1 /* 2 * EAP peer state machines (RFC 4137) 3 * Copyright (c) 2004-2010, Jouni Malinen <j (at) w1.fi> 4 * 5 * This software may be distributed under the terms of the BSD license. 6 * See README for more details. 7 * 8 * This file implements the Peer State Machine as defined in RFC 4137. The used 9 * states and state transitions match mostly with the RFC. However, there are 10 * couple of additional transitions for working around small issues noticed 11 * during testing. These exceptions are explained in comments within the 12 * functions in this file. The method functions, m.func(), are similar to the 13 * ones used in RFC 4137, but some small changes have used here to optimize 14 * operations and to add functionality needed for fast re-authentication 15 * (session resumption). 16 */ 17 18 #include "includes.h" 19 20 #include "common.h" 21 #include "pcsc_funcs.h" 22 #include "state_machine.h" 23 #include "crypto/crypto.h" 24 #include "crypto/tls.h" 25 #include "common/wpa_ctrl.h" 26 #include "eap_common/eap_wsc_common.h" 27 #include "eap_i.h" 28 #include "eap_config.h" 29 30 #define STATE_MACHINE_DATA struct eap_sm 31 #define STATE_MACHINE_DEBUG_PREFIX "EAP" 32 33 #define EAP_MAX_AUTH_ROUNDS 50 34 #define EAP_CLIENT_TIMEOUT_DEFAULT 60 35 36 37 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor, 38 EapType method); 39 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id); 40 static void eap_sm_processIdentity(struct eap_sm *sm, 41 const struct wpabuf *req); 42 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req); 43 static struct wpabuf * eap_sm_buildNotify(int id); 44 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req); 45 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 46 static const char * eap_sm_method_state_txt(EapMethodState state); 47 static const char * eap_sm_decision_txt(EapDecision decision); 48 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 49 50 51 52 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var) 53 { 54 return sm->eapol_cb->get_bool(sm->eapol_ctx, var); 55 } 56 57 58 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var, 59 Boolean value) 60 { 61 sm->eapol_cb->set_bool(sm->eapol_ctx, var, value); 62 } 63 64 65 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var) 66 { 67 return sm->eapol_cb->get_int(sm->eapol_ctx, var); 68 } 69 70 71 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var, 72 unsigned int value) 73 { 74 sm->eapol_cb->set_int(sm->eapol_ctx, var, value); 75 } 76 77 78 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm) 79 { 80 return sm->eapol_cb->get_eapReqData(sm->eapol_ctx); 81 } 82 83 84 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt) 85 { 86 if (sm->m == NULL || sm->eap_method_priv == NULL) 87 return; 88 89 wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method " 90 "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt); 91 sm->m->deinit(sm, sm->eap_method_priv); 92 sm->eap_method_priv = NULL; 93 sm->m = NULL; 94 } 95 96 97 /** 98 * eap_allowed_method - Check whether EAP method is allowed 99 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 100 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types 101 * @method: EAP type 102 * Returns: 1 = allowed EAP method, 0 = not allowed 103 */ 104 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method) 105 { 106 struct eap_peer_config *config = eap_get_config(sm); 107 int i; 108 struct eap_method_type *m; 109 110 if (config == NULL || config->eap_methods == NULL) 111 return 1; 112 113 m = config->eap_methods; 114 for (i = 0; m[i].vendor != EAP_VENDOR_IETF || 115 m[i].method != EAP_TYPE_NONE; i++) { 116 if (m[i].vendor == vendor && m[i].method == method) 117 return 1; 118 } 119 return 0; 120 } 121 122 123 /* 124 * This state initializes state machine variables when the machine is 125 * activated (portEnabled = TRUE). This is also used when re-starting 126 * authentication (eapRestart == TRUE). 127 */ 128 SM_STATE(EAP, INITIALIZE) 129 { 130 SM_ENTRY(EAP, INITIALIZE); 131 if (sm->fast_reauth && sm->m && sm->m->has_reauth_data && 132 sm->m->has_reauth_data(sm, sm->eap_method_priv) && 133 !sm->prev_failure) { 134 wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for " 135 "fast reauthentication"); 136 sm->m->deinit_for_reauth(sm, sm->eap_method_priv); 137 } else { 138 eap_deinit_prev_method(sm, "INITIALIZE"); 139 } 140 sm->selectedMethod = EAP_TYPE_NONE; 141 sm->methodState = METHOD_NONE; 142 sm->allowNotifications = TRUE; 143 sm->decision = DECISION_FAIL; 144 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT; 145 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout); 146 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE); 147 eapol_set_bool(sm, EAPOL_eapFail, FALSE); 148 os_free(sm->eapKeyData); 149 sm->eapKeyData = NULL; 150 sm->eapKeyAvailable = FALSE; 151 eapol_set_bool(sm, EAPOL_eapRestart, FALSE); 152 sm->lastId = -1; /* new session - make sure this does not match with 153 * the first EAP-Packet */ 154 /* 155 * RFC 4137 does not reset eapResp and eapNoResp here. However, this 156 * seemed to be able to trigger cases where both were set and if EAPOL 157 * state machine uses eapNoResp first, it may end up not sending a real 158 * reply correctly. This occurred when the workaround in FAIL state set 159 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do 160 * something else(?) 161 */ 162 eapol_set_bool(sm, EAPOL_eapResp, FALSE); 163 eapol_set_bool(sm, EAPOL_eapNoResp, FALSE); 164 sm->num_rounds = 0; 165 sm->prev_failure = 0; 166 } 167 168 169 /* 170 * This state is reached whenever service from the lower layer is interrupted 171 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE 172 * occurs when the port becomes enabled. 173 */ 174 SM_STATE(EAP, DISABLED) 175 { 176 SM_ENTRY(EAP, DISABLED); 177 sm->num_rounds = 0; 178 } 179 180 181 /* 182 * The state machine spends most of its time here, waiting for something to 183 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and 184 * SEND_RESPONSE states. 185 */ 186 SM_STATE(EAP, IDLE) 187 { 188 SM_ENTRY(EAP, IDLE); 189 } 190 191 192 /* 193 * This state is entered when an EAP packet is received (eapReq == TRUE) to 194 * parse the packet header. 195 */ 196 SM_STATE(EAP, RECEIVED) 197 { 198 const struct wpabuf *eapReqData; 199 200 SM_ENTRY(EAP, RECEIVED); 201 eapReqData = eapol_get_eapReqData(sm); 202 /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */ 203 eap_sm_parseEapReq(sm, eapReqData); 204 sm->num_rounds++; 205 } 206 207 208 /* 209 * This state is entered when a request for a new type comes in. Either the 210 * correct method is started, or a Nak response is built. 211 */ 212 SM_STATE(EAP, GET_METHOD) 213 { 214 int reinit; 215 EapType method; 216 217 SM_ENTRY(EAP, GET_METHOD); 218 219 if (sm->reqMethod == EAP_TYPE_EXPANDED) 220 method = sm->reqVendorMethod; 221 else 222 method = sm->reqMethod; 223 224 if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) { 225 wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed", 226 sm->reqVendor, method); 227 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD 228 "vendor=%u method=%u -> NAK", 229 sm->reqVendor, method); 230 goto nak; 231 } 232 233 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD 234 "vendor=%u method=%u", sm->reqVendor, method); 235 236 /* 237 * RFC 4137 does not define specific operation for fast 238 * re-authentication (session resumption). The design here is to allow 239 * the previously used method data to be maintained for 240 * re-authentication if the method support session resumption. 241 * Otherwise, the previously used method data is freed and a new method 242 * is allocated here. 243 */ 244 if (sm->fast_reauth && 245 sm->m && sm->m->vendor == sm->reqVendor && 246 sm->m->method == method && 247 sm->m->has_reauth_data && 248 sm->m->has_reauth_data(sm, sm->eap_method_priv)) { 249 wpa_printf(MSG_DEBUG, "EAP: Using previous method data" 250 " for fast re-authentication"); 251 reinit = 1; 252 } else { 253 eap_deinit_prev_method(sm, "GET_METHOD"); 254 reinit = 0; 255 } 256 257 sm->selectedMethod = sm->reqMethod; 258 if (sm->m == NULL) 259 sm->m = eap_peer_get_eap_method(sm->reqVendor, method); 260 if (!sm->m) { 261 wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: " 262 "vendor %d method %d", 263 sm->reqVendor, method); 264 goto nak; 265 } 266 267 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT; 268 269 wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: " 270 "vendor %u method %u (%s)", 271 sm->reqVendor, method, sm->m->name); 272 if (reinit) 273 sm->eap_method_priv = sm->m->init_for_reauth( 274 sm, sm->eap_method_priv); 275 else 276 sm->eap_method_priv = sm->m->init(sm); 277 278 if (sm->eap_method_priv == NULL) { 279 struct eap_peer_config *config = eap_get_config(sm); 280 wpa_msg(sm->msg_ctx, MSG_INFO, 281 "EAP: Failed to initialize EAP method: vendor %u " 282 "method %u (%s)", 283 sm->reqVendor, method, sm->m->name); 284 sm->m = NULL; 285 sm->methodState = METHOD_NONE; 286 sm->selectedMethod = EAP_TYPE_NONE; 287 if (sm->reqMethod == EAP_TYPE_TLS && config && 288 (config->pending_req_pin || 289 config->pending_req_passphrase)) { 290 /* 291 * Return without generating Nak in order to allow 292 * entering of PIN code or passphrase to retry the 293 * current EAP packet. 294 */ 295 wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase " 296 "request - skip Nak"); 297 return; 298 } 299 300 goto nak; 301 } 302 303 sm->methodState = METHOD_INIT; 304 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD 305 "EAP vendor %u method %u (%s) selected", 306 sm->reqVendor, method, sm->m->name); 307 return; 308 309 nak: 310 wpabuf_free(sm->eapRespData); 311 sm->eapRespData = NULL; 312 sm->eapRespData = eap_sm_buildNak(sm, sm->reqId); 313 } 314 315 316 /* 317 * The method processing happens here. The request from the authenticator is 318 * processed, and an appropriate response packet is built. 319 */ 320 SM_STATE(EAP, METHOD) 321 { 322 struct wpabuf *eapReqData; 323 struct eap_method_ret ret; 324 325 SM_ENTRY(EAP, METHOD); 326 if (sm->m == NULL) { 327 wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected"); 328 return; 329 } 330 331 eapReqData = eapol_get_eapReqData(sm); 332 333 /* 334 * Get ignore, methodState, decision, allowNotifications, and 335 * eapRespData. RFC 4137 uses three separate method procedure (check, 336 * process, and buildResp) in this state. These have been combined into 337 * a single function call to m->process() in order to optimize EAP 338 * method implementation interface a bit. These procedures are only 339 * used from within this METHOD state, so there is no need to keep 340 * these as separate C functions. 341 * 342 * The RFC 4137 procedures return values as follows: 343 * ignore = m.check(eapReqData) 344 * (methodState, decision, allowNotifications) = m.process(eapReqData) 345 * eapRespData = m.buildResp(reqId) 346 */ 347 os_memset(&ret, 0, sizeof(ret)); 348 ret.ignore = sm->ignore; 349 ret.methodState = sm->methodState; 350 ret.decision = sm->decision; 351 ret.allowNotifications = sm->allowNotifications; 352 wpabuf_free(sm->eapRespData); 353 sm->eapRespData = NULL; 354 sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret, 355 eapReqData); 356 wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s " 357 "methodState=%s decision=%s", 358 ret.ignore ? "TRUE" : "FALSE", 359 eap_sm_method_state_txt(ret.methodState), 360 eap_sm_decision_txt(ret.decision)); 361 362 sm->ignore = ret.ignore; 363 if (sm->ignore) 364 return; 365 sm->methodState = ret.methodState; 366 sm->decision = ret.decision; 367 sm->allowNotifications = ret.allowNotifications; 368 369 if (sm->m->isKeyAvailable && sm->m->getKey && 370 sm->m->isKeyAvailable(sm, sm->eap_method_priv)) { 371 os_free(sm->eapKeyData); 372 sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv, 373 &sm->eapKeyDataLen); 374 } 375 } 376 377 378 /* 379 * This state signals the lower layer that a response packet is ready to be 380 * sent. 381 */ 382 SM_STATE(EAP, SEND_RESPONSE) 383 { 384 SM_ENTRY(EAP, SEND_RESPONSE); 385 wpabuf_free(sm->lastRespData); 386 if (sm->eapRespData) { 387 if (sm->workaround) 388 os_memcpy(sm->last_md5, sm->req_md5, 16); 389 sm->lastId = sm->reqId; 390 sm->lastRespData = wpabuf_dup(sm->eapRespData); 391 eapol_set_bool(sm, EAPOL_eapResp, TRUE); 392 } else 393 sm->lastRespData = NULL; 394 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 395 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout); 396 } 397 398 399 /* 400 * This state signals the lower layer that the request was discarded, and no 401 * response packet will be sent at this time. 402 */ 403 SM_STATE(EAP, DISCARD) 404 { 405 SM_ENTRY(EAP, DISCARD); 406 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 407 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 408 } 409 410 411 /* 412 * Handles requests for Identity method and builds a response. 413 */ 414 SM_STATE(EAP, IDENTITY) 415 { 416 const struct wpabuf *eapReqData; 417 418 SM_ENTRY(EAP, IDENTITY); 419 eapReqData = eapol_get_eapReqData(sm); 420 eap_sm_processIdentity(sm, eapReqData); 421 wpabuf_free(sm->eapRespData); 422 sm->eapRespData = NULL; 423 sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0); 424 } 425 426 427 /* 428 * Handles requests for Notification method and builds a response. 429 */ 430 SM_STATE(EAP, NOTIFICATION) 431 { 432 const struct wpabuf *eapReqData; 433 434 SM_ENTRY(EAP, NOTIFICATION); 435 eapReqData = eapol_get_eapReqData(sm); 436 eap_sm_processNotify(sm, eapReqData); 437 wpabuf_free(sm->eapRespData); 438 sm->eapRespData = NULL; 439 sm->eapRespData = eap_sm_buildNotify(sm->reqId); 440 } 441 442 443 /* 444 * This state retransmits the previous response packet. 445 */ 446 SM_STATE(EAP, RETRANSMIT) 447 { 448 SM_ENTRY(EAP, RETRANSMIT); 449 wpabuf_free(sm->eapRespData); 450 if (sm->lastRespData) 451 sm->eapRespData = wpabuf_dup(sm->lastRespData); 452 else 453 sm->eapRespData = NULL; 454 } 455 456 457 /* 458 * This state is entered in case of a successful completion of authentication 459 * and state machine waits here until port is disabled or EAP authentication is 460 * restarted. 461 */ 462 SM_STATE(EAP, SUCCESS) 463 { 464 SM_ENTRY(EAP, SUCCESS); 465 if (sm->eapKeyData != NULL) 466 sm->eapKeyAvailable = TRUE; 467 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE); 468 469 /* 470 * RFC 4137 does not clear eapReq here, but this seems to be required 471 * to avoid processing the same request twice when state machine is 472 * initialized. 473 */ 474 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 475 476 /* 477 * RFC 4137 does not set eapNoResp here, but this seems to be required 478 * to get EAPOL Supplicant backend state machine into SUCCESS state. In 479 * addition, either eapResp or eapNoResp is required to be set after 480 * processing the received EAP frame. 481 */ 482 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 483 484 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS 485 "EAP authentication completed successfully"); 486 } 487 488 489 /* 490 * This state is entered in case of a failure and state machine waits here 491 * until port is disabled or EAP authentication is restarted. 492 */ 493 SM_STATE(EAP, FAILURE) 494 { 495 SM_ENTRY(EAP, FAILURE); 496 eapol_set_bool(sm, EAPOL_eapFail, TRUE); 497 498 /* 499 * RFC 4137 does not clear eapReq here, but this seems to be required 500 * to avoid processing the same request twice when state machine is 501 * initialized. 502 */ 503 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 504 505 /* 506 * RFC 4137 does not set eapNoResp here. However, either eapResp or 507 * eapNoResp is required to be set after processing the received EAP 508 * frame. 509 */ 510 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 511 512 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE 513 "EAP authentication failed"); 514 515 sm->prev_failure = 1; 516 } 517 518 519 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId) 520 { 521 /* 522 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending 523 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and 524 * RFC 4137 require that reqId == lastId. In addition, it looks like 525 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success. 526 * 527 * Accept this kind of Id if EAP workarounds are enabled. These are 528 * unauthenticated plaintext messages, so this should have minimal 529 * security implications (bit easier to fake EAP-Success/Failure). 530 */ 531 if (sm->workaround && (reqId == ((lastId + 1) & 0xff) || 532 reqId == ((lastId + 2) & 0xff))) { 533 wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected " 534 "identifier field in EAP Success: " 535 "reqId=%d lastId=%d (these are supposed to be " 536 "same)", reqId, lastId); 537 return 1; 538 } 539 wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d " 540 "lastId=%d", reqId, lastId); 541 return 0; 542 } 543 544 545 /* 546 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions 547 */ 548 549 static void eap_peer_sm_step_idle(struct eap_sm *sm) 550 { 551 /* 552 * The first three transitions are from RFC 4137. The last two are 553 * local additions to handle special cases with LEAP and PEAP server 554 * not sending EAP-Success in some cases. 555 */ 556 if (eapol_get_bool(sm, EAPOL_eapReq)) 557 SM_ENTER(EAP, RECEIVED); 558 else if ((eapol_get_bool(sm, EAPOL_altAccept) && 559 sm->decision != DECISION_FAIL) || 560 (eapol_get_int(sm, EAPOL_idleWhile) == 0 && 561 sm->decision == DECISION_UNCOND_SUCC)) 562 SM_ENTER(EAP, SUCCESS); 563 else if (eapol_get_bool(sm, EAPOL_altReject) || 564 (eapol_get_int(sm, EAPOL_idleWhile) == 0 && 565 sm->decision != DECISION_UNCOND_SUCC) || 566 (eapol_get_bool(sm, EAPOL_altAccept) && 567 sm->methodState != METHOD_CONT && 568 sm->decision == DECISION_FAIL)) 569 SM_ENTER(EAP, FAILURE); 570 else if (sm->selectedMethod == EAP_TYPE_LEAP && 571 sm->leap_done && sm->decision != DECISION_FAIL && 572 sm->methodState == METHOD_DONE) 573 SM_ENTER(EAP, SUCCESS); 574 else if (sm->selectedMethod == EAP_TYPE_PEAP && 575 sm->peap_done && sm->decision != DECISION_FAIL && 576 sm->methodState == METHOD_DONE) 577 SM_ENTER(EAP, SUCCESS); 578 } 579 580 581 static int eap_peer_req_is_duplicate(struct eap_sm *sm) 582 { 583 int duplicate; 584 585 duplicate = (sm->reqId == sm->lastId) && sm->rxReq; 586 if (sm->workaround && duplicate && 587 os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) { 588 /* 589 * RFC 4137 uses (reqId == lastId) as the only verification for 590 * duplicate EAP requests. However, this misses cases where the 591 * AS is incorrectly using the same id again; and 592 * unfortunately, such implementations exist. Use MD5 hash as 593 * an extra verification for the packets being duplicate to 594 * workaround these issues. 595 */ 596 wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but " 597 "EAP packets were not identical"); 598 wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a " 599 "duplicate packet"); 600 duplicate = 0; 601 } 602 603 return duplicate; 604 } 605 606 607 static void eap_peer_sm_step_received(struct eap_sm *sm) 608 { 609 int duplicate = eap_peer_req_is_duplicate(sm); 610 611 /* 612 * Two special cases below for LEAP are local additions to work around 613 * odd LEAP behavior (EAP-Success in the middle of authentication and 614 * then swapped roles). Other transitions are based on RFC 4137. 615 */ 616 if (sm->rxSuccess && sm->decision != DECISION_FAIL && 617 (sm->reqId == sm->lastId || 618 eap_success_workaround(sm, sm->reqId, sm->lastId))) 619 SM_ENTER(EAP, SUCCESS); 620 else if (sm->methodState != METHOD_CONT && 621 ((sm->rxFailure && 622 sm->decision != DECISION_UNCOND_SUCC) || 623 (sm->rxSuccess && sm->decision == DECISION_FAIL && 624 (sm->selectedMethod != EAP_TYPE_LEAP || 625 sm->methodState != METHOD_MAY_CONT))) && 626 (sm->reqId == sm->lastId || 627 eap_success_workaround(sm, sm->reqId, sm->lastId))) 628 SM_ENTER(EAP, FAILURE); 629 else if (sm->rxReq && duplicate) 630 SM_ENTER(EAP, RETRANSMIT); 631 else if (sm->rxReq && !duplicate && 632 sm->reqMethod == EAP_TYPE_NOTIFICATION && 633 sm->allowNotifications) 634 SM_ENTER(EAP, NOTIFICATION); 635 else if (sm->rxReq && !duplicate && 636 sm->selectedMethod == EAP_TYPE_NONE && 637 sm->reqMethod == EAP_TYPE_IDENTITY) 638 SM_ENTER(EAP, IDENTITY); 639 else if (sm->rxReq && !duplicate && 640 sm->selectedMethod == EAP_TYPE_NONE && 641 sm->reqMethod != EAP_TYPE_IDENTITY && 642 sm->reqMethod != EAP_TYPE_NOTIFICATION) 643 SM_ENTER(EAP, GET_METHOD); 644 else if (sm->rxReq && !duplicate && 645 sm->reqMethod == sm->selectedMethod && 646 sm->methodState != METHOD_DONE) 647 SM_ENTER(EAP, METHOD); 648 else if (sm->selectedMethod == EAP_TYPE_LEAP && 649 (sm->rxSuccess || sm->rxResp)) 650 SM_ENTER(EAP, METHOD); 651 else 652 SM_ENTER(EAP, DISCARD); 653 } 654 655 656 static void eap_peer_sm_step_local(struct eap_sm *sm) 657 { 658 switch (sm->EAP_state) { 659 case EAP_INITIALIZE: 660 SM_ENTER(EAP, IDLE); 661 break; 662 case EAP_DISABLED: 663 if (eapol_get_bool(sm, EAPOL_portEnabled) && 664 !sm->force_disabled) 665 SM_ENTER(EAP, INITIALIZE); 666 break; 667 case EAP_IDLE: 668 eap_peer_sm_step_idle(sm); 669 break; 670 case EAP_RECEIVED: 671 eap_peer_sm_step_received(sm); 672 break; 673 case EAP_GET_METHOD: 674 if (sm->selectedMethod == sm->reqMethod) 675 SM_ENTER(EAP, METHOD); 676 else 677 SM_ENTER(EAP, SEND_RESPONSE); 678 break; 679 case EAP_METHOD: 680 if (sm->ignore) 681 SM_ENTER(EAP, DISCARD); 682 else 683 SM_ENTER(EAP, SEND_RESPONSE); 684 break; 685 case EAP_SEND_RESPONSE: 686 SM_ENTER(EAP, IDLE); 687 break; 688 case EAP_DISCARD: 689 SM_ENTER(EAP, IDLE); 690 break; 691 case EAP_IDENTITY: 692 SM_ENTER(EAP, SEND_RESPONSE); 693 break; 694 case EAP_NOTIFICATION: 695 SM_ENTER(EAP, SEND_RESPONSE); 696 break; 697 case EAP_RETRANSMIT: 698 SM_ENTER(EAP, SEND_RESPONSE); 699 break; 700 case EAP_SUCCESS: 701 break; 702 case EAP_FAILURE: 703 break; 704 } 705 } 706 707 708 SM_STEP(EAP) 709 { 710 /* Global transitions */ 711 if (eapol_get_bool(sm, EAPOL_eapRestart) && 712 eapol_get_bool(sm, EAPOL_portEnabled)) 713 SM_ENTER_GLOBAL(EAP, INITIALIZE); 714 else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled) 715 SM_ENTER_GLOBAL(EAP, DISABLED); 716 else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) { 717 /* RFC 4137 does not place any limit on number of EAP messages 718 * in an authentication session. However, some error cases have 719 * ended up in a state were EAP messages were sent between the 720 * peer and server in a loop (e.g., TLS ACK frame in both 721 * direction). Since this is quite undesired outcome, limit the 722 * total number of EAP round-trips and abort authentication if 723 * this limit is exceeded. 724 */ 725 if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) { 726 wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d " 727 "authentication rounds - abort", 728 EAP_MAX_AUTH_ROUNDS); 729 sm->num_rounds++; 730 SM_ENTER_GLOBAL(EAP, FAILURE); 731 } 732 } else { 733 /* Local transitions */ 734 eap_peer_sm_step_local(sm); 735 } 736 } 737 738 739 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor, 740 EapType method) 741 { 742 if (!eap_allowed_method(sm, vendor, method)) { 743 wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: " 744 "vendor %u method %u", vendor, method); 745 return FALSE; 746 } 747 if (eap_peer_get_eap_method(vendor, method)) 748 return TRUE; 749 wpa_printf(MSG_DEBUG, "EAP: not included in build: " 750 "vendor %u method %u", vendor, method); 751 return FALSE; 752 } 753 754 755 static struct wpabuf * eap_sm_build_expanded_nak( 756 struct eap_sm *sm, int id, const struct eap_method *methods, 757 size_t count) 758 { 759 struct wpabuf *resp; 760 int found = 0; 761 const struct eap_method *m; 762 763 wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak"); 764 765 /* RFC 3748 - 5.3.2: Expanded Nak */ 766 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED, 767 8 + 8 * (count + 1), EAP_CODE_RESPONSE, id); 768 if (resp == NULL) 769 return NULL; 770 771 wpabuf_put_be24(resp, EAP_VENDOR_IETF); 772 wpabuf_put_be32(resp, EAP_TYPE_NAK); 773 774 for (m = methods; m; m = m->next) { 775 if (sm->reqVendor == m->vendor && 776 sm->reqVendorMethod == m->method) 777 continue; /* do not allow the current method again */ 778 if (eap_allowed_method(sm, m->vendor, m->method)) { 779 wpa_printf(MSG_DEBUG, "EAP: allowed type: " 780 "vendor=%u method=%u", 781 m->vendor, m->method); 782 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 783 wpabuf_put_be24(resp, m->vendor); 784 wpabuf_put_be32(resp, m->method); 785 786 found++; 787 } 788 } 789 if (!found) { 790 wpa_printf(MSG_DEBUG, "EAP: no more allowed methods"); 791 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 792 wpabuf_put_be24(resp, EAP_VENDOR_IETF); 793 wpabuf_put_be32(resp, EAP_TYPE_NONE); 794 } 795 796 eap_update_len(resp); 797 798 return resp; 799 } 800 801 802 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id) 803 { 804 struct wpabuf *resp; 805 u8 *start; 806 int found = 0, expanded_found = 0; 807 size_t count; 808 const struct eap_method *methods, *m; 809 810 wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u " 811 "vendor=%u method=%u not allowed)", sm->reqMethod, 812 sm->reqVendor, sm->reqVendorMethod); 813 methods = eap_peer_get_methods(&count); 814 if (methods == NULL) 815 return NULL; 816 if (sm->reqMethod == EAP_TYPE_EXPANDED) 817 return eap_sm_build_expanded_nak(sm, id, methods, count); 818 819 /* RFC 3748 - 5.3.1: Legacy Nak */ 820 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK, 821 sizeof(struct eap_hdr) + 1 + count + 1, 822 EAP_CODE_RESPONSE, id); 823 if (resp == NULL) 824 return NULL; 825 826 start = wpabuf_put(resp, 0); 827 for (m = methods; m; m = m->next) { 828 if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod) 829 continue; /* do not allow the current method again */ 830 if (eap_allowed_method(sm, m->vendor, m->method)) { 831 if (m->vendor != EAP_VENDOR_IETF) { 832 if (expanded_found) 833 continue; 834 expanded_found = 1; 835 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 836 } else 837 wpabuf_put_u8(resp, m->method); 838 found++; 839 } 840 } 841 if (!found) 842 wpabuf_put_u8(resp, EAP_TYPE_NONE); 843 wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found); 844 845 eap_update_len(resp); 846 847 return resp; 848 } 849 850 851 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req) 852 { 853 const struct eap_hdr *hdr = wpabuf_head(req); 854 const u8 *pos = (const u8 *) (hdr + 1); 855 pos++; 856 857 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED 858 "EAP authentication started"); 859 860 /* 861 * RFC 3748 - 5.1: Identity 862 * Data field may contain a displayable message in UTF-8. If this 863 * includes NUL-character, only the data before that should be 864 * displayed. Some EAP implementasitons may piggy-back additional 865 * options after the NUL. 866 */ 867 /* TODO: could save displayable message so that it can be shown to the 868 * user in case of interaction is required */ 869 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data", 870 pos, be_to_host16(hdr->length) - 5); 871 } 872 873 874 #ifdef PCSC_FUNCS 875 876 /* 877 * Rules for figuring out MNC length based on IMSI for SIM cards that do not 878 * include MNC length field. 879 */ 880 static int mnc_len_from_imsi(const char *imsi) 881 { 882 char mcc_str[4]; 883 unsigned int mcc; 884 885 os_memcpy(mcc_str, imsi, 3); 886 mcc_str[3] = '\0'; 887 mcc = atoi(mcc_str); 888 889 if (mcc == 244) 890 return 2; /* Networks in Finland use 2-digit MNC */ 891 892 return -1; 893 } 894 895 896 static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi, 897 size_t max_len, size_t *imsi_len) 898 { 899 int mnc_len; 900 char *pos, mnc[4]; 901 902 if (*imsi_len + 36 > max_len) { 903 wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer"); 904 return -1; 905 } 906 907 /* MNC (2 or 3 digits) */ 908 mnc_len = scard_get_mnc_len(sm->scard_ctx); 909 if (mnc_len < 0) 910 mnc_len = mnc_len_from_imsi(imsi); 911 if (mnc_len < 0) { 912 wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM " 913 "assuming 3"); 914 mnc_len = 3; 915 } 916 917 if (mnc_len == 2) { 918 mnc[0] = '0'; 919 mnc[1] = imsi[3]; 920 mnc[2] = imsi[4]; 921 } else if (mnc_len == 3) { 922 mnc[0] = imsi[3]; 923 mnc[1] = imsi[4]; 924 mnc[2] = imsi[5]; 925 } 926 mnc[3] = '\0'; 927 928 pos = imsi + *imsi_len; 929 pos += os_snprintf(pos, imsi + max_len - pos, 930 "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org", 931 mnc, imsi[0], imsi[1], imsi[2]); 932 *imsi_len = pos - imsi; 933 934 return 0; 935 } 936 937 938 static int eap_sm_imsi_identity(struct eap_sm *sm, 939 struct eap_peer_config *conf) 940 { 941 int aka = 0; 942 char imsi[100]; 943 size_t imsi_len; 944 struct eap_method_type *m = conf->eap_methods; 945 int i; 946 947 imsi_len = sizeof(imsi); 948 if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) { 949 wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM"); 950 return -1; 951 } 952 953 wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len); 954 955 if (imsi_len < 7) { 956 wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity"); 957 return -1; 958 } 959 960 if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) { 961 wpa_printf(MSG_WARNING, "Could not add realm to SIM identity"); 962 return -1; 963 } 964 wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len); 965 966 for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF || 967 m[i].method != EAP_TYPE_NONE); i++) { 968 if (m[i].vendor == EAP_VENDOR_IETF && 969 m[i].method == EAP_TYPE_AKA) { 970 aka = 1; 971 break; 972 } 973 } 974 975 os_free(conf->identity); 976 conf->identity = os_malloc(1 + imsi_len); 977 if (conf->identity == NULL) { 978 wpa_printf(MSG_WARNING, "Failed to allocate buffer for " 979 "IMSI-based identity"); 980 return -1; 981 } 982 983 conf->identity[0] = aka ? '0' : '1'; 984 os_memcpy(conf->identity + 1, imsi, imsi_len); 985 conf->identity_len = 1 + imsi_len; 986 987 return 0; 988 } 989 990 #endif /* PCSC_FUNCS */ 991 992 993 static int eap_sm_set_scard_pin(struct eap_sm *sm, 994 struct eap_peer_config *conf) 995 { 996 #ifdef PCSC_FUNCS 997 if (scard_set_pin(sm->scard_ctx, conf->pin)) { 998 /* 999 * Make sure the same PIN is not tried again in order to avoid 1000 * blocking SIM. 1001 */ 1002 os_free(conf->pin); 1003 conf->pin = NULL; 1004 1005 wpa_printf(MSG_WARNING, "PIN validation failed"); 1006 eap_sm_request_pin(sm); 1007 return -1; 1008 } 1009 return 0; 1010 #else /* PCSC_FUNCS */ 1011 return -1; 1012 #endif /* PCSC_FUNCS */ 1013 } 1014 1015 static int eap_sm_get_scard_identity(struct eap_sm *sm, 1016 struct eap_peer_config *conf) 1017 { 1018 #ifdef PCSC_FUNCS 1019 if (eap_sm_set_scard_pin(sm, conf)) 1020 return -1; 1021 1022 return eap_sm_imsi_identity(sm, conf); 1023 #else /* PCSC_FUNCS */ 1024 return -1; 1025 #endif /* PCSC_FUNCS */ 1026 } 1027 1028 1029 /** 1030 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network 1031 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1032 * @id: EAP identifier for the packet 1033 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2) 1034 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on 1035 * failure 1036 * 1037 * This function allocates and builds an EAP-Identity/Response packet for the 1038 * current network. The caller is responsible for freeing the returned data. 1039 */ 1040 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted) 1041 { 1042 struct eap_peer_config *config = eap_get_config(sm); 1043 struct wpabuf *resp; 1044 const u8 *identity; 1045 size_t identity_len; 1046 1047 if (config == NULL) { 1048 wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration " 1049 "was not available"); 1050 return NULL; 1051 } 1052 1053 if (sm->m && sm->m->get_identity && 1054 (identity = sm->m->get_identity(sm, sm->eap_method_priv, 1055 &identity_len)) != NULL) { 1056 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth " 1057 "identity", identity, identity_len); 1058 } else if (!encrypted && config->anonymous_identity) { 1059 identity = config->anonymous_identity; 1060 identity_len = config->anonymous_identity_len; 1061 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity", 1062 identity, identity_len); 1063 } else { 1064 identity = config->identity; 1065 identity_len = config->identity_len; 1066 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity", 1067 identity, identity_len); 1068 } 1069 1070 if (identity == NULL) { 1071 wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity " 1072 "configuration was not available"); 1073 if (config->pcsc) { 1074 if (eap_sm_get_scard_identity(sm, config) < 0) 1075 return NULL; 1076 identity = config->identity; 1077 identity_len = config->identity_len; 1078 wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from " 1079 "IMSI", identity, identity_len); 1080 } else { 1081 eap_sm_request_identity(sm); 1082 return NULL; 1083 } 1084 } else if (config->pcsc) { 1085 if (eap_sm_set_scard_pin(sm, config) < 0) 1086 return NULL; 1087 } 1088 1089 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len, 1090 EAP_CODE_RESPONSE, id); 1091 if (resp == NULL) 1092 return NULL; 1093 1094 wpabuf_put_data(resp, identity, identity_len); 1095 1096 return resp; 1097 } 1098 1099 1100 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req) 1101 { 1102 const u8 *pos; 1103 char *msg; 1104 size_t i, msg_len; 1105 1106 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req, 1107 &msg_len); 1108 if (pos == NULL) 1109 return; 1110 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data", 1111 pos, msg_len); 1112 1113 msg = os_malloc(msg_len + 1); 1114 if (msg == NULL) 1115 return; 1116 for (i = 0; i < msg_len; i++) 1117 msg[i] = isprint(pos[i]) ? (char) pos[i] : '_'; 1118 msg[msg_len] = '\0'; 1119 wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s", 1120 WPA_EVENT_EAP_NOTIFICATION, msg); 1121 os_free(msg); 1122 } 1123 1124 1125 static struct wpabuf * eap_sm_buildNotify(int id) 1126 { 1127 struct wpabuf *resp; 1128 1129 wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification"); 1130 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0, 1131 EAP_CODE_RESPONSE, id); 1132 if (resp == NULL) 1133 return NULL; 1134 1135 return resp; 1136 } 1137 1138 1139 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req) 1140 { 1141 const struct eap_hdr *hdr; 1142 size_t plen; 1143 const u8 *pos; 1144 1145 sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE; 1146 sm->reqId = 0; 1147 sm->reqMethod = EAP_TYPE_NONE; 1148 sm->reqVendor = EAP_VENDOR_IETF; 1149 sm->reqVendorMethod = EAP_TYPE_NONE; 1150 1151 if (req == NULL || wpabuf_len(req) < sizeof(*hdr)) 1152 return; 1153 1154 hdr = wpabuf_head(req); 1155 plen = be_to_host16(hdr->length); 1156 if (plen > wpabuf_len(req)) { 1157 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet " 1158 "(len=%lu plen=%lu)", 1159 (unsigned long) wpabuf_len(req), 1160 (unsigned long) plen); 1161 return; 1162 } 1163 1164 sm->reqId = hdr->identifier; 1165 1166 if (sm->workaround) { 1167 const u8 *addr[1]; 1168 addr[0] = wpabuf_head(req); 1169 md5_vector(1, addr, &plen, sm->req_md5); 1170 } 1171 1172 switch (hdr->code) { 1173 case EAP_CODE_REQUEST: 1174 if (plen < sizeof(*hdr) + 1) { 1175 wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - " 1176 "no Type field"); 1177 return; 1178 } 1179 sm->rxReq = TRUE; 1180 pos = (const u8 *) (hdr + 1); 1181 sm->reqMethod = *pos++; 1182 if (sm->reqMethod == EAP_TYPE_EXPANDED) { 1183 if (plen < sizeof(*hdr) + 8) { 1184 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated " 1185 "expanded EAP-Packet (plen=%lu)", 1186 (unsigned long) plen); 1187 return; 1188 } 1189 sm->reqVendor = WPA_GET_BE24(pos); 1190 pos += 3; 1191 sm->reqVendorMethod = WPA_GET_BE32(pos); 1192 } 1193 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d " 1194 "method=%u vendor=%u vendorMethod=%u", 1195 sm->reqId, sm->reqMethod, sm->reqVendor, 1196 sm->reqVendorMethod); 1197 break; 1198 case EAP_CODE_RESPONSE: 1199 if (sm->selectedMethod == EAP_TYPE_LEAP) { 1200 /* 1201 * LEAP differs from RFC 4137 by using reversed roles 1202 * for mutual authentication and because of this, we 1203 * need to accept EAP-Response frames if LEAP is used. 1204 */ 1205 if (plen < sizeof(*hdr) + 1) { 1206 wpa_printf(MSG_DEBUG, "EAP: Too short " 1207 "EAP-Response - no Type field"); 1208 return; 1209 } 1210 sm->rxResp = TRUE; 1211 pos = (const u8 *) (hdr + 1); 1212 sm->reqMethod = *pos; 1213 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for " 1214 "LEAP method=%d id=%d", 1215 sm->reqMethod, sm->reqId); 1216 break; 1217 } 1218 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response"); 1219 break; 1220 case EAP_CODE_SUCCESS: 1221 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success"); 1222 sm->rxSuccess = TRUE; 1223 break; 1224 case EAP_CODE_FAILURE: 1225 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure"); 1226 sm->rxFailure = TRUE; 1227 break; 1228 default: 1229 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown " 1230 "code %d", hdr->code); 1231 break; 1232 } 1233 } 1234 1235 1236 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev, 1237 union tls_event_data *data) 1238 { 1239 struct eap_sm *sm = ctx; 1240 char *hash_hex = NULL; 1241 1242 switch (ev) { 1243 case TLS_CERT_CHAIN_FAILURE: 1244 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR 1245 "reason=%d depth=%d subject='%s' err='%s'", 1246 data->cert_fail.reason, 1247 data->cert_fail.depth, 1248 data->cert_fail.subject, 1249 data->cert_fail.reason_txt); 1250 break; 1251 case TLS_PEER_CERTIFICATE: 1252 if (!sm->eapol_cb->notify_cert) 1253 break; 1254 1255 if (data->peer_cert.hash) { 1256 size_t len = data->peer_cert.hash_len * 2 + 1; 1257 hash_hex = os_malloc(len); 1258 if (hash_hex) { 1259 wpa_snprintf_hex(hash_hex, len, 1260 data->peer_cert.hash, 1261 data->peer_cert.hash_len); 1262 } 1263 } 1264 1265 sm->eapol_cb->notify_cert(sm->eapol_ctx, 1266 data->peer_cert.depth, 1267 data->peer_cert.subject, 1268 hash_hex, data->peer_cert.cert); 1269 break; 1270 } 1271 1272 os_free(hash_hex); 1273 } 1274 1275 1276 /** 1277 * eap_peer_sm_init - Allocate and initialize EAP peer state machine 1278 * @eapol_ctx: Context data to be used with eapol_cb calls 1279 * @eapol_cb: Pointer to EAPOL callback functions 1280 * @msg_ctx: Context data for wpa_msg() calls 1281 * @conf: EAP configuration 1282 * Returns: Pointer to the allocated EAP state machine or %NULL on failure 1283 * 1284 * This function allocates and initializes an EAP state machine. In addition, 1285 * this initializes TLS library for the new EAP state machine. eapol_cb pointer 1286 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP 1287 * state machine. Consequently, the caller must make sure that this data 1288 * structure remains alive while the EAP state machine is active. 1289 */ 1290 struct eap_sm * eap_peer_sm_init(void *eapol_ctx, 1291 struct eapol_callbacks *eapol_cb, 1292 void *msg_ctx, struct eap_config *conf) 1293 { 1294 struct eap_sm *sm; 1295 struct tls_config tlsconf; 1296 1297 sm = os_zalloc(sizeof(*sm)); 1298 if (sm == NULL) 1299 return NULL; 1300 sm->eapol_ctx = eapol_ctx; 1301 sm->eapol_cb = eapol_cb; 1302 sm->msg_ctx = msg_ctx; 1303 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT; 1304 sm->wps = conf->wps; 1305 1306 os_memset(&tlsconf, 0, sizeof(tlsconf)); 1307 tlsconf.opensc_engine_path = conf->opensc_engine_path; 1308 tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path; 1309 tlsconf.pkcs11_module_path = conf->pkcs11_module_path; 1310 #ifdef CONFIG_FIPS 1311 tlsconf.fips_mode = 1; 1312 #endif /* CONFIG_FIPS */ 1313 tlsconf.event_cb = eap_peer_sm_tls_event; 1314 tlsconf.cb_ctx = sm; 1315 tlsconf.cert_in_cb = conf->cert_in_cb; 1316 sm->ssl_ctx = tls_init(&tlsconf); 1317 if (sm->ssl_ctx == NULL) { 1318 wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS " 1319 "context."); 1320 os_free(sm); 1321 return NULL; 1322 } 1323 1324 return sm; 1325 } 1326 1327 1328 /** 1329 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine 1330 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1331 * 1332 * This function deinitializes EAP state machine and frees all allocated 1333 * resources. 1334 */ 1335 void eap_peer_sm_deinit(struct eap_sm *sm) 1336 { 1337 if (sm == NULL) 1338 return; 1339 eap_deinit_prev_method(sm, "EAP deinit"); 1340 eap_sm_abort(sm); 1341 tls_deinit(sm->ssl_ctx); 1342 os_free(sm); 1343 } 1344 1345 1346 /** 1347 * eap_peer_sm_step - Step EAP peer state machine 1348 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1349 * Returns: 1 if EAP state was changed or 0 if not 1350 * 1351 * This function advances EAP state machine to a new state to match with the 1352 * current variables. This should be called whenever variables used by the EAP 1353 * state machine have changed. 1354 */ 1355 int eap_peer_sm_step(struct eap_sm *sm) 1356 { 1357 int res = 0; 1358 do { 1359 sm->changed = FALSE; 1360 SM_STEP_RUN(EAP); 1361 if (sm->changed) 1362 res = 1; 1363 } while (sm->changed); 1364 return res; 1365 } 1366 1367 1368 /** 1369 * eap_sm_abort - Abort EAP authentication 1370 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1371 * 1372 * Release system resources that have been allocated for the authentication 1373 * session without fully deinitializing the EAP state machine. 1374 */ 1375 void eap_sm_abort(struct eap_sm *sm) 1376 { 1377 wpabuf_free(sm->lastRespData); 1378 sm->lastRespData = NULL; 1379 wpabuf_free(sm->eapRespData); 1380 sm->eapRespData = NULL; 1381 os_free(sm->eapKeyData); 1382 sm->eapKeyData = NULL; 1383 1384 /* This is not clearly specified in the EAP statemachines draft, but 1385 * it seems necessary to make sure that some of the EAPOL variables get 1386 * cleared for the next authentication. */ 1387 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE); 1388 } 1389 1390 1391 #ifdef CONFIG_CTRL_IFACE 1392 static const char * eap_sm_state_txt(int state) 1393 { 1394 switch (state) { 1395 case EAP_INITIALIZE: 1396 return "INITIALIZE"; 1397 case EAP_DISABLED: 1398 return "DISABLED"; 1399 case EAP_IDLE: 1400 return "IDLE"; 1401 case EAP_RECEIVED: 1402 return "RECEIVED"; 1403 case EAP_GET_METHOD: 1404 return "GET_METHOD"; 1405 case EAP_METHOD: 1406 return "METHOD"; 1407 case EAP_SEND_RESPONSE: 1408 return "SEND_RESPONSE"; 1409 case EAP_DISCARD: 1410 return "DISCARD"; 1411 case EAP_IDENTITY: 1412 return "IDENTITY"; 1413 case EAP_NOTIFICATION: 1414 return "NOTIFICATION"; 1415 case EAP_RETRANSMIT: 1416 return "RETRANSMIT"; 1417 case EAP_SUCCESS: 1418 return "SUCCESS"; 1419 case EAP_FAILURE: 1420 return "FAILURE"; 1421 default: 1422 return "UNKNOWN"; 1423 } 1424 } 1425 #endif /* CONFIG_CTRL_IFACE */ 1426 1427 1428 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 1429 static const char * eap_sm_method_state_txt(EapMethodState state) 1430 { 1431 switch (state) { 1432 case METHOD_NONE: 1433 return "NONE"; 1434 case METHOD_INIT: 1435 return "INIT"; 1436 case METHOD_CONT: 1437 return "CONT"; 1438 case METHOD_MAY_CONT: 1439 return "MAY_CONT"; 1440 case METHOD_DONE: 1441 return "DONE"; 1442 default: 1443 return "UNKNOWN"; 1444 } 1445 } 1446 1447 1448 static const char * eap_sm_decision_txt(EapDecision decision) 1449 { 1450 switch (decision) { 1451 case DECISION_FAIL: 1452 return "FAIL"; 1453 case DECISION_COND_SUCC: 1454 return "COND_SUCC"; 1455 case DECISION_UNCOND_SUCC: 1456 return "UNCOND_SUCC"; 1457 default: 1458 return "UNKNOWN"; 1459 } 1460 } 1461 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1462 1463 1464 #ifdef CONFIG_CTRL_IFACE 1465 1466 /** 1467 * eap_sm_get_status - Get EAP state machine status 1468 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1469 * @buf: Buffer for status information 1470 * @buflen: Maximum buffer length 1471 * @verbose: Whether to include verbose status information 1472 * Returns: Number of bytes written to buf. 1473 * 1474 * Query EAP state machine for status information. This function fills in a 1475 * text area with current status information from the EAPOL state machine. If 1476 * the buffer (buf) is not large enough, status information will be truncated 1477 * to fit the buffer. 1478 */ 1479 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose) 1480 { 1481 int len, ret; 1482 1483 if (sm == NULL) 1484 return 0; 1485 1486 len = os_snprintf(buf, buflen, 1487 "EAP state=%s\n", 1488 eap_sm_state_txt(sm->EAP_state)); 1489 if (len < 0 || (size_t) len >= buflen) 1490 return 0; 1491 1492 if (sm->selectedMethod != EAP_TYPE_NONE) { 1493 const char *name; 1494 if (sm->m) { 1495 name = sm->m->name; 1496 } else { 1497 const struct eap_method *m = 1498 eap_peer_get_eap_method(EAP_VENDOR_IETF, 1499 sm->selectedMethod); 1500 if (m) 1501 name = m->name; 1502 else 1503 name = "?"; 1504 } 1505 ret = os_snprintf(buf + len, buflen - len, 1506 "selectedMethod=%d (EAP-%s)\n", 1507 sm->selectedMethod, name); 1508 if (ret < 0 || (size_t) ret >= buflen - len) 1509 return len; 1510 len += ret; 1511 1512 if (sm->m && sm->m->get_status) { 1513 len += sm->m->get_status(sm, sm->eap_method_priv, 1514 buf + len, buflen - len, 1515 verbose); 1516 } 1517 } 1518 1519 if (verbose) { 1520 ret = os_snprintf(buf + len, buflen - len, 1521 "reqMethod=%d\n" 1522 "methodState=%s\n" 1523 "decision=%s\n" 1524 "ClientTimeout=%d\n", 1525 sm->reqMethod, 1526 eap_sm_method_state_txt(sm->methodState), 1527 eap_sm_decision_txt(sm->decision), 1528 sm->ClientTimeout); 1529 if (ret < 0 || (size_t) ret >= buflen - len) 1530 return len; 1531 len += ret; 1532 } 1533 1534 return len; 1535 } 1536 #endif /* CONFIG_CTRL_IFACE */ 1537 1538 1539 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 1540 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field, 1541 const char *msg, size_t msglen) 1542 { 1543 struct eap_peer_config *config; 1544 char *txt = NULL, *tmp; 1545 1546 if (sm == NULL) 1547 return; 1548 config = eap_get_config(sm); 1549 if (config == NULL) 1550 return; 1551 1552 switch (field) { 1553 case WPA_CTRL_REQ_EAP_IDENTITY: 1554 config->pending_req_identity++; 1555 break; 1556 case WPA_CTRL_REQ_EAP_PASSWORD: 1557 config->pending_req_password++; 1558 break; 1559 case WPA_CTRL_REQ_EAP_NEW_PASSWORD: 1560 config->pending_req_new_password++; 1561 break; 1562 case WPA_CTRL_REQ_EAP_PIN: 1563 config->pending_req_pin++; 1564 break; 1565 case WPA_CTRL_REQ_EAP_OTP: 1566 if (msg) { 1567 tmp = os_malloc(msglen + 3); 1568 if (tmp == NULL) 1569 return; 1570 tmp[0] = '['; 1571 os_memcpy(tmp + 1, msg, msglen); 1572 tmp[msglen + 1] = ']'; 1573 tmp[msglen + 2] = '\0'; 1574 txt = tmp; 1575 os_free(config->pending_req_otp); 1576 config->pending_req_otp = tmp; 1577 config->pending_req_otp_len = msglen + 3; 1578 } else { 1579 if (config->pending_req_otp == NULL) 1580 return; 1581 txt = config->pending_req_otp; 1582 } 1583 break; 1584 case WPA_CTRL_REQ_EAP_PASSPHRASE: 1585 config->pending_req_passphrase++; 1586 break; 1587 default: 1588 return; 1589 } 1590 1591 if (sm->eapol_cb->eap_param_needed) 1592 sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt); 1593 } 1594 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1595 #define eap_sm_request(sm, type, msg, msglen) do { } while (0) 1596 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1597 1598 const char * eap_sm_get_method_name(struct eap_sm *sm) 1599 { 1600 if (sm->m == NULL) 1601 return "UNKNOWN"; 1602 return sm->m->name; 1603 } 1604 1605 1606 /** 1607 * eap_sm_request_identity - Request identity from user (ctrl_iface) 1608 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1609 * 1610 * EAP methods can call this function to request identity information for the 1611 * current network. This is normally called when the identity is not included 1612 * in the network configuration. The request will be sent to monitor programs 1613 * through the control interface. 1614 */ 1615 void eap_sm_request_identity(struct eap_sm *sm) 1616 { 1617 eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0); 1618 } 1619 1620 1621 /** 1622 * eap_sm_request_password - Request password from user (ctrl_iface) 1623 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1624 * 1625 * EAP methods can call this function to request password information for the 1626 * current network. This is normally called when the password is not included 1627 * in the network configuration. The request will be sent to monitor programs 1628 * through the control interface. 1629 */ 1630 void eap_sm_request_password(struct eap_sm *sm) 1631 { 1632 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0); 1633 } 1634 1635 1636 /** 1637 * eap_sm_request_new_password - Request new password from user (ctrl_iface) 1638 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1639 * 1640 * EAP methods can call this function to request new password information for 1641 * the current network. This is normally called when the EAP method indicates 1642 * that the current password has expired and password change is required. The 1643 * request will be sent to monitor programs through the control interface. 1644 */ 1645 void eap_sm_request_new_password(struct eap_sm *sm) 1646 { 1647 eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0); 1648 } 1649 1650 1651 /** 1652 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface) 1653 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1654 * 1655 * EAP methods can call this function to request SIM or smart card PIN 1656 * information for the current network. This is normally called when the PIN is 1657 * not included in the network configuration. The request will be sent to 1658 * monitor programs through the control interface. 1659 */ 1660 void eap_sm_request_pin(struct eap_sm *sm) 1661 { 1662 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0); 1663 } 1664 1665 1666 /** 1667 * eap_sm_request_otp - Request one time password from user (ctrl_iface) 1668 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1669 * @msg: Message to be displayed to the user when asking for OTP 1670 * @msg_len: Length of the user displayable message 1671 * 1672 * EAP methods can call this function to request open time password (OTP) for 1673 * the current network. The request will be sent to monitor programs through 1674 * the control interface. 1675 */ 1676 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len) 1677 { 1678 eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len); 1679 } 1680 1681 1682 /** 1683 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface) 1684 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1685 * 1686 * EAP methods can call this function to request passphrase for a private key 1687 * for the current network. This is normally called when the passphrase is not 1688 * included in the network configuration. The request will be sent to monitor 1689 * programs through the control interface. 1690 */ 1691 void eap_sm_request_passphrase(struct eap_sm *sm) 1692 { 1693 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0); 1694 } 1695 1696 1697 /** 1698 * eap_sm_notify_ctrl_attached - Notification of attached monitor 1699 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1700 * 1701 * Notify EAP state machines that a monitor was attached to the control 1702 * interface to trigger re-sending of pending requests for user input. 1703 */ 1704 void eap_sm_notify_ctrl_attached(struct eap_sm *sm) 1705 { 1706 struct eap_peer_config *config = eap_get_config(sm); 1707 1708 if (config == NULL) 1709 return; 1710 1711 /* Re-send any pending requests for user data since a new control 1712 * interface was added. This handles cases where the EAP authentication 1713 * starts immediately after system startup when the user interface is 1714 * not yet running. */ 1715 if (config->pending_req_identity) 1716 eap_sm_request_identity(sm); 1717 if (config->pending_req_password) 1718 eap_sm_request_password(sm); 1719 if (config->pending_req_new_password) 1720 eap_sm_request_new_password(sm); 1721 if (config->pending_req_otp) 1722 eap_sm_request_otp(sm, NULL, 0); 1723 if (config->pending_req_pin) 1724 eap_sm_request_pin(sm); 1725 if (config->pending_req_passphrase) 1726 eap_sm_request_passphrase(sm); 1727 } 1728 1729 1730 static int eap_allowed_phase2_type(int vendor, int type) 1731 { 1732 if (vendor != EAP_VENDOR_IETF) 1733 return 0; 1734 return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS && 1735 type != EAP_TYPE_FAST; 1736 } 1737 1738 1739 /** 1740 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name 1741 * @name: EAP method name, e.g., MD5 1742 * @vendor: Buffer for returning EAP Vendor-Id 1743 * Returns: EAP method type or %EAP_TYPE_NONE if not found 1744 * 1745 * This function maps EAP type names into EAP type numbers that are allowed for 1746 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with 1747 * EAP-PEAP, EAP-TTLS, and EAP-FAST. 1748 */ 1749 u32 eap_get_phase2_type(const char *name, int *vendor) 1750 { 1751 int v; 1752 u8 type = eap_peer_get_type(name, &v); 1753 if (eap_allowed_phase2_type(v, type)) { 1754 *vendor = v; 1755 return type; 1756 } 1757 *vendor = EAP_VENDOR_IETF; 1758 return EAP_TYPE_NONE; 1759 } 1760 1761 1762 /** 1763 * eap_get_phase2_types - Get list of allowed EAP phase 2 types 1764 * @config: Pointer to a network configuration 1765 * @count: Pointer to a variable to be filled with number of returned EAP types 1766 * Returns: Pointer to allocated type list or %NULL on failure 1767 * 1768 * This function generates an array of allowed EAP phase 2 (tunneled) types for 1769 * the given network configuration. 1770 */ 1771 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config, 1772 size_t *count) 1773 { 1774 struct eap_method_type *buf; 1775 u32 method; 1776 int vendor; 1777 size_t mcount; 1778 const struct eap_method *methods, *m; 1779 1780 methods = eap_peer_get_methods(&mcount); 1781 if (methods == NULL) 1782 return NULL; 1783 *count = 0; 1784 buf = os_malloc(mcount * sizeof(struct eap_method_type)); 1785 if (buf == NULL) 1786 return NULL; 1787 1788 for (m = methods; m; m = m->next) { 1789 vendor = m->vendor; 1790 method = m->method; 1791 if (eap_allowed_phase2_type(vendor, method)) { 1792 if (vendor == EAP_VENDOR_IETF && 1793 method == EAP_TYPE_TLS && config && 1794 config->private_key2 == NULL) 1795 continue; 1796 buf[*count].vendor = vendor; 1797 buf[*count].method = method; 1798 (*count)++; 1799 } 1800 } 1801 1802 return buf; 1803 } 1804 1805 1806 /** 1807 * eap_set_fast_reauth - Update fast_reauth setting 1808 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1809 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled 1810 */ 1811 void eap_set_fast_reauth(struct eap_sm *sm, int enabled) 1812 { 1813 sm->fast_reauth = enabled; 1814 } 1815 1816 1817 /** 1818 * eap_set_workaround - Update EAP workarounds setting 1819 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1820 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds 1821 */ 1822 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround) 1823 { 1824 sm->workaround = workaround; 1825 } 1826 1827 1828 /** 1829 * eap_get_config - Get current network configuration 1830 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1831 * Returns: Pointer to the current network configuration or %NULL if not found 1832 * 1833 * EAP peer methods should avoid using this function if they can use other 1834 * access functions, like eap_get_config_identity() and 1835 * eap_get_config_password(), that do not require direct access to 1836 * struct eap_peer_config. 1837 */ 1838 struct eap_peer_config * eap_get_config(struct eap_sm *sm) 1839 { 1840 return sm->eapol_cb->get_config(sm->eapol_ctx); 1841 } 1842 1843 1844 /** 1845 * eap_get_config_identity - Get identity from the network configuration 1846 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1847 * @len: Buffer for the length of the identity 1848 * Returns: Pointer to the identity or %NULL if not found 1849 */ 1850 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len) 1851 { 1852 struct eap_peer_config *config = eap_get_config(sm); 1853 if (config == NULL) 1854 return NULL; 1855 *len = config->identity_len; 1856 return config->identity; 1857 } 1858 1859 1860 /** 1861 * eap_get_config_password - Get password from the network configuration 1862 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1863 * @len: Buffer for the length of the password 1864 * Returns: Pointer to the password or %NULL if not found 1865 */ 1866 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len) 1867 { 1868 struct eap_peer_config *config = eap_get_config(sm); 1869 if (config == NULL) 1870 return NULL; 1871 *len = config->password_len; 1872 return config->password; 1873 } 1874 1875 1876 /** 1877 * eap_get_config_password2 - Get password from the network configuration 1878 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1879 * @len: Buffer for the length of the password 1880 * @hash: Buffer for returning whether the password is stored as a 1881 * NtPasswordHash instead of plaintext password; can be %NULL if this 1882 * information is not needed 1883 * Returns: Pointer to the password or %NULL if not found 1884 */ 1885 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash) 1886 { 1887 struct eap_peer_config *config = eap_get_config(sm); 1888 if (config == NULL) 1889 return NULL; 1890 *len = config->password_len; 1891 if (hash) 1892 *hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH); 1893 return config->password; 1894 } 1895 1896 1897 /** 1898 * eap_get_config_new_password - Get new password from network configuration 1899 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1900 * @len: Buffer for the length of the new password 1901 * Returns: Pointer to the new password or %NULL if not found 1902 */ 1903 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len) 1904 { 1905 struct eap_peer_config *config = eap_get_config(sm); 1906 if (config == NULL) 1907 return NULL; 1908 *len = config->new_password_len; 1909 return config->new_password; 1910 } 1911 1912 1913 /** 1914 * eap_get_config_otp - Get one-time password from the network configuration 1915 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1916 * @len: Buffer for the length of the one-time password 1917 * Returns: Pointer to the one-time password or %NULL if not found 1918 */ 1919 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len) 1920 { 1921 struct eap_peer_config *config = eap_get_config(sm); 1922 if (config == NULL) 1923 return NULL; 1924 *len = config->otp_len; 1925 return config->otp; 1926 } 1927 1928 1929 /** 1930 * eap_clear_config_otp - Clear used one-time password 1931 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1932 * 1933 * This function clears a used one-time password (OTP) from the current network 1934 * configuration. This should be called when the OTP has been used and is not 1935 * needed anymore. 1936 */ 1937 void eap_clear_config_otp(struct eap_sm *sm) 1938 { 1939 struct eap_peer_config *config = eap_get_config(sm); 1940 if (config == NULL) 1941 return; 1942 os_memset(config->otp, 0, config->otp_len); 1943 os_free(config->otp); 1944 config->otp = NULL; 1945 config->otp_len = 0; 1946 } 1947 1948 1949 /** 1950 * eap_get_config_phase1 - Get phase1 data from the network configuration 1951 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1952 * Returns: Pointer to the phase1 data or %NULL if not found 1953 */ 1954 const char * eap_get_config_phase1(struct eap_sm *sm) 1955 { 1956 struct eap_peer_config *config = eap_get_config(sm); 1957 if (config == NULL) 1958 return NULL; 1959 return config->phase1; 1960 } 1961 1962 1963 /** 1964 * eap_get_config_phase2 - Get phase2 data from the network configuration 1965 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1966 * Returns: Pointer to the phase1 data or %NULL if not found 1967 */ 1968 const char * eap_get_config_phase2(struct eap_sm *sm) 1969 { 1970 struct eap_peer_config *config = eap_get_config(sm); 1971 if (config == NULL) 1972 return NULL; 1973 return config->phase2; 1974 } 1975 1976 1977 int eap_get_config_fragment_size(struct eap_sm *sm) 1978 { 1979 struct eap_peer_config *config = eap_get_config(sm); 1980 if (config == NULL) 1981 return -1; 1982 return config->fragment_size; 1983 } 1984 1985 1986 /** 1987 * eap_key_available - Get key availability (eapKeyAvailable variable) 1988 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1989 * Returns: 1 if EAP keying material is available, 0 if not 1990 */ 1991 int eap_key_available(struct eap_sm *sm) 1992 { 1993 return sm ? sm->eapKeyAvailable : 0; 1994 } 1995 1996 1997 /** 1998 * eap_notify_success - Notify EAP state machine about external success trigger 1999 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2000 * 2001 * This function is called when external event, e.g., successful completion of 2002 * WPA-PSK key handshake, is indicating that EAP state machine should move to 2003 * success state. This is mainly used with security modes that do not use EAP 2004 * state machine (e.g., WPA-PSK). 2005 */ 2006 void eap_notify_success(struct eap_sm *sm) 2007 { 2008 if (sm) { 2009 sm->decision = DECISION_COND_SUCC; 2010 sm->EAP_state = EAP_SUCCESS; 2011 } 2012 } 2013 2014 2015 /** 2016 * eap_notify_lower_layer_success - Notification of lower layer success 2017 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2018 * 2019 * Notify EAP state machines that a lower layer has detected a successful 2020 * authentication. This is used to recover from dropped EAP-Success messages. 2021 */ 2022 void eap_notify_lower_layer_success(struct eap_sm *sm) 2023 { 2024 if (sm == NULL) 2025 return; 2026 2027 if (eapol_get_bool(sm, EAPOL_eapSuccess) || 2028 sm->decision == DECISION_FAIL || 2029 (sm->methodState != METHOD_MAY_CONT && 2030 sm->methodState != METHOD_DONE)) 2031 return; 2032 2033 if (sm->eapKeyData != NULL) 2034 sm->eapKeyAvailable = TRUE; 2035 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE); 2036 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS 2037 "EAP authentication completed successfully (based on lower " 2038 "layer success)"); 2039 } 2040 2041 2042 /** 2043 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine 2044 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2045 * @len: Pointer to variable that will be set to number of bytes in the key 2046 * Returns: Pointer to the EAP keying data or %NULL on failure 2047 * 2048 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The 2049 * key is available only after a successful authentication. EAP state machine 2050 * continues to manage the key data and the caller must not change or free the 2051 * returned data. 2052 */ 2053 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len) 2054 { 2055 if (sm == NULL || sm->eapKeyData == NULL) { 2056 *len = 0; 2057 return NULL; 2058 } 2059 2060 *len = sm->eapKeyDataLen; 2061 return sm->eapKeyData; 2062 } 2063 2064 2065 /** 2066 * eap_get_eapKeyData - Get EAP response data 2067 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2068 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure 2069 * 2070 * Fetch EAP response (eapRespData) from the EAP state machine. This data is 2071 * available when EAP state machine has processed an incoming EAP request. The 2072 * EAP state machine does not maintain a reference to the response after this 2073 * function is called and the caller is responsible for freeing the data. 2074 */ 2075 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm) 2076 { 2077 struct wpabuf *resp; 2078 2079 if (sm == NULL || sm->eapRespData == NULL) 2080 return NULL; 2081 2082 resp = sm->eapRespData; 2083 sm->eapRespData = NULL; 2084 2085 return resp; 2086 } 2087 2088 2089 /** 2090 * eap_sm_register_scard_ctx - Notification of smart card context 2091 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2092 * @ctx: Context data for smart card operations 2093 * 2094 * Notify EAP state machines of context data for smart card operations. This 2095 * context data will be used as a parameter for scard_*() functions. 2096 */ 2097 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx) 2098 { 2099 if (sm) 2100 sm->scard_ctx = ctx; 2101 } 2102 2103 2104 /** 2105 * eap_set_config_blob - Set or add a named configuration blob 2106 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2107 * @blob: New value for the blob 2108 * 2109 * Adds a new configuration blob or replaces the current value of an existing 2110 * blob. 2111 */ 2112 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob) 2113 { 2114 #ifndef CONFIG_NO_CONFIG_BLOBS 2115 sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob); 2116 #endif /* CONFIG_NO_CONFIG_BLOBS */ 2117 } 2118 2119 2120 /** 2121 * eap_get_config_blob - Get a named configuration blob 2122 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2123 * @name: Name of the blob 2124 * Returns: Pointer to blob data or %NULL if not found 2125 */ 2126 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm, 2127 const char *name) 2128 { 2129 #ifndef CONFIG_NO_CONFIG_BLOBS 2130 return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name); 2131 #else /* CONFIG_NO_CONFIG_BLOBS */ 2132 return NULL; 2133 #endif /* CONFIG_NO_CONFIG_BLOBS */ 2134 } 2135 2136 2137 /** 2138 * eap_set_force_disabled - Set force_disabled flag 2139 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2140 * @disabled: 1 = EAP disabled, 0 = EAP enabled 2141 * 2142 * This function is used to force EAP state machine to be disabled when it is 2143 * not in use (e.g., with WPA-PSK or plaintext connections). 2144 */ 2145 void eap_set_force_disabled(struct eap_sm *sm, int disabled) 2146 { 2147 sm->force_disabled = disabled; 2148 } 2149 2150 2151 /** 2152 * eap_notify_pending - Notify that EAP method is ready to re-process a request 2153 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2154 * 2155 * An EAP method can perform a pending operation (e.g., to get a response from 2156 * an external process). Once the response is available, this function can be 2157 * used to request EAPOL state machine to retry delivering the previously 2158 * received (and still unanswered) EAP request to EAP state machine. 2159 */ 2160 void eap_notify_pending(struct eap_sm *sm) 2161 { 2162 sm->eapol_cb->notify_pending(sm->eapol_ctx); 2163 } 2164 2165 2166 /** 2167 * eap_invalidate_cached_session - Mark cached session data invalid 2168 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2169 */ 2170 void eap_invalidate_cached_session(struct eap_sm *sm) 2171 { 2172 if (sm) 2173 eap_deinit_prev_method(sm, "invalidate"); 2174 } 2175 2176 2177 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf) 2178 { 2179 if (conf->identity_len != WSC_ID_ENROLLEE_LEN || 2180 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN)) 2181 return 0; /* Not a WPS Enrollee */ 2182 2183 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL) 2184 return 0; /* Not using PBC */ 2185 2186 return 1; 2187 } 2188 2189 2190 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf) 2191 { 2192 if (conf->identity_len != WSC_ID_ENROLLEE_LEN || 2193 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN)) 2194 return 0; /* Not a WPS Enrollee */ 2195 2196 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL) 2197 return 0; /* Not using PIN */ 2198 2199 return 1; 2200 } 2201