size )
   1302 {
   1303     JitEntry *pNewTable;
   1304     JitEntry *pOldTable;
   1305     JitEntry tempEntry;
   1306     unsigned int oldSize;
   1307     unsigned int i;
   1308 
   1309     assert(gDvmJit.pJitEntryTable != NULL);
   1310     assert(size && !(size & (size - 1)));   /* Is power of 2? */
   1311 
   1312     ALOGI("Jit: resizing JitTable from %d to %d", gDvmJit.jitTableSize, size);
   1313 
   1314     if (size <= gDvmJit.jitTableSize) {
   1315         return true;
   1316     }
   1317 
   1318     /* Make sure requested size is compatible with chain field width */
   1319     tempEntry.u.info.chain = size;
   1320     if (tempEntry.u.info.chain != size) {
   1321         ALOGD("Jit: JitTable request of %d too big", size);
   1322         return true;
   1323     }
   1324 
   1325     pNewTable = (JitEntry*)calloc(size, sizeof(*pNewTable));
   1326     if (pNewTable == NULL) {
   1327         return true;
   1328     }
   1329     for (i=0; i< size; i++) {
   1330         pNewTable[i].u.info.chain = size;  /* Initialize chain termination */
   1331     }
   1332 
   1333     /* Stop all other interpreting/jit'ng threads */
   1334     dvmSuspendAllThreads(SUSPEND_FOR_TBL_RESIZE);
   1335 
   1336     pOldTable = gDvmJit.pJitEntryTable;
   1337     oldSize = gDvmJit.jitTableSize;
   1338 
   1339     dvmLockMutex(&gDvmJit.tableLock);
   1340     gDvmJit.pJitEntryTable = pNewTable;
   1341     gDvmJit.jitTableSize = size;
   1342     gDvmJit.jitTableMask = size - 1;
   1343     gDvmJit.jitTableEntriesUsed = 0;
   1344 
   1345     for (i=0; i < oldSize; i++) {
   1346         if (pOldTable[i].dPC) {
   1347             JitEntry *p;
   1348             u2 chain;
   1349             p = lookupAndAdd(pOldTable[i].dPC, true /* holds tableLock*/,
   1350                              pOldTable[i].u.info.isMethodEntry);
   1351             p->codeAddress = pOldTable[i].codeAddress;
   1352             /* We need to preserve the new chain field, but copy the rest */
   1353             chain = p->u.info.chain;
   1354             p->u = pOldTable[i].u;
   1355             p->u.info.chain = chain;
   1356         }
   1357     }
   1358 
   1359     dvmUnlockMutex(&gDvmJit.tableLock);
   1360 
   1361     free(pOldTable);
   1362 
   1363     /* Restart the world */
   1364     dvmResumeAllThreads(SUSPEND_FOR_TBL_RESIZE);
   1365 
   1366     return false;
   1367 }
   1368 
   1369 /*
   1370  * Reset the JitTable to the initial clean state.
   1371  */
   1372 void dvmJitResetTable()
   1373 {
   1374     JitEntry *jitEntry = gDvmJit.pJitEntryTable;
   1375     unsigned int size = gDvmJit.jitTableSize;
   1376     unsigned int i;
   1377 
   1378     dvmLockMutex(&gDvmJit.tableLock);
   1379 
   1380     /* Note: If need to preserve any existing counts. Do so here. */
   1381     if (gDvmJit.pJitTraceProfCounters) {
   1382         for (i=0; i < JIT_PROF_BLOCK_BUCKETS; i++) {
   1383             if (gDvmJit.pJitTraceProfCounters->buckets[i])
   1384                 memset((void *) gDvmJit.pJitTraceProfCounters->buckets[i],
   1385                        0, sizeof(JitTraceCounter_t) * JIT_PROF_BLOCK_ENTRIES);
   1386         }
   1387         gDvmJit.pJitTraceProfCounters->next = 0;
   1388     }
   1389 
   1390     memset((void *) jitEntry, 0, sizeof(JitEntry) * size);
   1391     for (i=0; i< size; i++) {
   1392         jitEntry[i].u.info.chain = size;  /* Initialize chain termination */
   1393     }
   1394     gDvmJit.jitTableEntriesUsed = 0;
   1395     dvmUnlockMutex(&gDvmJit.tableLock);
   1396 }
   1397 
   1398 /*
   1399  * Return the address of the next trace profile counter.  This address
   1400  * will be embedded in the generated code for the trace, and thus cannot
   1401  * change while the trace exists.
   1402  */
   1403 JitTraceCounter_t *dvmJitNextTraceCounter()
   1404 {
   1405     int idx = gDvmJit.pJitTraceProfCounters->next / JIT_PROF_BLOCK_ENTRIES;
   1406     int elem = gDvmJit.pJitTraceProfCounters->next % JIT_PROF_BLOCK_ENTRIES;
   1407     JitTraceCounter_t *res;
   1408     /* Lazily allocate blocks of counters */
   1409     if (!gDvmJit.pJitTraceProfCounters->buckets[idx]) {
   1410         JitTraceCounter_t *p =
   1411               (JitTraceCounter_t*) calloc(JIT_PROF_BLOCK_ENTRIES, sizeof(*p));
   1412         if (!p) {
   1413             ALOGE("Failed to allocate block of trace profile counters");
   1414             dvmAbort();
   1415         }
   1416         gDvmJit.pJitTraceProfCounters->buckets[idx] = p;
   1417     }
   1418     res = &gDvmJit.pJitTraceProfCounters->buckets[idx][elem];
   1419     gDvmJit.pJitTraceProfCounters->next++;
   1420     return res;
   1421 }
   1422 
   1423 /*
   1424  * Float/double conversion requires clamping to min and max of integer form.  If
   1425  * target doesn't support this normally, use these.
   1426  */
   1427 s8 dvmJitd2l(double d)
   1428 {
   1429     static const double kMaxLong = (double)(s8)0x7fffffffffffffffULL;
   1430     static const double kMinLong = (double)(s8)0x8000000000000000ULL;
   1431     if (d >= kMaxLong)
   1432         return (s8)0x7fffffffffffffffULL;
   1433     else if (d <= kMinLong)
   1434         return (s8)0x8000000000000000ULL;
   1435     else if (d != d) // NaN case
   1436         return 0;
   1437     else
   1438         return (s8)d;
   1439 }
   1440 
   1441 s8 dvmJitf2l(float f)
   1442 {
   1443     static const float kMaxLong = (float)(s8)0x7fffffffffffffffULL;
   1444     static const float kMinLong = (float)(s8)0x8000000000000000ULL;
   1445     if (f >= kMaxLong)
   1446         return (s8)0x7fffffffffffffffULL;
   1447     else if (f <= kMinLong)
   1448         return (s8)0x8000000000000000ULL;
   1449     else if (f != f) // NaN case
   1450         return 0;
   1451     else
   1452         return (s8)f;
   1453 }
   1454 
   1455 /* Should only be called by the compiler thread */
   1456 void dvmJitChangeProfileMode(TraceProfilingModes newState)
   1457 {
   1458     if (gDvmJit.profileMode != newState) {
   1459         gDvmJit.profileMode = newState;
   1460         dvmJitUnchainAll();
   1461     }
   1462 }
   1463 
   1464 void dvmJitTraceProfilingOn()
   1465 {
   1466     if (gDvmJit.profileMode == kTraceProfilingPeriodicOff)
   1467         dvmCompilerForceWorkEnqueue(NULL, kWorkOrderProfileMode,
   1468                                     (void*) kTraceProfilingPeriodicOn);
   1469     else if (gDvmJit.profileMode == kTraceProfilingDisabled)
   1470         dvmCompilerForceWorkEnqueue(NULL, kWorkOrderProfileMode,
   1471                                     (void*) kTraceProfilingContinuous);
   1472 }
   1473 
   1474 void dvmJitTraceProfilingOff()
   1475 {
   1476     if (gDvmJit.profileMode == kTraceProfilingPeriodicOn)
   1477         dvmCompilerForceWorkEnqueue(NULL, kWorkOrderProfileMode,
   1478                                     (void*) kTraceProfilingPeriodicOff);
   1479     else if (gDvmJit.profileMode == kTraceProfilingContinuous)
   1480         dvmCompilerForceWorkEnqueue(NULL, kWorkOrderProfileMode,
   1481                                     (void*) kTraceProfilingDisabled);
   1482 }
   1483 
   1484 /*
   1485  * Update JIT-specific info in Thread structure for a single thread
   1486  */
   1487 void dvmJitUpdateThreadStateSingle(Thread* thread)
   1488 {
   1489     thread->pJitProfTable = gDvmJit.pProfTable;
   1490     thread->jitThreshold = gDvmJit.threshold;
   1491 }
   1492 
   1493 /*
   1494  * Walk through the thread list and refresh all local copies of
   1495  * JIT global state (which was placed there for fast access).
   1496  */
   1497 void dvmJitUpdateThreadStateAll()
   1498 {
   1499     Thread* self = dvmThreadSelf();
   1500     Thread* thread;
   1501 
   1502     dvmLockThreadList(self);
   1503     for (thread = gDvm.threadList; thread != NULL; thread = thread->next) {
   1504         dvmJitUpdateThreadStateSingle(thread);
   1505     }
   1506     dvmUnlockThreadList();
   1507 
   1508 }
   1509 #endif /* WITH_JIT */
   1510