Home | History | Annotate | Download | only in JIT
      1 //===- JITTest.cpp - Unit tests for the JIT -------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "gtest/gtest.h"
     11 #include "llvm/ADT/OwningPtr.h"
     12 #include "llvm/ADT/SmallPtrSet.h"
     13 #include "llvm/Assembly/Parser.h"
     14 #include "llvm/BasicBlock.h"
     15 #include "llvm/Bitcode/ReaderWriter.h"
     16 #include "llvm/Constant.h"
     17 #include "llvm/Constants.h"
     18 #include "llvm/DerivedTypes.h"
     19 #include "llvm/ExecutionEngine/JIT.h"
     20 #include "llvm/ExecutionEngine/JITMemoryManager.h"
     21 #include "llvm/Function.h"
     22 #include "llvm/GlobalValue.h"
     23 #include "llvm/GlobalVariable.h"
     24 #include "llvm/LLVMContext.h"
     25 #include "llvm/Module.h"
     26 #include "llvm/Support/IRBuilder.h"
     27 #include "llvm/Support/MemoryBuffer.h"
     28 #include "llvm/Support/SourceMgr.h"
     29 #include "llvm/Support/TypeBuilder.h"
     30 #include "llvm/Support/TargetSelect.h"
     31 #include "llvm/Type.h"
     32 
     33 #include <vector>
     34 
     35 using namespace llvm;
     36 
     37 namespace {
     38 
     39 Function *makeReturnGlobal(std::string Name, GlobalVariable *G, Module *M) {
     40   std::vector<Type*> params;
     41   FunctionType *FTy = FunctionType::get(G->getType()->getElementType(),
     42                                               params, false);
     43   Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M);
     44   BasicBlock *Entry = BasicBlock::Create(M->getContext(), "entry", F);
     45   IRBuilder<> builder(Entry);
     46   Value *Load = builder.CreateLoad(G);
     47   Type *GTy = G->getType()->getElementType();
     48   Value *Add = builder.CreateAdd(Load, ConstantInt::get(GTy, 1LL));
     49   builder.CreateStore(Add, G);
     50   builder.CreateRet(Add);
     51   return F;
     52 }
     53 
     54 std::string DumpFunction(const Function *F) {
     55   std::string Result;
     56   raw_string_ostream(Result) << "" << *F;
     57   return Result;
     58 }
     59 
     60 class RecordingJITMemoryManager : public JITMemoryManager {
     61   const OwningPtr<JITMemoryManager> Base;
     62 public:
     63   RecordingJITMemoryManager()
     64     : Base(JITMemoryManager::CreateDefaultMemManager()) {
     65     stubsAllocated = 0;
     66   }
     67   virtual void *getPointerToNamedFunction(const std::string &Name,
     68                                           bool AbortOnFailure = true) {
     69     return Base->getPointerToNamedFunction(Name, AbortOnFailure);
     70   }
     71 
     72   virtual void setMemoryWritable() { Base->setMemoryWritable(); }
     73   virtual void setMemoryExecutable() { Base->setMemoryExecutable(); }
     74   virtual void setPoisonMemory(bool poison) { Base->setPoisonMemory(poison); }
     75   virtual void AllocateGOT() { Base->AllocateGOT(); }
     76   virtual uint8_t *getGOTBase() const { return Base->getGOTBase(); }
     77   struct StartFunctionBodyCall {
     78     StartFunctionBodyCall(uint8_t *Result, const Function *F,
     79                           uintptr_t ActualSize, uintptr_t ActualSizeResult)
     80       : Result(Result), F(F), F_dump(DumpFunction(F)),
     81         ActualSize(ActualSize), ActualSizeResult(ActualSizeResult) {}
     82     uint8_t *Result;
     83     const Function *F;
     84     std::string F_dump;
     85     uintptr_t ActualSize;
     86     uintptr_t ActualSizeResult;
     87   };
     88   std::vector<StartFunctionBodyCall> startFunctionBodyCalls;
     89   virtual uint8_t *startFunctionBody(const Function *F,
     90                                      uintptr_t &ActualSize) {
     91     uintptr_t InitialActualSize = ActualSize;
     92     uint8_t *Result = Base->startFunctionBody(F, ActualSize);
     93     startFunctionBodyCalls.push_back(
     94       StartFunctionBodyCall(Result, F, InitialActualSize, ActualSize));
     95     return Result;
     96   }
     97   int stubsAllocated;
     98   virtual uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
     99                                 unsigned Alignment) {
    100     stubsAllocated++;
    101     return Base->allocateStub(F, StubSize, Alignment);
    102   }
    103   struct EndFunctionBodyCall {
    104     EndFunctionBodyCall(const Function *F, uint8_t *FunctionStart,
    105                         uint8_t *FunctionEnd)
    106       : F(F), F_dump(DumpFunction(F)),
    107         FunctionStart(FunctionStart), FunctionEnd(FunctionEnd) {}
    108     const Function *F;
    109     std::string F_dump;
    110     uint8_t *FunctionStart;
    111     uint8_t *FunctionEnd;
    112   };
    113   std::vector<EndFunctionBodyCall> endFunctionBodyCalls;
    114   virtual void endFunctionBody(const Function *F, uint8_t *FunctionStart,
    115                                uint8_t *FunctionEnd) {
    116     endFunctionBodyCalls.push_back(
    117       EndFunctionBodyCall(F, FunctionStart, FunctionEnd));
    118     Base->endFunctionBody(F, FunctionStart, FunctionEnd);
    119   }
    120   virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
    121                                        unsigned SectionID) {
    122     return Base->allocateDataSection(Size, Alignment, SectionID);
    123   }
    124   virtual uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
    125                                        unsigned SectionID) {
    126     return Base->allocateCodeSection(Size, Alignment, SectionID);
    127   }
    128   virtual uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
    129     return Base->allocateSpace(Size, Alignment);
    130   }
    131   virtual uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
    132     return Base->allocateGlobal(Size, Alignment);
    133   }
    134   struct DeallocateFunctionBodyCall {
    135     DeallocateFunctionBodyCall(const void *Body) : Body(Body) {}
    136     const void *Body;
    137   };
    138   std::vector<DeallocateFunctionBodyCall> deallocateFunctionBodyCalls;
    139   virtual void deallocateFunctionBody(void *Body) {
    140     deallocateFunctionBodyCalls.push_back(DeallocateFunctionBodyCall(Body));
    141     Base->deallocateFunctionBody(Body);
    142   }
    143   struct DeallocateExceptionTableCall {
    144     DeallocateExceptionTableCall(const void *ET) : ET(ET) {}
    145     const void *ET;
    146   };
    147   std::vector<DeallocateExceptionTableCall> deallocateExceptionTableCalls;
    148   virtual void deallocateExceptionTable(void *ET) {
    149     deallocateExceptionTableCalls.push_back(DeallocateExceptionTableCall(ET));
    150     Base->deallocateExceptionTable(ET);
    151   }
    152   struct StartExceptionTableCall {
    153     StartExceptionTableCall(uint8_t *Result, const Function *F,
    154                             uintptr_t ActualSize, uintptr_t ActualSizeResult)
    155       : Result(Result), F(F), F_dump(DumpFunction(F)),
    156         ActualSize(ActualSize), ActualSizeResult(ActualSizeResult) {}
    157     uint8_t *Result;
    158     const Function *F;
    159     std::string F_dump;
    160     uintptr_t ActualSize;
    161     uintptr_t ActualSizeResult;
    162   };
    163   std::vector<StartExceptionTableCall> startExceptionTableCalls;
    164   virtual uint8_t* startExceptionTable(const Function* F,
    165                                        uintptr_t &ActualSize) {
    166     uintptr_t InitialActualSize = ActualSize;
    167     uint8_t *Result = Base->startExceptionTable(F, ActualSize);
    168     startExceptionTableCalls.push_back(
    169       StartExceptionTableCall(Result, F, InitialActualSize, ActualSize));
    170     return Result;
    171   }
    172   struct EndExceptionTableCall {
    173     EndExceptionTableCall(const Function *F, uint8_t *TableStart,
    174                           uint8_t *TableEnd, uint8_t* FrameRegister)
    175       : F(F), F_dump(DumpFunction(F)),
    176         TableStart(TableStart), TableEnd(TableEnd),
    177         FrameRegister(FrameRegister) {}
    178     const Function *F;
    179     std::string F_dump;
    180     uint8_t *TableStart;
    181     uint8_t *TableEnd;
    182     uint8_t *FrameRegister;
    183   };
    184   std::vector<EndExceptionTableCall> endExceptionTableCalls;
    185   virtual void endExceptionTable(const Function *F, uint8_t *TableStart,
    186                                  uint8_t *TableEnd, uint8_t* FrameRegister) {
    187       endExceptionTableCalls.push_back(
    188           EndExceptionTableCall(F, TableStart, TableEnd, FrameRegister));
    189     return Base->endExceptionTable(F, TableStart, TableEnd, FrameRegister);
    190   }
    191 };
    192 
    193 bool LoadAssemblyInto(Module *M, const char *assembly) {
    194   SMDiagnostic Error;
    195   bool success =
    196     NULL != ParseAssemblyString(assembly, M, Error, M->getContext());
    197   std::string errMsg;
    198   raw_string_ostream os(errMsg);
    199   Error.print("", os);
    200   EXPECT_TRUE(success) << os.str();
    201   return success;
    202 }
    203 
    204 class JITTest : public testing::Test {
    205  protected:
    206   virtual void SetUp() {
    207     M = new Module("<main>", Context);
    208     RJMM = new RecordingJITMemoryManager;
    209     RJMM->setPoisonMemory(true);
    210     std::string Error;
    211     TheJIT.reset(EngineBuilder(M).setEngineKind(EngineKind::JIT)
    212                  .setJITMemoryManager(RJMM)
    213                  .setErrorStr(&Error).create());
    214     ASSERT_TRUE(TheJIT.get() != NULL) << Error;
    215   }
    216 
    217   void LoadAssembly(const char *assembly) {
    218     LoadAssemblyInto(M, assembly);
    219   }
    220 
    221   LLVMContext Context;
    222   Module *M;  // Owned by ExecutionEngine.
    223   RecordingJITMemoryManager *RJMM;
    224   OwningPtr<ExecutionEngine> TheJIT;
    225 };
    226 
    227 // Regression test for a bug.  The JIT used to allocate globals inside the same
    228 // memory block used for the function, and when the function code was freed,
    229 // the global was left in the same place.  This test allocates a function
    230 // that uses and global, deallocates it, and then makes sure that the global
    231 // stays alive after that.
    232 TEST(JIT, GlobalInFunction) {
    233   LLVMContext context;
    234   Module *M = new Module("<main>", context);
    235 
    236   JITMemoryManager *MemMgr = JITMemoryManager::CreateDefaultMemManager();
    237   // Tell the memory manager to poison freed memory so that accessing freed
    238   // memory is more easily tested.
    239   MemMgr->setPoisonMemory(true);
    240   std::string Error;
    241   OwningPtr<ExecutionEngine> JIT(EngineBuilder(M)
    242                                  .setEngineKind(EngineKind::JIT)
    243                                  .setErrorStr(&Error)
    244                                  .setJITMemoryManager(MemMgr)
    245                                  // The next line enables the fix:
    246                                  .setAllocateGVsWithCode(false)
    247                                  .create());
    248   ASSERT_EQ(Error, "");
    249 
    250   // Create a global variable.
    251   Type *GTy = Type::getInt32Ty(context);
    252   GlobalVariable *G = new GlobalVariable(
    253       *M,
    254       GTy,
    255       false,  // Not constant.
    256       GlobalValue::InternalLinkage,
    257       Constant::getNullValue(GTy),
    258       "myglobal");
    259 
    260   // Make a function that points to a global.
    261   Function *F1 = makeReturnGlobal("F1", G, M);
    262 
    263   // Get the pointer to the native code to force it to JIT the function and
    264   // allocate space for the global.
    265   void (*F1Ptr)() =
    266       reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F1));
    267 
    268   // Since F1 was codegen'd, a pointer to G should be available.
    269   int32_t *GPtr = (int32_t*)JIT->getPointerToGlobalIfAvailable(G);
    270   ASSERT_NE((int32_t*)NULL, GPtr);
    271   EXPECT_EQ(0, *GPtr);
    272 
    273   // F1() should increment G.
    274   F1Ptr();
    275   EXPECT_EQ(1, *GPtr);
    276 
    277   // Make a second function identical to the first, referring to the same
    278   // global.
    279   Function *F2 = makeReturnGlobal("F2", G, M);
    280   void (*F2Ptr)() =
    281       reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F2));
    282 
    283   // F2() should increment G.
    284   F2Ptr();
    285   EXPECT_EQ(2, *GPtr);
    286 
    287   // Deallocate F1.
    288   JIT->freeMachineCodeForFunction(F1);
    289 
    290   // F2() should *still* increment G.
    291   F2Ptr();
    292   EXPECT_EQ(3, *GPtr);
    293 }
    294 
    295 int PlusOne(int arg) {
    296   return arg + 1;
    297 }
    298 
    299 // ARM tests disabled pending fix for PR10783.
    300 #if !defined(__arm__)
    301 TEST_F(JITTest, FarCallToKnownFunction) {
    302   // x86-64 can only make direct calls to functions within 32 bits of
    303   // the current PC.  To call anything farther away, we have to load
    304   // the address into a register and call through the register.  The
    305   // current JIT does this by allocating a stub for any far call.
    306   // There was a bug in which the JIT tried to emit a direct call when
    307   // the target was already in the JIT's global mappings and lazy
    308   // compilation was disabled.
    309 
    310   Function *KnownFunction = Function::Create(
    311       TypeBuilder<int(int), false>::get(Context),
    312       GlobalValue::ExternalLinkage, "known", M);
    313   TheJIT->addGlobalMapping(KnownFunction, (void*)(intptr_t)PlusOne);
    314 
    315   // int test() { return known(7); }
    316   Function *TestFunction = Function::Create(
    317       TypeBuilder<int(), false>::get(Context),
    318       GlobalValue::ExternalLinkage, "test", M);
    319   BasicBlock *Entry = BasicBlock::Create(Context, "entry", TestFunction);
    320   IRBuilder<> Builder(Entry);
    321   Value *result = Builder.CreateCall(
    322       KnownFunction,
    323       ConstantInt::get(TypeBuilder<int, false>::get(Context), 7));
    324   Builder.CreateRet(result);
    325 
    326   TheJIT->DisableLazyCompilation(true);
    327   int (*TestFunctionPtr)() = reinterpret_cast<int(*)()>(
    328       (intptr_t)TheJIT->getPointerToFunction(TestFunction));
    329   // This used to crash in trying to call PlusOne().
    330   EXPECT_EQ(8, TestFunctionPtr());
    331 }
    332 
    333 // Test a function C which calls A and B which call each other.
    334 TEST_F(JITTest, NonLazyCompilationStillNeedsStubs) {
    335   TheJIT->DisableLazyCompilation(true);
    336 
    337   FunctionType *Func1Ty =
    338       cast<FunctionType>(TypeBuilder<void(void), false>::get(Context));
    339   std::vector<Type*> arg_types;
    340   arg_types.push_back(Type::getInt1Ty(Context));
    341   FunctionType *FuncTy = FunctionType::get(
    342       Type::getVoidTy(Context), arg_types, false);
    343   Function *Func1 = Function::Create(Func1Ty, Function::ExternalLinkage,
    344                                      "func1", M);
    345   Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
    346                                      "func2", M);
    347   Function *Func3 = Function::Create(FuncTy, Function::InternalLinkage,
    348                                      "func3", M);
    349   BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
    350   BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
    351   BasicBlock *True2 = BasicBlock::Create(Context, "cond_true", Func2);
    352   BasicBlock *False2 = BasicBlock::Create(Context, "cond_false", Func2);
    353   BasicBlock *Block3 = BasicBlock::Create(Context, "block3", Func3);
    354   BasicBlock *True3 = BasicBlock::Create(Context, "cond_true", Func3);
    355   BasicBlock *False3 = BasicBlock::Create(Context, "cond_false", Func3);
    356 
    357   // Make Func1 call Func2(0) and Func3(0).
    358   IRBuilder<> Builder(Block1);
    359   Builder.CreateCall(Func2, ConstantInt::getTrue(Context));
    360   Builder.CreateCall(Func3, ConstantInt::getTrue(Context));
    361   Builder.CreateRetVoid();
    362 
    363   // void Func2(bool b) { if (b) { Func3(false); return; } return; }
    364   Builder.SetInsertPoint(Block2);
    365   Builder.CreateCondBr(Func2->arg_begin(), True2, False2);
    366   Builder.SetInsertPoint(True2);
    367   Builder.CreateCall(Func3, ConstantInt::getFalse(Context));
    368   Builder.CreateRetVoid();
    369   Builder.SetInsertPoint(False2);
    370   Builder.CreateRetVoid();
    371 
    372   // void Func3(bool b) { if (b) { Func2(false); return; } return; }
    373   Builder.SetInsertPoint(Block3);
    374   Builder.CreateCondBr(Func3->arg_begin(), True3, False3);
    375   Builder.SetInsertPoint(True3);
    376   Builder.CreateCall(Func2, ConstantInt::getFalse(Context));
    377   Builder.CreateRetVoid();
    378   Builder.SetInsertPoint(False3);
    379   Builder.CreateRetVoid();
    380 
    381   // Compile the function to native code
    382   void (*F1Ptr)() =
    383      reinterpret_cast<void(*)()>((intptr_t)TheJIT->getPointerToFunction(Func1));
    384 
    385   F1Ptr();
    386 }
    387 
    388 // Regression test for PR5162.  This used to trigger an AssertingVH inside the
    389 // JIT's Function to stub mapping.
    390 TEST_F(JITTest, NonLazyLeaksNoStubs) {
    391   TheJIT->DisableLazyCompilation(true);
    392 
    393   // Create two functions with a single basic block each.
    394   FunctionType *FuncTy =
    395       cast<FunctionType>(TypeBuilder<int(), false>::get(Context));
    396   Function *Func1 = Function::Create(FuncTy, Function::ExternalLinkage,
    397                                      "func1", M);
    398   Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
    399                                      "func2", M);
    400   BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
    401   BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
    402 
    403   // The first function calls the second and returns the result
    404   IRBuilder<> Builder(Block1);
    405   Value *Result = Builder.CreateCall(Func2);
    406   Builder.CreateRet(Result);
    407 
    408   // The second function just returns a constant
    409   Builder.SetInsertPoint(Block2);
    410   Builder.CreateRet(ConstantInt::get(TypeBuilder<int, false>::get(Context),42));
    411 
    412   // Compile the function to native code
    413   (void)TheJIT->getPointerToFunction(Func1);
    414 
    415   // Free the JIT state for the functions
    416   TheJIT->freeMachineCodeForFunction(Func1);
    417   TheJIT->freeMachineCodeForFunction(Func2);
    418 
    419   // Delete the first function (and show that is has no users)
    420   EXPECT_EQ(Func1->getNumUses(), 0u);
    421   Func1->eraseFromParent();
    422 
    423   // Delete the second function (and show that it has no users - it had one,
    424   // func1 but that's gone now)
    425   EXPECT_EQ(Func2->getNumUses(), 0u);
    426   Func2->eraseFromParent();
    427 }
    428 
    429 TEST_F(JITTest, ModuleDeletion) {
    430   TheJIT->DisableLazyCompilation(false);
    431   LoadAssembly("define void @main() { "
    432                "  call i32 @computeVal() "
    433                "  ret void "
    434                "} "
    435                " "
    436                "define internal i32 @computeVal()  { "
    437                "  ret i32 0 "
    438                "} ");
    439   Function *func = M->getFunction("main");
    440   TheJIT->getPointerToFunction(func);
    441   TheJIT->removeModule(M);
    442   delete M;
    443 
    444   SmallPtrSet<const void*, 2> FunctionsDeallocated;
    445   for (unsigned i = 0, e = RJMM->deallocateFunctionBodyCalls.size();
    446        i != e; ++i) {
    447     FunctionsDeallocated.insert(RJMM->deallocateFunctionBodyCalls[i].Body);
    448   }
    449   for (unsigned i = 0, e = RJMM->startFunctionBodyCalls.size(); i != e; ++i) {
    450     EXPECT_TRUE(FunctionsDeallocated.count(
    451                   RJMM->startFunctionBodyCalls[i].Result))
    452       << "Function leaked: \n" << RJMM->startFunctionBodyCalls[i].F_dump;
    453   }
    454   EXPECT_EQ(RJMM->startFunctionBodyCalls.size(),
    455             RJMM->deallocateFunctionBodyCalls.size());
    456 
    457   SmallPtrSet<const void*, 2> ExceptionTablesDeallocated;
    458   unsigned NumTablesDeallocated = 0;
    459   for (unsigned i = 0, e = RJMM->deallocateExceptionTableCalls.size();
    460        i != e; ++i) {
    461     ExceptionTablesDeallocated.insert(
    462         RJMM->deallocateExceptionTableCalls[i].ET);
    463     if (RJMM->deallocateExceptionTableCalls[i].ET != NULL) {
    464         // If JITEmitDebugInfo is off, we'll "deallocate" NULL, which doesn't
    465         // appear in startExceptionTableCalls.
    466         NumTablesDeallocated++;
    467     }
    468   }
    469   for (unsigned i = 0, e = RJMM->startExceptionTableCalls.size(); i != e; ++i) {
    470     EXPECT_TRUE(ExceptionTablesDeallocated.count(
    471                   RJMM->startExceptionTableCalls[i].Result))
    472       << "Function's exception table leaked: \n"
    473       << RJMM->startExceptionTableCalls[i].F_dump;
    474   }
    475   EXPECT_EQ(RJMM->startExceptionTableCalls.size(),
    476             NumTablesDeallocated);
    477 }
    478 #endif // !defined(__arm__)
    479 
    480 // ARM and PPC still emit stubs for calls since the target may be too far away
    481 // to call directly.  This #if can probably be removed when
    482 // http://llvm.org/PR5201 is fixed.
    483 #if !defined(__arm__) && !defined(__powerpc__) && !defined(__ppc__)
    484 typedef int (*FooPtr) ();
    485 
    486 TEST_F(JITTest, NoStubs) {
    487   LoadAssembly("define void @bar() {"
    488 	       "entry: "
    489 	       "ret void"
    490 	       "}"
    491 	       " "
    492 	       "define i32 @foo() {"
    493 	       "entry:"
    494 	       "call void @bar()"
    495 	       "ret i32 undef"
    496 	       "}"
    497 	       " "
    498 	       "define i32 @main() {"
    499 	       "entry:"
    500 	       "%0 = call i32 @foo()"
    501 	       "call void @bar()"
    502 	       "ret i32 undef"
    503 	       "}");
    504   Function *foo = M->getFunction("foo");
    505   uintptr_t tmp = (uintptr_t)(TheJIT->getPointerToFunction(foo));
    506   FooPtr ptr = (FooPtr)(tmp);
    507 
    508   (ptr)();
    509 
    510   // We should now allocate no more stubs, we have the code to foo
    511   // and the existing stub for bar.
    512   int stubsBefore = RJMM->stubsAllocated;
    513   Function *func = M->getFunction("main");
    514   TheJIT->getPointerToFunction(func);
    515 
    516   Function *bar = M->getFunction("bar");
    517   TheJIT->getPointerToFunction(bar);
    518 
    519   ASSERT_EQ(stubsBefore, RJMM->stubsAllocated);
    520 }
    521 #endif  // !ARM && !PPC
    522 
    523 TEST_F(JITTest, FunctionPointersOutliveTheirCreator) {
    524   TheJIT->DisableLazyCompilation(true);
    525   LoadAssembly("define i8()* @get_foo_addr() { "
    526                "  ret i8()* @foo "
    527                "} "
    528                " "
    529                "define i8 @foo() { "
    530                "  ret i8 42 "
    531                "} ");
    532   Function *F_get_foo_addr = M->getFunction("get_foo_addr");
    533 
    534   typedef char(*fooT)();
    535   fooT (*get_foo_addr)() = reinterpret_cast<fooT(*)()>(
    536       (intptr_t)TheJIT->getPointerToFunction(F_get_foo_addr));
    537   fooT foo_addr = get_foo_addr();
    538 
    539   // Now free get_foo_addr.  This should not free the machine code for foo or
    540   // any call stub returned as foo's canonical address.
    541   TheJIT->freeMachineCodeForFunction(F_get_foo_addr);
    542 
    543   // Check by calling the reported address of foo.
    544   EXPECT_EQ(42, foo_addr());
    545 
    546   // The reported address should also be the same as the result of a subsequent
    547   // getPointerToFunction(foo).
    548 #if 0
    549   // Fails until PR5126 is fixed:
    550   Function *F_foo = M->getFunction("foo");
    551   fooT foo = reinterpret_cast<fooT>(
    552       (intptr_t)TheJIT->getPointerToFunction(F_foo));
    553   EXPECT_EQ((intptr_t)foo, (intptr_t)foo_addr);
    554 #endif
    555 }
    556 
    557 // ARM doesn't have an implementation of replaceMachineCodeForFunction(), so
    558 // recompileAndRelinkFunction doesn't work.
    559 #if !defined(__arm__)
    560 TEST_F(JITTest, FunctionIsRecompiledAndRelinked) {
    561   Function *F = Function::Create(TypeBuilder<int(void), false>::get(Context),
    562                                  GlobalValue::ExternalLinkage, "test", M);
    563   BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
    564   IRBuilder<> Builder(Entry);
    565   Value *Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 1);
    566   Builder.CreateRet(Val);
    567 
    568   TheJIT->DisableLazyCompilation(true);
    569   // Compile the function once, and make sure it works.
    570   int (*OrigFPtr)() = reinterpret_cast<int(*)()>(
    571     (intptr_t)TheJIT->recompileAndRelinkFunction(F));
    572   EXPECT_EQ(1, OrigFPtr());
    573 
    574   // Now change the function to return a different value.
    575   Entry->eraseFromParent();
    576   BasicBlock *NewEntry = BasicBlock::Create(Context, "new_entry", F);
    577   Builder.SetInsertPoint(NewEntry);
    578   Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 2);
    579   Builder.CreateRet(Val);
    580   // Recompile it, which should produce a new function pointer _and_ update the
    581   // old one.
    582   int (*NewFPtr)() = reinterpret_cast<int(*)()>(
    583     (intptr_t)TheJIT->recompileAndRelinkFunction(F));
    584 
    585   EXPECT_EQ(2, NewFPtr())
    586     << "The new pointer should call the new version of the function";
    587   EXPECT_EQ(2, OrigFPtr())
    588     << "The old pointer's target should now jump to the new version";
    589 }
    590 #endif  // !defined(__arm__)
    591 
    592 }  // anonymous namespace
    593 // This variable is intentionally defined differently in the statically-compiled
    594 // program from the IR input to the JIT to assert that the JIT doesn't use its
    595 // definition.
    596 extern "C" int32_t JITTest_AvailableExternallyGlobal;
    597 int32_t JITTest_AvailableExternallyGlobal = 42;
    598 namespace {
    599 
    600 TEST_F(JITTest, AvailableExternallyGlobalIsntEmitted) {
    601   TheJIT->DisableLazyCompilation(true);
    602   LoadAssembly("@JITTest_AvailableExternallyGlobal = "
    603                "  available_externally global i32 7 "
    604                " "
    605                "define i32 @loader() { "
    606                "  %result = load i32* @JITTest_AvailableExternallyGlobal "
    607                "  ret i32 %result "
    608                "} ");
    609   Function *loaderIR = M->getFunction("loader");
    610 
    611   int32_t (*loader)() = reinterpret_cast<int32_t(*)()>(
    612     (intptr_t)TheJIT->getPointerToFunction(loaderIR));
    613   EXPECT_EQ(42, loader()) << "func should return 42 from the external global,"
    614                           << " not 7 from the IR version.";
    615 }
    616 
    617 }  // anonymous namespace
    618 // This function is intentionally defined differently in the statically-compiled
    619 // program from the IR input to the JIT to assert that the JIT doesn't use its
    620 // definition.
    621 extern "C" int32_t JITTest_AvailableExternallyFunction() {
    622   return 42;
    623 }
    624 namespace {
    625 
    626 // ARM tests disabled pending fix for PR10783.
    627 #if !defined(__arm__)
    628 TEST_F(JITTest, AvailableExternallyFunctionIsntCompiled) {
    629   TheJIT->DisableLazyCompilation(true);
    630   LoadAssembly("define available_externally i32 "
    631                "    @JITTest_AvailableExternallyFunction() { "
    632                "  ret i32 7 "
    633                "} "
    634                " "
    635                "define i32 @func() { "
    636                "  %result = tail call i32 "
    637                "    @JITTest_AvailableExternallyFunction() "
    638                "  ret i32 %result "
    639                "} ");
    640   Function *funcIR = M->getFunction("func");
    641 
    642   int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
    643     (intptr_t)TheJIT->getPointerToFunction(funcIR));
    644   EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
    645                         << " not 7 from the IR version.";
    646 }
    647 
    648 TEST_F(JITTest, EscapedLazyStubStillCallable) {
    649   TheJIT->DisableLazyCompilation(false);
    650   LoadAssembly("define internal i32 @stubbed() { "
    651                "  ret i32 42 "
    652                "} "
    653                " "
    654                "define i32()* @get_stub() { "
    655                "  ret i32()* @stubbed "
    656                "} ");
    657   typedef int32_t(*StubTy)();
    658 
    659   // Call get_stub() to get the address of @stubbed without actually JITting it.
    660   Function *get_stubIR = M->getFunction("get_stub");
    661   StubTy (*get_stub)() = reinterpret_cast<StubTy(*)()>(
    662     (intptr_t)TheJIT->getPointerToFunction(get_stubIR));
    663   StubTy stubbed = get_stub();
    664   // Now get_stubIR is the only reference to stubbed's stub.
    665   get_stubIR->eraseFromParent();
    666   // Now there are no references inside the JIT, but we've got a pointer outside
    667   // it.  The stub should be callable and return the right value.
    668   EXPECT_EQ(42, stubbed());
    669 }
    670 
    671 // Converts the LLVM assembly to bitcode and returns it in a std::string.  An
    672 // empty string indicates an error.
    673 std::string AssembleToBitcode(LLVMContext &Context, const char *Assembly) {
    674   Module TempModule("TempModule", Context);
    675   if (!LoadAssemblyInto(&TempModule, Assembly)) {
    676     return "";
    677   }
    678 
    679   std::string Result;
    680   raw_string_ostream OS(Result);
    681   WriteBitcodeToFile(&TempModule, OS);
    682   OS.flush();
    683   return Result;
    684 }
    685 
    686 // Returns a newly-created ExecutionEngine that reads the bitcode in 'Bitcode'
    687 // lazily.  The associated Module (owned by the ExecutionEngine) is returned in
    688 // M.  Both will be NULL on an error.  Bitcode must live at least as long as the
    689 // ExecutionEngine.
    690 ExecutionEngine *getJITFromBitcode(
    691   LLVMContext &Context, const std::string &Bitcode, Module *&M) {
    692   // c_str() is null-terminated like MemoryBuffer::getMemBuffer requires.
    693   MemoryBuffer *BitcodeBuffer =
    694     MemoryBuffer::getMemBuffer(Bitcode, "Bitcode for test");
    695   std::string errMsg;
    696   M = getLazyBitcodeModule(BitcodeBuffer, Context, &errMsg);
    697   if (M == NULL) {
    698     ADD_FAILURE() << errMsg;
    699     delete BitcodeBuffer;
    700     return NULL;
    701   }
    702   ExecutionEngine *TheJIT = EngineBuilder(M)
    703     .setEngineKind(EngineKind::JIT)
    704     .setErrorStr(&errMsg)
    705     .create();
    706   if (TheJIT == NULL) {
    707     ADD_FAILURE() << errMsg;
    708     delete M;
    709     M = NULL;
    710     return NULL;
    711   }
    712   return TheJIT;
    713 }
    714 
    715 TEST(LazyLoadedJITTest, MaterializableAvailableExternallyFunctionIsntCompiled) {
    716   LLVMContext Context;
    717   const std::string Bitcode =
    718     AssembleToBitcode(Context,
    719                       "define available_externally i32 "
    720                       "    @JITTest_AvailableExternallyFunction() { "
    721                       "  ret i32 7 "
    722                       "} "
    723                       " "
    724                       "define i32 @func() { "
    725                       "  %result = tail call i32 "
    726                       "    @JITTest_AvailableExternallyFunction() "
    727                       "  ret i32 %result "
    728                       "} ");
    729   ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
    730   Module *M;
    731   OwningPtr<ExecutionEngine> TheJIT(getJITFromBitcode(Context, Bitcode, M));
    732   ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
    733   TheJIT->DisableLazyCompilation(true);
    734 
    735   Function *funcIR = M->getFunction("func");
    736   Function *availableFunctionIR =
    737     M->getFunction("JITTest_AvailableExternallyFunction");
    738 
    739   // Double-check that the available_externally function is still unmaterialized
    740   // when getPointerToFunction needs to find out if it's available_externally.
    741   EXPECT_TRUE(availableFunctionIR->isMaterializable());
    742 
    743   int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
    744     (intptr_t)TheJIT->getPointerToFunction(funcIR));
    745   EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
    746                         << " not 7 from the IR version.";
    747 }
    748 
    749 TEST(LazyLoadedJITTest, EagerCompiledRecursionThroughGhost) {
    750   LLVMContext Context;
    751   const std::string Bitcode =
    752     AssembleToBitcode(Context,
    753                       "define i32 @recur1(i32 %a) { "
    754                       "  %zero = icmp eq i32 %a, 0 "
    755                       "  br i1 %zero, label %done, label %notdone "
    756                       "done: "
    757                       "  ret i32 3 "
    758                       "notdone: "
    759                       "  %am1 = sub i32 %a, 1 "
    760                       "  %result = call i32 @recur2(i32 %am1) "
    761                       "  ret i32 %result "
    762                       "} "
    763                       " "
    764                       "define i32 @recur2(i32 %b) { "
    765                       "  %result = call i32 @recur1(i32 %b) "
    766                       "  ret i32 %result "
    767                       "} ");
    768   ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
    769   Module *M;
    770   OwningPtr<ExecutionEngine> TheJIT(getJITFromBitcode(Context, Bitcode, M));
    771   ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
    772   TheJIT->DisableLazyCompilation(true);
    773 
    774   Function *recur1IR = M->getFunction("recur1");
    775   Function *recur2IR = M->getFunction("recur2");
    776   EXPECT_TRUE(recur1IR->isMaterializable());
    777   EXPECT_TRUE(recur2IR->isMaterializable());
    778 
    779   int32_t (*recur1)(int32_t) = reinterpret_cast<int32_t(*)(int32_t)>(
    780     (intptr_t)TheJIT->getPointerToFunction(recur1IR));
    781   EXPECT_EQ(3, recur1(4));
    782 }
    783 #endif // !defined(__arm__)
    784 
    785 // This code is copied from JITEventListenerTest, but it only runs once for all
    786 // the tests in this directory.  Everything seems fine, but that's strange
    787 // behavior.
    788 class JITEnvironment : public testing::Environment {
    789   virtual void SetUp() {
    790     // Required to create a JIT.
    791     InitializeNativeTarget();
    792   }
    793 };
    794 testing::Environment* const jit_env =
    795   testing::AddGlobalTestEnvironment(new JITEnvironment);
    796 
    797 }
    798