Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/JITCodeEmitter.h - Code emission ----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines an abstract interface that is used by the machine code
     11 // emission framework to output the code.  This allows machine code emission to
     12 // be separated from concerns such as resolution of call targets, and where the
     13 // machine code will be written (memory or disk, f.e.).
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef LLVM_CODEGEN_JITCODEEMITTER_H
     18 #define LLVM_CODEGEN_JITCODEEMITTER_H
     19 
     20 #include <string>
     21 #include "llvm/Support/DataTypes.h"
     22 #include "llvm/Support/MathExtras.h"
     23 #include "llvm/CodeGen/MachineCodeEmitter.h"
     24 #include "llvm/ADT/DenseMap.h"
     25 
     26 namespace llvm {
     27 
     28 class MachineBasicBlock;
     29 class MachineConstantPool;
     30 class MachineJumpTableInfo;
     31 class MachineFunction;
     32 class MachineModuleInfo;
     33 class MachineRelocation;
     34 class Value;
     35 class GlobalValue;
     36 class Function;
     37 
     38 /// JITCodeEmitter - This class defines two sorts of methods: those for
     39 /// emitting the actual bytes of machine code, and those for emitting auxiliary
     40 /// structures, such as jump tables, relocations, etc.
     41 ///
     42 /// Emission of machine code is complicated by the fact that we don't (in
     43 /// general) know the size of the machine code that we're about to emit before
     44 /// we emit it.  As such, we preallocate a certain amount of memory, and set the
     45 /// BufferBegin/BufferEnd pointers to the start and end of the buffer.  As we
     46 /// emit machine instructions, we advance the CurBufferPtr to indicate the
     47 /// location of the next byte to emit.  In the case of a buffer overflow (we
     48 /// need to emit more machine code than we have allocated space for), the
     49 /// CurBufferPtr will saturate to BufferEnd and ignore stores.  Once the entire
     50 /// function has been emitted, the overflow condition is checked, and if it has
     51 /// occurred, more memory is allocated, and we reemit the code into it.
     52 ///
     53 class JITCodeEmitter : public MachineCodeEmitter {
     54   virtual void anchor();
     55 public:
     56   virtual ~JITCodeEmitter() {}
     57 
     58   /// startFunction - This callback is invoked when the specified function is
     59   /// about to be code generated.  This initializes the BufferBegin/End/Ptr
     60   /// fields.
     61   ///
     62   virtual void startFunction(MachineFunction &F) = 0;
     63 
     64   /// finishFunction - This callback is invoked when the specified function has
     65   /// finished code generation.  If a buffer overflow has occurred, this method
     66   /// returns true (the callee is required to try again), otherwise it returns
     67   /// false.
     68   ///
     69   virtual bool finishFunction(MachineFunction &F) = 0;
     70 
     71   /// allocIndirectGV - Allocates and fills storage for an indirect
     72   /// GlobalValue, and returns the address.
     73   virtual void *allocIndirectGV(const GlobalValue *GV,
     74                                 const uint8_t *Buffer, size_t Size,
     75                                 unsigned Alignment) = 0;
     76 
     77   /// emitByte - This callback is invoked when a byte needs to be written to the
     78   /// output stream.
     79   ///
     80   void emitByte(uint8_t B) {
     81     if (CurBufferPtr != BufferEnd)
     82       *CurBufferPtr++ = B;
     83   }
     84 
     85   /// emitWordLE - This callback is invoked when a 32-bit word needs to be
     86   /// written to the output stream in little-endian format.
     87   ///
     88   void emitWordLE(uint32_t W) {
     89     if (4 <= BufferEnd-CurBufferPtr) {
     90       *CurBufferPtr++ = (uint8_t)(W >>  0);
     91       *CurBufferPtr++ = (uint8_t)(W >>  8);
     92       *CurBufferPtr++ = (uint8_t)(W >> 16);
     93       *CurBufferPtr++ = (uint8_t)(W >> 24);
     94     } else {
     95       CurBufferPtr = BufferEnd;
     96     }
     97   }
     98 
     99   /// emitWordBE - This callback is invoked when a 32-bit word needs to be
    100   /// written to the output stream in big-endian format.
    101   ///
    102   void emitWordBE(uint32_t W) {
    103     if (4 <= BufferEnd-CurBufferPtr) {
    104       *CurBufferPtr++ = (uint8_t)(W >> 24);
    105       *CurBufferPtr++ = (uint8_t)(W >> 16);
    106       *CurBufferPtr++ = (uint8_t)(W >>  8);
    107       *CurBufferPtr++ = (uint8_t)(W >>  0);
    108     } else {
    109       CurBufferPtr = BufferEnd;
    110     }
    111   }
    112 
    113   /// emitDWordLE - This callback is invoked when a 64-bit word needs to be
    114   /// written to the output stream in little-endian format.
    115   ///
    116   void emitDWordLE(uint64_t W) {
    117     if (8 <= BufferEnd-CurBufferPtr) {
    118       *CurBufferPtr++ = (uint8_t)(W >>  0);
    119       *CurBufferPtr++ = (uint8_t)(W >>  8);
    120       *CurBufferPtr++ = (uint8_t)(W >> 16);
    121       *CurBufferPtr++ = (uint8_t)(W >> 24);
    122       *CurBufferPtr++ = (uint8_t)(W >> 32);
    123       *CurBufferPtr++ = (uint8_t)(W >> 40);
    124       *CurBufferPtr++ = (uint8_t)(W >> 48);
    125       *CurBufferPtr++ = (uint8_t)(W >> 56);
    126     } else {
    127       CurBufferPtr = BufferEnd;
    128     }
    129   }
    130 
    131   /// emitDWordBE - This callback is invoked when a 64-bit word needs to be
    132   /// written to the output stream in big-endian format.
    133   ///
    134   void emitDWordBE(uint64_t W) {
    135     if (8 <= BufferEnd-CurBufferPtr) {
    136       *CurBufferPtr++ = (uint8_t)(W >> 56);
    137       *CurBufferPtr++ = (uint8_t)(W >> 48);
    138       *CurBufferPtr++ = (uint8_t)(W >> 40);
    139       *CurBufferPtr++ = (uint8_t)(W >> 32);
    140       *CurBufferPtr++ = (uint8_t)(W >> 24);
    141       *CurBufferPtr++ = (uint8_t)(W >> 16);
    142       *CurBufferPtr++ = (uint8_t)(W >>  8);
    143       *CurBufferPtr++ = (uint8_t)(W >>  0);
    144     } else {
    145       CurBufferPtr = BufferEnd;
    146     }
    147   }
    148 
    149   /// emitAlignment - Move the CurBufferPtr pointer up to the specified
    150   /// alignment (saturated to BufferEnd of course).
    151   void emitAlignment(unsigned Alignment) {
    152     if (Alignment == 0) Alignment = 1;
    153     uint8_t *NewPtr = (uint8_t*)RoundUpToAlignment((uintptr_t)CurBufferPtr,
    154                                                    Alignment);
    155     CurBufferPtr = std::min(NewPtr, BufferEnd);
    156   }
    157 
    158   /// emitAlignmentWithFill - Similar to emitAlignment, except that the
    159   /// extra bytes are filled with the provided byte.
    160   void emitAlignmentWithFill(unsigned Alignment, uint8_t Fill) {
    161     if (Alignment == 0) Alignment = 1;
    162     uint8_t *NewPtr = (uint8_t*)RoundUpToAlignment((uintptr_t)CurBufferPtr,
    163                                                    Alignment);
    164     // Fail if we don't have room.
    165     if (NewPtr > BufferEnd) {
    166       CurBufferPtr = BufferEnd;
    167       return;
    168     }
    169     while (CurBufferPtr < NewPtr) {
    170       *CurBufferPtr++ = Fill;
    171     }
    172   }
    173 
    174   /// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
    175   /// written to the output stream.
    176   void emitULEB128Bytes(uint64_t Value, unsigned PadTo = 0) {
    177     do {
    178       uint8_t Byte = Value & 0x7f;
    179       Value >>= 7;
    180       if (Value || PadTo != 0) Byte |= 0x80;
    181       emitByte(Byte);
    182     } while (Value);
    183 
    184     if (PadTo) {
    185       do {
    186         uint8_t Byte = (PadTo > 1) ? 0x80 : 0x0;
    187         emitByte(Byte);
    188       } while (--PadTo);
    189     }
    190   }
    191 
    192   /// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
    193   /// written to the output stream.
    194   void emitSLEB128Bytes(int64_t Value) {
    195     int32_t Sign = Value >> (8 * sizeof(Value) - 1);
    196     bool IsMore;
    197 
    198     do {
    199       uint8_t Byte = Value & 0x7f;
    200       Value >>= 7;
    201       IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
    202       if (IsMore) Byte |= 0x80;
    203       emitByte(Byte);
    204     } while (IsMore);
    205   }
    206 
    207   /// emitString - This callback is invoked when a String needs to be
    208   /// written to the output stream.
    209   void emitString(const std::string &String) {
    210     for (unsigned i = 0, N = static_cast<unsigned>(String.size());
    211          i < N; ++i) {
    212       uint8_t C = String[i];
    213       emitByte(C);
    214     }
    215     emitByte(0);
    216   }
    217 
    218   /// emitInt32 - Emit a int32 directive.
    219   void emitInt32(uint32_t Value) {
    220     if (4 <= BufferEnd-CurBufferPtr) {
    221       *((uint32_t*)CurBufferPtr) = Value;
    222       CurBufferPtr += 4;
    223     } else {
    224       CurBufferPtr = BufferEnd;
    225     }
    226   }
    227 
    228   /// emitInt64 - Emit a int64 directive.
    229   void emitInt64(uint64_t Value) {
    230     if (8 <= BufferEnd-CurBufferPtr) {
    231       *((uint64_t*)CurBufferPtr) = Value;
    232       CurBufferPtr += 8;
    233     } else {
    234       CurBufferPtr = BufferEnd;
    235     }
    236   }
    237 
    238   /// emitInt32At - Emit the Int32 Value in Addr.
    239   void emitInt32At(uintptr_t *Addr, uintptr_t Value) {
    240     if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
    241       (*(uint32_t*)Addr) = (uint32_t)Value;
    242   }
    243 
    244   /// emitInt64At - Emit the Int64 Value in Addr.
    245   void emitInt64At(uintptr_t *Addr, uintptr_t Value) {
    246     if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
    247       (*(uint64_t*)Addr) = (uint64_t)Value;
    248   }
    249 
    250 
    251   /// emitLabel - Emits a label
    252   virtual void emitLabel(MCSymbol *Label) = 0;
    253 
    254   /// allocateSpace - Allocate a block of space in the current output buffer,
    255   /// returning null (and setting conditions to indicate buffer overflow) on
    256   /// failure.  Alignment is the alignment in bytes of the buffer desired.
    257   virtual void *allocateSpace(uintptr_t Size, unsigned Alignment) {
    258     emitAlignment(Alignment);
    259     void *Result;
    260 
    261     // Check for buffer overflow.
    262     if (Size >= (uintptr_t)(BufferEnd-CurBufferPtr)) {
    263       CurBufferPtr = BufferEnd;
    264       Result = 0;
    265     } else {
    266       // Allocate the space.
    267       Result = CurBufferPtr;
    268       CurBufferPtr += Size;
    269     }
    270 
    271     return Result;
    272   }
    273 
    274   /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
    275   /// this method does not allocate memory in the current output buffer,
    276   /// because a global may live longer than the current function.
    277   virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment) = 0;
    278 
    279   /// StartMachineBasicBlock - This should be called by the target when a new
    280   /// basic block is about to be emitted.  This way the MCE knows where the
    281   /// start of the block is, and can implement getMachineBasicBlockAddress.
    282   virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) = 0;
    283 
    284   /// getCurrentPCValue - This returns the address that the next emitted byte
    285   /// will be output to.
    286   ///
    287   virtual uintptr_t getCurrentPCValue() const {
    288     return (uintptr_t)CurBufferPtr;
    289   }
    290 
    291   /// getCurrentPCOffset - Return the offset from the start of the emitted
    292   /// buffer that we are currently writing to.
    293   uintptr_t getCurrentPCOffset() const {
    294     return CurBufferPtr-BufferBegin;
    295   }
    296 
    297   /// earlyResolveAddresses - True if the code emitter can use symbol addresses
    298   /// during code emission time. The JIT is capable of doing this because it
    299   /// creates jump tables or constant pools in memory on the fly while the
    300   /// object code emitters rely on a linker to have real addresses and should
    301   /// use relocations instead.
    302   bool earlyResolveAddresses() const { return true; }
    303 
    304   /// addRelocation - Whenever a relocatable address is needed, it should be
    305   /// noted with this interface.
    306   virtual void addRelocation(const MachineRelocation &MR) = 0;
    307 
    308   /// FIXME: These should all be handled with relocations!
    309 
    310   /// getConstantPoolEntryAddress - Return the address of the 'Index' entry in
    311   /// the constant pool that was last emitted with the emitConstantPool method.
    312   ///
    313   virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const = 0;
    314 
    315   /// getJumpTableEntryAddress - Return the address of the jump table with index
    316   /// 'Index' in the function that last called initJumpTableInfo.
    317   ///
    318   virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const = 0;
    319 
    320   /// getMachineBasicBlockAddress - Return the address of the specified
    321   /// MachineBasicBlock, only usable after the label for the MBB has been
    322   /// emitted.
    323   ///
    324   virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const= 0;
    325 
    326   /// getLabelAddress - Return the address of the specified Label, only usable
    327   /// after the Label has been emitted.
    328   ///
    329   virtual uintptr_t getLabelAddress(MCSymbol *Label) const = 0;
    330 
    331   /// Specifies the MachineModuleInfo object. This is used for exception handling
    332   /// purposes.
    333   virtual void setModuleInfo(MachineModuleInfo* Info) = 0;
    334 
    335   /// getLabelLocations - Return the label locations map of the label IDs to
    336   /// their address.
    337   virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() { return 0; }
    338 };
    339 
    340 } // End llvm namespace
    341 
    342 #endif
    343