1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs global value numbering to eliminate fully redundant 11 // instructions. It also performs simple dead load elimination. 12 // 13 // Note that this pass does the value numbering itself; it does not use the 14 // ValueNumbering analysis passes. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #define DEBUG_TYPE "gvn" 19 #include "llvm/Transforms/Scalar.h" 20 #include "llvm/GlobalVariable.h" 21 #include "llvm/IntrinsicInst.h" 22 #include "llvm/LLVMContext.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/Dominators.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/Loads.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 30 #include "llvm/Analysis/PHITransAddr.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Assembly/Writer.h" 33 #include "llvm/Target/TargetData.h" 34 #include "llvm/Target/TargetLibraryInfo.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 #include "llvm/Transforms/Utils/SSAUpdater.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/DepthFirstIterator.h" 39 #include "llvm/ADT/Hashing.h" 40 #include "llvm/ADT/SmallPtrSet.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/Support/Allocator.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/IRBuilder.h" 46 #include "llvm/Support/PatternMatch.h" 47 using namespace llvm; 48 using namespace PatternMatch; 49 50 STATISTIC(NumGVNInstr, "Number of instructions deleted"); 51 STATISTIC(NumGVNLoad, "Number of loads deleted"); 52 STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); 53 STATISTIC(NumGVNBlocks, "Number of blocks merged"); 54 STATISTIC(NumGVNSimpl, "Number of instructions simplified"); 55 STATISTIC(NumGVNEqProp, "Number of equalities propagated"); 56 STATISTIC(NumPRELoad, "Number of loads PRE'd"); 57 58 static cl::opt<bool> EnablePRE("enable-pre", 59 cl::init(true), cl::Hidden); 60 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true)); 61 62 //===----------------------------------------------------------------------===// 63 // ValueTable Class 64 //===----------------------------------------------------------------------===// 65 66 /// This class holds the mapping between values and value numbers. It is used 67 /// as an efficient mechanism to determine the expression-wise equivalence of 68 /// two values. 69 namespace { 70 struct Expression { 71 uint32_t opcode; 72 Type *type; 73 SmallVector<uint32_t, 4> varargs; 74 75 Expression(uint32_t o = ~2U) : opcode(o) { } 76 77 bool operator==(const Expression &other) const { 78 if (opcode != other.opcode) 79 return false; 80 if (opcode == ~0U || opcode == ~1U) 81 return true; 82 if (type != other.type) 83 return false; 84 if (varargs != other.varargs) 85 return false; 86 return true; 87 } 88 89 friend hash_code hash_value(const Expression &Value) { 90 return hash_combine(Value.opcode, Value.type, 91 hash_combine_range(Value.varargs.begin(), 92 Value.varargs.end())); 93 } 94 }; 95 96 class ValueTable { 97 DenseMap<Value*, uint32_t> valueNumbering; 98 DenseMap<Expression, uint32_t> expressionNumbering; 99 AliasAnalysis *AA; 100 MemoryDependenceAnalysis *MD; 101 DominatorTree *DT; 102 103 uint32_t nextValueNumber; 104 105 Expression create_expression(Instruction* I); 106 Expression create_cmp_expression(unsigned Opcode, 107 CmpInst::Predicate Predicate, 108 Value *LHS, Value *RHS); 109 Expression create_extractvalue_expression(ExtractValueInst* EI); 110 uint32_t lookup_or_add_call(CallInst* C); 111 public: 112 ValueTable() : nextValueNumber(1) { } 113 uint32_t lookup_or_add(Value *V); 114 uint32_t lookup(Value *V) const; 115 uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred, 116 Value *LHS, Value *RHS); 117 void add(Value *V, uint32_t num); 118 void clear(); 119 void erase(Value *v); 120 void setAliasAnalysis(AliasAnalysis* A) { AA = A; } 121 AliasAnalysis *getAliasAnalysis() const { return AA; } 122 void setMemDep(MemoryDependenceAnalysis* M) { MD = M; } 123 void setDomTree(DominatorTree* D) { DT = D; } 124 uint32_t getNextUnusedValueNumber() { return nextValueNumber; } 125 void verifyRemoved(const Value *) const; 126 }; 127 } 128 129 namespace llvm { 130 template <> struct DenseMapInfo<Expression> { 131 static inline Expression getEmptyKey() { 132 return ~0U; 133 } 134 135 static inline Expression getTombstoneKey() { 136 return ~1U; 137 } 138 139 static unsigned getHashValue(const Expression e) { 140 using llvm::hash_value; 141 return static_cast<unsigned>(hash_value(e)); 142 } 143 static bool isEqual(const Expression &LHS, const Expression &RHS) { 144 return LHS == RHS; 145 } 146 }; 147 148 } 149 150 //===----------------------------------------------------------------------===// 151 // ValueTable Internal Functions 152 //===----------------------------------------------------------------------===// 153 154 Expression ValueTable::create_expression(Instruction *I) { 155 Expression e; 156 e.type = I->getType(); 157 e.opcode = I->getOpcode(); 158 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 159 OI != OE; ++OI) 160 e.varargs.push_back(lookup_or_add(*OI)); 161 if (I->isCommutative()) { 162 // Ensure that commutative instructions that only differ by a permutation 163 // of their operands get the same value number by sorting the operand value 164 // numbers. Since all commutative instructions have two operands it is more 165 // efficient to sort by hand rather than using, say, std::sort. 166 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); 167 if (e.varargs[0] > e.varargs[1]) 168 std::swap(e.varargs[0], e.varargs[1]); 169 } 170 171 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 172 // Sort the operand value numbers so x<y and y>x get the same value number. 173 CmpInst::Predicate Predicate = C->getPredicate(); 174 if (e.varargs[0] > e.varargs[1]) { 175 std::swap(e.varargs[0], e.varargs[1]); 176 Predicate = CmpInst::getSwappedPredicate(Predicate); 177 } 178 e.opcode = (C->getOpcode() << 8) | Predicate; 179 } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) { 180 for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end(); 181 II != IE; ++II) 182 e.varargs.push_back(*II); 183 } 184 185 return e; 186 } 187 188 Expression ValueTable::create_cmp_expression(unsigned Opcode, 189 CmpInst::Predicate Predicate, 190 Value *LHS, Value *RHS) { 191 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 192 "Not a comparison!"); 193 Expression e; 194 e.type = CmpInst::makeCmpResultType(LHS->getType()); 195 e.varargs.push_back(lookup_or_add(LHS)); 196 e.varargs.push_back(lookup_or_add(RHS)); 197 198 // Sort the operand value numbers so x<y and y>x get the same value number. 199 if (e.varargs[0] > e.varargs[1]) { 200 std::swap(e.varargs[0], e.varargs[1]); 201 Predicate = CmpInst::getSwappedPredicate(Predicate); 202 } 203 e.opcode = (Opcode << 8) | Predicate; 204 return e; 205 } 206 207 Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) { 208 assert(EI != 0 && "Not an ExtractValueInst?"); 209 Expression e; 210 e.type = EI->getType(); 211 e.opcode = 0; 212 213 IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand()); 214 if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) { 215 // EI might be an extract from one of our recognised intrinsics. If it 216 // is we'll synthesize a semantically equivalent expression instead on 217 // an extract value expression. 218 switch (I->getIntrinsicID()) { 219 case Intrinsic::sadd_with_overflow: 220 case Intrinsic::uadd_with_overflow: 221 e.opcode = Instruction::Add; 222 break; 223 case Intrinsic::ssub_with_overflow: 224 case Intrinsic::usub_with_overflow: 225 e.opcode = Instruction::Sub; 226 break; 227 case Intrinsic::smul_with_overflow: 228 case Intrinsic::umul_with_overflow: 229 e.opcode = Instruction::Mul; 230 break; 231 default: 232 break; 233 } 234 235 if (e.opcode != 0) { 236 // Intrinsic recognized. Grab its args to finish building the expression. 237 assert(I->getNumArgOperands() == 2 && 238 "Expect two args for recognised intrinsics."); 239 e.varargs.push_back(lookup_or_add(I->getArgOperand(0))); 240 e.varargs.push_back(lookup_or_add(I->getArgOperand(1))); 241 return e; 242 } 243 } 244 245 // Not a recognised intrinsic. Fall back to producing an extract value 246 // expression. 247 e.opcode = EI->getOpcode(); 248 for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end(); 249 OI != OE; ++OI) 250 e.varargs.push_back(lookup_or_add(*OI)); 251 252 for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end(); 253 II != IE; ++II) 254 e.varargs.push_back(*II); 255 256 return e; 257 } 258 259 //===----------------------------------------------------------------------===// 260 // ValueTable External Functions 261 //===----------------------------------------------------------------------===// 262 263 /// add - Insert a value into the table with a specified value number. 264 void ValueTable::add(Value *V, uint32_t num) { 265 valueNumbering.insert(std::make_pair(V, num)); 266 } 267 268 uint32_t ValueTable::lookup_or_add_call(CallInst* C) { 269 if (AA->doesNotAccessMemory(C)) { 270 Expression exp = create_expression(C); 271 uint32_t& e = expressionNumbering[exp]; 272 if (!e) e = nextValueNumber++; 273 valueNumbering[C] = e; 274 return e; 275 } else if (AA->onlyReadsMemory(C)) { 276 Expression exp = create_expression(C); 277 uint32_t& e = expressionNumbering[exp]; 278 if (!e) { 279 e = nextValueNumber++; 280 valueNumbering[C] = e; 281 return e; 282 } 283 if (!MD) { 284 e = nextValueNumber++; 285 valueNumbering[C] = e; 286 return e; 287 } 288 289 MemDepResult local_dep = MD->getDependency(C); 290 291 if (!local_dep.isDef() && !local_dep.isNonLocal()) { 292 valueNumbering[C] = nextValueNumber; 293 return nextValueNumber++; 294 } 295 296 if (local_dep.isDef()) { 297 CallInst* local_cdep = cast<CallInst>(local_dep.getInst()); 298 299 if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) { 300 valueNumbering[C] = nextValueNumber; 301 return nextValueNumber++; 302 } 303 304 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { 305 uint32_t c_vn = lookup_or_add(C->getArgOperand(i)); 306 uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i)); 307 if (c_vn != cd_vn) { 308 valueNumbering[C] = nextValueNumber; 309 return nextValueNumber++; 310 } 311 } 312 313 uint32_t v = lookup_or_add(local_cdep); 314 valueNumbering[C] = v; 315 return v; 316 } 317 318 // Non-local case. 319 const MemoryDependenceAnalysis::NonLocalDepInfo &deps = 320 MD->getNonLocalCallDependency(CallSite(C)); 321 // FIXME: Move the checking logic to MemDep! 322 CallInst* cdep = 0; 323 324 // Check to see if we have a single dominating call instruction that is 325 // identical to C. 326 for (unsigned i = 0, e = deps.size(); i != e; ++i) { 327 const NonLocalDepEntry *I = &deps[i]; 328 if (I->getResult().isNonLocal()) 329 continue; 330 331 // We don't handle non-definitions. If we already have a call, reject 332 // instruction dependencies. 333 if (!I->getResult().isDef() || cdep != 0) { 334 cdep = 0; 335 break; 336 } 337 338 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst()); 339 // FIXME: All duplicated with non-local case. 340 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){ 341 cdep = NonLocalDepCall; 342 continue; 343 } 344 345 cdep = 0; 346 break; 347 } 348 349 if (!cdep) { 350 valueNumbering[C] = nextValueNumber; 351 return nextValueNumber++; 352 } 353 354 if (cdep->getNumArgOperands() != C->getNumArgOperands()) { 355 valueNumbering[C] = nextValueNumber; 356 return nextValueNumber++; 357 } 358 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { 359 uint32_t c_vn = lookup_or_add(C->getArgOperand(i)); 360 uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i)); 361 if (c_vn != cd_vn) { 362 valueNumbering[C] = nextValueNumber; 363 return nextValueNumber++; 364 } 365 } 366 367 uint32_t v = lookup_or_add(cdep); 368 valueNumbering[C] = v; 369 return v; 370 371 } else { 372 valueNumbering[C] = nextValueNumber; 373 return nextValueNumber++; 374 } 375 } 376 377 /// lookup_or_add - Returns the value number for the specified value, assigning 378 /// it a new number if it did not have one before. 379 uint32_t ValueTable::lookup_or_add(Value *V) { 380 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); 381 if (VI != valueNumbering.end()) 382 return VI->second; 383 384 if (!isa<Instruction>(V)) { 385 valueNumbering[V] = nextValueNumber; 386 return nextValueNumber++; 387 } 388 389 Instruction* I = cast<Instruction>(V); 390 Expression exp; 391 switch (I->getOpcode()) { 392 case Instruction::Call: 393 return lookup_or_add_call(cast<CallInst>(I)); 394 case Instruction::Add: 395 case Instruction::FAdd: 396 case Instruction::Sub: 397 case Instruction::FSub: 398 case Instruction::Mul: 399 case Instruction::FMul: 400 case Instruction::UDiv: 401 case Instruction::SDiv: 402 case Instruction::FDiv: 403 case Instruction::URem: 404 case Instruction::SRem: 405 case Instruction::FRem: 406 case Instruction::Shl: 407 case Instruction::LShr: 408 case Instruction::AShr: 409 case Instruction::And: 410 case Instruction::Or : 411 case Instruction::Xor: 412 case Instruction::ICmp: 413 case Instruction::FCmp: 414 case Instruction::Trunc: 415 case Instruction::ZExt: 416 case Instruction::SExt: 417 case Instruction::FPToUI: 418 case Instruction::FPToSI: 419 case Instruction::UIToFP: 420 case Instruction::SIToFP: 421 case Instruction::FPTrunc: 422 case Instruction::FPExt: 423 case Instruction::PtrToInt: 424 case Instruction::IntToPtr: 425 case Instruction::BitCast: 426 case Instruction::Select: 427 case Instruction::ExtractElement: 428 case Instruction::InsertElement: 429 case Instruction::ShuffleVector: 430 case Instruction::InsertValue: 431 case Instruction::GetElementPtr: 432 exp = create_expression(I); 433 break; 434 case Instruction::ExtractValue: 435 exp = create_extractvalue_expression(cast<ExtractValueInst>(I)); 436 break; 437 default: 438 valueNumbering[V] = nextValueNumber; 439 return nextValueNumber++; 440 } 441 442 uint32_t& e = expressionNumbering[exp]; 443 if (!e) e = nextValueNumber++; 444 valueNumbering[V] = e; 445 return e; 446 } 447 448 /// lookup - Returns the value number of the specified value. Fails if 449 /// the value has not yet been numbered. 450 uint32_t ValueTable::lookup(Value *V) const { 451 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V); 452 assert(VI != valueNumbering.end() && "Value not numbered?"); 453 return VI->second; 454 } 455 456 /// lookup_or_add_cmp - Returns the value number of the given comparison, 457 /// assigning it a new number if it did not have one before. Useful when 458 /// we deduced the result of a comparison, but don't immediately have an 459 /// instruction realizing that comparison to hand. 460 uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode, 461 CmpInst::Predicate Predicate, 462 Value *LHS, Value *RHS) { 463 Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS); 464 uint32_t& e = expressionNumbering[exp]; 465 if (!e) e = nextValueNumber++; 466 return e; 467 } 468 469 /// clear - Remove all entries from the ValueTable. 470 void ValueTable::clear() { 471 valueNumbering.clear(); 472 expressionNumbering.clear(); 473 nextValueNumber = 1; 474 } 475 476 /// erase - Remove a value from the value numbering. 477 void ValueTable::erase(Value *V) { 478 valueNumbering.erase(V); 479 } 480 481 /// verifyRemoved - Verify that the value is removed from all internal data 482 /// structures. 483 void ValueTable::verifyRemoved(const Value *V) const { 484 for (DenseMap<Value*, uint32_t>::const_iterator 485 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { 486 assert(I->first != V && "Inst still occurs in value numbering map!"); 487 } 488 } 489 490 //===----------------------------------------------------------------------===// 491 // GVN Pass 492 //===----------------------------------------------------------------------===// 493 494 namespace { 495 496 class GVN : public FunctionPass { 497 bool NoLoads; 498 MemoryDependenceAnalysis *MD; 499 DominatorTree *DT; 500 const TargetData *TD; 501 const TargetLibraryInfo *TLI; 502 503 ValueTable VN; 504 505 /// LeaderTable - A mapping from value numbers to lists of Value*'s that 506 /// have that value number. Use findLeader to query it. 507 struct LeaderTableEntry { 508 Value *Val; 509 BasicBlock *BB; 510 LeaderTableEntry *Next; 511 }; 512 DenseMap<uint32_t, LeaderTableEntry> LeaderTable; 513 BumpPtrAllocator TableAllocator; 514 515 SmallVector<Instruction*, 8> InstrsToErase; 516 public: 517 static char ID; // Pass identification, replacement for typeid 518 explicit GVN(bool noloads = false) 519 : FunctionPass(ID), NoLoads(noloads), MD(0) { 520 initializeGVNPass(*PassRegistry::getPassRegistry()); 521 } 522 523 bool runOnFunction(Function &F); 524 525 /// markInstructionForDeletion - This removes the specified instruction from 526 /// our various maps and marks it for deletion. 527 void markInstructionForDeletion(Instruction *I) { 528 VN.erase(I); 529 InstrsToErase.push_back(I); 530 } 531 532 const TargetData *getTargetData() const { return TD; } 533 DominatorTree &getDominatorTree() const { return *DT; } 534 AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); } 535 MemoryDependenceAnalysis &getMemDep() const { return *MD; } 536 private: 537 /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for 538 /// its value number. 539 void addToLeaderTable(uint32_t N, Value *V, BasicBlock *BB) { 540 LeaderTableEntry &Curr = LeaderTable[N]; 541 if (!Curr.Val) { 542 Curr.Val = V; 543 Curr.BB = BB; 544 return; 545 } 546 547 LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>(); 548 Node->Val = V; 549 Node->BB = BB; 550 Node->Next = Curr.Next; 551 Curr.Next = Node; 552 } 553 554 /// removeFromLeaderTable - Scan the list of values corresponding to a given 555 /// value number, and remove the given value if encountered. 556 void removeFromLeaderTable(uint32_t N, Value *V, BasicBlock *BB) { 557 LeaderTableEntry* Prev = 0; 558 LeaderTableEntry* Curr = &LeaderTable[N]; 559 560 while (Curr->Val != V || Curr->BB != BB) { 561 Prev = Curr; 562 Curr = Curr->Next; 563 } 564 565 if (Prev) { 566 Prev->Next = Curr->Next; 567 } else { 568 if (!Curr->Next) { 569 Curr->Val = 0; 570 Curr->BB = 0; 571 } else { 572 LeaderTableEntry* Next = Curr->Next; 573 Curr->Val = Next->Val; 574 Curr->BB = Next->BB; 575 Curr->Next = Next->Next; 576 } 577 } 578 } 579 580 // List of critical edges to be split between iterations. 581 SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit; 582 583 // This transformation requires dominator postdominator info 584 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 585 AU.addRequired<DominatorTree>(); 586 AU.addRequired<TargetLibraryInfo>(); 587 if (!NoLoads) 588 AU.addRequired<MemoryDependenceAnalysis>(); 589 AU.addRequired<AliasAnalysis>(); 590 591 AU.addPreserved<DominatorTree>(); 592 AU.addPreserved<AliasAnalysis>(); 593 } 594 595 596 // Helper fuctions 597 // FIXME: eliminate or document these better 598 bool processLoad(LoadInst *L); 599 bool processInstruction(Instruction *I); 600 bool processNonLocalLoad(LoadInst *L); 601 bool processBlock(BasicBlock *BB); 602 void dump(DenseMap<uint32_t, Value*> &d); 603 bool iterateOnFunction(Function &F); 604 bool performPRE(Function &F); 605 Value *findLeader(BasicBlock *BB, uint32_t num); 606 void cleanupGlobalSets(); 607 void verifyRemoved(const Instruction *I) const; 608 bool splitCriticalEdges(); 609 unsigned replaceAllDominatedUsesWith(Value *From, Value *To, 610 BasicBlock *Root); 611 bool propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root); 612 }; 613 614 char GVN::ID = 0; 615 } 616 617 // createGVNPass - The public interface to this file... 618 FunctionPass *llvm::createGVNPass(bool NoLoads) { 619 return new GVN(NoLoads); 620 } 621 622 INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false) 623 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis) 624 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 625 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 626 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 627 INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false) 628 629 void GVN::dump(DenseMap<uint32_t, Value*>& d) { 630 errs() << "{\n"; 631 for (DenseMap<uint32_t, Value*>::iterator I = d.begin(), 632 E = d.end(); I != E; ++I) { 633 errs() << I->first << "\n"; 634 I->second->dump(); 635 } 636 errs() << "}\n"; 637 } 638 639 /// IsValueFullyAvailableInBlock - Return true if we can prove that the value 640 /// we're analyzing is fully available in the specified block. As we go, keep 641 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This 642 /// map is actually a tri-state map with the following values: 643 /// 0) we know the block *is not* fully available. 644 /// 1) we know the block *is* fully available. 645 /// 2) we do not know whether the block is fully available or not, but we are 646 /// currently speculating that it will be. 647 /// 3) we are speculating for this block and have used that to speculate for 648 /// other blocks. 649 static bool IsValueFullyAvailableInBlock(BasicBlock *BB, 650 DenseMap<BasicBlock*, char> &FullyAvailableBlocks) { 651 // Optimistically assume that the block is fully available and check to see 652 // if we already know about this block in one lookup. 653 std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV = 654 FullyAvailableBlocks.insert(std::make_pair(BB, 2)); 655 656 // If the entry already existed for this block, return the precomputed value. 657 if (!IV.second) { 658 // If this is a speculative "available" value, mark it as being used for 659 // speculation of other blocks. 660 if (IV.first->second == 2) 661 IV.first->second = 3; 662 return IV.first->second != 0; 663 } 664 665 // Otherwise, see if it is fully available in all predecessors. 666 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 667 668 // If this block has no predecessors, it isn't live-in here. 669 if (PI == PE) 670 goto SpeculationFailure; 671 672 for (; PI != PE; ++PI) 673 // If the value isn't fully available in one of our predecessors, then it 674 // isn't fully available in this block either. Undo our previous 675 // optimistic assumption and bail out. 676 if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks)) 677 goto SpeculationFailure; 678 679 return true; 680 681 // SpeculationFailure - If we get here, we found out that this is not, after 682 // all, a fully-available block. We have a problem if we speculated on this and 683 // used the speculation to mark other blocks as available. 684 SpeculationFailure: 685 char &BBVal = FullyAvailableBlocks[BB]; 686 687 // If we didn't speculate on this, just return with it set to false. 688 if (BBVal == 2) { 689 BBVal = 0; 690 return false; 691 } 692 693 // If we did speculate on this value, we could have blocks set to 1 that are 694 // incorrect. Walk the (transitive) successors of this block and mark them as 695 // 0 if set to one. 696 SmallVector<BasicBlock*, 32> BBWorklist; 697 BBWorklist.push_back(BB); 698 699 do { 700 BasicBlock *Entry = BBWorklist.pop_back_val(); 701 // Note that this sets blocks to 0 (unavailable) if they happen to not 702 // already be in FullyAvailableBlocks. This is safe. 703 char &EntryVal = FullyAvailableBlocks[Entry]; 704 if (EntryVal == 0) continue; // Already unavailable. 705 706 // Mark as unavailable. 707 EntryVal = 0; 708 709 for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I) 710 BBWorklist.push_back(*I); 711 } while (!BBWorklist.empty()); 712 713 return false; 714 } 715 716 717 /// CanCoerceMustAliasedValueToLoad - Return true if 718 /// CoerceAvailableValueToLoadType will succeed. 719 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal, 720 Type *LoadTy, 721 const TargetData &TD) { 722 // If the loaded or stored value is an first class array or struct, don't try 723 // to transform them. We need to be able to bitcast to integer. 724 if (LoadTy->isStructTy() || LoadTy->isArrayTy() || 725 StoredVal->getType()->isStructTy() || 726 StoredVal->getType()->isArrayTy()) 727 return false; 728 729 // The store has to be at least as big as the load. 730 if (TD.getTypeSizeInBits(StoredVal->getType()) < 731 TD.getTypeSizeInBits(LoadTy)) 732 return false; 733 734 return true; 735 } 736 737 738 /// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and 739 /// then a load from a must-aliased pointer of a different type, try to coerce 740 /// the stored value. LoadedTy is the type of the load we want to replace and 741 /// InsertPt is the place to insert new instructions. 742 /// 743 /// If we can't do it, return null. 744 static Value *CoerceAvailableValueToLoadType(Value *StoredVal, 745 Type *LoadedTy, 746 Instruction *InsertPt, 747 const TargetData &TD) { 748 if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD)) 749 return 0; 750 751 // If this is already the right type, just return it. 752 Type *StoredValTy = StoredVal->getType(); 753 754 uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy); 755 uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy); 756 757 // If the store and reload are the same size, we can always reuse it. 758 if (StoreSize == LoadSize) { 759 // Pointer to Pointer -> use bitcast. 760 if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy()) 761 return new BitCastInst(StoredVal, LoadedTy, "", InsertPt); 762 763 // Convert source pointers to integers, which can be bitcast. 764 if (StoredValTy->isPointerTy()) { 765 StoredValTy = TD.getIntPtrType(StoredValTy->getContext()); 766 StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt); 767 } 768 769 Type *TypeToCastTo = LoadedTy; 770 if (TypeToCastTo->isPointerTy()) 771 TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext()); 772 773 if (StoredValTy != TypeToCastTo) 774 StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt); 775 776 // Cast to pointer if the load needs a pointer type. 777 if (LoadedTy->isPointerTy()) 778 StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt); 779 780 return StoredVal; 781 } 782 783 // If the loaded value is smaller than the available value, then we can 784 // extract out a piece from it. If the available value is too small, then we 785 // can't do anything. 786 assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail"); 787 788 // Convert source pointers to integers, which can be manipulated. 789 if (StoredValTy->isPointerTy()) { 790 StoredValTy = TD.getIntPtrType(StoredValTy->getContext()); 791 StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt); 792 } 793 794 // Convert vectors and fp to integer, which can be manipulated. 795 if (!StoredValTy->isIntegerTy()) { 796 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize); 797 StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt); 798 } 799 800 // If this is a big-endian system, we need to shift the value down to the low 801 // bits so that a truncate will work. 802 if (TD.isBigEndian()) { 803 Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize); 804 StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt); 805 } 806 807 // Truncate the integer to the right size now. 808 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize); 809 StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt); 810 811 if (LoadedTy == NewIntTy) 812 return StoredVal; 813 814 // If the result is a pointer, inttoptr. 815 if (LoadedTy->isPointerTy()) 816 return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt); 817 818 // Otherwise, bitcast. 819 return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt); 820 } 821 822 /// AnalyzeLoadFromClobberingWrite - This function is called when we have a 823 /// memdep query of a load that ends up being a clobbering memory write (store, 824 /// memset, memcpy, memmove). This means that the write *may* provide bits used 825 /// by the load but we can't be sure because the pointers don't mustalias. 826 /// 827 /// Check this case to see if there is anything more we can do before we give 828 /// up. This returns -1 if we have to give up, or a byte number in the stored 829 /// value of the piece that feeds the load. 830 static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, 831 Value *WritePtr, 832 uint64_t WriteSizeInBits, 833 const TargetData &TD) { 834 // If the loaded or stored value is a first class array or struct, don't try 835 // to transform them. We need to be able to bitcast to integer. 836 if (LoadTy->isStructTy() || LoadTy->isArrayTy()) 837 return -1; 838 839 int64_t StoreOffset = 0, LoadOffset = 0; 840 Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD); 841 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD); 842 if (StoreBase != LoadBase) 843 return -1; 844 845 // If the load and store are to the exact same address, they should have been 846 // a must alias. AA must have gotten confused. 847 // FIXME: Study to see if/when this happens. One case is forwarding a memset 848 // to a load from the base of the memset. 849 #if 0 850 if (LoadOffset == StoreOffset) { 851 dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n" 852 << "Base = " << *StoreBase << "\n" 853 << "Store Ptr = " << *WritePtr << "\n" 854 << "Store Offs = " << StoreOffset << "\n" 855 << "Load Ptr = " << *LoadPtr << "\n"; 856 abort(); 857 } 858 #endif 859 860 // If the load and store don't overlap at all, the store doesn't provide 861 // anything to the load. In this case, they really don't alias at all, AA 862 // must have gotten confused. 863 uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy); 864 865 if ((WriteSizeInBits & 7) | (LoadSize & 7)) 866 return -1; 867 uint64_t StoreSize = WriteSizeInBits >> 3; // Convert to bytes. 868 LoadSize >>= 3; 869 870 871 bool isAAFailure = false; 872 if (StoreOffset < LoadOffset) 873 isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset; 874 else 875 isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset; 876 877 if (isAAFailure) { 878 #if 0 879 dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n" 880 << "Base = " << *StoreBase << "\n" 881 << "Store Ptr = " << *WritePtr << "\n" 882 << "Store Offs = " << StoreOffset << "\n" 883 << "Load Ptr = " << *LoadPtr << "\n"; 884 abort(); 885 #endif 886 return -1; 887 } 888 889 // If the Load isn't completely contained within the stored bits, we don't 890 // have all the bits to feed it. We could do something crazy in the future 891 // (issue a smaller load then merge the bits in) but this seems unlikely to be 892 // valuable. 893 if (StoreOffset > LoadOffset || 894 StoreOffset+StoreSize < LoadOffset+LoadSize) 895 return -1; 896 897 // Okay, we can do this transformation. Return the number of bytes into the 898 // store that the load is. 899 return LoadOffset-StoreOffset; 900 } 901 902 /// AnalyzeLoadFromClobberingStore - This function is called when we have a 903 /// memdep query of a load that ends up being a clobbering store. 904 static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, 905 StoreInst *DepSI, 906 const TargetData &TD) { 907 // Cannot handle reading from store of first-class aggregate yet. 908 if (DepSI->getValueOperand()->getType()->isStructTy() || 909 DepSI->getValueOperand()->getType()->isArrayTy()) 910 return -1; 911 912 Value *StorePtr = DepSI->getPointerOperand(); 913 uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType()); 914 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, 915 StorePtr, StoreSize, TD); 916 } 917 918 /// AnalyzeLoadFromClobberingLoad - This function is called when we have a 919 /// memdep query of a load that ends up being clobbered by another load. See if 920 /// the other load can feed into the second load. 921 static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, 922 LoadInst *DepLI, const TargetData &TD){ 923 // Cannot handle reading from store of first-class aggregate yet. 924 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy()) 925 return -1; 926 927 Value *DepPtr = DepLI->getPointerOperand(); 928 uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType()); 929 int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD); 930 if (R != -1) return R; 931 932 // If we have a load/load clobber an DepLI can be widened to cover this load, 933 // then we should widen it! 934 int64_t LoadOffs = 0; 935 const Value *LoadBase = 936 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD); 937 unsigned LoadSize = TD.getTypeStoreSize(LoadTy); 938 939 unsigned Size = MemoryDependenceAnalysis:: 940 getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD); 941 if (Size == 0) return -1; 942 943 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD); 944 } 945 946 947 948 static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, 949 MemIntrinsic *MI, 950 const TargetData &TD) { 951 // If the mem operation is a non-constant size, we can't handle it. 952 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength()); 953 if (SizeCst == 0) return -1; 954 uint64_t MemSizeInBits = SizeCst->getZExtValue()*8; 955 956 // If this is memset, we just need to see if the offset is valid in the size 957 // of the memset.. 958 if (MI->getIntrinsicID() == Intrinsic::memset) 959 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 960 MemSizeInBits, TD); 961 962 // If we have a memcpy/memmove, the only case we can handle is if this is a 963 // copy from constant memory. In that case, we can read directly from the 964 // constant memory. 965 MemTransferInst *MTI = cast<MemTransferInst>(MI); 966 967 Constant *Src = dyn_cast<Constant>(MTI->getSource()); 968 if (Src == 0) return -1; 969 970 GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD)); 971 if (GV == 0 || !GV->isConstant()) return -1; 972 973 // See if the access is within the bounds of the transfer. 974 int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, 975 MI->getDest(), MemSizeInBits, TD); 976 if (Offset == -1) 977 return Offset; 978 979 // Otherwise, see if we can constant fold a load from the constant with the 980 // offset applied as appropriate. 981 Src = ConstantExpr::getBitCast(Src, 982 llvm::Type::getInt8PtrTy(Src->getContext())); 983 Constant *OffsetCst = 984 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 985 Src = ConstantExpr::getGetElementPtr(Src, OffsetCst); 986 Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy)); 987 if (ConstantFoldLoadFromConstPtr(Src, &TD)) 988 return Offset; 989 return -1; 990 } 991 992 993 /// GetStoreValueForLoad - This function is called when we have a 994 /// memdep query of a load that ends up being a clobbering store. This means 995 /// that the store provides bits used by the load but we the pointers don't 996 /// mustalias. Check this case to see if there is anything more we can do 997 /// before we give up. 998 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset, 999 Type *LoadTy, 1000 Instruction *InsertPt, const TargetData &TD){ 1001 LLVMContext &Ctx = SrcVal->getType()->getContext(); 1002 1003 uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8; 1004 uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8; 1005 1006 IRBuilder<> Builder(InsertPt->getParent(), InsertPt); 1007 1008 // Compute which bits of the stored value are being used by the load. Convert 1009 // to an integer type to start with. 1010 if (SrcVal->getType()->isPointerTy()) 1011 SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx)); 1012 if (!SrcVal->getType()->isIntegerTy()) 1013 SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8)); 1014 1015 // Shift the bits to the least significant depending on endianness. 1016 unsigned ShiftAmt; 1017 if (TD.isLittleEndian()) 1018 ShiftAmt = Offset*8; 1019 else 1020 ShiftAmt = (StoreSize-LoadSize-Offset)*8; 1021 1022 if (ShiftAmt) 1023 SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt); 1024 1025 if (LoadSize != StoreSize) 1026 SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8)); 1027 1028 return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD); 1029 } 1030 1031 /// GetLoadValueForLoad - This function is called when we have a 1032 /// memdep query of a load that ends up being a clobbering load. This means 1033 /// that the load *may* provide bits used by the load but we can't be sure 1034 /// because the pointers don't mustalias. Check this case to see if there is 1035 /// anything more we can do before we give up. 1036 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, 1037 Type *LoadTy, Instruction *InsertPt, 1038 GVN &gvn) { 1039 const TargetData &TD = *gvn.getTargetData(); 1040 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to 1041 // widen SrcVal out to a larger load. 1042 unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType()); 1043 unsigned LoadSize = TD.getTypeStoreSize(LoadTy); 1044 if (Offset+LoadSize > SrcValSize) { 1045 assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!"); 1046 assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load"); 1047 // If we have a load/load clobber an DepLI can be widened to cover this 1048 // load, then we should widen it to the next power of 2 size big enough! 1049 unsigned NewLoadSize = Offset+LoadSize; 1050 if (!isPowerOf2_32(NewLoadSize)) 1051 NewLoadSize = NextPowerOf2(NewLoadSize); 1052 1053 Value *PtrVal = SrcVal->getPointerOperand(); 1054 1055 // Insert the new load after the old load. This ensures that subsequent 1056 // memdep queries will find the new load. We can't easily remove the old 1057 // load completely because it is already in the value numbering table. 1058 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal)); 1059 Type *DestPTy = 1060 IntegerType::get(LoadTy->getContext(), NewLoadSize*8); 1061 DestPTy = PointerType::get(DestPTy, 1062 cast<PointerType>(PtrVal->getType())->getAddressSpace()); 1063 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc()); 1064 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy); 1065 LoadInst *NewLoad = Builder.CreateLoad(PtrVal); 1066 NewLoad->takeName(SrcVal); 1067 NewLoad->setAlignment(SrcVal->getAlignment()); 1068 1069 DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n"); 1070 DEBUG(dbgs() << "TO: " << *NewLoad << "\n"); 1071 1072 // Replace uses of the original load with the wider load. On a big endian 1073 // system, we need to shift down to get the relevant bits. 1074 Value *RV = NewLoad; 1075 if (TD.isBigEndian()) 1076 RV = Builder.CreateLShr(RV, 1077 NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits()); 1078 RV = Builder.CreateTrunc(RV, SrcVal->getType()); 1079 SrcVal->replaceAllUsesWith(RV); 1080 1081 // We would like to use gvn.markInstructionForDeletion here, but we can't 1082 // because the load is already memoized into the leader map table that GVN 1083 // tracks. It is potentially possible to remove the load from the table, 1084 // but then there all of the operations based on it would need to be 1085 // rehashed. Just leave the dead load around. 1086 gvn.getMemDep().removeInstruction(SrcVal); 1087 SrcVal = NewLoad; 1088 } 1089 1090 return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD); 1091 } 1092 1093 1094 /// GetMemInstValueForLoad - This function is called when we have a 1095 /// memdep query of a load that ends up being a clobbering mem intrinsic. 1096 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 1097 Type *LoadTy, Instruction *InsertPt, 1098 const TargetData &TD){ 1099 LLVMContext &Ctx = LoadTy->getContext(); 1100 uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8; 1101 1102 IRBuilder<> Builder(InsertPt->getParent(), InsertPt); 1103 1104 // We know that this method is only called when the mem transfer fully 1105 // provides the bits for the load. 1106 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) { 1107 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and 1108 // independently of what the offset is. 1109 Value *Val = MSI->getValue(); 1110 if (LoadSize != 1) 1111 Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8)); 1112 1113 Value *OneElt = Val; 1114 1115 // Splat the value out to the right number of bits. 1116 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) { 1117 // If we can double the number of bytes set, do it. 1118 if (NumBytesSet*2 <= LoadSize) { 1119 Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8); 1120 Val = Builder.CreateOr(Val, ShVal); 1121 NumBytesSet <<= 1; 1122 continue; 1123 } 1124 1125 // Otherwise insert one byte at a time. 1126 Value *ShVal = Builder.CreateShl(Val, 1*8); 1127 Val = Builder.CreateOr(OneElt, ShVal); 1128 ++NumBytesSet; 1129 } 1130 1131 return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD); 1132 } 1133 1134 // Otherwise, this is a memcpy/memmove from a constant global. 1135 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst); 1136 Constant *Src = cast<Constant>(MTI->getSource()); 1137 1138 // Otherwise, see if we can constant fold a load from the constant with the 1139 // offset applied as appropriate. 1140 Src = ConstantExpr::getBitCast(Src, 1141 llvm::Type::getInt8PtrTy(Src->getContext())); 1142 Constant *OffsetCst = 1143 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 1144 Src = ConstantExpr::getGetElementPtr(Src, OffsetCst); 1145 Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy)); 1146 return ConstantFoldLoadFromConstPtr(Src, &TD); 1147 } 1148 1149 namespace { 1150 1151 struct AvailableValueInBlock { 1152 /// BB - The basic block in question. 1153 BasicBlock *BB; 1154 enum ValType { 1155 SimpleVal, // A simple offsetted value that is accessed. 1156 LoadVal, // A value produced by a load. 1157 MemIntrin // A memory intrinsic which is loaded from. 1158 }; 1159 1160 /// V - The value that is live out of the block. 1161 PointerIntPair<Value *, 2, ValType> Val; 1162 1163 /// Offset - The byte offset in Val that is interesting for the load query. 1164 unsigned Offset; 1165 1166 static AvailableValueInBlock get(BasicBlock *BB, Value *V, 1167 unsigned Offset = 0) { 1168 AvailableValueInBlock Res; 1169 Res.BB = BB; 1170 Res.Val.setPointer(V); 1171 Res.Val.setInt(SimpleVal); 1172 Res.Offset = Offset; 1173 return Res; 1174 } 1175 1176 static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI, 1177 unsigned Offset = 0) { 1178 AvailableValueInBlock Res; 1179 Res.BB = BB; 1180 Res.Val.setPointer(MI); 1181 Res.Val.setInt(MemIntrin); 1182 Res.Offset = Offset; 1183 return Res; 1184 } 1185 1186 static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI, 1187 unsigned Offset = 0) { 1188 AvailableValueInBlock Res; 1189 Res.BB = BB; 1190 Res.Val.setPointer(LI); 1191 Res.Val.setInt(LoadVal); 1192 Res.Offset = Offset; 1193 return Res; 1194 } 1195 1196 bool isSimpleValue() const { return Val.getInt() == SimpleVal; } 1197 bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; } 1198 bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; } 1199 1200 Value *getSimpleValue() const { 1201 assert(isSimpleValue() && "Wrong accessor"); 1202 return Val.getPointer(); 1203 } 1204 1205 LoadInst *getCoercedLoadValue() const { 1206 assert(isCoercedLoadValue() && "Wrong accessor"); 1207 return cast<LoadInst>(Val.getPointer()); 1208 } 1209 1210 MemIntrinsic *getMemIntrinValue() const { 1211 assert(isMemIntrinValue() && "Wrong accessor"); 1212 return cast<MemIntrinsic>(Val.getPointer()); 1213 } 1214 1215 /// MaterializeAdjustedValue - Emit code into this block to adjust the value 1216 /// defined here to the specified type. This handles various coercion cases. 1217 Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const { 1218 Value *Res; 1219 if (isSimpleValue()) { 1220 Res = getSimpleValue(); 1221 if (Res->getType() != LoadTy) { 1222 const TargetData *TD = gvn.getTargetData(); 1223 assert(TD && "Need target data to handle type mismatch case"); 1224 Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(), 1225 *TD); 1226 1227 DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " " 1228 << *getSimpleValue() << '\n' 1229 << *Res << '\n' << "\n\n\n"); 1230 } 1231 } else if (isCoercedLoadValue()) { 1232 LoadInst *Load = getCoercedLoadValue(); 1233 if (Load->getType() == LoadTy && Offset == 0) { 1234 Res = Load; 1235 } else { 1236 Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(), 1237 gvn); 1238 1239 DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << " " 1240 << *getCoercedLoadValue() << '\n' 1241 << *Res << '\n' << "\n\n\n"); 1242 } 1243 } else { 1244 const TargetData *TD = gvn.getTargetData(); 1245 assert(TD && "Need target data to handle type mismatch case"); 1246 Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset, 1247 LoadTy, BB->getTerminator(), *TD); 1248 DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset 1249 << " " << *getMemIntrinValue() << '\n' 1250 << *Res << '\n' << "\n\n\n"); 1251 } 1252 return Res; 1253 } 1254 }; 1255 1256 } // end anonymous namespace 1257 1258 /// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock, 1259 /// construct SSA form, allowing us to eliminate LI. This returns the value 1260 /// that should be used at LI's definition site. 1261 static Value *ConstructSSAForLoadSet(LoadInst *LI, 1262 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, 1263 GVN &gvn) { 1264 // Check for the fully redundant, dominating load case. In this case, we can 1265 // just use the dominating value directly. 1266 if (ValuesPerBlock.size() == 1 && 1267 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, 1268 LI->getParent())) 1269 return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn); 1270 1271 // Otherwise, we have to construct SSA form. 1272 SmallVector<PHINode*, 8> NewPHIs; 1273 SSAUpdater SSAUpdate(&NewPHIs); 1274 SSAUpdate.Initialize(LI->getType(), LI->getName()); 1275 1276 Type *LoadTy = LI->getType(); 1277 1278 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) { 1279 const AvailableValueInBlock &AV = ValuesPerBlock[i]; 1280 BasicBlock *BB = AV.BB; 1281 1282 if (SSAUpdate.HasValueForBlock(BB)) 1283 continue; 1284 1285 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn)); 1286 } 1287 1288 // Perform PHI construction. 1289 Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent()); 1290 1291 // If new PHI nodes were created, notify alias analysis. 1292 if (V->getType()->isPointerTy()) { 1293 AliasAnalysis *AA = gvn.getAliasAnalysis(); 1294 1295 for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) 1296 AA->copyValue(LI, NewPHIs[i]); 1297 1298 // Now that we've copied information to the new PHIs, scan through 1299 // them again and inform alias analysis that we've added potentially 1300 // escaping uses to any values that are operands to these PHIs. 1301 for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) { 1302 PHINode *P = NewPHIs[i]; 1303 for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) { 1304 unsigned jj = PHINode::getOperandNumForIncomingValue(ii); 1305 AA->addEscapingUse(P->getOperandUse(jj)); 1306 } 1307 } 1308 } 1309 1310 return V; 1311 } 1312 1313 static bool isLifetimeStart(const Instruction *Inst) { 1314 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) 1315 return II->getIntrinsicID() == Intrinsic::lifetime_start; 1316 return false; 1317 } 1318 1319 /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are 1320 /// non-local by performing PHI construction. 1321 bool GVN::processNonLocalLoad(LoadInst *LI) { 1322 // Find the non-local dependencies of the load. 1323 SmallVector<NonLocalDepResult, 64> Deps; 1324 AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI); 1325 MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps); 1326 //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: " 1327 // << Deps.size() << *LI << '\n'); 1328 1329 // If we had to process more than one hundred blocks to find the 1330 // dependencies, this load isn't worth worrying about. Optimizing 1331 // it will be too expensive. 1332 unsigned NumDeps = Deps.size(); 1333 if (NumDeps > 100) 1334 return false; 1335 1336 // If we had a phi translation failure, we'll have a single entry which is a 1337 // clobber in the current block. Reject this early. 1338 if (NumDeps == 1 && 1339 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { 1340 DEBUG( 1341 dbgs() << "GVN: non-local load "; 1342 WriteAsOperand(dbgs(), LI); 1343 dbgs() << " has unknown dependencies\n"; 1344 ); 1345 return false; 1346 } 1347 1348 // Filter out useless results (non-locals, etc). Keep track of the blocks 1349 // where we have a value available in repl, also keep track of whether we see 1350 // dependencies that produce an unknown value for the load (such as a call 1351 // that could potentially clobber the load). 1352 SmallVector<AvailableValueInBlock, 64> ValuesPerBlock; 1353 SmallVector<BasicBlock*, 64> UnavailableBlocks; 1354 1355 for (unsigned i = 0, e = NumDeps; i != e; ++i) { 1356 BasicBlock *DepBB = Deps[i].getBB(); 1357 MemDepResult DepInfo = Deps[i].getResult(); 1358 1359 if (!DepInfo.isDef() && !DepInfo.isClobber()) { 1360 UnavailableBlocks.push_back(DepBB); 1361 continue; 1362 } 1363 1364 if (DepInfo.isClobber()) { 1365 // The address being loaded in this non-local block may not be the same as 1366 // the pointer operand of the load if PHI translation occurs. Make sure 1367 // to consider the right address. 1368 Value *Address = Deps[i].getAddress(); 1369 1370 // If the dependence is to a store that writes to a superset of the bits 1371 // read by the load, we can extract the bits we need for the load from the 1372 // stored value. 1373 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) { 1374 if (TD && Address) { 1375 int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address, 1376 DepSI, *TD); 1377 if (Offset != -1) { 1378 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, 1379 DepSI->getValueOperand(), 1380 Offset)); 1381 continue; 1382 } 1383 } 1384 } 1385 1386 // Check to see if we have something like this: 1387 // load i32* P 1388 // load i8* (P+1) 1389 // if we have this, replace the later with an extraction from the former. 1390 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) { 1391 // If this is a clobber and L is the first instruction in its block, then 1392 // we have the first instruction in the entry block. 1393 if (DepLI != LI && Address && TD) { 1394 int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(), 1395 LI->getPointerOperand(), 1396 DepLI, *TD); 1397 1398 if (Offset != -1) { 1399 ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI, 1400 Offset)); 1401 continue; 1402 } 1403 } 1404 } 1405 1406 // If the clobbering value is a memset/memcpy/memmove, see if we can 1407 // forward a value on from it. 1408 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) { 1409 if (TD && Address) { 1410 int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address, 1411 DepMI, *TD); 1412 if (Offset != -1) { 1413 ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI, 1414 Offset)); 1415 continue; 1416 } 1417 } 1418 } 1419 1420 UnavailableBlocks.push_back(DepBB); 1421 continue; 1422 } 1423 1424 // DepInfo.isDef() here 1425 1426 Instruction *DepInst = DepInfo.getInst(); 1427 1428 // Loading the allocation -> undef. 1429 if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) || 1430 // Loading immediately after lifetime begin -> undef. 1431 isLifetimeStart(DepInst)) { 1432 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, 1433 UndefValue::get(LI->getType()))); 1434 continue; 1435 } 1436 1437 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { 1438 // Reject loads and stores that are to the same address but are of 1439 // different types if we have to. 1440 if (S->getValueOperand()->getType() != LI->getType()) { 1441 // If the stored value is larger or equal to the loaded value, we can 1442 // reuse it. 1443 if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(), 1444 LI->getType(), *TD)) { 1445 UnavailableBlocks.push_back(DepBB); 1446 continue; 1447 } 1448 } 1449 1450 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, 1451 S->getValueOperand())); 1452 continue; 1453 } 1454 1455 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { 1456 // If the types mismatch and we can't handle it, reject reuse of the load. 1457 if (LD->getType() != LI->getType()) { 1458 // If the stored value is larger or equal to the loaded value, we can 1459 // reuse it. 1460 if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){ 1461 UnavailableBlocks.push_back(DepBB); 1462 continue; 1463 } 1464 } 1465 ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD)); 1466 continue; 1467 } 1468 1469 UnavailableBlocks.push_back(DepBB); 1470 continue; 1471 } 1472 1473 // If we have no predecessors that produce a known value for this load, exit 1474 // early. 1475 if (ValuesPerBlock.empty()) return false; 1476 1477 // If all of the instructions we depend on produce a known value for this 1478 // load, then it is fully redundant and we can use PHI insertion to compute 1479 // its value. Insert PHIs and remove the fully redundant value now. 1480 if (UnavailableBlocks.empty()) { 1481 DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n'); 1482 1483 // Perform PHI construction. 1484 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); 1485 LI->replaceAllUsesWith(V); 1486 1487 if (isa<PHINode>(V)) 1488 V->takeName(LI); 1489 if (V->getType()->isPointerTy()) 1490 MD->invalidateCachedPointerInfo(V); 1491 markInstructionForDeletion(LI); 1492 ++NumGVNLoad; 1493 return true; 1494 } 1495 1496 if (!EnablePRE || !EnableLoadPRE) 1497 return false; 1498 1499 // Okay, we have *some* definitions of the value. This means that the value 1500 // is available in some of our (transitive) predecessors. Lets think about 1501 // doing PRE of this load. This will involve inserting a new load into the 1502 // predecessor when it's not available. We could do this in general, but 1503 // prefer to not increase code size. As such, we only do this when we know 1504 // that we only have to insert *one* load (which means we're basically moving 1505 // the load, not inserting a new one). 1506 1507 SmallPtrSet<BasicBlock *, 4> Blockers; 1508 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i) 1509 Blockers.insert(UnavailableBlocks[i]); 1510 1511 // Let's find the first basic block with more than one predecessor. Walk 1512 // backwards through predecessors if needed. 1513 BasicBlock *LoadBB = LI->getParent(); 1514 BasicBlock *TmpBB = LoadBB; 1515 1516 bool isSinglePred = false; 1517 bool allSingleSucc = true; 1518 while (TmpBB->getSinglePredecessor()) { 1519 isSinglePred = true; 1520 TmpBB = TmpBB->getSinglePredecessor(); 1521 if (TmpBB == LoadBB) // Infinite (unreachable) loop. 1522 return false; 1523 if (Blockers.count(TmpBB)) 1524 return false; 1525 1526 // If any of these blocks has more than one successor (i.e. if the edge we 1527 // just traversed was critical), then there are other paths through this 1528 // block along which the load may not be anticipated. Hoisting the load 1529 // above this block would be adding the load to execution paths along 1530 // which it was not previously executed. 1531 if (TmpBB->getTerminator()->getNumSuccessors() != 1) 1532 return false; 1533 } 1534 1535 assert(TmpBB); 1536 LoadBB = TmpBB; 1537 1538 // FIXME: It is extremely unclear what this loop is doing, other than 1539 // artificially restricting loadpre. 1540 if (isSinglePred) { 1541 bool isHot = false; 1542 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) { 1543 const AvailableValueInBlock &AV = ValuesPerBlock[i]; 1544 if (AV.isSimpleValue()) 1545 // "Hot" Instruction is in some loop (because it dominates its dep. 1546 // instruction). 1547 if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue())) 1548 if (DT->dominates(LI, I)) { 1549 isHot = true; 1550 break; 1551 } 1552 } 1553 1554 // We are interested only in "hot" instructions. We don't want to do any 1555 // mis-optimizations here. 1556 if (!isHot) 1557 return false; 1558 } 1559 1560 // Check to see how many predecessors have the loaded value fully 1561 // available. 1562 DenseMap<BasicBlock*, Value*> PredLoads; 1563 DenseMap<BasicBlock*, char> FullyAvailableBlocks; 1564 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) 1565 FullyAvailableBlocks[ValuesPerBlock[i].BB] = true; 1566 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i) 1567 FullyAvailableBlocks[UnavailableBlocks[i]] = false; 1568 1569 SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit; 1570 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); 1571 PI != E; ++PI) { 1572 BasicBlock *Pred = *PI; 1573 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) { 1574 continue; 1575 } 1576 PredLoads[Pred] = 0; 1577 1578 if (Pred->getTerminator()->getNumSuccessors() != 1) { 1579 if (isa<IndirectBrInst>(Pred->getTerminator())) { 1580 DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" 1581 << Pred->getName() << "': " << *LI << '\n'); 1582 return false; 1583 } 1584 1585 if (LoadBB->isLandingPad()) { 1586 DEBUG(dbgs() 1587 << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '" 1588 << Pred->getName() << "': " << *LI << '\n'); 1589 return false; 1590 } 1591 1592 unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB); 1593 NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum)); 1594 } 1595 } 1596 1597 if (!NeedToSplit.empty()) { 1598 toSplit.append(NeedToSplit.begin(), NeedToSplit.end()); 1599 return false; 1600 } 1601 1602 // Decide whether PRE is profitable for this load. 1603 unsigned NumUnavailablePreds = PredLoads.size(); 1604 assert(NumUnavailablePreds != 0 && 1605 "Fully available value should be eliminated above!"); 1606 1607 // If this load is unavailable in multiple predecessors, reject it. 1608 // FIXME: If we could restructure the CFG, we could make a common pred with 1609 // all the preds that don't have an available LI and insert a new load into 1610 // that one block. 1611 if (NumUnavailablePreds != 1) 1612 return false; 1613 1614 // Check if the load can safely be moved to all the unavailable predecessors. 1615 bool CanDoPRE = true; 1616 SmallVector<Instruction*, 8> NewInsts; 1617 for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(), 1618 E = PredLoads.end(); I != E; ++I) { 1619 BasicBlock *UnavailablePred = I->first; 1620 1621 // Do PHI translation to get its value in the predecessor if necessary. The 1622 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. 1623 1624 // If all preds have a single successor, then we know it is safe to insert 1625 // the load on the pred (?!?), so we can insert code to materialize the 1626 // pointer if it is not available. 1627 PHITransAddr Address(LI->getPointerOperand(), TD); 1628 Value *LoadPtr = 0; 1629 if (allSingleSucc) { 1630 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, 1631 *DT, NewInsts); 1632 } else { 1633 Address.PHITranslateValue(LoadBB, UnavailablePred, DT); 1634 LoadPtr = Address.getAddr(); 1635 } 1636 1637 // If we couldn't find or insert a computation of this phi translated value, 1638 // we fail PRE. 1639 if (LoadPtr == 0) { 1640 DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " 1641 << *LI->getPointerOperand() << "\n"); 1642 CanDoPRE = false; 1643 break; 1644 } 1645 1646 // Make sure it is valid to move this load here. We have to watch out for: 1647 // @1 = getelementptr (i8* p, ... 1648 // test p and branch if == 0 1649 // load @1 1650 // It is valid to have the getelementptr before the test, even if p can 1651 // be 0, as getelementptr only does address arithmetic. 1652 // If we are not pushing the value through any multiple-successor blocks 1653 // we do not have this case. Otherwise, check that the load is safe to 1654 // put anywhere; this can be improved, but should be conservatively safe. 1655 if (!allSingleSucc && 1656 // FIXME: REEVALUTE THIS. 1657 !isSafeToLoadUnconditionally(LoadPtr, 1658 UnavailablePred->getTerminator(), 1659 LI->getAlignment(), TD)) { 1660 CanDoPRE = false; 1661 break; 1662 } 1663 1664 I->second = LoadPtr; 1665 } 1666 1667 if (!CanDoPRE) { 1668 while (!NewInsts.empty()) { 1669 Instruction *I = NewInsts.pop_back_val(); 1670 if (MD) MD->removeInstruction(I); 1671 I->eraseFromParent(); 1672 } 1673 return false; 1674 } 1675 1676 // Okay, we can eliminate this load by inserting a reload in the predecessor 1677 // and using PHI construction to get the value in the other predecessors, do 1678 // it. 1679 DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n'); 1680 DEBUG(if (!NewInsts.empty()) 1681 dbgs() << "INSERTED " << NewInsts.size() << " INSTS: " 1682 << *NewInsts.back() << '\n'); 1683 1684 // Assign value numbers to the new instructions. 1685 for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) { 1686 // FIXME: We really _ought_ to insert these value numbers into their 1687 // parent's availability map. However, in doing so, we risk getting into 1688 // ordering issues. If a block hasn't been processed yet, we would be 1689 // marking a value as AVAIL-IN, which isn't what we intend. 1690 VN.lookup_or_add(NewInsts[i]); 1691 } 1692 1693 for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(), 1694 E = PredLoads.end(); I != E; ++I) { 1695 BasicBlock *UnavailablePred = I->first; 1696 Value *LoadPtr = I->second; 1697 1698 Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false, 1699 LI->getAlignment(), 1700 UnavailablePred->getTerminator()); 1701 1702 // Transfer the old load's TBAA tag to the new load. 1703 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) 1704 NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag); 1705 1706 // Transfer DebugLoc. 1707 NewLoad->setDebugLoc(LI->getDebugLoc()); 1708 1709 // Add the newly created load. 1710 ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred, 1711 NewLoad)); 1712 MD->invalidateCachedPointerInfo(LoadPtr); 1713 DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); 1714 } 1715 1716 // Perform PHI construction. 1717 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); 1718 LI->replaceAllUsesWith(V); 1719 if (isa<PHINode>(V)) 1720 V->takeName(LI); 1721 if (V->getType()->isPointerTy()) 1722 MD->invalidateCachedPointerInfo(V); 1723 markInstructionForDeletion(LI); 1724 ++NumPRELoad; 1725 return true; 1726 } 1727 1728 /// processLoad - Attempt to eliminate a load, first by eliminating it 1729 /// locally, and then attempting non-local elimination if that fails. 1730 bool GVN::processLoad(LoadInst *L) { 1731 if (!MD) 1732 return false; 1733 1734 if (!L->isSimple()) 1735 return false; 1736 1737 if (L->use_empty()) { 1738 markInstructionForDeletion(L); 1739 return true; 1740 } 1741 1742 // ... to a pointer that has been loaded from before... 1743 MemDepResult Dep = MD->getDependency(L); 1744 1745 // If we have a clobber and target data is around, see if this is a clobber 1746 // that we can fix up through code synthesis. 1747 if (Dep.isClobber() && TD) { 1748 // Check to see if we have something like this: 1749 // store i32 123, i32* %P 1750 // %A = bitcast i32* %P to i8* 1751 // %B = gep i8* %A, i32 1 1752 // %C = load i8* %B 1753 // 1754 // We could do that by recognizing if the clobber instructions are obviously 1755 // a common base + constant offset, and if the previous store (or memset) 1756 // completely covers this load. This sort of thing can happen in bitfield 1757 // access code. 1758 Value *AvailVal = 0; 1759 if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) { 1760 int Offset = AnalyzeLoadFromClobberingStore(L->getType(), 1761 L->getPointerOperand(), 1762 DepSI, *TD); 1763 if (Offset != -1) 1764 AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset, 1765 L->getType(), L, *TD); 1766 } 1767 1768 // Check to see if we have something like this: 1769 // load i32* P 1770 // load i8* (P+1) 1771 // if we have this, replace the later with an extraction from the former. 1772 if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) { 1773 // If this is a clobber and L is the first instruction in its block, then 1774 // we have the first instruction in the entry block. 1775 if (DepLI == L) 1776 return false; 1777 1778 int Offset = AnalyzeLoadFromClobberingLoad(L->getType(), 1779 L->getPointerOperand(), 1780 DepLI, *TD); 1781 if (Offset != -1) 1782 AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this); 1783 } 1784 1785 // If the clobbering value is a memset/memcpy/memmove, see if we can forward 1786 // a value on from it. 1787 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) { 1788 int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(), 1789 L->getPointerOperand(), 1790 DepMI, *TD); 1791 if (Offset != -1) 1792 AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD); 1793 } 1794 1795 if (AvailVal) { 1796 DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n' 1797 << *AvailVal << '\n' << *L << "\n\n\n"); 1798 1799 // Replace the load! 1800 L->replaceAllUsesWith(AvailVal); 1801 if (AvailVal->getType()->isPointerTy()) 1802 MD->invalidateCachedPointerInfo(AvailVal); 1803 markInstructionForDeletion(L); 1804 ++NumGVNLoad; 1805 return true; 1806 } 1807 } 1808 1809 // If the value isn't available, don't do anything! 1810 if (Dep.isClobber()) { 1811 DEBUG( 1812 // fast print dep, using operator<< on instruction is too slow. 1813 dbgs() << "GVN: load "; 1814 WriteAsOperand(dbgs(), L); 1815 Instruction *I = Dep.getInst(); 1816 dbgs() << " is clobbered by " << *I << '\n'; 1817 ); 1818 return false; 1819 } 1820 1821 // If it is defined in another block, try harder. 1822 if (Dep.isNonLocal()) 1823 return processNonLocalLoad(L); 1824 1825 if (!Dep.isDef()) { 1826 DEBUG( 1827 // fast print dep, using operator<< on instruction is too slow. 1828 dbgs() << "GVN: load "; 1829 WriteAsOperand(dbgs(), L); 1830 dbgs() << " has unknown dependence\n"; 1831 ); 1832 return false; 1833 } 1834 1835 Instruction *DepInst = Dep.getInst(); 1836 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) { 1837 Value *StoredVal = DepSI->getValueOperand(); 1838 1839 // The store and load are to a must-aliased pointer, but they may not 1840 // actually have the same type. See if we know how to reuse the stored 1841 // value (depending on its type). 1842 if (StoredVal->getType() != L->getType()) { 1843 if (TD) { 1844 StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(), 1845 L, *TD); 1846 if (StoredVal == 0) 1847 return false; 1848 1849 DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal 1850 << '\n' << *L << "\n\n\n"); 1851 } 1852 else 1853 return false; 1854 } 1855 1856 // Remove it! 1857 L->replaceAllUsesWith(StoredVal); 1858 if (StoredVal->getType()->isPointerTy()) 1859 MD->invalidateCachedPointerInfo(StoredVal); 1860 markInstructionForDeletion(L); 1861 ++NumGVNLoad; 1862 return true; 1863 } 1864 1865 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) { 1866 Value *AvailableVal = DepLI; 1867 1868 // The loads are of a must-aliased pointer, but they may not actually have 1869 // the same type. See if we know how to reuse the previously loaded value 1870 // (depending on its type). 1871 if (DepLI->getType() != L->getType()) { 1872 if (TD) { 1873 AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), 1874 L, *TD); 1875 if (AvailableVal == 0) 1876 return false; 1877 1878 DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal 1879 << "\n" << *L << "\n\n\n"); 1880 } 1881 else 1882 return false; 1883 } 1884 1885 // Remove it! 1886 L->replaceAllUsesWith(AvailableVal); 1887 if (DepLI->getType()->isPointerTy()) 1888 MD->invalidateCachedPointerInfo(DepLI); 1889 markInstructionForDeletion(L); 1890 ++NumGVNLoad; 1891 return true; 1892 } 1893 1894 // If this load really doesn't depend on anything, then we must be loading an 1895 // undef value. This can happen when loading for a fresh allocation with no 1896 // intervening stores, for example. 1897 if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) { 1898 L->replaceAllUsesWith(UndefValue::get(L->getType())); 1899 markInstructionForDeletion(L); 1900 ++NumGVNLoad; 1901 return true; 1902 } 1903 1904 // If this load occurs either right after a lifetime begin, 1905 // then the loaded value is undefined. 1906 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) { 1907 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 1908 L->replaceAllUsesWith(UndefValue::get(L->getType())); 1909 markInstructionForDeletion(L); 1910 ++NumGVNLoad; 1911 return true; 1912 } 1913 } 1914 1915 return false; 1916 } 1917 1918 // findLeader - In order to find a leader for a given value number at a 1919 // specific basic block, we first obtain the list of all Values for that number, 1920 // and then scan the list to find one whose block dominates the block in 1921 // question. This is fast because dominator tree queries consist of only 1922 // a few comparisons of DFS numbers. 1923 Value *GVN::findLeader(BasicBlock *BB, uint32_t num) { 1924 LeaderTableEntry Vals = LeaderTable[num]; 1925 if (!Vals.Val) return 0; 1926 1927 Value *Val = 0; 1928 if (DT->dominates(Vals.BB, BB)) { 1929 Val = Vals.Val; 1930 if (isa<Constant>(Val)) return Val; 1931 } 1932 1933 LeaderTableEntry* Next = Vals.Next; 1934 while (Next) { 1935 if (DT->dominates(Next->BB, BB)) { 1936 if (isa<Constant>(Next->Val)) return Next->Val; 1937 if (!Val) Val = Next->Val; 1938 } 1939 1940 Next = Next->Next; 1941 } 1942 1943 return Val; 1944 } 1945 1946 /// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the 1947 /// use is dominated by the given basic block. Returns the number of uses that 1948 /// were replaced. 1949 unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To, 1950 BasicBlock *Root) { 1951 unsigned Count = 0; 1952 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1953 UI != UE; ) { 1954 Use &U = (UI++).getUse(); 1955 1956 // If From occurs as a phi node operand then the use implicitly lives in the 1957 // corresponding incoming block. Otherwise it is the block containing the 1958 // user that must be dominated by Root. 1959 BasicBlock *UsingBlock; 1960 if (PHINode *PN = dyn_cast<PHINode>(U.getUser())) 1961 UsingBlock = PN->getIncomingBlock(U); 1962 else 1963 UsingBlock = cast<Instruction>(U.getUser())->getParent(); 1964 1965 if (DT->dominates(Root, UsingBlock)) { 1966 U.set(To); 1967 ++Count; 1968 } 1969 } 1970 return Count; 1971 } 1972 1973 /// propagateEquality - The given values are known to be equal in every block 1974 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with 1975 /// 'RHS' everywhere in the scope. Returns whether a change was made. 1976 bool GVN::propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root) { 1977 SmallVector<std::pair<Value*, Value*>, 4> Worklist; 1978 Worklist.push_back(std::make_pair(LHS, RHS)); 1979 bool Changed = false; 1980 1981 while (!Worklist.empty()) { 1982 std::pair<Value*, Value*> Item = Worklist.pop_back_val(); 1983 LHS = Item.first; RHS = Item.second; 1984 1985 if (LHS == RHS) continue; 1986 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); 1987 1988 // Don't try to propagate equalities between constants. 1989 if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue; 1990 1991 // Prefer a constant on the right-hand side, or an Argument if no constants. 1992 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) 1993 std::swap(LHS, RHS); 1994 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); 1995 1996 // If there is no obvious reason to prefer the left-hand side over the right- 1997 // hand side, ensure the longest lived term is on the right-hand side, so the 1998 // shortest lived term will be replaced by the longest lived. This tends to 1999 // expose more simplifications. 2000 uint32_t LVN = VN.lookup_or_add(LHS); 2001 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || 2002 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { 2003 // Move the 'oldest' value to the right-hand side, using the value number as 2004 // a proxy for age. 2005 uint32_t RVN = VN.lookup_or_add(RHS); 2006 if (LVN < RVN) { 2007 std::swap(LHS, RHS); 2008 LVN = RVN; 2009 } 2010 } 2011 assert((!isa<Instruction>(RHS) || 2012 DT->properlyDominates(cast<Instruction>(RHS)->getParent(), Root)) && 2013 "Instruction doesn't dominate scope!"); 2014 2015 // If value numbering later deduces that an instruction in the scope is equal 2016 // to 'LHS' then ensure it will be turned into 'RHS'. 2017 addToLeaderTable(LVN, RHS, Root); 2018 2019 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As 2020 // LHS always has at least one use that is not dominated by Root, this will 2021 // never do anything if LHS has only one use. 2022 if (!LHS->hasOneUse()) { 2023 unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root); 2024 Changed |= NumReplacements > 0; 2025 NumGVNEqProp += NumReplacements; 2026 } 2027 2028 // Now try to deduce additional equalities from this one. For example, if the 2029 // known equality was "(A != B)" == "false" then it follows that A and B are 2030 // equal in the scope. Only boolean equalities with an explicit true or false 2031 // RHS are currently supported. 2032 if (!RHS->getType()->isIntegerTy(1)) 2033 // Not a boolean equality - bail out. 2034 continue; 2035 ConstantInt *CI = dyn_cast<ConstantInt>(RHS); 2036 if (!CI) 2037 // RHS neither 'true' nor 'false' - bail out. 2038 continue; 2039 // Whether RHS equals 'true'. Otherwise it equals 'false'. 2040 bool isKnownTrue = CI->isAllOnesValue(); 2041 bool isKnownFalse = !isKnownTrue; 2042 2043 // If "A && B" is known true then both A and B are known true. If "A || B" 2044 // is known false then both A and B are known false. 2045 Value *A, *B; 2046 if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) || 2047 (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) { 2048 Worklist.push_back(std::make_pair(A, RHS)); 2049 Worklist.push_back(std::make_pair(B, RHS)); 2050 continue; 2051 } 2052 2053 // If we are propagating an equality like "(A == B)" == "true" then also 2054 // propagate the equality A == B. When propagating a comparison such as 2055 // "(A >= B)" == "true", replace all instances of "A < B" with "false". 2056 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) { 2057 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); 2058 2059 // If "A == B" is known true, or "A != B" is known false, then replace 2060 // A with B everywhere in the scope. 2061 if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) || 2062 (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE)) 2063 Worklist.push_back(std::make_pair(Op0, Op1)); 2064 2065 // If "A >= B" is known true, replace "A < B" with false everywhere. 2066 CmpInst::Predicate NotPred = Cmp->getInversePredicate(); 2067 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); 2068 // Since we don't have the instruction "A < B" immediately to hand, work out 2069 // the value number that it would have and use that to find an appropriate 2070 // instruction (if any). 2071 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2072 uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1); 2073 // If the number we were assigned was brand new then there is no point in 2074 // looking for an instruction realizing it: there cannot be one! 2075 if (Num < NextNum) { 2076 Value *NotCmp = findLeader(Root, Num); 2077 if (NotCmp && isa<Instruction>(NotCmp)) { 2078 unsigned NumReplacements = 2079 replaceAllDominatedUsesWith(NotCmp, NotVal, Root); 2080 Changed |= NumReplacements > 0; 2081 NumGVNEqProp += NumReplacements; 2082 } 2083 } 2084 // Ensure that any instruction in scope that gets the "A < B" value number 2085 // is replaced with false. 2086 addToLeaderTable(Num, NotVal, Root); 2087 2088 continue; 2089 } 2090 } 2091 2092 return Changed; 2093 } 2094 2095 /// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'. Return 2096 /// true if every path from the entry block to 'Dst' passes via this edge. In 2097 /// particular 'Dst' must not be reachable via another edge from 'Src'. 2098 static bool isOnlyReachableViaThisEdge(BasicBlock *Src, BasicBlock *Dst, 2099 DominatorTree *DT) { 2100 // While in theory it is interesting to consider the case in which Dst has 2101 // more than one predecessor, because Dst might be part of a loop which is 2102 // only reachable from Src, in practice it is pointless since at the time 2103 // GVN runs all such loops have preheaders, which means that Dst will have 2104 // been changed to have only one predecessor, namely Src. 2105 BasicBlock *Pred = Dst->getSinglePredecessor(); 2106 assert((!Pred || Pred == Src) && "No edge between these basic blocks!"); 2107 (void)Src; 2108 return Pred != 0; 2109 } 2110 2111 /// processInstruction - When calculating availability, handle an instruction 2112 /// by inserting it into the appropriate sets 2113 bool GVN::processInstruction(Instruction *I) { 2114 // Ignore dbg info intrinsics. 2115 if (isa<DbgInfoIntrinsic>(I)) 2116 return false; 2117 2118 // If the instruction can be easily simplified then do so now in preference 2119 // to value numbering it. Value numbering often exposes redundancies, for 2120 // example if it determines that %y is equal to %x then the instruction 2121 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. 2122 if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) { 2123 I->replaceAllUsesWith(V); 2124 if (MD && V->getType()->isPointerTy()) 2125 MD->invalidateCachedPointerInfo(V); 2126 markInstructionForDeletion(I); 2127 ++NumGVNSimpl; 2128 return true; 2129 } 2130 2131 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 2132 if (processLoad(LI)) 2133 return true; 2134 2135 unsigned Num = VN.lookup_or_add(LI); 2136 addToLeaderTable(Num, LI, LI->getParent()); 2137 return false; 2138 } 2139 2140 // For conditional branches, we can perform simple conditional propagation on 2141 // the condition value itself. 2142 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 2143 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 2144 return false; 2145 2146 Value *BranchCond = BI->getCondition(); 2147 2148 BasicBlock *TrueSucc = BI->getSuccessor(0); 2149 BasicBlock *FalseSucc = BI->getSuccessor(1); 2150 BasicBlock *Parent = BI->getParent(); 2151 bool Changed = false; 2152 2153 if (isOnlyReachableViaThisEdge(Parent, TrueSucc, DT)) 2154 Changed |= propagateEquality(BranchCond, 2155 ConstantInt::getTrue(TrueSucc->getContext()), 2156 TrueSucc); 2157 2158 if (isOnlyReachableViaThisEdge(Parent, FalseSucc, DT)) 2159 Changed |= propagateEquality(BranchCond, 2160 ConstantInt::getFalse(FalseSucc->getContext()), 2161 FalseSucc); 2162 2163 return Changed; 2164 } 2165 2166 // For switches, propagate the case values into the case destinations. 2167 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 2168 Value *SwitchCond = SI->getCondition(); 2169 BasicBlock *Parent = SI->getParent(); 2170 bool Changed = false; 2171 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2172 i != e; ++i) { 2173 BasicBlock *Dst = i.getCaseSuccessor(); 2174 if (isOnlyReachableViaThisEdge(Parent, Dst, DT)) 2175 Changed |= propagateEquality(SwitchCond, i.getCaseValue(), Dst); 2176 } 2177 return Changed; 2178 } 2179 2180 // Instructions with void type don't return a value, so there's 2181 // no point in trying to find redundancies in them. 2182 if (I->getType()->isVoidTy()) return false; 2183 2184 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2185 unsigned Num = VN.lookup_or_add(I); 2186 2187 // Allocations are always uniquely numbered, so we can save time and memory 2188 // by fast failing them. 2189 if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) { 2190 addToLeaderTable(Num, I, I->getParent()); 2191 return false; 2192 } 2193 2194 // If the number we were assigned was a brand new VN, then we don't 2195 // need to do a lookup to see if the number already exists 2196 // somewhere in the domtree: it can't! 2197 if (Num >= NextNum) { 2198 addToLeaderTable(Num, I, I->getParent()); 2199 return false; 2200 } 2201 2202 // Perform fast-path value-number based elimination of values inherited from 2203 // dominators. 2204 Value *repl = findLeader(I->getParent(), Num); 2205 if (repl == 0) { 2206 // Failure, just remember this instance for future use. 2207 addToLeaderTable(Num, I, I->getParent()); 2208 return false; 2209 } 2210 2211 // Remove it! 2212 I->replaceAllUsesWith(repl); 2213 if (MD && repl->getType()->isPointerTy()) 2214 MD->invalidateCachedPointerInfo(repl); 2215 markInstructionForDeletion(I); 2216 return true; 2217 } 2218 2219 /// runOnFunction - This is the main transformation entry point for a function. 2220 bool GVN::runOnFunction(Function& F) { 2221 if (!NoLoads) 2222 MD = &getAnalysis<MemoryDependenceAnalysis>(); 2223 DT = &getAnalysis<DominatorTree>(); 2224 TD = getAnalysisIfAvailable<TargetData>(); 2225 TLI = &getAnalysis<TargetLibraryInfo>(); 2226 VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>()); 2227 VN.setMemDep(MD); 2228 VN.setDomTree(DT); 2229 2230 bool Changed = false; 2231 bool ShouldContinue = true; 2232 2233 // Merge unconditional branches, allowing PRE to catch more 2234 // optimization opportunities. 2235 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) { 2236 BasicBlock *BB = FI++; 2237 2238 bool removedBlock = MergeBlockIntoPredecessor(BB, this); 2239 if (removedBlock) ++NumGVNBlocks; 2240 2241 Changed |= removedBlock; 2242 } 2243 2244 unsigned Iteration = 0; 2245 while (ShouldContinue) { 2246 DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); 2247 ShouldContinue = iterateOnFunction(F); 2248 if (splitCriticalEdges()) 2249 ShouldContinue = true; 2250 Changed |= ShouldContinue; 2251 ++Iteration; 2252 } 2253 2254 if (EnablePRE) { 2255 bool PREChanged = true; 2256 while (PREChanged) { 2257 PREChanged = performPRE(F); 2258 Changed |= PREChanged; 2259 } 2260 } 2261 // FIXME: Should perform GVN again after PRE does something. PRE can move 2262 // computations into blocks where they become fully redundant. Note that 2263 // we can't do this until PRE's critical edge splitting updates memdep. 2264 // Actually, when this happens, we should just fully integrate PRE into GVN. 2265 2266 cleanupGlobalSets(); 2267 2268 return Changed; 2269 } 2270 2271 2272 bool GVN::processBlock(BasicBlock *BB) { 2273 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function 2274 // (and incrementing BI before processing an instruction). 2275 assert(InstrsToErase.empty() && 2276 "We expect InstrsToErase to be empty across iterations"); 2277 bool ChangedFunction = false; 2278 2279 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); 2280 BI != BE;) { 2281 ChangedFunction |= processInstruction(BI); 2282 if (InstrsToErase.empty()) { 2283 ++BI; 2284 continue; 2285 } 2286 2287 // If we need some instructions deleted, do it now. 2288 NumGVNInstr += InstrsToErase.size(); 2289 2290 // Avoid iterator invalidation. 2291 bool AtStart = BI == BB->begin(); 2292 if (!AtStart) 2293 --BI; 2294 2295 for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(), 2296 E = InstrsToErase.end(); I != E; ++I) { 2297 DEBUG(dbgs() << "GVN removed: " << **I << '\n'); 2298 if (MD) MD->removeInstruction(*I); 2299 (*I)->eraseFromParent(); 2300 DEBUG(verifyRemoved(*I)); 2301 } 2302 InstrsToErase.clear(); 2303 2304 if (AtStart) 2305 BI = BB->begin(); 2306 else 2307 ++BI; 2308 } 2309 2310 return ChangedFunction; 2311 } 2312 2313 /// performPRE - Perform a purely local form of PRE that looks for diamond 2314 /// control flow patterns and attempts to perform simple PRE at the join point. 2315 bool GVN::performPRE(Function &F) { 2316 bool Changed = false; 2317 DenseMap<BasicBlock*, Value*> predMap; 2318 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()), 2319 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) { 2320 BasicBlock *CurrentBlock = *DI; 2321 2322 // Nothing to PRE in the entry block. 2323 if (CurrentBlock == &F.getEntryBlock()) continue; 2324 2325 // Don't perform PRE on a landing pad. 2326 if (CurrentBlock->isLandingPad()) continue; 2327 2328 for (BasicBlock::iterator BI = CurrentBlock->begin(), 2329 BE = CurrentBlock->end(); BI != BE; ) { 2330 Instruction *CurInst = BI++; 2331 2332 if (isa<AllocaInst>(CurInst) || 2333 isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) || 2334 CurInst->getType()->isVoidTy() || 2335 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || 2336 isa<DbgInfoIntrinsic>(CurInst)) 2337 continue; 2338 2339 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from 2340 // sinking the compare again, and it would force the code generator to 2341 // move the i1 from processor flags or predicate registers into a general 2342 // purpose register. 2343 if (isa<CmpInst>(CurInst)) 2344 continue; 2345 2346 // We don't currently value number ANY inline asm calls. 2347 if (CallInst *CallI = dyn_cast<CallInst>(CurInst)) 2348 if (CallI->isInlineAsm()) 2349 continue; 2350 2351 uint32_t ValNo = VN.lookup(CurInst); 2352 2353 // Look for the predecessors for PRE opportunities. We're 2354 // only trying to solve the basic diamond case, where 2355 // a value is computed in the successor and one predecessor, 2356 // but not the other. We also explicitly disallow cases 2357 // where the successor is its own predecessor, because they're 2358 // more complicated to get right. 2359 unsigned NumWith = 0; 2360 unsigned NumWithout = 0; 2361 BasicBlock *PREPred = 0; 2362 predMap.clear(); 2363 2364 for (pred_iterator PI = pred_begin(CurrentBlock), 2365 PE = pred_end(CurrentBlock); PI != PE; ++PI) { 2366 BasicBlock *P = *PI; 2367 // We're not interested in PRE where the block is its 2368 // own predecessor, or in blocks with predecessors 2369 // that are not reachable. 2370 if (P == CurrentBlock) { 2371 NumWithout = 2; 2372 break; 2373 } else if (!DT->dominates(&F.getEntryBlock(), P)) { 2374 NumWithout = 2; 2375 break; 2376 } 2377 2378 Value* predV = findLeader(P, ValNo); 2379 if (predV == 0) { 2380 PREPred = P; 2381 ++NumWithout; 2382 } else if (predV == CurInst) { 2383 NumWithout = 2; 2384 } else { 2385 predMap[P] = predV; 2386 ++NumWith; 2387 } 2388 } 2389 2390 // Don't do PRE when it might increase code size, i.e. when 2391 // we would need to insert instructions in more than one pred. 2392 if (NumWithout != 1 || NumWith == 0) 2393 continue; 2394 2395 // Don't do PRE across indirect branch. 2396 if (isa<IndirectBrInst>(PREPred->getTerminator())) 2397 continue; 2398 2399 // We can't do PRE safely on a critical edge, so instead we schedule 2400 // the edge to be split and perform the PRE the next time we iterate 2401 // on the function. 2402 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); 2403 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { 2404 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); 2405 continue; 2406 } 2407 2408 // Instantiate the expression in the predecessor that lacked it. 2409 // Because we are going top-down through the block, all value numbers 2410 // will be available in the predecessor by the time we need them. Any 2411 // that weren't originally present will have been instantiated earlier 2412 // in this loop. 2413 Instruction *PREInstr = CurInst->clone(); 2414 bool success = true; 2415 for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) { 2416 Value *Op = PREInstr->getOperand(i); 2417 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) 2418 continue; 2419 2420 if (Value *V = findLeader(PREPred, VN.lookup(Op))) { 2421 PREInstr->setOperand(i, V); 2422 } else { 2423 success = false; 2424 break; 2425 } 2426 } 2427 2428 // Fail out if we encounter an operand that is not available in 2429 // the PRE predecessor. This is typically because of loads which 2430 // are not value numbered precisely. 2431 if (!success) { 2432 delete PREInstr; 2433 DEBUG(verifyRemoved(PREInstr)); 2434 continue; 2435 } 2436 2437 PREInstr->insertBefore(PREPred->getTerminator()); 2438 PREInstr->setName(CurInst->getName() + ".pre"); 2439 PREInstr->setDebugLoc(CurInst->getDebugLoc()); 2440 predMap[PREPred] = PREInstr; 2441 VN.add(PREInstr, ValNo); 2442 ++NumGVNPRE; 2443 2444 // Update the availability map to include the new instruction. 2445 addToLeaderTable(ValNo, PREInstr, PREPred); 2446 2447 // Create a PHI to make the value available in this block. 2448 pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock); 2449 PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE), 2450 CurInst->getName() + ".pre-phi", 2451 CurrentBlock->begin()); 2452 for (pred_iterator PI = PB; PI != PE; ++PI) { 2453 BasicBlock *P = *PI; 2454 Phi->addIncoming(predMap[P], P); 2455 } 2456 2457 VN.add(Phi, ValNo); 2458 addToLeaderTable(ValNo, Phi, CurrentBlock); 2459 Phi->setDebugLoc(CurInst->getDebugLoc()); 2460 CurInst->replaceAllUsesWith(Phi); 2461 if (Phi->getType()->isPointerTy()) { 2462 // Because we have added a PHI-use of the pointer value, it has now 2463 // "escaped" from alias analysis' perspective. We need to inform 2464 // AA of this. 2465 for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee; 2466 ++ii) { 2467 unsigned jj = PHINode::getOperandNumForIncomingValue(ii); 2468 VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj)); 2469 } 2470 2471 if (MD) 2472 MD->invalidateCachedPointerInfo(Phi); 2473 } 2474 VN.erase(CurInst); 2475 removeFromLeaderTable(ValNo, CurInst, CurrentBlock); 2476 2477 DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); 2478 if (MD) MD->removeInstruction(CurInst); 2479 CurInst->eraseFromParent(); 2480 DEBUG(verifyRemoved(CurInst)); 2481 Changed = true; 2482 } 2483 } 2484 2485 if (splitCriticalEdges()) 2486 Changed = true; 2487 2488 return Changed; 2489 } 2490 2491 /// splitCriticalEdges - Split critical edges found during the previous 2492 /// iteration that may enable further optimization. 2493 bool GVN::splitCriticalEdges() { 2494 if (toSplit.empty()) 2495 return false; 2496 do { 2497 std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val(); 2498 SplitCriticalEdge(Edge.first, Edge.second, this); 2499 } while (!toSplit.empty()); 2500 if (MD) MD->invalidateCachedPredecessors(); 2501 return true; 2502 } 2503 2504 /// iterateOnFunction - Executes one iteration of GVN 2505 bool GVN::iterateOnFunction(Function &F) { 2506 cleanupGlobalSets(); 2507 2508 // Top-down walk of the dominator tree 2509 bool Changed = false; 2510 #if 0 2511 // Needed for value numbering with phi construction to work. 2512 ReversePostOrderTraversal<Function*> RPOT(&F); 2513 for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(), 2514 RE = RPOT.end(); RI != RE; ++RI) 2515 Changed |= processBlock(*RI); 2516 #else 2517 for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()), 2518 DE = df_end(DT->getRootNode()); DI != DE; ++DI) 2519 Changed |= processBlock(DI->getBlock()); 2520 #endif 2521 2522 return Changed; 2523 } 2524 2525 void GVN::cleanupGlobalSets() { 2526 VN.clear(); 2527 LeaderTable.clear(); 2528 TableAllocator.Reset(); 2529 } 2530 2531 /// verifyRemoved - Verify that the specified instruction does not occur in our 2532 /// internal data structures. 2533 void GVN::verifyRemoved(const Instruction *Inst) const { 2534 VN.verifyRemoved(Inst); 2535 2536 // Walk through the value number scope to make sure the instruction isn't 2537 // ferreted away in it. 2538 for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator 2539 I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) { 2540 const LeaderTableEntry *Node = &I->second; 2541 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2542 2543 while (Node->Next) { 2544 Node = Node->Next; 2545 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2546 } 2547 } 2548 } 2549