Home | History | Annotate | Download | only in gl
      1 
      2 /*
      3  * Copyright 2011 Google Inc.
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #include "GrGLProgram.h"
     11 
     12 #include "../GrAllocator.h"
     13 #include "GrGLShaderVar.h"
     14 #include "SkTrace.h"
     15 #include "SkXfermode.h"
     16 
     17 namespace {
     18 
     19 enum {
     20     /// Used to mark a StageUniLocation field that should be bound
     21     /// to a uniform during getUniformLocationsAndInitCache().
     22     kUseUniform = 2000
     23 };
     24 
     25 }  // namespace
     26 
     27 #define PRINT_SHADERS 0
     28 
     29 typedef GrTAllocator<GrGLShaderVar> VarArray;
     30 
     31 // number of each input/output type in a single allocation block
     32 static const int gVarsPerBlock = 8;
     33 // except FS outputs where we expect 2 at most.
     34 static const int gMaxFSOutputs = 2;
     35 
     36 struct ShaderCodeSegments {
     37     ShaderCodeSegments()
     38     : fVSUnis(gVarsPerBlock)
     39     , fVSAttrs(gVarsPerBlock)
     40     , fVSOutputs(gVarsPerBlock)
     41     , fGSInputs(gVarsPerBlock)
     42     , fGSOutputs(gVarsPerBlock)
     43     , fFSInputs(gVarsPerBlock)
     44     , fFSUnis(gVarsPerBlock)
     45     , fFSOutputs(gMaxFSOutputs)
     46     , fUsesGS(false) {}
     47     GrStringBuilder fHeader; // VS+FS, GLSL version, etc
     48     VarArray        fVSUnis;
     49     VarArray        fVSAttrs;
     50     VarArray        fVSOutputs;
     51     VarArray        fGSInputs;
     52     VarArray        fGSOutputs;
     53     VarArray        fFSInputs;
     54     GrStringBuilder fGSHeader; // layout qualifiers specific to GS
     55     VarArray        fFSUnis;
     56     VarArray        fFSOutputs;
     57     GrStringBuilder fFSFunctions;
     58     GrStringBuilder fVSCode;
     59     GrStringBuilder fGSCode;
     60     GrStringBuilder fFSCode;
     61 
     62     bool            fUsesGS;
     63 };
     64 
     65 typedef GrGLProgram::ProgramDesc::StageDesc StageDesc;
     66 
     67 #if GR_GL_ATTRIBUTE_MATRICES
     68     #define VIEW_MATRIX_NAME "aViewM"
     69 #else
     70     #define VIEW_MATRIX_NAME "uViewM"
     71 #endif
     72 
     73 #define POS_ATTR_NAME "aPosition"
     74 #define COL_ATTR_NAME "aColor"
     75 #define COV_ATTR_NAME "aCoverage"
     76 #define EDGE_ATTR_NAME "aEdge"
     77 #define COL_UNI_NAME "uColor"
     78 #define COV_UNI_NAME "uCoverage"
     79 #define EDGES_UNI_NAME "uEdges"
     80 #define COL_FILTER_UNI_NAME "uColorFilter"
     81 #define COL_MATRIX_UNI_NAME "uColorMatrix"
     82 #define COL_MATRIX_VEC_UNI_NAME "uColorMatrixVec"
     83 
     84 namespace {
     85 inline void tex_attr_name(int coordIdx, GrStringBuilder* s) {
     86     *s = "aTexCoord";
     87     s->appendS32(coordIdx);
     88 }
     89 
     90 inline GrGLShaderVar::Type float_vector_type(int count) {
     91     GR_STATIC_ASSERT(GrGLShaderVar::kFloat_Type == 0);
     92     GR_STATIC_ASSERT(GrGLShaderVar::kVec2f_Type == 1);
     93     GR_STATIC_ASSERT(GrGLShaderVar::kVec3f_Type == 2);
     94     GR_STATIC_ASSERT(GrGLShaderVar::kVec4f_Type == 3);
     95     GrAssert(count > 0 && count <= 4);
     96     return (GrGLShaderVar::Type)(count - 1);
     97 }
     98 
     99 inline const char* float_vector_type_str(int count) {
    100     return GrGLShaderVar::TypeString(float_vector_type(count));
    101 }
    102 
    103 inline const char* vector_homog_coord(int count) {
    104     static const char* HOMOGS[] = {"ERROR", "", ".y", ".z", ".w"};
    105     GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(HOMOGS));
    106     return HOMOGS[count];
    107 }
    108 
    109 inline const char* vector_nonhomog_coords(int count) {
    110     static const char* NONHOMOGS[] = {"ERROR", "", ".x", ".xy", ".xyz"};
    111     GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(NONHOMOGS));
    112     return NONHOMOGS[count];
    113 }
    114 
    115 inline const char* vector_all_coords(int count) {
    116     static const char* ALL[] = {"ERROR", "", ".xy", ".xyz", ".xyzw"};
    117     GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ALL));
    118     return ALL[count];
    119 }
    120 
    121 inline const char* all_ones_vec(int count) {
    122     static const char* ONESVEC[] = {"ERROR", "1.0", "vec2(1,1)",
    123                                     "vec3(1,1,1)", "vec4(1,1,1,1)"};
    124     GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ONESVEC));
    125     return ONESVEC[count];
    126 }
    127 
    128 inline const char* all_zeros_vec(int count) {
    129     static const char* ZEROSVEC[] = {"ERROR", "0.0", "vec2(0,0)",
    130                                     "vec3(0,0,0)", "vec4(0,0,0,0)"};
    131     GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ZEROSVEC));
    132     return ZEROSVEC[count];
    133 }
    134 
    135 inline const char* declared_color_output_name() { return "fsColorOut"; }
    136 inline const char* dual_source_output_name() { return "dualSourceOut"; }
    137 
    138 inline void tex_matrix_name(int stage, GrStringBuilder* s) {
    139 #if GR_GL_ATTRIBUTE_MATRICES
    140     *s = "aTexM";
    141 #else
    142     *s = "uTexM";
    143 #endif
    144     s->appendS32(stage);
    145 }
    146 
    147 inline void normalized_texel_size_name(int stage, GrStringBuilder* s) {
    148     *s = "uTexelSize";
    149     s->appendS32(stage);
    150 }
    151 
    152 inline void sampler_name(int stage, GrStringBuilder* s) {
    153     *s = "uSampler";
    154     s->appendS32(stage);
    155 }
    156 
    157 inline void radial2_param_name(int stage, GrStringBuilder* s) {
    158     *s = "uRadial2Params";
    159     s->appendS32(stage);
    160 }
    161 
    162 inline void convolve_param_names(int stage, GrStringBuilder* k, GrStringBuilder* i) {
    163     *k = "uKernel";
    164     k->appendS32(stage);
    165     *i = "uImageIncrement";
    166     i->appendS32(stage);
    167 }
    168 
    169 inline void image_increment_param_name(int stage, GrStringBuilder* i) {
    170     *i = "uImageIncrement";
    171     i->appendS32(stage);
    172 }
    173 
    174 inline void tex_domain_name(int stage, GrStringBuilder* s) {
    175     *s = "uTexDom";
    176     s->appendS32(stage);
    177 }
    178 }
    179 
    180 GrGLProgram::GrGLProgram() {
    181 }
    182 
    183 GrGLProgram::~GrGLProgram() {
    184 }
    185 
    186 void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff,
    187                                 GrBlendCoeff* dstCoeff) const {
    188     switch (fProgramDesc.fDualSrcOutput) {
    189         case ProgramDesc::kNone_DualSrcOutput:
    190             break;
    191         // the prog will write a coverage value to the secondary
    192         // output and the dst is blended by one minus that value.
    193         case ProgramDesc::kCoverage_DualSrcOutput:
    194         case ProgramDesc::kCoverageISA_DualSrcOutput:
    195         case ProgramDesc::kCoverageISC_DualSrcOutput:
    196         *dstCoeff = (GrBlendCoeff)GrGpu::kIS2C_BlendCoeff;
    197         break;
    198         default:
    199             GrCrash("Unexpected dual source blend output");
    200             break;
    201     }
    202 }
    203 
    204 // assigns modulation of two vars to an output var
    205 // vars can be vec4s or floats (or one of each)
    206 // result is always vec4
    207 // if either var is "" then assign to the other var
    208 // if both are "" then assign all ones
    209 static inline void modulate_helper(const char* outputVar,
    210                                    const char* var0,
    211                                    const char* var1,
    212                                    GrStringBuilder* code) {
    213     GrAssert(NULL != outputVar);
    214     GrAssert(NULL != var0);
    215     GrAssert(NULL != var1);
    216     GrAssert(NULL != code);
    217 
    218     bool has0 = '\0' != *var0;
    219     bool has1 = '\0' != *var1;
    220 
    221     if (!has0 && !has1) {
    222         code->appendf("\t%s = %s;\n", outputVar, all_ones_vec(4));
    223     } else if (!has0) {
    224         code->appendf("\t%s = vec4(%s);\n", outputVar, var1);
    225     } else if (!has1) {
    226         code->appendf("\t%s = vec4(%s);\n", outputVar, var0);
    227     } else {
    228         code->appendf("\t%s = vec4(%s * %s);\n", outputVar, var0, var1);
    229     }
    230 }
    231 
    232 // assigns addition of two vars to an output var
    233 // vars can be vec4s or floats (or one of each)
    234 // result is always vec4
    235 // if either var is "" then assign to the other var
    236 // if both are "" then assign all zeros
    237 static inline void add_helper(const char* outputVar,
    238                               const char* var0,
    239                               const char* var1,
    240                               GrStringBuilder* code) {
    241     GrAssert(NULL != outputVar);
    242     GrAssert(NULL != var0);
    243     GrAssert(NULL != var1);
    244     GrAssert(NULL != code);
    245 
    246     bool has0 = '\0' != *var0;
    247     bool has1 = '\0' != *var1;
    248 
    249     if (!has0 && !has1) {
    250         code->appendf("\t%s = %s;\n", outputVar, all_zeros_vec(4));
    251     } else if (!has0) {
    252         code->appendf("\t%s = vec4(%s);\n", outputVar, var1);
    253     } else if (!has1) {
    254         code->appendf("\t%s = vec4(%s);\n", outputVar, var0);
    255     } else {
    256         code->appendf("\t%s = vec4(%s + %s);\n", outputVar, var0, var1);
    257     }
    258 }
    259 
    260 // given two blend coeffecients determine whether the src
    261 // and/or dst computation can be omitted.
    262 static inline void needBlendInputs(SkXfermode::Coeff srcCoeff,
    263                                    SkXfermode::Coeff dstCoeff,
    264                                    bool* needSrcValue,
    265                                    bool* needDstValue) {
    266     if (SkXfermode::kZero_Coeff == srcCoeff) {
    267         switch (dstCoeff) {
    268             // these all read the src
    269             case SkXfermode::kSC_Coeff:
    270             case SkXfermode::kISC_Coeff:
    271             case SkXfermode::kSA_Coeff:
    272             case SkXfermode::kISA_Coeff:
    273                 *needSrcValue = true;
    274                 break;
    275             default:
    276                 *needSrcValue = false;
    277                 break;
    278         }
    279     } else {
    280         *needSrcValue = true;
    281     }
    282     if (SkXfermode::kZero_Coeff == dstCoeff) {
    283         switch (srcCoeff) {
    284             // these all read the dst
    285             case SkXfermode::kDC_Coeff:
    286             case SkXfermode::kIDC_Coeff:
    287             case SkXfermode::kDA_Coeff:
    288             case SkXfermode::kIDA_Coeff:
    289                 *needDstValue = true;
    290                 break;
    291             default:
    292                 *needDstValue = false;
    293                 break;
    294         }
    295     } else {
    296         *needDstValue = true;
    297     }
    298 }
    299 
    300 /**
    301  * Create a blend_coeff * value string to be used in shader code. Sets empty
    302  * string if result is trivially zero.
    303  */
    304 static void blendTermString(GrStringBuilder* str, SkXfermode::Coeff coeff,
    305                              const char* src, const char* dst,
    306                              const char* value) {
    307     switch (coeff) {
    308     case SkXfermode::kZero_Coeff:    /** 0 */
    309         *str = "";
    310         break;
    311     case SkXfermode::kOne_Coeff:     /** 1 */
    312         *str = value;
    313         break;
    314     case SkXfermode::kSC_Coeff:
    315         str->printf("(%s * %s)", src, value);
    316         break;
    317     case SkXfermode::kISC_Coeff:
    318         str->printf("((%s - %s) * %s)", all_ones_vec(4), src, value);
    319         break;
    320     case SkXfermode::kDC_Coeff:
    321         str->printf("(%s * %s)", dst, value);
    322         break;
    323     case SkXfermode::kIDC_Coeff:
    324         str->printf("((%s - %s) * %s)", all_ones_vec(4), dst, value);
    325         break;
    326     case SkXfermode::kSA_Coeff:      /** src alpha */
    327         str->printf("(%s.a * %s)", src, value);
    328         break;
    329     case SkXfermode::kISA_Coeff:     /** inverse src alpha (i.e. 1 - sa) */
    330         str->printf("((1.0 - %s.a) * %s)", src, value);
    331         break;
    332     case SkXfermode::kDA_Coeff:      /** dst alpha */
    333         str->printf("(%s.a * %s)", dst, value);
    334         break;
    335     case SkXfermode::kIDA_Coeff:     /** inverse dst alpha (i.e. 1 - da) */
    336         str->printf("((1.0 - %s.a) * %s)", dst, value);
    337         break;
    338     default:
    339         GrCrash("Unexpected xfer coeff.");
    340         break;
    341     }
    342 }
    343 /**
    344  * Adds a line to the fragment shader code which modifies the color by
    345  * the specified color filter.
    346  */
    347 static void addColorFilter(GrStringBuilder* fsCode, const char * outputVar,
    348                            SkXfermode::Coeff uniformCoeff,
    349                            SkXfermode::Coeff colorCoeff,
    350                            const char* inColor) {
    351     GrStringBuilder colorStr, constStr;
    352     blendTermString(&colorStr, colorCoeff, COL_FILTER_UNI_NAME,
    353                     inColor, inColor);
    354     blendTermString(&constStr, uniformCoeff, COL_FILTER_UNI_NAME,
    355                     inColor, COL_FILTER_UNI_NAME);
    356 
    357     add_helper(outputVar, colorStr.c_str(), constStr.c_str(), fsCode);
    358 }
    359 /**
    360  * Adds code to the fragment shader code which modifies the color by
    361  * the specified color matrix.
    362  */
    363 static void addColorMatrix(GrStringBuilder* fsCode, const char * outputVar,
    364                            const char* inColor) {
    365     fsCode->appendf("\t%s = %s * vec4(%s.rgb / %s.a, %s.a) + %s;\n", outputVar, COL_MATRIX_UNI_NAME, inColor, inColor, inColor, COL_MATRIX_VEC_UNI_NAME);
    366     fsCode->appendf("\t%s.rgb *= %s.a;\n", outputVar, outputVar);
    367 }
    368 
    369 namespace {
    370 
    371 // Adds a var that is computed in the VS and read in FS.
    372 // If there is a GS it will just pass it through.
    373 void append_varying(GrGLShaderVar::Type type,
    374                     const char* name,
    375                     ShaderCodeSegments* segments,
    376                     const char** vsOutName = NULL,
    377                     const char** fsInName = NULL) {
    378     segments->fVSOutputs.push_back();
    379     segments->fVSOutputs.back().setType(type);
    380     segments->fVSOutputs.back().setTypeModifier(
    381         GrGLShaderVar::kOut_TypeModifier);
    382     segments->fVSOutputs.back().accessName()->printf("v%s", name);
    383     if (vsOutName) {
    384         *vsOutName = segments->fVSOutputs.back().getName().c_str();
    385     }
    386     // input to FS comes either from VS or GS
    387     const GrStringBuilder* fsName;
    388     if (segments->fUsesGS) {
    389         // if we have a GS take each varying in as an array
    390         // and output as non-array.
    391         segments->fGSInputs.push_back();
    392         segments->fGSInputs.back().setType(type);
    393         segments->fGSInputs.back().setTypeModifier(
    394             GrGLShaderVar::kIn_TypeModifier);
    395         segments->fGSInputs.back().setUnsizedArray();
    396         *segments->fGSInputs.back().accessName() =
    397             segments->fVSOutputs.back().getName();
    398         segments->fGSOutputs.push_back();
    399         segments->fGSOutputs.back().setType(type);
    400         segments->fGSOutputs.back().setTypeModifier(
    401             GrGLShaderVar::kOut_TypeModifier);
    402         segments->fGSOutputs.back().accessName()->printf("g%s", name);
    403         fsName = segments->fGSOutputs.back().accessName();
    404     } else {
    405         fsName = segments->fVSOutputs.back().accessName();
    406     }
    407     segments->fFSInputs.push_back();
    408     segments->fFSInputs.back().setType(type);
    409     segments->fFSInputs.back().setTypeModifier(
    410         GrGLShaderVar::kIn_TypeModifier);
    411     segments->fFSInputs.back().setName(*fsName);
    412     if (fsInName) {
    413         *fsInName = fsName->c_str();
    414     }
    415 }
    416 
    417 // version of above that adds a stage number to the
    418 // the var name (for uniqueness)
    419 void append_varying(GrGLShaderVar::Type type,
    420                     const char* name,
    421                     int stageNum,
    422                     ShaderCodeSegments* segments,
    423                     const char** vsOutName = NULL,
    424                     const char** fsInName = NULL) {
    425     GrStringBuilder nameWithStage(name);
    426     nameWithStage.appendS32(stageNum);
    427     append_varying(type, nameWithStage.c_str(), segments, vsOutName, fsInName);
    428 }
    429 }
    430 
    431 void GrGLProgram::genEdgeCoverage(const GrGLContextInfo& gl,
    432                                   GrVertexLayout layout,
    433                                   CachedData* programData,
    434                                   GrStringBuilder* coverageVar,
    435                                   ShaderCodeSegments* segments) const {
    436     if (fProgramDesc.fEdgeAANumEdges > 0) {
    437         segments->fFSUnis.push_back().set(GrGLShaderVar::kVec3f_Type,
    438                                           GrGLShaderVar::kUniform_TypeModifier,
    439                                           EDGES_UNI_NAME,
    440                                           fProgramDesc.fEdgeAANumEdges);
    441         programData->fUniLocations.fEdgesUni = kUseUniform;
    442         int count = fProgramDesc.fEdgeAANumEdges;
    443         segments->fFSCode.append(
    444             "\tvec3 pos = vec3(gl_FragCoord.xy, 1);\n");
    445         for (int i = 0; i < count; i++) {
    446             segments->fFSCode.append("\tfloat a");
    447             segments->fFSCode.appendS32(i);
    448             segments->fFSCode.append(" = clamp(dot(" EDGES_UNI_NAME "[");
    449             segments->fFSCode.appendS32(i);
    450             segments->fFSCode.append("], pos), 0.0, 1.0);\n");
    451         }
    452         if (fProgramDesc.fEdgeAAConcave && (count & 0x01) == 0) {
    453             // For concave polys, we consider the edges in pairs.
    454             segments->fFSFunctions.append("float cross2(vec2 a, vec2 b) {\n");
    455             segments->fFSFunctions.append("\treturn dot(a, vec2(b.y, -b.x));\n");
    456             segments->fFSFunctions.append("}\n");
    457             for (int i = 0; i < count; i += 2) {
    458                 segments->fFSCode.appendf("\tfloat eb%d;\n", i / 2);
    459                 segments->fFSCode.appendf("\tif (cross2(" EDGES_UNI_NAME "[%d].xy, " EDGES_UNI_NAME "[%d].xy) < 0.0) {\n", i, i + 1);
    460                 segments->fFSCode.appendf("\t\teb%d = a%d * a%d;\n", i / 2, i, i + 1);
    461                 segments->fFSCode.append("\t} else {\n");
    462                 segments->fFSCode.appendf("\t\teb%d = a%d + a%d - a%d * a%d;\n", i / 2, i, i + 1, i, i + 1);
    463                 segments->fFSCode.append("\t}\n");
    464             }
    465             segments->fFSCode.append("\tfloat edgeAlpha = ");
    466             for (int i = 0; i < count / 2 - 1; i++) {
    467                 segments->fFSCode.appendf("min(eb%d, ", i);
    468             }
    469             segments->fFSCode.appendf("eb%d", count / 2 - 1);
    470             for (int i = 0; i < count / 2 - 1; i++) {
    471                 segments->fFSCode.append(")");
    472             }
    473             segments->fFSCode.append(";\n");
    474         } else {
    475             segments->fFSCode.append("\tfloat edgeAlpha = ");
    476             for (int i = 0; i < count - 1; i++) {
    477                 segments->fFSCode.appendf("min(a%d * a%d, ", i, i + 1);
    478             }
    479             segments->fFSCode.appendf("a%d * a0", count - 1);
    480             for (int i = 0; i < count - 1; i++) {
    481                 segments->fFSCode.append(")");
    482             }
    483             segments->fFSCode.append(";\n");
    484         }
    485         *coverageVar = "edgeAlpha";
    486     } else  if (layout & GrDrawTarget::kEdge_VertexLayoutBit) {
    487         const char *vsName, *fsName;
    488         append_varying(GrGLShaderVar::kVec4f_Type, "Edge", segments,
    489             &vsName, &fsName);
    490         segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type,
    491             GrGLShaderVar::kAttribute_TypeModifier, EDGE_ATTR_NAME);
    492         segments->fVSCode.appendf("\t%s = " EDGE_ATTR_NAME ";\n", vsName);
    493         if (GrDrawState::kHairLine_EdgeType == fProgramDesc.fVertexEdgeType) {
    494             segments->fFSCode.appendf("\tfloat edgeAlpha = abs(dot(vec3(gl_FragCoord.xy,1), %s.xyz));\n", fsName);
    495             segments->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
    496         } else if (GrDrawState::kQuad_EdgeType == fProgramDesc.fVertexEdgeType) {
    497             segments->fFSCode.append("\tfloat edgeAlpha;\n");
    498             // keep the derivative instructions outside the conditional
    499             segments->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
    500             segments->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
    501             segments->fFSCode.appendf("\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName);
    502             // today we know z and w are in device space. We could use derivatives
    503             segments->fFSCode.appendf("\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName, fsName);
    504             segments->fFSCode.append ("\t} else {\n");
    505             segments->fFSCode.appendf("\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
    506                                       "\t\t               2.0*%s.x*duvdy.x - duvdy.y);\n",
    507                                       fsName, fsName);
    508             segments->fFSCode.appendf("\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
    509             segments->fFSCode.append("\t\tedgeAlpha = clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n"
    510                                       "\t}\n");
    511             if (kES2_GrGLBinding == gl.binding()) {
    512                 segments->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
    513             }
    514         } else {
    515             GrAssert(GrDrawState::kHairQuad_EdgeType == fProgramDesc.fVertexEdgeType);
    516             segments->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
    517             segments->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
    518             segments->fFSCode.appendf("\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
    519                                       "\t               2.0*%s.x*duvdy.x - duvdy.y);\n",
    520                                       fsName, fsName);
    521             segments->fFSCode.appendf("\tfloat edgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
    522             segments->fFSCode.append("\tedgeAlpha = sqrt(edgeAlpha*edgeAlpha / dot(gF, gF));\n");
    523             segments->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
    524             if (kES2_GrGLBinding == gl.binding()) {
    525                 segments->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
    526             }
    527         }
    528         *coverageVar = "edgeAlpha";
    529     } else {
    530         coverageVar->reset();
    531     }
    532 }
    533 
    534 namespace {
    535 
    536 void genInputColor(GrGLProgram::ProgramDesc::ColorInput colorInput,
    537                    GrGLProgram::CachedData* programData,
    538                    ShaderCodeSegments* segments,
    539                    GrStringBuilder* inColor) {
    540     switch (colorInput) {
    541         case GrGLProgram::ProgramDesc::kAttribute_ColorInput: {
    542             segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type,
    543                 GrGLShaderVar::kAttribute_TypeModifier,
    544                 COL_ATTR_NAME);
    545             const char *vsName, *fsName;
    546             append_varying(GrGLShaderVar::kVec4f_Type, "Color", segments, &vsName, &fsName);
    547             segments->fVSCode.appendf("\t%s = " COL_ATTR_NAME ";\n", vsName);
    548             *inColor = fsName;
    549             } break;
    550         case GrGLProgram::ProgramDesc::kUniform_ColorInput:
    551             segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
    552                 GrGLShaderVar::kUniform_TypeModifier,
    553                 COL_UNI_NAME);
    554             programData->fUniLocations.fColorUni = kUseUniform;
    555             *inColor = COL_UNI_NAME;
    556             break;
    557         case GrGLProgram::ProgramDesc::kTransBlack_ColorInput:
    558             GrAssert(!"needComputedColor should be false.");
    559             break;
    560         case GrGLProgram::ProgramDesc::kSolidWhite_ColorInput:
    561             break;
    562         default:
    563             GrCrash("Unknown color type.");
    564             break;
    565     }
    566 }
    567 
    568 void genAttributeCoverage(ShaderCodeSegments* segments,
    569                           GrStringBuilder* inOutCoverage) {
    570     segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type,
    571                                        GrGLShaderVar::kAttribute_TypeModifier,
    572                                        COV_ATTR_NAME);
    573     const char *vsName, *fsName;
    574     append_varying(GrGLShaderVar::kVec4f_Type, "Coverage",
    575                    segments, &vsName, &fsName);
    576     segments->fVSCode.appendf("\t%s = " COV_ATTR_NAME ";\n", vsName);
    577     if (inOutCoverage->size()) {
    578         segments->fFSCode.appendf("\tvec4 attrCoverage = %s * %s;\n",
    579                                   fsName, inOutCoverage->c_str());
    580         *inOutCoverage = "attrCoverage";
    581     } else {
    582         *inOutCoverage = fsName;
    583     }
    584 }
    585 
    586 void genUniformCoverage(ShaderCodeSegments* segments,
    587                         GrGLProgram::CachedData* programData,
    588                         GrStringBuilder* inOutCoverage) {
    589     segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
    590                                       GrGLShaderVar::kUniform_TypeModifier,
    591                                       COV_UNI_NAME);
    592     programData->fUniLocations.fCoverageUni = kUseUniform;
    593     if (inOutCoverage->size()) {
    594         segments->fFSCode.appendf("\tvec4 uniCoverage = %s * %s;\n",
    595                                   COV_UNI_NAME, inOutCoverage->c_str());
    596         *inOutCoverage = "uniCoverage";
    597     } else {
    598         *inOutCoverage = COV_UNI_NAME;
    599     }
    600 }
    601 
    602 }
    603 
    604 void GrGLProgram::genGeometryShader(const GrGLContextInfo& gl,
    605                                     ShaderCodeSegments* segments) const {
    606 #if GR_GL_EXPERIMENTAL_GS
    607     if (fProgramDesc.fExperimentalGS) {
    608         GrAssert(gl.glslGeneration() >= k150_GrGLSLGeneration);
    609         segments->fGSHeader.append("layout(triangles) in;\n"
    610                                    "layout(triangle_strip, max_vertices = 6) out;\n");
    611         segments->fGSCode.append("void main() {\n"
    612                                  "\tfor (int i = 0; i < 3; ++i) {\n"
    613                                   "\t\tgl_Position = gl_in[i].gl_Position;\n");
    614         if (this->fProgramDesc.fEmitsPointSize) {
    615             segments->fGSCode.append("\t\tgl_PointSize = 1.0;\n");
    616         }
    617         GrAssert(segments->fGSInputs.count() == segments->fGSOutputs.count());
    618         int count = segments->fGSInputs.count();
    619         for (int i = 0; i < count; ++i) {
    620             segments->fGSCode.appendf("\t\t%s = %s[i];\n",
    621                                       segments->fGSOutputs[i].getName().c_str(),
    622                                       segments->fGSInputs[i].getName().c_str());
    623         }
    624         segments->fGSCode.append("\t\tEmitVertex();\n"
    625                                  "\t}\n"
    626                                  "\tEndPrimitive();\n"
    627                                  "}\n");
    628     }
    629 #endif
    630 }
    631 
    632 const char* GrGLProgram::adjustInColor(const GrStringBuilder& inColor) const {
    633     if (inColor.size()) {
    634           return inColor.c_str();
    635     } else {
    636         if (ProgramDesc::kSolidWhite_ColorInput == fProgramDesc.fColorInput) {
    637             return all_ones_vec(4);
    638         } else {
    639             return all_zeros_vec(4);
    640         }
    641     }
    642 }
    643 
    644 
    645 bool GrGLProgram::genProgram(const GrGLContextInfo& gl,
    646                              GrGLProgram::CachedData* programData) const {
    647 
    648     ShaderCodeSegments segments;
    649     const uint32_t& layout = fProgramDesc.fVertexLayout;
    650 
    651     programData->fUniLocations.reset();
    652 
    653 #if GR_GL_EXPERIMENTAL_GS
    654     segments.fUsesGS = fProgramDesc.fExperimentalGS;
    655 #endif
    656 
    657     SkXfermode::Coeff colorCoeff, uniformCoeff;
    658     bool applyColorMatrix = SkToBool(fProgramDesc.fColorMatrixEnabled);
    659     // The rest of transfer mode color filters have not been implemented
    660     if (fProgramDesc.fColorFilterXfermode < SkXfermode::kCoeffModesCnt) {
    661         GR_DEBUGCODE(bool success =)
    662             SkXfermode::ModeAsCoeff(static_cast<SkXfermode::Mode>
    663                                     (fProgramDesc.fColorFilterXfermode),
    664                                     &uniformCoeff, &colorCoeff);
    665         GR_DEBUGASSERT(success);
    666     } else {
    667         colorCoeff = SkXfermode::kOne_Coeff;
    668         uniformCoeff = SkXfermode::kZero_Coeff;
    669     }
    670 
    671     // no need to do the color filter / matrix at all if coverage is 0. The
    672     // output color is scaled by the coverage. All the dual source outputs are
    673     // scaled by the coverage as well.
    674     if (ProgramDesc::kTransBlack_ColorInput == fProgramDesc.fCoverageInput) {
    675         colorCoeff = SkXfermode::kZero_Coeff;
    676         uniformCoeff = SkXfermode::kZero_Coeff;
    677         applyColorMatrix = false;
    678     }
    679 
    680     // If we know the final color is going to be all zeros then we can
    681     // simplify the color filter coeffecients. needComputedColor will then
    682     // come out false below.
    683     if (ProgramDesc::kTransBlack_ColorInput == fProgramDesc.fColorInput) {
    684         colorCoeff = SkXfermode::kZero_Coeff;
    685         if (SkXfermode::kDC_Coeff == uniformCoeff ||
    686             SkXfermode::kDA_Coeff == uniformCoeff) {
    687             uniformCoeff = SkXfermode::kZero_Coeff;
    688         } else if (SkXfermode::kIDC_Coeff == uniformCoeff ||
    689                    SkXfermode::kIDA_Coeff == uniformCoeff) {
    690             uniformCoeff = SkXfermode::kOne_Coeff;
    691         }
    692     }
    693 
    694     bool needColorFilterUniform;
    695     bool needComputedColor;
    696     needBlendInputs(uniformCoeff, colorCoeff,
    697                     &needColorFilterUniform, &needComputedColor);
    698 
    699     // the dual source output has no canonical var name, have to
    700     // declare an output, which is incompatible with gl_FragColor/gl_FragData.
    701     bool dualSourceOutputWritten = false;
    702     segments.fHeader.printf(GrGetGLSLVersionDecl(gl.binding(),
    703                                                  gl.glslGeneration()));
    704 
    705     GrGLShaderVar colorOutput;
    706     bool isColorDeclared = GrGLSLSetupFSColorOuput(gl.glslGeneration(),
    707                                                    declared_color_output_name(),
    708                                                    &colorOutput);
    709     if (isColorDeclared) {
    710         segments.fFSOutputs.push_back(colorOutput);
    711     }
    712 
    713 #if GR_GL_ATTRIBUTE_MATRICES
    714     segments.fVSAttrs.push_back().set(GrGLShaderVar::kMat33f_Type,
    715         GrGLShaderVar::kAttribute_TypeModifier, VIEW_MATRIX_NAME);
    716     programData->fUniLocations.fViewMatrixUni = kSetAsAttribute;
    717 #else
    718     segments.fVSUnis.push_back().set(GrGLShaderVar::kMat33f_Type,
    719         GrGLShaderVar::kUniform_TypeModifier, VIEW_MATRIX_NAME);
    720     programData->fUniLocations.fViewMatrixUni = kUseUniform;
    721 #endif
    722     segments.fVSAttrs.push_back().set(GrGLShaderVar::kVec2f_Type,
    723         GrGLShaderVar::kAttribute_TypeModifier, POS_ATTR_NAME);
    724 
    725     segments.fVSCode.append(
    726         "void main() {\n"
    727             "\tvec3 pos3 = " VIEW_MATRIX_NAME " * vec3("POS_ATTR_NAME", 1);\n"
    728             "\tgl_Position = vec4(pos3.xy, 0, pos3.z);\n");
    729 
    730     // incoming color to current stage being processed.
    731     GrStringBuilder inColor;
    732 
    733     if (needComputedColor) {
    734         genInputColor((ProgramDesc::ColorInput) fProgramDesc.fColorInput,
    735                       programData, &segments, &inColor);
    736     }
    737 
    738     // we output point size in the GS if present
    739     if (fProgramDesc.fEmitsPointSize && !segments.fUsesGS){
    740         segments.fVSCode.append("\tgl_PointSize = 1.0;\n");
    741     }
    742 
    743     segments.fFSCode.append("void main() {\n");
    744 
    745     // add texture coordinates that are used to the list of vertex attr decls
    746     GrStringBuilder texCoordAttrs[GrDrawState::kMaxTexCoords];
    747     for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
    748         if (GrDrawTarget::VertexUsesTexCoordIdx(t, layout)) {
    749             tex_attr_name(t, texCoordAttrs + t);
    750             segments.fVSAttrs.push_back().set(GrGLShaderVar::kVec2f_Type,
    751                 GrGLShaderVar::kAttribute_TypeModifier,
    752                 texCoordAttrs[t].c_str());
    753         }
    754     }
    755 
    756     ///////////////////////////////////////////////////////////////////////////
    757     // compute the final color
    758 
    759     // if we have color stages string them together, feeding the output color
    760     // of each to the next and generating code for each stage.
    761     if (needComputedColor) {
    762         GrStringBuilder outColor;
    763         for (int s = 0; s < fProgramDesc.fFirstCoverageStage; ++s) {
    764             if (fProgramDesc.fStages[s].isEnabled()) {
    765                 // create var to hold stage result
    766                 outColor = "color";
    767                 outColor.appendS32(s);
    768                 segments.fFSCode.appendf("\tvec4 %s;\n", outColor.c_str());
    769 
    770                 const char* inCoords;
    771                 // figure out what our input coords are
    772                 if (GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s) &
    773                     layout) {
    774                     inCoords = POS_ATTR_NAME;
    775                 } else {
    776                     int tcIdx = GrDrawTarget::VertexTexCoordsForStage(s, layout);
    777                      // we better have input tex coordinates if stage is enabled.
    778                     GrAssert(tcIdx >= 0);
    779                     GrAssert(texCoordAttrs[tcIdx].size());
    780                     inCoords = texCoordAttrs[tcIdx].c_str();
    781                 }
    782 
    783                 this->genStageCode(gl,
    784                                    s,
    785                                    fProgramDesc.fStages[s],
    786                                    inColor.size() ? inColor.c_str() : NULL,
    787                                    outColor.c_str(),
    788                                    inCoords,
    789                                    &segments,
    790                                    &programData->fUniLocations.fStages[s]);
    791                 inColor = outColor;
    792             }
    793         }
    794     }
    795 
    796     // if have all ones or zeros for the "dst" input to the color filter then we
    797     // may be able to make additional optimizations.
    798     if (needColorFilterUniform && needComputedColor && !inColor.size()) {
    799         GrAssert(ProgramDesc::kSolidWhite_ColorInput == fProgramDesc.fColorInput);
    800         bool uniformCoeffIsZero = SkXfermode::kIDC_Coeff == uniformCoeff ||
    801                                   SkXfermode::kIDA_Coeff == uniformCoeff;
    802         if (uniformCoeffIsZero) {
    803             uniformCoeff = SkXfermode::kZero_Coeff;
    804             bool bogus;
    805             needBlendInputs(SkXfermode::kZero_Coeff, colorCoeff,
    806                             &needColorFilterUniform, &bogus);
    807         }
    808     }
    809     if (needColorFilterUniform) {
    810         segments.fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
    811                                          GrGLShaderVar::kUniform_TypeModifier,
    812                                          COL_FILTER_UNI_NAME);
    813         programData->fUniLocations.fColorFilterUni = kUseUniform;
    814     }
    815     bool wroteFragColorZero = false;
    816     if (SkXfermode::kZero_Coeff == uniformCoeff &&
    817         SkXfermode::kZero_Coeff == colorCoeff &&
    818         !applyColorMatrix) {
    819         segments.fFSCode.appendf("\t%s = %s;\n",
    820                                  colorOutput.getName().c_str(),
    821                                  all_zeros_vec(4));
    822         wroteFragColorZero = true;
    823     } else if (SkXfermode::kDst_Mode != fProgramDesc.fColorFilterXfermode) {
    824         segments.fFSCode.append("\tvec4 filteredColor;\n");
    825         const char* color = adjustInColor(inColor);
    826         addColorFilter(&segments.fFSCode, "filteredColor", uniformCoeff,
    827                        colorCoeff, color);
    828         inColor = "filteredColor";
    829     }
    830     if (applyColorMatrix) {
    831         segments.fFSUnis.push_back().set(GrGLShaderVar::kMat44f_Type,
    832                                          GrGLShaderVar::kUniform_TypeModifier,
    833                                          COL_MATRIX_UNI_NAME);
    834         segments.fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
    835                                          GrGLShaderVar::kUniform_TypeModifier,
    836                                          COL_MATRIX_VEC_UNI_NAME);
    837         programData->fUniLocations.fColorMatrixUni = kUseUniform;
    838         programData->fUniLocations.fColorMatrixVecUni = kUseUniform;
    839         segments.fFSCode.append("\tvec4 matrixedColor;\n");
    840         const char* color = adjustInColor(inColor);
    841         addColorMatrix(&segments.fFSCode, "matrixedColor", color);
    842         inColor = "matrixedColor";
    843     }
    844 
    845     ///////////////////////////////////////////////////////////////////////////
    846     // compute the partial coverage (coverage stages and edge aa)
    847 
    848     GrStringBuilder inCoverage;
    849     bool coverageIsZero = ProgramDesc::kTransBlack_ColorInput ==
    850                           fProgramDesc.fCoverageInput;
    851     // we don't need to compute coverage at all if we know the final shader
    852     // output will be zero and we don't have a dual src blend output.
    853     if (!wroteFragColorZero ||
    854         ProgramDesc::kNone_DualSrcOutput != fProgramDesc.fDualSrcOutput) {
    855 
    856         if (!coverageIsZero) {
    857             this->genEdgeCoverage(gl,
    858                                   layout,
    859                                   programData,
    860                                   &inCoverage,
    861                                   &segments);
    862 
    863             switch (fProgramDesc.fCoverageInput) {
    864                 case ProgramDesc::kSolidWhite_ColorInput:
    865                     // empty string implies solid white
    866                     break;
    867                 case ProgramDesc::kAttribute_ColorInput:
    868                     genAttributeCoverage(&segments, &inCoverage);
    869                     break;
    870                 case ProgramDesc::kUniform_ColorInput:
    871                     genUniformCoverage(&segments, programData, &inCoverage);
    872                     break;
    873                 default:
    874                     GrCrash("Unexpected input coverage.");
    875             }
    876 
    877             GrStringBuilder outCoverage;
    878             const int& startStage = fProgramDesc.fFirstCoverageStage;
    879             for (int s = startStage; s < GrDrawState::kNumStages; ++s) {
    880                 if (fProgramDesc.fStages[s].isEnabled()) {
    881                     // create var to hold stage output
    882                     outCoverage = "coverage";
    883                     outCoverage.appendS32(s);
    884                     segments.fFSCode.appendf("\tvec4 %s;\n",
    885                                              outCoverage.c_str());
    886 
    887                     const char* inCoords;
    888                     // figure out what our input coords are
    889                     if (GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s) &
    890                         layout) {
    891                         inCoords = POS_ATTR_NAME;
    892                     } else {
    893                         int tcIdx =
    894                             GrDrawTarget::VertexTexCoordsForStage(s, layout);
    895                         // we better have input tex coordinates if stage is
    896                         // enabled.
    897                         GrAssert(tcIdx >= 0);
    898                         GrAssert(texCoordAttrs[tcIdx].size());
    899                         inCoords = texCoordAttrs[tcIdx].c_str();
    900                     }
    901 
    902                     genStageCode(gl, s,
    903                                  fProgramDesc.fStages[s],
    904                                  inCoverage.size() ? inCoverage.c_str() : NULL,
    905                                  outCoverage.c_str(),
    906                                  inCoords,
    907                                  &segments,
    908                                  &programData->fUniLocations.fStages[s]);
    909                     inCoverage = outCoverage;
    910                 }
    911             }
    912         }
    913         if (ProgramDesc::kNone_DualSrcOutput != fProgramDesc.fDualSrcOutput) {
    914             segments.fFSOutputs.push_back().set(GrGLShaderVar::kVec4f_Type,
    915                 GrGLShaderVar::kOut_TypeModifier,
    916                 dual_source_output_name());
    917             bool outputIsZero = coverageIsZero;
    918             GrStringBuilder coeff;
    919             if (!outputIsZero &&
    920                 ProgramDesc::kCoverage_DualSrcOutput !=
    921                 fProgramDesc.fDualSrcOutput && !wroteFragColorZero) {
    922                 if (!inColor.size()) {
    923                     outputIsZero = true;
    924                 } else {
    925                     if (fProgramDesc.fDualSrcOutput ==
    926                         ProgramDesc::kCoverageISA_DualSrcOutput) {
    927                         coeff.printf("(1 - %s.a)", inColor.c_str());
    928                     } else {
    929                         coeff.printf("(vec4(1,1,1,1) - %s)", inColor.c_str());
    930                     }
    931                 }
    932             }
    933             if (outputIsZero) {
    934                 segments.fFSCode.appendf("\t%s = %s;\n",
    935                                          dual_source_output_name(),
    936                                          all_zeros_vec(4));
    937             } else {
    938                 modulate_helper(dual_source_output_name(),
    939                                 coeff.c_str(),
    940                                 inCoverage.c_str(),
    941                                 &segments.fFSCode);
    942             }
    943             dualSourceOutputWritten = true;
    944         }
    945     }
    946 
    947     ///////////////////////////////////////////////////////////////////////////
    948     // combine color and coverage as frag color
    949 
    950     if (!wroteFragColorZero) {
    951         if (coverageIsZero) {
    952             segments.fFSCode.appendf("\t%s = %s;\n",
    953                                      colorOutput.getName().c_str(),
    954                                      all_zeros_vec(4));
    955         } else {
    956             modulate_helper(colorOutput.getName().c_str(),
    957                             inColor.c_str(),
    958                             inCoverage.c_str(),
    959                             &segments.fFSCode);
    960         }
    961         if (ProgramDesc::kUnpremultiplied_RoundDown_OutputConfig ==
    962             fProgramDesc.fOutputConfig) {
    963             segments.fFSCode.appendf("\t%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(floor(%s.rgb / %s.a * 255.0)/255.0, %s.a);\n",
    964                                         colorOutput.getName().c_str(),
    965                                         colorOutput.getName().c_str(),
    966                                         colorOutput.getName().c_str(),
    967                                         colorOutput.getName().c_str(),
    968                                         colorOutput.getName().c_str());
    969         } else if (ProgramDesc::kUnpremultiplied_RoundUp_OutputConfig ==
    970                    fProgramDesc.fOutputConfig) {
    971             segments.fFSCode.appendf("\t%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(ceil(%s.rgb / %s.a * 255.0)/255.0, %s.a);\n",
    972                                         colorOutput.getName().c_str(),
    973                                         colorOutput.getName().c_str(),
    974                                         colorOutput.getName().c_str(),
    975                                         colorOutput.getName().c_str(),
    976                                         colorOutput.getName().c_str());
    977         }
    978     }
    979 
    980     segments.fVSCode.append("}\n");
    981     segments.fFSCode.append("}\n");
    982 
    983     ///////////////////////////////////////////////////////////////////////////
    984     // insert GS
    985 #if GR_DEBUG
    986     this->genGeometryShader(gl, &segments);
    987 #endif
    988 
    989     ///////////////////////////////////////////////////////////////////////////
    990     // compile and setup attribs and unis
    991 
    992     if (!CompileShaders(gl, segments, programData)) {
    993         return false;
    994     }
    995 
    996     if (!this->bindOutputsAttribsAndLinkProgram(gl, texCoordAttrs,
    997                                                 isColorDeclared,
    998                                                 dualSourceOutputWritten,
    999                                                 programData)) {
   1000         return false;
   1001     }
   1002 
   1003     this->getUniformLocationsAndInitCache(gl, programData);
   1004 
   1005     return true;
   1006 }
   1007 
   1008 namespace {
   1009 
   1010 inline void expand_decls(const VarArray& vars,
   1011                          const GrGLContextInfo& gl,
   1012                          GrStringBuilder* string) {
   1013     const int count = vars.count();
   1014     for (int i = 0; i < count; ++i) {
   1015         vars[i].appendDecl(gl, string);
   1016     }
   1017 }
   1018 
   1019 inline void print_shader(int stringCnt,
   1020                          const char** strings,
   1021                          int* stringLengths) {
   1022     for (int i = 0; i < stringCnt; ++i) {
   1023         if (NULL == stringLengths || stringLengths[i] < 0) {
   1024             GrPrintf(strings[i]);
   1025         } else {
   1026             GrPrintf("%.*s", stringLengths[i], strings[i]);
   1027         }
   1028     }
   1029 }
   1030 
   1031 typedef SkTArray<const char*, true>         StrArray;
   1032 #define PREALLOC_STR_ARRAY(N) SkSTArray<(N), const char*, true>
   1033 
   1034 typedef SkTArray<int, true>                 LengthArray;
   1035 #define PREALLOC_LENGTH_ARRAY(N) SkSTArray<(N), int, true>
   1036 
   1037 // these shouldn't relocate
   1038 typedef GrTAllocator<GrStringBuilder>       TempArray;
   1039 #define PREALLOC_TEMP_ARRAY(N) GrSTAllocator<(N), GrStringBuilder>
   1040 
   1041 inline void append_string(const GrStringBuilder& str,
   1042                           StrArray* strings,
   1043                           LengthArray* lengths) {
   1044     int length = (int) str.size();
   1045     if (length) {
   1046         strings->push_back(str.c_str());
   1047         lengths->push_back(length);
   1048     }
   1049     GrAssert(strings->count() == lengths->count());
   1050 }
   1051 
   1052 inline void append_decls(const VarArray& vars,
   1053                          const GrGLContextInfo& gl,
   1054                          StrArray* strings,
   1055                          LengthArray* lengths,
   1056                          TempArray* temp) {
   1057     expand_decls(vars, gl, &temp->push_back());
   1058     append_string(temp->back(), strings, lengths);
   1059 }
   1060 
   1061 }
   1062 
   1063 bool GrGLProgram::CompileShaders(const GrGLContextInfo& gl,
   1064                                  const ShaderCodeSegments& segments,
   1065                                  CachedData* programData) {
   1066     enum { kPreAllocStringCnt = 8 };
   1067 
   1068     PREALLOC_STR_ARRAY(kPreAllocStringCnt)    strs;
   1069     PREALLOC_LENGTH_ARRAY(kPreAllocStringCnt) lengths;
   1070     PREALLOC_TEMP_ARRAY(kPreAllocStringCnt)   temps;
   1071 
   1072     GrStringBuilder unis;
   1073     GrStringBuilder inputs;
   1074     GrStringBuilder outputs;
   1075 
   1076     append_string(segments.fHeader, &strs, &lengths);
   1077     append_decls(segments.fVSUnis, gl, &strs, &lengths, &temps);
   1078     append_decls(segments.fVSAttrs, gl, &strs, &lengths, &temps);
   1079     append_decls(segments.fVSOutputs, gl, &strs, &lengths, &temps);
   1080     append_string(segments.fVSCode, &strs, &lengths);
   1081 
   1082 #if PRINT_SHADERS
   1083     print_shader(strs.count(), &strs[0], &lengths[0]);
   1084     GrPrintf("\n");
   1085 #endif
   1086 
   1087     programData->fVShaderID =
   1088         CompileShader(gl, GR_GL_VERTEX_SHADER, strs.count(),
   1089                       &strs[0], &lengths[0]);
   1090 
   1091     if (!programData->fVShaderID) {
   1092         return false;
   1093     }
   1094     if (segments.fUsesGS) {
   1095         strs.reset();
   1096         lengths.reset();
   1097         temps.reset();
   1098         append_string(segments.fHeader, &strs, &lengths);
   1099         append_string(segments.fGSHeader, &strs, &lengths);
   1100         append_decls(segments.fGSInputs, gl, &strs, &lengths, &temps);
   1101         append_decls(segments.fGSOutputs, gl, &strs, &lengths, &temps);
   1102         append_string(segments.fGSCode, &strs, &lengths);
   1103 #if PRINT_SHADERS
   1104         print_shader(strs.count(), &strs[0], &lengths[0]);
   1105         GrPrintf("\n");
   1106 #endif
   1107         programData->fGShaderID =
   1108             CompileShader(gl, GR_GL_GEOMETRY_SHADER, strs.count(),
   1109                           &strs[0], &lengths[0]);
   1110     } else {
   1111         programData->fGShaderID = 0;
   1112     }
   1113 
   1114     strs.reset();
   1115     lengths.reset();
   1116     temps.reset();
   1117 
   1118     append_string(segments.fHeader, &strs, &lengths);
   1119     GrStringBuilder precisionStr(GrGetGLSLShaderPrecisionDecl(gl.binding()));
   1120     append_string(precisionStr, &strs, &lengths);
   1121     append_decls(segments.fFSUnis, gl, &strs, &lengths, &temps);
   1122     append_decls(segments.fFSInputs, gl, &strs, &lengths, &temps);
   1123     // We shouldn't have declared outputs on 1.10
   1124     GrAssert(k110_GrGLSLGeneration != gl.glslGeneration() ||
   1125              segments.fFSOutputs.empty());
   1126     append_decls(segments.fFSOutputs, gl, &strs, &lengths, &temps);
   1127     append_string(segments.fFSFunctions, &strs, &lengths);
   1128     append_string(segments.fFSCode, &strs, &lengths);
   1129 
   1130 #if PRINT_SHADERS
   1131     print_shader(strs.count(), &strs[0], &lengths[0]);
   1132     GrPrintf("\n");
   1133 #endif
   1134 
   1135     programData->fFShaderID =
   1136         CompileShader(gl, GR_GL_FRAGMENT_SHADER, strs.count(),
   1137                       &strs[0], &lengths[0]);
   1138 
   1139     if (!programData->fFShaderID) {
   1140         return false;
   1141     }
   1142 
   1143     return true;
   1144 }
   1145 
   1146 #define GL_CALL(X) GR_GL_CALL(gl.interface(), X)
   1147 #define GL_CALL_RET(R, X) GR_GL_CALL_RET(gl.interface(), R, X)
   1148 
   1149 GrGLuint GrGLProgram::CompileShader(const GrGLContextInfo& gl,
   1150                                     GrGLenum type,
   1151                                     int stringCnt,
   1152                                     const char** strings,
   1153                                     int* stringLengths) {
   1154     SK_TRACE_EVENT1("GrGLProgram::CompileShader",
   1155                     "stringCount", SkStringPrintf("%i", stringCnt).c_str());
   1156 
   1157     GrGLuint shader;
   1158     GL_CALL_RET(shader, CreateShader(type));
   1159     if (0 == shader) {
   1160         return 0;
   1161     }
   1162 
   1163     GrGLint compiled = GR_GL_INIT_ZERO;
   1164     GL_CALL(ShaderSource(shader, stringCnt, strings, stringLengths));
   1165     GL_CALL(CompileShader(shader));
   1166     GL_CALL(GetShaderiv(shader, GR_GL_COMPILE_STATUS, &compiled));
   1167 
   1168     if (!compiled) {
   1169         GrGLint infoLen = GR_GL_INIT_ZERO;
   1170         GL_CALL(GetShaderiv(shader, GR_GL_INFO_LOG_LENGTH, &infoLen));
   1171         SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
   1172         if (infoLen > 0) {
   1173             // retrieve length even though we don't need it to workaround
   1174             // bug in chrome cmd buffer param validation.
   1175             GrGLsizei length = GR_GL_INIT_ZERO;
   1176             GL_CALL(GetShaderInfoLog(shader, infoLen+1,
   1177                                          &length, (char*)log.get()));
   1178             print_shader(stringCnt, strings, stringLengths);
   1179             GrPrintf("\n%s", log.get());
   1180         }
   1181         GrAssert(!"Shader compilation failed!");
   1182         GL_CALL(DeleteShader(shader));
   1183         return 0;
   1184     }
   1185     return shader;
   1186 }
   1187 
   1188 bool GrGLProgram::bindOutputsAttribsAndLinkProgram(
   1189                                         const GrGLContextInfo& gl,
   1190                                         GrStringBuilder texCoordAttrNames[],
   1191                                         bool bindColorOut,
   1192                                         bool bindDualSrcOut,
   1193                                         CachedData* programData) const {
   1194     GL_CALL_RET(programData->fProgramID, CreateProgram());
   1195     if (!programData->fProgramID) {
   1196         return false;
   1197     }
   1198     const GrGLint& progID = programData->fProgramID;
   1199 
   1200     GL_CALL(AttachShader(progID, programData->fVShaderID));
   1201     if (programData->fGShaderID) {
   1202         GL_CALL(AttachShader(progID, programData->fGShaderID));
   1203     }
   1204     GL_CALL(AttachShader(progID, programData->fFShaderID));
   1205 
   1206     if (bindColorOut) {
   1207         GL_CALL(BindFragDataLocation(programData->fProgramID,
   1208                                      0, declared_color_output_name()));
   1209     }
   1210     if (bindDualSrcOut) {
   1211         GL_CALL(BindFragDataLocationIndexed(programData->fProgramID,
   1212                                             0, 1, dual_source_output_name()));
   1213     }
   1214 
   1215     // Bind the attrib locations to same values for all shaders
   1216     GL_CALL(BindAttribLocation(progID, PositionAttributeIdx(), POS_ATTR_NAME));
   1217     for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
   1218         if (texCoordAttrNames[t].size()) {
   1219             GL_CALL(BindAttribLocation(progID,
   1220                                        TexCoordAttributeIdx(t),
   1221                                        texCoordAttrNames[t].c_str()));
   1222         }
   1223     }
   1224 
   1225     if (kSetAsAttribute == programData->fUniLocations.fViewMatrixUni) {
   1226         GL_CALL(BindAttribLocation(progID,
   1227                                    ViewMatrixAttributeIdx(),
   1228                                    VIEW_MATRIX_NAME));
   1229     }
   1230 
   1231     for (int s = 0; s < GrDrawState::kNumStages; ++s) {
   1232         const StageUniLocations& unis = programData->fUniLocations.fStages[s];
   1233         if (kSetAsAttribute == unis.fTextureMatrixUni) {
   1234             GrStringBuilder matName;
   1235             tex_matrix_name(s, &matName);
   1236             GL_CALL(BindAttribLocation(progID,
   1237                                        TextureMatrixAttributeIdx(s),
   1238                                        matName.c_str()));
   1239         }
   1240     }
   1241 
   1242     GL_CALL(BindAttribLocation(progID, ColorAttributeIdx(), COL_ATTR_NAME));
   1243     GL_CALL(BindAttribLocation(progID, CoverageAttributeIdx(), COV_ATTR_NAME));
   1244     GL_CALL(BindAttribLocation(progID, EdgeAttributeIdx(), EDGE_ATTR_NAME));
   1245 
   1246     GL_CALL(LinkProgram(progID));
   1247 
   1248     GrGLint linked = GR_GL_INIT_ZERO;
   1249     GL_CALL(GetProgramiv(progID, GR_GL_LINK_STATUS, &linked));
   1250     if (!linked) {
   1251         GrGLint infoLen = GR_GL_INIT_ZERO;
   1252         GL_CALL(GetProgramiv(progID, GR_GL_INFO_LOG_LENGTH, &infoLen));
   1253         SkAutoMalloc log(sizeof(char)*(infoLen+1));  // outside if for debugger
   1254         if (infoLen > 0) {
   1255             // retrieve length even though we don't need it to workaround
   1256             // bug in chrome cmd buffer param validation.
   1257             GrGLsizei length = GR_GL_INIT_ZERO;
   1258             GL_CALL(GetProgramInfoLog(progID,
   1259                                       infoLen+1,
   1260                                       &length,
   1261                                       (char*)log.get()));
   1262             GrPrintf((char*)log.get());
   1263         }
   1264         GrAssert(!"Error linking program");
   1265         GL_CALL(DeleteProgram(progID));
   1266         programData->fProgramID = 0;
   1267         return false;
   1268     }
   1269     return true;
   1270 }
   1271 
   1272 void GrGLProgram::getUniformLocationsAndInitCache(const GrGLContextInfo& gl,
   1273                                                   CachedData* programData) const {
   1274     const GrGLint& progID = programData->fProgramID;
   1275 
   1276     if (kUseUniform == programData->fUniLocations.fViewMatrixUni) {
   1277         GL_CALL_RET(programData->fUniLocations.fViewMatrixUni,
   1278                     GetUniformLocation(progID, VIEW_MATRIX_NAME));
   1279         GrAssert(kUnusedUniform != programData->fUniLocations.fViewMatrixUni);
   1280     }
   1281     if (kUseUniform == programData->fUniLocations.fColorUni) {
   1282         GL_CALL_RET(programData->fUniLocations.fColorUni,
   1283                     GetUniformLocation(progID, COL_UNI_NAME));
   1284         GrAssert(kUnusedUniform != programData->fUniLocations.fColorUni);
   1285     }
   1286     if (kUseUniform == programData->fUniLocations.fColorFilterUni) {
   1287         GL_CALL_RET(programData->fUniLocations.fColorFilterUni,
   1288                     GetUniformLocation(progID, COL_FILTER_UNI_NAME));
   1289         GrAssert(kUnusedUniform != programData->fUniLocations.fColorFilterUni);
   1290     }
   1291 
   1292     if (kUseUniform == programData->fUniLocations.fColorMatrixUni) {
   1293         GL_CALL_RET(programData->fUniLocations.fColorMatrixUni,
   1294                     GetUniformLocation(progID, COL_MATRIX_UNI_NAME));
   1295     }
   1296 
   1297     if (kUseUniform == programData->fUniLocations.fColorMatrixVecUni) {
   1298         GL_CALL_RET(programData->fUniLocations.fColorMatrixVecUni,
   1299                     GetUniformLocation(progID, COL_MATRIX_VEC_UNI_NAME));
   1300     }
   1301     if (kUseUniform == programData->fUniLocations.fCoverageUni) {
   1302         GL_CALL_RET(programData->fUniLocations.fCoverageUni,
   1303                     GetUniformLocation(progID, COV_UNI_NAME));
   1304         GrAssert(kUnusedUniform != programData->fUniLocations.fCoverageUni);
   1305     }
   1306 
   1307     if (kUseUniform == programData->fUniLocations.fEdgesUni) {
   1308         GL_CALL_RET(programData->fUniLocations.fEdgesUni,
   1309                     GetUniformLocation(progID, EDGES_UNI_NAME));
   1310         GrAssert(kUnusedUniform != programData->fUniLocations.fEdgesUni);
   1311     } else {
   1312         programData->fUniLocations.fEdgesUni = kUnusedUniform;
   1313     }
   1314 
   1315     for (int s = 0; s < GrDrawState::kNumStages; ++s) {
   1316         StageUniLocations& locations = programData->fUniLocations.fStages[s];
   1317         if (fProgramDesc.fStages[s].isEnabled()) {
   1318             if (kUseUniform == locations.fTextureMatrixUni) {
   1319                 GrStringBuilder texMName;
   1320                 tex_matrix_name(s, &texMName);
   1321                 GL_CALL_RET(locations.fTextureMatrixUni,
   1322                             GetUniformLocation(progID, texMName.c_str()));
   1323                 GrAssert(kUnusedUniform != locations.fTextureMatrixUni);
   1324             }
   1325 
   1326             if (kUseUniform == locations.fSamplerUni) {
   1327                 GrStringBuilder samplerName;
   1328                 sampler_name(s, &samplerName);
   1329                 GL_CALL_RET(locations.fSamplerUni,
   1330                             GetUniformLocation(progID,samplerName.c_str()));
   1331                 GrAssert(kUnusedUniform != locations.fSamplerUni);
   1332             }
   1333 
   1334             if (kUseUniform == locations.fNormalizedTexelSizeUni) {
   1335                 GrStringBuilder texelSizeName;
   1336                 normalized_texel_size_name(s, &texelSizeName);
   1337                 GL_CALL_RET(locations.fNormalizedTexelSizeUni,
   1338                             GetUniformLocation(progID, texelSizeName.c_str()));
   1339                 GrAssert(kUnusedUniform != locations.fNormalizedTexelSizeUni);
   1340             }
   1341 
   1342             if (kUseUniform == locations.fRadial2Uni) {
   1343                 GrStringBuilder radial2ParamName;
   1344                 radial2_param_name(s, &radial2ParamName);
   1345                 GL_CALL_RET(locations.fRadial2Uni,
   1346                             GetUniformLocation(progID, radial2ParamName.c_str()));
   1347                 GrAssert(kUnusedUniform != locations.fRadial2Uni);
   1348             }
   1349 
   1350             if (kUseUniform == locations.fTexDomUni) {
   1351                 GrStringBuilder texDomName;
   1352                 tex_domain_name(s, &texDomName);
   1353                 GL_CALL_RET(locations.fTexDomUni,
   1354                             GetUniformLocation(progID, texDomName.c_str()));
   1355                 GrAssert(kUnusedUniform != locations.fTexDomUni);
   1356             }
   1357 
   1358             GrStringBuilder kernelName, imageIncrementName;
   1359             convolve_param_names(s, &kernelName, &imageIncrementName);
   1360             if (kUseUniform == locations.fKernelUni) {
   1361                 GL_CALL_RET(locations.fKernelUni,
   1362                             GetUniformLocation(progID, kernelName.c_str()));
   1363                 GrAssert(kUnusedUniform != locations.fKernelUni);
   1364             }
   1365 
   1366             if (kUseUniform == locations.fImageIncrementUni) {
   1367                 GL_CALL_RET(locations.fImageIncrementUni,
   1368                             GetUniformLocation(progID,
   1369                                                imageIncrementName.c_str()));
   1370                 GrAssert(kUnusedUniform != locations.fImageIncrementUni);
   1371             }
   1372         }
   1373     }
   1374     GL_CALL(UseProgram(progID));
   1375 
   1376     // init sampler unis and set bogus values for state tracking
   1377     for (int s = 0; s < GrDrawState::kNumStages; ++s) {
   1378         if (kUnusedUniform != programData->fUniLocations.fStages[s].fSamplerUni) {
   1379             GL_CALL(Uniform1i(programData->fUniLocations.fStages[s].fSamplerUni, s));
   1380         }
   1381         programData->fTextureMatrices[s] = GrMatrix::InvalidMatrix();
   1382         programData->fRadial2CenterX1[s] = GR_ScalarMax;
   1383         programData->fRadial2Radius0[s] = -GR_ScalarMax;
   1384         programData->fTextureWidth[s] = -1;
   1385         programData->fTextureHeight[s] = -1;
   1386     }
   1387     programData->fViewMatrix = GrMatrix::InvalidMatrix();
   1388     programData->fColor = GrColor_ILLEGAL;
   1389     programData->fColorFilterColor = GrColor_ILLEGAL;
   1390 }
   1391 
   1392 //============================================================================
   1393 // Stage code generation
   1394 //============================================================================
   1395 
   1396 namespace {
   1397 
   1398 bool isRadialMapping(GrGLProgram::StageDesc::CoordMapping mapping) {
   1399     return
   1400        (GrGLProgram::StageDesc::kRadial2Gradient_CoordMapping == mapping ||
   1401         GrGLProgram::StageDesc::kRadial2GradientDegenerate_CoordMapping == mapping);
   1402 }
   1403 
   1404 GrGLShaderVar* genRadialVS(int stageNum,
   1405                         ShaderCodeSegments* segments,
   1406                         GrGLProgram::StageUniLocations* locations,
   1407                         const char** radial2VaryingVSName,
   1408                         const char** radial2VaryingFSName,
   1409                         const char* varyingVSName,
   1410                         int varyingDims, int coordDims) {
   1411 
   1412     GrGLShaderVar* radial2FSParams = &segments->fFSUnis.push_back();
   1413     radial2FSParams->setType(GrGLShaderVar::kFloat_Type);
   1414     radial2FSParams->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
   1415     radial2FSParams->setArrayCount(6);
   1416     radial2_param_name(stageNum, radial2FSParams->accessName());
   1417     segments->fVSUnis.push_back(*radial2FSParams).setEmitPrecision(true);
   1418 
   1419     locations->fRadial2Uni = kUseUniform;
   1420 
   1421     // for radial grads without perspective we can pass the linear
   1422     // part of the quadratic as a varying.
   1423     if (varyingDims == coordDims) {
   1424         GrAssert(2 == coordDims);
   1425         append_varying(GrGLShaderVar::kFloat_Type,
   1426                        "Radial2BCoeff",
   1427                        stageNum,
   1428                        segments,
   1429                        radial2VaryingVSName,
   1430                        radial2VaryingFSName);
   1431 
   1432         GrStringBuilder radial2p2;
   1433         GrStringBuilder radial2p3;
   1434         radial2FSParams->appendArrayAccess(2, &radial2p2);
   1435         radial2FSParams->appendArrayAccess(3, &radial2p3);
   1436 
   1437         // r2Var = 2 * (r2Parm[2] * varCoord.x - r2Param[3])
   1438         const char* r2ParamName = radial2FSParams->getName().c_str();
   1439         segments->fVSCode.appendf("\t%s = 2.0 *(%s * %s.x - %s);\n",
   1440                                   *radial2VaryingVSName, radial2p2.c_str(),
   1441                                   varyingVSName, radial2p3.c_str());
   1442     }
   1443 
   1444     return radial2FSParams;
   1445 }
   1446 
   1447 bool genRadial2GradientCoordMapping(int stageNum,
   1448                                     ShaderCodeSegments* segments,
   1449                                     const char* radial2VaryingFSName,
   1450                                     GrGLShaderVar* radial2Params,
   1451                                     GrStringBuilder& sampleCoords,
   1452                                     GrStringBuilder& fsCoordName,
   1453                                     int varyingDims,
   1454                                     int coordDims) {
   1455     GrStringBuilder cName("c");
   1456     GrStringBuilder ac4Name("ac4");
   1457     GrStringBuilder rootName("root");
   1458 
   1459     cName.appendS32(stageNum);
   1460     ac4Name.appendS32(stageNum);
   1461     rootName.appendS32(stageNum);
   1462 
   1463     GrStringBuilder radial2p0;
   1464     GrStringBuilder radial2p1;
   1465     GrStringBuilder radial2p2;
   1466     GrStringBuilder radial2p3;
   1467     GrStringBuilder radial2p4;
   1468     GrStringBuilder radial2p5;
   1469     radial2Params->appendArrayAccess(0, &radial2p0);
   1470     radial2Params->appendArrayAccess(1, &radial2p1);
   1471     radial2Params->appendArrayAccess(2, &radial2p2);
   1472     radial2Params->appendArrayAccess(3, &radial2p3);
   1473     radial2Params->appendArrayAccess(4, &radial2p4);
   1474     radial2Params->appendArrayAccess(5, &radial2p5);
   1475 
   1476     // if we were able to interpolate the linear component bVar is the varying
   1477     // otherwise compute it
   1478     GrStringBuilder bVar;
   1479     if (coordDims == varyingDims) {
   1480         bVar = radial2VaryingFSName;
   1481         GrAssert(2 == varyingDims);
   1482     } else {
   1483         GrAssert(3 == varyingDims);
   1484         bVar = "b";
   1485         bVar.appendS32(stageNum);
   1486         segments->fFSCode.appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n",
   1487                                     bVar.c_str(), radial2p2.c_str(),
   1488                                     fsCoordName.c_str(), radial2p3.c_str());
   1489     }
   1490 
   1491     // c = (x^2)+(y^2) - params[4]
   1492     segments->fFSCode.appendf("\tfloat %s = dot(%s, %s) - %s;\n",
   1493                               cName.c_str(), fsCoordName.c_str(),
   1494                               fsCoordName.c_str(),
   1495                               radial2p4.c_str());
   1496     // ac4 = 4.0 * params[0] * c
   1497     segments->fFSCode.appendf("\tfloat %s = %s * 4.0 * %s;\n",
   1498                               ac4Name.c_str(), radial2p0.c_str(),
   1499                               cName.c_str());
   1500 
   1501     // root = sqrt(b^2-4ac)
   1502     // (abs to avoid exception due to fp precision)
   1503     segments->fFSCode.appendf("\tfloat %s = sqrt(abs(%s*%s - %s));\n",
   1504                               rootName.c_str(), bVar.c_str(), bVar.c_str(),
   1505                               ac4Name.c_str());
   1506 
   1507     // x coord is: (-b + params[5] * sqrt(b^2-4ac)) * params[1]
   1508     // y coord is 0.5 (texture is effectively 1D)
   1509     sampleCoords.printf("vec2((-%s + %s * %s) * %s, 0.5)",
   1510                         bVar.c_str(), radial2p5.c_str(),
   1511                         rootName.c_str(), radial2p1.c_str());
   1512     return true;
   1513 }
   1514 
   1515 bool genRadial2GradientDegenerateCoordMapping(int stageNum,
   1516                                               ShaderCodeSegments* segments,
   1517                                               const char* radial2VaryingFSName,
   1518                                               GrGLShaderVar* radial2Params,
   1519                                               GrStringBuilder& sampleCoords,
   1520                                               GrStringBuilder& fsCoordName,
   1521                                               int varyingDims,
   1522                                               int coordDims) {
   1523     GrStringBuilder cName("c");
   1524 
   1525     cName.appendS32(stageNum);
   1526 
   1527     GrStringBuilder radial2p2;
   1528     GrStringBuilder radial2p3;
   1529     GrStringBuilder radial2p4;
   1530     radial2Params->appendArrayAccess(2, &radial2p2);
   1531     radial2Params->appendArrayAccess(3, &radial2p3);
   1532     radial2Params->appendArrayAccess(4, &radial2p4);
   1533 
   1534     // if we were able to interpolate the linear component bVar is the varying
   1535     // otherwise compute it
   1536     GrStringBuilder bVar;
   1537     if (coordDims == varyingDims) {
   1538         bVar = radial2VaryingFSName;
   1539         GrAssert(2 == varyingDims);
   1540     } else {
   1541         GrAssert(3 == varyingDims);
   1542         bVar = "b";
   1543         bVar.appendS32(stageNum);
   1544         segments->fFSCode.appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n",
   1545                                     bVar.c_str(), radial2p2.c_str(),
   1546                                     fsCoordName.c_str(), radial2p3.c_str());
   1547     }
   1548 
   1549     // c = (x^2)+(y^2) - params[4]
   1550     segments->fFSCode.appendf("\tfloat %s = dot(%s, %s) - %s;\n",
   1551                               cName.c_str(), fsCoordName.c_str(),
   1552                               fsCoordName.c_str(),
   1553                               radial2p4.c_str());
   1554 
   1555     // x coord is: -c/b
   1556     // y coord is 0.5 (texture is effectively 1D)
   1557     sampleCoords.printf("vec2((-%s / %s), 0.5)", cName.c_str(), bVar.c_str());
   1558     return true;
   1559 }
   1560 
   1561 void gen2x2FS(int stageNum,
   1562               ShaderCodeSegments* segments,
   1563               GrGLProgram::StageUniLocations* locations,
   1564               GrStringBuilder* sampleCoords,
   1565               const char* samplerName,
   1566               const char* texelSizeName,
   1567               const char* swizzle,
   1568               const char* fsOutColor,
   1569               GrStringBuilder& texFunc,
   1570               GrStringBuilder& modulate,
   1571               bool complexCoord,
   1572               int coordDims) {
   1573     locations->fNormalizedTexelSizeUni = kUseUniform;
   1574     if (complexCoord) {
   1575         // assign the coord to a var rather than compute 4x.
   1576         GrStringBuilder coordVar("tCoord");
   1577         coordVar.appendS32(stageNum);
   1578         segments->fFSCode.appendf("\t%s %s = %s;\n",
   1579                             float_vector_type_str(coordDims),
   1580                             coordVar.c_str(), sampleCoords->c_str());
   1581         *sampleCoords = coordVar;
   1582     }
   1583     GrAssert(2 == coordDims);
   1584     GrStringBuilder accumVar("accum");
   1585     accumVar.appendS32(stageNum);
   1586     segments->fFSCode.appendf("\tvec4 %s  = %s(%s, %s + vec2(-%s.x,-%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
   1587     segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(+%s.x,-%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
   1588     segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(-%s.x,+%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
   1589     segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(+%s.x,+%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
   1590     segments->fFSCode.appendf("\t%s = .25 * %s%s;\n", fsOutColor, accumVar.c_str(), modulate.c_str());
   1591 
   1592 }
   1593 
   1594 void genConvolutionVS(int stageNum,
   1595                       const StageDesc& desc,
   1596                       ShaderCodeSegments* segments,
   1597                       GrGLProgram::StageUniLocations* locations,
   1598                       GrGLShaderVar** kernel,
   1599                       const char** imageIncrementName,
   1600                       const char* varyingVSName) {
   1601     //GrGLShaderVar* kernel = &segments->fFSUnis.push_back();
   1602     *kernel = &segments->fFSUnis.push_back();
   1603     (*kernel)->setType(GrGLShaderVar::kFloat_Type);
   1604     (*kernel)->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
   1605     (*kernel)->setArrayCount(desc.fKernelWidth);
   1606     GrGLShaderVar* imgInc = &segments->fFSUnis.push_back();
   1607     imgInc->setType(GrGLShaderVar::kVec2f_Type);
   1608     imgInc->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
   1609 
   1610     convolve_param_names(stageNum,
   1611                          (*kernel)->accessName(),
   1612                          imgInc->accessName());
   1613     *imageIncrementName = imgInc->getName().c_str();
   1614 
   1615     // need image increment in both VS and FS
   1616     segments->fVSUnis.push_back(*imgInc).setEmitPrecision(true);
   1617 
   1618     locations->fKernelUni = kUseUniform;
   1619     locations->fImageIncrementUni = kUseUniform;
   1620     float scale = (desc.fKernelWidth - 1) * 0.5f;
   1621     segments->fVSCode.appendf("\t%s -= vec2(%g, %g) * %s;\n",
   1622                                   varyingVSName, scale, scale,
   1623                                   *imageIncrementName);
   1624 }
   1625 
   1626 void genConvolutionFS(int stageNum,
   1627                       const StageDesc& desc,
   1628                       ShaderCodeSegments* segments,
   1629                       const char* samplerName,
   1630                       GrGLShaderVar* kernel,
   1631                       const char* swizzle,
   1632                       const char* imageIncrementName,
   1633                       const char* fsOutColor,
   1634                       GrStringBuilder& sampleCoords,
   1635                       GrStringBuilder& texFunc,
   1636                       GrStringBuilder& modulate) {
   1637     GrStringBuilder sumVar("sum");
   1638     sumVar.appendS32(stageNum);
   1639     GrStringBuilder coordVar("coord");
   1640     coordVar.appendS32(stageNum);
   1641 
   1642     GrStringBuilder kernelIndex;
   1643     kernel->appendArrayAccess("i", &kernelIndex);
   1644 
   1645     segments->fFSCode.appendf("\tvec4 %s = vec4(0, 0, 0, 0);\n",
   1646                               sumVar.c_str());
   1647     segments->fFSCode.appendf("\tvec2 %s = %s;\n",
   1648                               coordVar.c_str(),
   1649                               sampleCoords.c_str());
   1650     segments->fFSCode.appendf("\tfor (int i = 0; i < %d; i++) {\n",
   1651                               desc.fKernelWidth);
   1652     segments->fFSCode.appendf("\t\t%s += %s(%s, %s)%s * %s;\n",
   1653                               sumVar.c_str(), texFunc.c_str(),
   1654                               samplerName, coordVar.c_str(), swizzle,
   1655                               kernelIndex.c_str());
   1656     segments->fFSCode.appendf("\t\t%s += %s;\n",
   1657                               coordVar.c_str(),
   1658                               imageIncrementName);
   1659     segments->fFSCode.append("\t}\n");
   1660     segments->fFSCode.appendf("\t%s = %s%s;\n", fsOutColor,
   1661                               sumVar.c_str(), modulate.c_str());
   1662 }
   1663 
   1664 void genMorphologyVS(int stageNum,
   1665                      const StageDesc& desc,
   1666                      ShaderCodeSegments* segments,
   1667                      GrGLProgram::StageUniLocations* locations,
   1668                      const char** imageIncrementName,
   1669                      const char* varyingVSName) {
   1670     GrGLShaderVar* imgInc = &segments->fFSUnis.push_back();
   1671     imgInc->setType(GrGLShaderVar::kVec2f_Type);
   1672     imgInc->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
   1673 
   1674     image_increment_param_name(stageNum, imgInc->accessName());
   1675     *imageIncrementName = imgInc->getName().c_str();
   1676 
   1677     // need image increment in both VS and FS
   1678     segments->fVSUnis.push_back(*imgInc).setEmitPrecision(true);
   1679 
   1680     locations->fImageIncrementUni = kUseUniform;
   1681     segments->fVSCode.appendf("\t%s -= vec2(%d, %d) * %s;\n",
   1682                                   varyingVSName, desc.fKernelWidth,
   1683                                   desc.fKernelWidth, *imageIncrementName);
   1684 }
   1685 
   1686 void genMorphologyFS(int stageNum,
   1687                      const StageDesc& desc,
   1688                      ShaderCodeSegments* segments,
   1689                      const char* samplerName,
   1690                      const char* swizzle,
   1691                      const char* imageIncrementName,
   1692                      const char* fsOutColor,
   1693                      GrStringBuilder& sampleCoords,
   1694                      GrStringBuilder& texFunc,
   1695                      GrStringBuilder& modulate) {
   1696     GrStringBuilder valueVar("value");
   1697     valueVar.appendS32(stageNum);
   1698     GrStringBuilder coordVar("coord");
   1699     coordVar.appendS32(stageNum);
   1700     bool isDilate = StageDesc::kDilate_FetchMode == desc.fFetchMode;
   1701 
   1702    if (isDilate) {
   1703         segments->fFSCode.appendf("\tvec4 %s = vec4(0, 0, 0, 0);\n",
   1704                                   valueVar.c_str());
   1705     } else {
   1706         segments->fFSCode.appendf("\tvec4 %s = vec4(1, 1, 1, 1);\n",
   1707                                   valueVar.c_str());
   1708     }
   1709     segments->fFSCode.appendf("\tvec2 %s = %s;\n",
   1710                               coordVar.c_str(),
   1711                               sampleCoords.c_str());
   1712     segments->fFSCode.appendf("\tfor (int i = 0; i < %d; i++) {\n",
   1713                               desc.fKernelWidth * 2 + 1);
   1714     segments->fFSCode.appendf("\t\t%s = %s(%s, %s(%s, %s)%s);\n",
   1715                               valueVar.c_str(), isDilate ? "max" : "min",
   1716                               valueVar.c_str(), texFunc.c_str(),
   1717                               samplerName, coordVar.c_str(), swizzle);
   1718     segments->fFSCode.appendf("\t\t%s += %s;\n",
   1719                               coordVar.c_str(),
   1720                               imageIncrementName);
   1721     segments->fFSCode.appendf("\t}\n");
   1722     segments->fFSCode.appendf("\t%s = %s%s;\n", fsOutColor,
   1723                               valueVar.c_str(), modulate.c_str());
   1724 }
   1725 
   1726 }
   1727 
   1728 void GrGLProgram::genStageCode(const GrGLContextInfo& gl,
   1729                                int stageNum,
   1730                                const GrGLProgram::StageDesc& desc,
   1731                                const char* fsInColor, // NULL means no incoming color
   1732                                const char* fsOutColor,
   1733                                const char* vsInCoord,
   1734                                ShaderCodeSegments* segments,
   1735                                StageUniLocations* locations) const {
   1736 
   1737     GrAssert(stageNum >= 0 && stageNum <= GrDrawState::kNumStages);
   1738     GrAssert((desc.fInConfigFlags & StageDesc::kInConfigBitMask) ==
   1739              desc.fInConfigFlags);
   1740 
   1741     // First decide how many coords are needed to access the texture
   1742     // Right now it's always 2 but we could start using 1D textures for
   1743     // gradients.
   1744     static const int coordDims = 2;
   1745     int varyingDims;
   1746     /// Vertex Shader Stuff
   1747 
   1748     // decide whether we need a matrix to transform texture coords
   1749     // and whether the varying needs a perspective coord.
   1750     const char* matName = NULL;
   1751     if (desc.fOptFlags & StageDesc::kIdentityMatrix_OptFlagBit) {
   1752         varyingDims = coordDims;
   1753     } else {
   1754         GrGLShaderVar* mat;
   1755     #if GR_GL_ATTRIBUTE_MATRICES
   1756         mat = &segments->fVSAttrs.push_back();
   1757         mat->setTypeModifier(GrGLShaderVar::kAttribute_TypeModifier);
   1758         locations->fTextureMatrixUni = kSetAsAttribute;
   1759     #else
   1760         mat = &segments->fVSUnis.push_back();
   1761         mat->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
   1762         locations->fTextureMatrixUni = kUseUniform;
   1763     #endif
   1764         tex_matrix_name(stageNum, mat->accessName());
   1765         mat->setType(GrGLShaderVar::kMat33f_Type);
   1766         matName = mat->getName().c_str();
   1767 
   1768         if (desc.fOptFlags & StageDesc::kNoPerspective_OptFlagBit) {
   1769             varyingDims = coordDims;
   1770         } else {
   1771             varyingDims = coordDims + 1;
   1772         }
   1773     }
   1774 
   1775     segments->fFSUnis.push_back().set(GrGLShaderVar::kSampler2D_Type,
   1776         GrGLShaderVar::kUniform_TypeModifier, "");
   1777     sampler_name(stageNum, segments->fFSUnis.back().accessName());
   1778     locations->fSamplerUni = kUseUniform;
   1779     const char* samplerName = segments->fFSUnis.back().getName().c_str();
   1780 
   1781     const char* texelSizeName = NULL;
   1782     if (StageDesc::k2x2_FetchMode == desc.fFetchMode) {
   1783         segments->fFSUnis.push_back().set(GrGLShaderVar::kVec2f_Type,
   1784             GrGLShaderVar::kUniform_TypeModifier, "");
   1785         normalized_texel_size_name(stageNum, segments->fFSUnis.back().accessName());
   1786         texelSizeName = segments->fFSUnis.back().getName().c_str();
   1787     }
   1788 
   1789     const char *varyingVSName, *varyingFSName;
   1790     append_varying(float_vector_type(varyingDims),
   1791                     "Stage",
   1792                    stageNum,
   1793                    segments,
   1794                    &varyingVSName,
   1795                    &varyingFSName);
   1796 
   1797     if (!matName) {
   1798         GrAssert(varyingDims == coordDims);
   1799         segments->fVSCode.appendf("\t%s = %s;\n", varyingVSName, vsInCoord);
   1800     } else {
   1801         // varying = texMatrix * texCoord
   1802         segments->fVSCode.appendf("\t%s = (%s * vec3(%s, 1))%s;\n",
   1803                                   varyingVSName, matName, vsInCoord,
   1804                                   vector_all_coords(varyingDims));
   1805     }
   1806 
   1807     GrGLShaderVar* radial2Params = NULL;
   1808     const char* radial2VaryingVSName = NULL;
   1809     const char* radial2VaryingFSName = NULL;
   1810 
   1811     if (isRadialMapping((StageDesc::CoordMapping) desc.fCoordMapping)) {
   1812         radial2Params = genRadialVS(stageNum, segments,
   1813                                     locations,
   1814                                     &radial2VaryingVSName,
   1815                                     &radial2VaryingFSName,
   1816                                     varyingVSName,
   1817                                     varyingDims, coordDims);
   1818     }
   1819 
   1820     GrGLShaderVar* kernel = NULL;
   1821     const char* imageIncrementName = NULL;
   1822     if (StageDesc::kConvolution_FetchMode == desc.fFetchMode) {
   1823         genConvolutionVS(stageNum, desc, segments, locations,
   1824                          &kernel, &imageIncrementName, varyingVSName);
   1825     } else if (StageDesc::kDilate_FetchMode == desc.fFetchMode ||
   1826                StageDesc::kErode_FetchMode == desc.fFetchMode) {
   1827         genMorphologyVS(stageNum, desc, segments, locations,
   1828                         &imageIncrementName, varyingVSName);
   1829     }
   1830 
   1831     /// Fragment Shader Stuff
   1832     GrStringBuilder fsCoordName;
   1833     // function used to access the shader, may be made projective
   1834     GrStringBuilder texFunc("texture2D");
   1835     if (desc.fOptFlags & (StageDesc::kIdentityMatrix_OptFlagBit |
   1836                           StageDesc::kNoPerspective_OptFlagBit)) {
   1837         GrAssert(varyingDims == coordDims);
   1838         fsCoordName = varyingFSName;
   1839     } else {
   1840         // if we have to do some special op on the varyings to get
   1841         // our final tex coords then when in perspective we have to
   1842         // do an explicit divide. Otherwise, we can use a Proj func.
   1843         if  (StageDesc::kIdentity_CoordMapping == desc.fCoordMapping &&
   1844              StageDesc::kSingle_FetchMode == desc.fFetchMode) {
   1845             texFunc.append("Proj");
   1846             fsCoordName = varyingFSName;
   1847         } else {
   1848             fsCoordName = "inCoord";
   1849             fsCoordName.appendS32(stageNum);
   1850             segments->fFSCode.appendf("\t%s %s = %s%s / %s%s;\n",
   1851                                 GrGLShaderVar::TypeString(float_vector_type(coordDims)),
   1852                                 fsCoordName.c_str(),
   1853                                 varyingFSName,
   1854                                 vector_nonhomog_coords(varyingDims),
   1855                                 varyingFSName,
   1856                                 vector_homog_coord(varyingDims));
   1857         }
   1858     }
   1859 
   1860     GrStringBuilder sampleCoords;
   1861     bool complexCoord = false;
   1862     switch (desc.fCoordMapping) {
   1863     case StageDesc::kIdentity_CoordMapping:
   1864         sampleCoords = fsCoordName;
   1865         break;
   1866     case StageDesc::kSweepGradient_CoordMapping:
   1867         sampleCoords.printf("vec2(atan(- %s.y, - %s.x) * 0.1591549430918 + 0.5, 0.5)", fsCoordName.c_str(), fsCoordName.c_str());
   1868         complexCoord = true;
   1869         break;
   1870     case StageDesc::kRadialGradient_CoordMapping:
   1871         sampleCoords.printf("vec2(length(%s.xy), 0.5)", fsCoordName.c_str());
   1872         complexCoord = true;
   1873         break;
   1874     case StageDesc::kRadial2Gradient_CoordMapping:
   1875         complexCoord = genRadial2GradientCoordMapping(
   1876                            stageNum, segments,
   1877                            radial2VaryingFSName, radial2Params,
   1878                            sampleCoords, fsCoordName,
   1879                            varyingDims, coordDims);
   1880 
   1881         break;
   1882     case StageDesc::kRadial2GradientDegenerate_CoordMapping:
   1883         complexCoord = genRadial2GradientDegenerateCoordMapping(
   1884                            stageNum, segments,
   1885                            radial2VaryingFSName, radial2Params,
   1886                            sampleCoords, fsCoordName,
   1887                            varyingDims, coordDims);
   1888         break;
   1889 
   1890     };
   1891 
   1892     static const uint32_t kMulByAlphaMask =
   1893         (StageDesc::kMulRGBByAlpha_RoundUp_InConfigFlag |
   1894          StageDesc::kMulRGBByAlpha_RoundDown_InConfigFlag);
   1895 
   1896     const char* swizzle = "";
   1897     if (desc.fInConfigFlags & StageDesc::kSwapRAndB_InConfigFlag) {
   1898         GrAssert(!(desc.fInConfigFlags & StageDesc::kSmearAlpha_InConfigFlag));
   1899         swizzle = ".bgra";
   1900     } else if (desc.fInConfigFlags & StageDesc::kSmearAlpha_InConfigFlag) {
   1901         GrAssert(!(desc.fInConfigFlags & kMulByAlphaMask));
   1902         swizzle = ".aaaa";
   1903     }
   1904 
   1905     GrStringBuilder modulate;
   1906     if (NULL != fsInColor) {
   1907         modulate.printf(" * %s", fsInColor);
   1908     }
   1909 
   1910     if (desc.fOptFlags &
   1911         StageDesc::kCustomTextureDomain_OptFlagBit) {
   1912         GrStringBuilder texDomainName;
   1913         tex_domain_name(stageNum, &texDomainName);
   1914         segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
   1915             GrGLShaderVar::kUniform_TypeModifier, texDomainName);
   1916         GrStringBuilder coordVar("clampCoord");
   1917         segments->fFSCode.appendf("\t%s %s = clamp(%s, %s.xy, %s.zw);\n",
   1918                                   float_vector_type_str(coordDims),
   1919                                   coordVar.c_str(),
   1920                                   sampleCoords.c_str(),
   1921                                   texDomainName.c_str(),
   1922                                   texDomainName.c_str());
   1923         sampleCoords = coordVar;
   1924         locations->fTexDomUni = kUseUniform;
   1925     }
   1926 
   1927     switch (desc.fFetchMode) {
   1928     case StageDesc::k2x2_FetchMode:
   1929         GrAssert(!(desc.fInConfigFlags & kMulByAlphaMask));
   1930         gen2x2FS(stageNum, segments, locations, &sampleCoords,
   1931             samplerName, texelSizeName, swizzle, fsOutColor,
   1932             texFunc, modulate, complexCoord, coordDims);
   1933         break;
   1934     case StageDesc::kConvolution_FetchMode:
   1935         GrAssert(!(desc.fInConfigFlags & kMulByAlphaMask));
   1936         genConvolutionFS(stageNum, desc, segments,
   1937             samplerName, kernel, swizzle, imageIncrementName, fsOutColor,
   1938             sampleCoords, texFunc, modulate);
   1939         break;
   1940     case StageDesc::kDilate_FetchMode:
   1941     case StageDesc::kErode_FetchMode:
   1942         GrAssert(!(desc.fInConfigFlags & kMulByAlphaMask));
   1943         genMorphologyFS(stageNum, desc, segments,
   1944             samplerName, swizzle, imageIncrementName, fsOutColor,
   1945             sampleCoords, texFunc, modulate);
   1946         break;
   1947     default:
   1948         if (desc.fInConfigFlags & kMulByAlphaMask) {
   1949             // only one of the mul by alpha flags should be set
   1950             GrAssert(GrIsPow2(kMulByAlphaMask & desc.fInConfigFlags));
   1951             GrAssert(!(desc.fInConfigFlags &
   1952                        StageDesc::kSmearAlpha_InConfigFlag));
   1953             segments->fFSCode.appendf("\t%s = %s(%s, %s)%s;\n",
   1954                                       fsOutColor, texFunc.c_str(),
   1955                                       samplerName, sampleCoords.c_str(),
   1956                                       swizzle);
   1957             if (desc.fInConfigFlags &
   1958                 StageDesc::kMulRGBByAlpha_RoundUp_InConfigFlag) {
   1959                 segments->fFSCode.appendf("\t%s = vec4(ceil(%s.rgb*%s.a*255.0)/255.0,%s.a)%s;\n",
   1960                                           fsOutColor, fsOutColor, fsOutColor,
   1961                                           fsOutColor, modulate.c_str());
   1962             } else {
   1963                 segments->fFSCode.appendf("\t%s = vec4(floor(%s.rgb*%s.a*255.0)/255.0,%s.a)%s;\n",
   1964                                           fsOutColor, fsOutColor, fsOutColor,
   1965                                           fsOutColor, modulate.c_str());
   1966             }
   1967         } else {
   1968             segments->fFSCode.appendf("\t%s = %s(%s, %s)%s%s;\n",
   1969                                       fsOutColor, texFunc.c_str(),
   1970                                       samplerName, sampleCoords.c_str(),
   1971                                       swizzle, modulate.c_str());
   1972         }
   1973     }
   1974 }
   1975 
   1976 
   1977