Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The ScalarEvolution class is an LLVM pass which can be used to analyze and
     11 // categorize scalar expressions in loops.  It specializes in recognizing
     12 // general induction variables, representing them with the abstract and opaque
     13 // SCEV class.  Given this analysis, trip counts of loops and other important
     14 // properties can be obtained.
     15 //
     16 // This analysis is primarily useful for induction variable substitution and
     17 // strength reduction.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
     22 #define LLVM_ANALYSIS_SCALAREVOLUTION_H
     23 
     24 #include "llvm/Pass.h"
     25 #include "llvm/Instructions.h"
     26 #include "llvm/Function.h"
     27 #include "llvm/Operator.h"
     28 #include "llvm/Support/DataTypes.h"
     29 #include "llvm/Support/ValueHandle.h"
     30 #include "llvm/Support/Allocator.h"
     31 #include "llvm/Support/ConstantRange.h"
     32 #include "llvm/ADT/FoldingSet.h"
     33 #include "llvm/ADT/DenseMap.h"
     34 #include <map>
     35 
     36 namespace llvm {
     37   class APInt;
     38   class Constant;
     39   class ConstantInt;
     40   class DominatorTree;
     41   class Type;
     42   class ScalarEvolution;
     43   class TargetData;
     44   class TargetLibraryInfo;
     45   class LLVMContext;
     46   class Loop;
     47   class LoopInfo;
     48   class Operator;
     49   class SCEVUnknown;
     50   class SCEV;
     51   template<> struct FoldingSetTrait<SCEV>;
     52 
     53   /// SCEV - This class represents an analyzed expression in the program.  These
     54   /// are opaque objects that the client is not allowed to do much with
     55   /// directly.
     56   ///
     57   class SCEV : public FoldingSetNode {
     58     friend struct FoldingSetTrait<SCEV>;
     59 
     60     /// FastID - A reference to an Interned FoldingSetNodeID for this node.
     61     /// The ScalarEvolution's BumpPtrAllocator holds the data.
     62     FoldingSetNodeIDRef FastID;
     63 
     64     // The SCEV baseclass this node corresponds to
     65     const unsigned short SCEVType;
     66 
     67   protected:
     68     /// SubclassData - This field is initialized to zero and may be used in
     69     /// subclasses to store miscellaneous information.
     70     unsigned short SubclassData;
     71 
     72   private:
     73     SCEV(const SCEV &);            // DO NOT IMPLEMENT
     74     void operator=(const SCEV &);  // DO NOT IMPLEMENT
     75 
     76   public:
     77     /// NoWrapFlags are bitfield indices into SubclassData.
     78     ///
     79     /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
     80     /// no-signed-wrap <NSW> properties, which are derived from the IR
     81     /// operator. NSW is a misnomer that we use to mean no signed overflow or
     82     /// underflow.
     83     ///
     84     /// AddRec expression may have a no-self-wraparound <NW> property if the
     85     /// result can never reach the start value. This property is independent of
     86     /// the actual start value and step direction. Self-wraparound is defined
     87     /// purely in terms of the recurrence's loop, step size, and
     88     /// bitwidth. Formally, a recurrence with no self-wraparound satisfies:
     89     /// abs(step) * max-iteration(loop) <= unsigned-max(bitwidth).
     90     ///
     91     /// Note that NUW and NSW are also valid properties of a recurrence, and
     92     /// either implies NW. For convenience, NW will be set for a recurrence
     93     /// whenever either NUW or NSW are set.
     94     enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
     95                        FlagNW      = (1 << 0),   // No self-wrap.
     96                        FlagNUW     = (1 << 1),   // No unsigned wrap.
     97                        FlagNSW     = (1 << 2),   // No signed wrap.
     98                        NoWrapMask  = (1 << 3) -1 };
     99 
    100     explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
    101       FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
    102 
    103     unsigned getSCEVType() const { return SCEVType; }
    104 
    105     /// getType - Return the LLVM type of this SCEV expression.
    106     ///
    107     Type *getType() const;
    108 
    109     /// isZero - Return true if the expression is a constant zero.
    110     ///
    111     bool isZero() const;
    112 
    113     /// isOne - Return true if the expression is a constant one.
    114     ///
    115     bool isOne() const;
    116 
    117     /// isAllOnesValue - Return true if the expression is a constant
    118     /// all-ones value.
    119     ///
    120     bool isAllOnesValue() const;
    121 
    122     /// isNonConstantNegative - Return true if the specified scev is negated,
    123     /// but not a constant.
    124     bool isNonConstantNegative() const;
    125 
    126     /// print - Print out the internal representation of this scalar to the
    127     /// specified stream.  This should really only be used for debugging
    128     /// purposes.
    129     void print(raw_ostream &OS) const;
    130 
    131     /// dump - This method is used for debugging.
    132     ///
    133     void dump() const;
    134   };
    135 
    136   // Specialize FoldingSetTrait for SCEV to avoid needing to compute
    137   // temporary FoldingSetNodeID values.
    138   template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
    139     static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
    140       ID = X.FastID;
    141     }
    142     static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
    143                        unsigned IDHash, FoldingSetNodeID &TempID) {
    144       return ID == X.FastID;
    145     }
    146     static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
    147       return X.FastID.ComputeHash();
    148     }
    149   };
    150 
    151   inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
    152     S.print(OS);
    153     return OS;
    154   }
    155 
    156   /// SCEVCouldNotCompute - An object of this class is returned by queries that
    157   /// could not be answered.  For example, if you ask for the number of
    158   /// iterations of a linked-list traversal loop, you will get one of these.
    159   /// None of the standard SCEV operations are valid on this class, it is just a
    160   /// marker.
    161   struct SCEVCouldNotCompute : public SCEV {
    162     SCEVCouldNotCompute();
    163 
    164     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    165     static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
    166     static bool classof(const SCEV *S);
    167   };
    168 
    169   /// ScalarEvolution - This class is the main scalar evolution driver.  Because
    170   /// client code (intentionally) can't do much with the SCEV objects directly,
    171   /// they must ask this class for services.
    172   ///
    173   class ScalarEvolution : public FunctionPass {
    174   public:
    175     /// LoopDisposition - An enum describing the relationship between a
    176     /// SCEV and a loop.
    177     enum LoopDisposition {
    178       LoopVariant,    ///< The SCEV is loop-variant (unknown).
    179       LoopInvariant,  ///< The SCEV is loop-invariant.
    180       LoopComputable  ///< The SCEV varies predictably with the loop.
    181     };
    182 
    183     /// BlockDisposition - An enum describing the relationship between a
    184     /// SCEV and a basic block.
    185     enum BlockDisposition {
    186       DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
    187       DominatesBlock,        ///< The SCEV dominates the block.
    188       ProperlyDominatesBlock ///< The SCEV properly dominates the block.
    189     };
    190 
    191     /// Convenient NoWrapFlags manipulation that hides enum casts and is
    192     /// visible in the ScalarEvolution name space.
    193     static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
    194       return (SCEV::NoWrapFlags)(Flags & Mask);
    195     }
    196     static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
    197                                       SCEV::NoWrapFlags OnFlags) {
    198       return (SCEV::NoWrapFlags)(Flags | OnFlags);
    199     }
    200     static SCEV::NoWrapFlags clearFlags(SCEV::NoWrapFlags Flags,
    201                                         SCEV::NoWrapFlags OffFlags) {
    202       return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
    203     }
    204 
    205   private:
    206     /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
    207     /// notified whenever a Value is deleted.
    208     class SCEVCallbackVH : public CallbackVH {
    209       ScalarEvolution *SE;
    210       virtual void deleted();
    211       virtual void allUsesReplacedWith(Value *New);
    212     public:
    213       SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
    214     };
    215 
    216     friend class SCEVCallbackVH;
    217     friend class SCEVExpander;
    218     friend class SCEVUnknown;
    219 
    220     /// F - The function we are analyzing.
    221     ///
    222     Function *F;
    223 
    224     /// LI - The loop information for the function we are currently analyzing.
    225     ///
    226     LoopInfo *LI;
    227 
    228     /// TD - The target data information for the target we are targeting.
    229     ///
    230     TargetData *TD;
    231 
    232     /// TLI - The target library information for the target we are targeting.
    233     ///
    234     TargetLibraryInfo *TLI;
    235 
    236     /// DT - The dominator tree.
    237     ///
    238     DominatorTree *DT;
    239 
    240     /// CouldNotCompute - This SCEV is used to represent unknown trip
    241     /// counts and things.
    242     SCEVCouldNotCompute CouldNotCompute;
    243 
    244     /// ValueExprMapType - The typedef for ValueExprMap.
    245     ///
    246     typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
    247       ValueExprMapType;
    248 
    249     /// ValueExprMap - This is a cache of the values we have analyzed so far.
    250     ///
    251     ValueExprMapType ValueExprMap;
    252 
    253     /// ExitLimit - Information about the number of loop iterations for
    254     /// which a loop exit's branch condition evaluates to the not-taken path.
    255     /// This is a temporary pair of exact and max expressions that are
    256     /// eventually summarized in ExitNotTakenInfo and BackedgeTakenInfo.
    257     struct ExitLimit {
    258       const SCEV *Exact;
    259       const SCEV *Max;
    260 
    261       /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
    262 
    263       ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {}
    264 
    265       /// hasAnyInfo - Test whether this ExitLimit contains any computed
    266       /// information, or whether it's all SCEVCouldNotCompute values.
    267       bool hasAnyInfo() const {
    268         return !isa<SCEVCouldNotCompute>(Exact) ||
    269           !isa<SCEVCouldNotCompute>(Max);
    270       }
    271     };
    272 
    273     /// ExitNotTakenInfo - Information about the number of times a particular
    274     /// loop exit may be reached before exiting the loop.
    275     struct ExitNotTakenInfo {
    276       AssertingVH<BasicBlock> ExitingBlock;
    277       const SCEV *ExactNotTaken;
    278       PointerIntPair<ExitNotTakenInfo*, 1> NextExit;
    279 
    280       ExitNotTakenInfo() : ExitingBlock(0), ExactNotTaken(0) {}
    281 
    282       /// isCompleteList - Return true if all loop exits are computable.
    283       bool isCompleteList() const {
    284         return NextExit.getInt() == 0;
    285       }
    286 
    287       void setIncomplete() { NextExit.setInt(1); }
    288 
    289       /// getNextExit - Return a pointer to the next exit's not-taken info.
    290       ExitNotTakenInfo *getNextExit() const {
    291         return NextExit.getPointer();
    292       }
    293 
    294       void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); }
    295     };
    296 
    297     /// BackedgeTakenInfo - Information about the backedge-taken count
    298     /// of a loop. This currently includes an exact count and a maximum count.
    299     ///
    300     class BackedgeTakenInfo {
    301       /// ExitNotTaken - A list of computable exits and their not-taken counts.
    302       /// Loops almost never have more than one computable exit.
    303       ExitNotTakenInfo ExitNotTaken;
    304 
    305       /// Max - An expression indicating the least maximum backedge-taken
    306       /// count of the loop that is known, or a SCEVCouldNotCompute.
    307       const SCEV *Max;
    308 
    309     public:
    310       BackedgeTakenInfo() : Max(0) {}
    311 
    312       /// Initialize BackedgeTakenInfo from a list of exact exit counts.
    313       BackedgeTakenInfo(
    314         SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
    315         bool Complete, const SCEV *MaxCount);
    316 
    317       /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
    318       /// computed information, or whether it's all SCEVCouldNotCompute
    319       /// values.
    320       bool hasAnyInfo() const {
    321         return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
    322       }
    323 
    324       /// getExact - Return an expression indicating the exact backedge-taken
    325       /// count of the loop if it is known, or SCEVCouldNotCompute
    326       /// otherwise. This is the number of times the loop header can be
    327       /// guaranteed to execute, minus one.
    328       const SCEV *getExact(ScalarEvolution *SE) const;
    329 
    330       /// getExact - Return the number of times this loop exit may fall through
    331       /// to the back edge, or SCEVCouldNotCompute. The loop is guaranteed not
    332       /// to exit via this block before this number of iterations, but may exit
    333       /// via another block.
    334       const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
    335 
    336       /// getMax - Get the max backedge taken count for the loop.
    337       const SCEV *getMax(ScalarEvolution *SE) const;
    338 
    339       /// clear - Invalidate this result and free associated memory.
    340       void clear();
    341     };
    342 
    343     /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
    344     /// this function as they are computed.
    345     DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
    346 
    347     /// ConstantEvolutionLoopExitValue - This map contains entries for all of
    348     /// the PHI instructions that we attempt to compute constant evolutions for.
    349     /// This allows us to avoid potentially expensive recomputation of these
    350     /// properties.  An instruction maps to null if we are unable to compute its
    351     /// exit value.
    352     DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
    353 
    354     /// ValuesAtScopes - This map contains entries for all the expressions
    355     /// that we attempt to compute getSCEVAtScope information for, which can
    356     /// be expensive in extreme cases.
    357     DenseMap<const SCEV *,
    358              std::map<const Loop *, const SCEV *> > ValuesAtScopes;
    359 
    360     /// LoopDispositions - Memoized computeLoopDisposition results.
    361     DenseMap<const SCEV *,
    362              std::map<const Loop *, LoopDisposition> > LoopDispositions;
    363 
    364     /// computeLoopDisposition - Compute a LoopDisposition value.
    365     LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
    366 
    367     /// BlockDispositions - Memoized computeBlockDisposition results.
    368     DenseMap<const SCEV *,
    369              std::map<const BasicBlock *, BlockDisposition> > BlockDispositions;
    370 
    371     /// computeBlockDisposition - Compute a BlockDisposition value.
    372     BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
    373 
    374     /// UnsignedRanges - Memoized results from getUnsignedRange
    375     DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
    376 
    377     /// SignedRanges - Memoized results from getSignedRange
    378     DenseMap<const SCEV *, ConstantRange> SignedRanges;
    379 
    380     /// setUnsignedRange - Set the memoized unsigned range for the given SCEV.
    381     const ConstantRange &setUnsignedRange(const SCEV *S,
    382                                           const ConstantRange &CR) {
    383       std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
    384         UnsignedRanges.insert(std::make_pair(S, CR));
    385       if (!Pair.second)
    386         Pair.first->second = CR;
    387       return Pair.first->second;
    388     }
    389 
    390     /// setUnsignedRange - Set the memoized signed range for the given SCEV.
    391     const ConstantRange &setSignedRange(const SCEV *S,
    392                                         const ConstantRange &CR) {
    393       std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
    394         SignedRanges.insert(std::make_pair(S, CR));
    395       if (!Pair.second)
    396         Pair.first->second = CR;
    397       return Pair.first->second;
    398     }
    399 
    400     /// createSCEV - We know that there is no SCEV for the specified value.
    401     /// Analyze the expression.
    402     const SCEV *createSCEV(Value *V);
    403 
    404     /// createNodeForPHI - Provide the special handling we need to analyze PHI
    405     /// SCEVs.
    406     const SCEV *createNodeForPHI(PHINode *PN);
    407 
    408     /// createNodeForGEP - Provide the special handling we need to analyze GEP
    409     /// SCEVs.
    410     const SCEV *createNodeForGEP(GEPOperator *GEP);
    411 
    412     /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
    413     /// at most once for each SCEV+Loop pair.
    414     ///
    415     const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
    416 
    417     /// ForgetSymbolicValue - This looks up computed SCEV values for all
    418     /// instructions that depend on the given instruction and removes them from
    419     /// the ValueExprMap map if they reference SymName. This is used during PHI
    420     /// resolution.
    421     void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
    422 
    423     /// getBECount - Subtract the end and start values and divide by the step,
    424     /// rounding up, to get the number of times the backedge is executed. Return
    425     /// CouldNotCompute if an intermediate computation overflows.
    426     const SCEV *getBECount(const SCEV *Start,
    427                            const SCEV *End,
    428                            const SCEV *Step,
    429                            bool NoWrap);
    430 
    431     /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
    432     /// loop, lazily computing new values if the loop hasn't been analyzed
    433     /// yet.
    434     const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
    435 
    436     /// ComputeBackedgeTakenCount - Compute the number of times the specified
    437     /// loop will iterate.
    438     BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
    439 
    440     /// ComputeExitLimit - Compute the number of times the backedge of the
    441     /// specified loop will execute if it exits via the specified block.
    442     ExitLimit ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock);
    443 
    444     /// ComputeExitLimitFromCond - Compute the number of times the backedge of
    445     /// the specified loop will execute if its exit condition were a conditional
    446     /// branch of ExitCond, TBB, and FBB.
    447     ExitLimit ComputeExitLimitFromCond(const Loop *L,
    448                                        Value *ExitCond,
    449                                        BasicBlock *TBB,
    450                                        BasicBlock *FBB);
    451 
    452     /// ComputeExitLimitFromICmp - Compute the number of times the backedge of
    453     /// the specified loop will execute if its exit condition were a conditional
    454     /// branch of the ICmpInst ExitCond, TBB, and FBB.
    455     ExitLimit ComputeExitLimitFromICmp(const Loop *L,
    456                                        ICmpInst *ExitCond,
    457                                        BasicBlock *TBB,
    458                                        BasicBlock *FBB);
    459 
    460     /// ComputeLoadConstantCompareExitLimit - Given an exit condition
    461     /// of 'icmp op load X, cst', try to see if we can compute the
    462     /// backedge-taken count.
    463     ExitLimit ComputeLoadConstantCompareExitLimit(LoadInst *LI,
    464                                                   Constant *RHS,
    465                                                   const Loop *L,
    466                                                   ICmpInst::Predicate p);
    467 
    468     /// ComputeExitCountExhaustively - If the loop is known to execute a
    469     /// constant number of times (the condition evolves only from constants),
    470     /// try to evaluate a few iterations of the loop until we get the exit
    471     /// condition gets a value of ExitWhen (true or false).  If we cannot
    472     /// evaluate the exit count of the loop, return CouldNotCompute.
    473     const SCEV *ComputeExitCountExhaustively(const Loop *L,
    474                                              Value *Cond,
    475                                              bool ExitWhen);
    476 
    477     /// HowFarToZero - Return the number of times an exit condition comparing
    478     /// the specified value to zero will execute.  If not computable, return
    479     /// CouldNotCompute.
    480     ExitLimit HowFarToZero(const SCEV *V, const Loop *L);
    481 
    482     /// HowFarToNonZero - Return the number of times an exit condition checking
    483     /// the specified value for nonzero will execute.  If not computable, return
    484     /// CouldNotCompute.
    485     ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L);
    486 
    487     /// HowManyLessThans - Return the number of times an exit condition
    488     /// containing the specified less-than comparison will execute.  If not
    489     /// computable, return CouldNotCompute. isSigned specifies whether the
    490     /// less-than is signed.
    491     ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
    492                                const Loop *L, bool isSigned);
    493 
    494     /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
    495     /// (which may not be an immediate predecessor) which has exactly one
    496     /// successor from which BB is reachable, or null if no such block is
    497     /// found.
    498     std::pair<BasicBlock *, BasicBlock *>
    499     getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
    500 
    501     /// isImpliedCond - Test whether the condition described by Pred, LHS, and
    502     /// RHS is true whenever the given FoundCondValue value evaluates to true.
    503     bool isImpliedCond(ICmpInst::Predicate Pred,
    504                        const SCEV *LHS, const SCEV *RHS,
    505                        Value *FoundCondValue,
    506                        bool Inverse);
    507 
    508     /// isImpliedCondOperands - Test whether the condition described by Pred,
    509     /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
    510     /// and FoundRHS is true.
    511     bool isImpliedCondOperands(ICmpInst::Predicate Pred,
    512                                const SCEV *LHS, const SCEV *RHS,
    513                                const SCEV *FoundLHS, const SCEV *FoundRHS);
    514 
    515     /// isImpliedCondOperandsHelper - Test whether the condition described by
    516     /// Pred, LHS, and RHS is true whenever the condition described by Pred,
    517     /// FoundLHS, and FoundRHS is true.
    518     bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
    519                                      const SCEV *LHS, const SCEV *RHS,
    520                                      const SCEV *FoundLHS,
    521                                      const SCEV *FoundRHS);
    522 
    523     /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
    524     /// in the header of its containing loop, we know the loop executes a
    525     /// constant number of times, and the PHI node is just a recurrence
    526     /// involving constants, fold it.
    527     Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
    528                                                 const Loop *L);
    529 
    530     /// isKnownPredicateWithRanges - Test if the given expression is known to
    531     /// satisfy the condition described by Pred and the known constant ranges
    532     /// of LHS and RHS.
    533     ///
    534     bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
    535                                     const SCEV *LHS, const SCEV *RHS);
    536 
    537     /// forgetMemoizedResults - Drop memoized information computed for S.
    538     void forgetMemoizedResults(const SCEV *S);
    539 
    540   public:
    541     static char ID; // Pass identification, replacement for typeid
    542     ScalarEvolution();
    543 
    544     LLVMContext &getContext() const { return F->getContext(); }
    545 
    546     /// isSCEVable - Test if values of the given type are analyzable within
    547     /// the SCEV framework. This primarily includes integer types, and it
    548     /// can optionally include pointer types if the ScalarEvolution class
    549     /// has access to target-specific information.
    550     bool isSCEVable(Type *Ty) const;
    551 
    552     /// getTypeSizeInBits - Return the size in bits of the specified type,
    553     /// for which isSCEVable must return true.
    554     uint64_t getTypeSizeInBits(Type *Ty) const;
    555 
    556     /// getEffectiveSCEVType - Return a type with the same bitwidth as
    557     /// the given type and which represents how SCEV will treat the given
    558     /// type, for which isSCEVable must return true. For pointer types,
    559     /// this is the pointer-sized integer type.
    560     Type *getEffectiveSCEVType(Type *Ty) const;
    561 
    562     /// getSCEV - Return a SCEV expression for the full generality of the
    563     /// specified expression.
    564     const SCEV *getSCEV(Value *V);
    565 
    566     const SCEV *getConstant(ConstantInt *V);
    567     const SCEV *getConstant(const APInt& Val);
    568     const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
    569     const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
    570     const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
    571     const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
    572     const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
    573     const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
    574                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    575     const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
    576                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
    577       SmallVector<const SCEV *, 2> Ops;
    578       Ops.push_back(LHS);
    579       Ops.push_back(RHS);
    580       return getAddExpr(Ops, Flags);
    581     }
    582     const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
    583                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
    584       SmallVector<const SCEV *, 3> Ops;
    585       Ops.push_back(Op0);
    586       Ops.push_back(Op1);
    587       Ops.push_back(Op2);
    588       return getAddExpr(Ops, Flags);
    589     }
    590     const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
    591                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    592     const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
    593                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap)
    594     {
    595       SmallVector<const SCEV *, 2> Ops;
    596       Ops.push_back(LHS);
    597       Ops.push_back(RHS);
    598       return getMulExpr(Ops, Flags);
    599     }
    600     const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
    601                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
    602       SmallVector<const SCEV *, 3> Ops;
    603       Ops.push_back(Op0);
    604       Ops.push_back(Op1);
    605       Ops.push_back(Op2);
    606       return getMulExpr(Ops, Flags);
    607     }
    608     const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
    609     const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
    610                               const Loop *L, SCEV::NoWrapFlags Flags);
    611     const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
    612                               const Loop *L, SCEV::NoWrapFlags Flags);
    613     const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
    614                               const Loop *L, SCEV::NoWrapFlags Flags) {
    615       SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
    616       return getAddRecExpr(NewOp, L, Flags);
    617     }
    618     const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
    619     const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
    620     const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
    621     const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
    622     const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
    623     const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
    624     const SCEV *getUnknown(Value *V);
    625     const SCEV *getCouldNotCompute();
    626 
    627     /// getSizeOfExpr - Return an expression for sizeof on the given type.
    628     ///
    629     const SCEV *getSizeOfExpr(Type *AllocTy);
    630 
    631     /// getAlignOfExpr - Return an expression for alignof on the given type.
    632     ///
    633     const SCEV *getAlignOfExpr(Type *AllocTy);
    634 
    635     /// getOffsetOfExpr - Return an expression for offsetof on the given field.
    636     ///
    637     const SCEV *getOffsetOfExpr(StructType *STy, unsigned FieldNo);
    638 
    639     /// getOffsetOfExpr - Return an expression for offsetof on the given field.
    640     ///
    641     const SCEV *getOffsetOfExpr(Type *CTy, Constant *FieldNo);
    642 
    643     /// getNegativeSCEV - Return the SCEV object corresponding to -V.
    644     ///
    645     const SCEV *getNegativeSCEV(const SCEV *V);
    646 
    647     /// getNotSCEV - Return the SCEV object corresponding to ~V.
    648     ///
    649     const SCEV *getNotSCEV(const SCEV *V);
    650 
    651     /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
    652     const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
    653                              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    654 
    655     /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
    656     /// of the input value to the specified type.  If the type must be
    657     /// extended, it is zero extended.
    658     const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
    659 
    660     /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
    661     /// of the input value to the specified type.  If the type must be
    662     /// extended, it is sign extended.
    663     const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
    664 
    665     /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
    666     /// the input value to the specified type.  If the type must be extended,
    667     /// it is zero extended.  The conversion must not be narrowing.
    668     const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
    669 
    670     /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
    671     /// the input value to the specified type.  If the type must be extended,
    672     /// it is sign extended.  The conversion must not be narrowing.
    673     const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
    674 
    675     /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
    676     /// the input value to the specified type. If the type must be extended,
    677     /// it is extended with unspecified bits. The conversion must not be
    678     /// narrowing.
    679     const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
    680 
    681     /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
    682     /// input value to the specified type.  The conversion must not be
    683     /// widening.
    684     const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
    685 
    686     /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
    687     /// the types using zero-extension, and then perform a umax operation
    688     /// with them.
    689     const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
    690                                            const SCEV *RHS);
    691 
    692     /// getUMinFromMismatchedTypes - Promote the operands to the wider of
    693     /// the types using zero-extension, and then perform a umin operation
    694     /// with them.
    695     const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
    696                                            const SCEV *RHS);
    697 
    698     /// getPointerBase - Transitively follow the chain of pointer-type operands
    699     /// until reaching a SCEV that does not have a single pointer operand. This
    700     /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
    701     /// but corner cases do exist.
    702     const SCEV *getPointerBase(const SCEV *V);
    703 
    704     /// getSCEVAtScope - Return a SCEV expression for the specified value
    705     /// at the specified scope in the program.  The L value specifies a loop
    706     /// nest to evaluate the expression at, where null is the top-level or a
    707     /// specified loop is immediately inside of the loop.
    708     ///
    709     /// This method can be used to compute the exit value for a variable defined
    710     /// in a loop by querying what the value will hold in the parent loop.
    711     ///
    712     /// In the case that a relevant loop exit value cannot be computed, the
    713     /// original value V is returned.
    714     const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
    715 
    716     /// getSCEVAtScope - This is a convenience function which does
    717     /// getSCEVAtScope(getSCEV(V), L).
    718     const SCEV *getSCEVAtScope(Value *V, const Loop *L);
    719 
    720     /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
    721     /// by a conditional between LHS and RHS.  This is used to help avoid max
    722     /// expressions in loop trip counts, and to eliminate casts.
    723     bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
    724                                   const SCEV *LHS, const SCEV *RHS);
    725 
    726     /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
    727     /// protected by a conditional between LHS and RHS.  This is used to
    728     /// to eliminate casts.
    729     bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
    730                                      const SCEV *LHS, const SCEV *RHS);
    731 
    732     /// getSmallConstantTripCount - Returns the maximum trip count of this loop
    733     /// as a normal unsigned value. Returns 0 if the trip count is unknown or
    734     /// not constant. This "trip count" assumes that control exits via
    735     /// ExitingBlock. More precisely, it is the number of times that control may
    736     /// reach ExitingBlock before taking the branch. For loops with multiple
    737     /// exits, it may not be the number times that the loop header executes if
    738     /// the loop exits prematurely via another branch.
    739     unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);
    740 
    741     /// getSmallConstantTripMultiple - Returns the largest constant divisor of
    742     /// the trip count of this loop as a normal unsigned value, if
    743     /// possible. This means that the actual trip count is always a multiple of
    744     /// the returned value (don't forget the trip count could very well be zero
    745     /// as well!). As explained in the comments for getSmallConstantTripCount,
    746     /// this assumes that control exits the loop via ExitingBlock.
    747     unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);
    748 
    749     // getExitCount - Get the expression for the number of loop iterations for
    750     // which this loop is guaranteed not to exit via ExitingBlock. Otherwise
    751     // return SCEVCouldNotCompute.
    752     const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
    753 
    754     /// getBackedgeTakenCount - If the specified loop has a predictable
    755     /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
    756     /// object. The backedge-taken count is the number of times the loop header
    757     /// will be branched to from within the loop. This is one less than the
    758     /// trip count of the loop, since it doesn't count the first iteration,
    759     /// when the header is branched to from outside the loop.
    760     ///
    761     /// Note that it is not valid to call this method on a loop without a
    762     /// loop-invariant backedge-taken count (see
    763     /// hasLoopInvariantBackedgeTakenCount).
    764     ///
    765     const SCEV *getBackedgeTakenCount(const Loop *L);
    766 
    767     /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
    768     /// return the least SCEV value that is known never to be less than the
    769     /// actual backedge taken count.
    770     const SCEV *getMaxBackedgeTakenCount(const Loop *L);
    771 
    772     /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
    773     /// has an analyzable loop-invariant backedge-taken count.
    774     bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
    775 
    776     /// forgetLoop - This method should be called by the client when it has
    777     /// changed a loop in a way that may effect ScalarEvolution's ability to
    778     /// compute a trip count, or if the loop is deleted.
    779     void forgetLoop(const Loop *L);
    780 
    781     /// forgetValue - This method should be called by the client when it has
    782     /// changed a value in a way that may effect its value, or which may
    783     /// disconnect it from a def-use chain linking it to a loop.
    784     void forgetValue(Value *V);
    785 
    786     /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
    787     /// is guaranteed to end in (at every loop iteration).  It is, at the same
    788     /// time, the minimum number of times S is divisible by 2.  For example,
    789     /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
    790     /// bitwidth of S.
    791     uint32_t GetMinTrailingZeros(const SCEV *S);
    792 
    793     /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
    794     ///
    795     ConstantRange getUnsignedRange(const SCEV *S);
    796 
    797     /// getSignedRange - Determine the signed range for a particular SCEV.
    798     ///
    799     ConstantRange getSignedRange(const SCEV *S);
    800 
    801     /// isKnownNegative - Test if the given expression is known to be negative.
    802     ///
    803     bool isKnownNegative(const SCEV *S);
    804 
    805     /// isKnownPositive - Test if the given expression is known to be positive.
    806     ///
    807     bool isKnownPositive(const SCEV *S);
    808 
    809     /// isKnownNonNegative - Test if the given expression is known to be
    810     /// non-negative.
    811     ///
    812     bool isKnownNonNegative(const SCEV *S);
    813 
    814     /// isKnownNonPositive - Test if the given expression is known to be
    815     /// non-positive.
    816     ///
    817     bool isKnownNonPositive(const SCEV *S);
    818 
    819     /// isKnownNonZero - Test if the given expression is known to be
    820     /// non-zero.
    821     ///
    822     bool isKnownNonZero(const SCEV *S);
    823 
    824     /// isKnownPredicate - Test if the given expression is known to satisfy
    825     /// the condition described by Pred, LHS, and RHS.
    826     ///
    827     bool isKnownPredicate(ICmpInst::Predicate Pred,
    828                           const SCEV *LHS, const SCEV *RHS);
    829 
    830     /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
    831     /// predicate Pred. Return true iff any changes were made. If the
    832     /// operands are provably equal or inequal, LHS and RHS are set to
    833     /// the same value and Pred is set to either ICMP_EQ or ICMP_NE.
    834     ///
    835     bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
    836                               const SCEV *&LHS,
    837                               const SCEV *&RHS);
    838 
    839     /// getLoopDisposition - Return the "disposition" of the given SCEV with
    840     /// respect to the given loop.
    841     LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
    842 
    843     /// isLoopInvariant - Return true if the value of the given SCEV is
    844     /// unchanging in the specified loop.
    845     bool isLoopInvariant(const SCEV *S, const Loop *L);
    846 
    847     /// hasComputableLoopEvolution - Return true if the given SCEV changes value
    848     /// in a known way in the specified loop.  This property being true implies
    849     /// that the value is variant in the loop AND that we can emit an expression
    850     /// to compute the value of the expression at any particular loop iteration.
    851     bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
    852 
    853     /// getLoopDisposition - Return the "disposition" of the given SCEV with
    854     /// respect to the given block.
    855     BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
    856 
    857     /// dominates - Return true if elements that makes up the given SCEV
    858     /// dominate the specified basic block.
    859     bool dominates(const SCEV *S, const BasicBlock *BB);
    860 
    861     /// properlyDominates - Return true if elements that makes up the given SCEV
    862     /// properly dominate the specified basic block.
    863     bool properlyDominates(const SCEV *S, const BasicBlock *BB);
    864 
    865     /// hasOperand - Test whether the given SCEV has Op as a direct or
    866     /// indirect operand.
    867     bool hasOperand(const SCEV *S, const SCEV *Op) const;
    868 
    869     virtual bool runOnFunction(Function &F);
    870     virtual void releaseMemory();
    871     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    872     virtual void print(raw_ostream &OS, const Module* = 0) const;
    873 
    874   private:
    875     FoldingSet<SCEV> UniqueSCEVs;
    876     BumpPtrAllocator SCEVAllocator;
    877 
    878     /// FirstUnknown - The head of a linked list of all SCEVUnknown
    879     /// values that have been allocated. This is used by releaseMemory
    880     /// to locate them all and call their destructors.
    881     SCEVUnknown *FirstUnknown;
    882   };
    883 }
    884 
    885 #endif
    886