Home | History | Annotate | Download | only in Sema
      1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements C++ semantic analysis for scope specifiers.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/Sema/Lookup.h"
     16 #include "clang/Sema/Template.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/DeclTemplate.h"
     19 #include "clang/AST/ExprCXX.h"
     20 #include "clang/AST/NestedNameSpecifier.h"
     21 #include "clang/Basic/PartialDiagnostic.h"
     22 #include "clang/Sema/DeclSpec.h"
     23 #include "TypeLocBuilder.h"
     24 #include "llvm/ADT/STLExtras.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 using namespace clang;
     27 
     28 /// \brief Find the current instantiation that associated with the given type.
     29 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
     30                                                 DeclContext *CurContext) {
     31   if (T.isNull())
     32     return 0;
     33 
     34   const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
     35   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
     36     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
     37     if (!T->isDependentType())
     38       return Record;
     39 
     40     // This may be a member of a class template or class template partial
     41     // specialization. If it's part of the current semantic context, then it's
     42     // an injected-class-name;
     43     for (; !CurContext->isFileContext(); CurContext = CurContext->getParent())
     44       if (CurContext->Equals(Record))
     45         return Record;
     46 
     47     return 0;
     48   } else if (isa<InjectedClassNameType>(Ty))
     49     return cast<InjectedClassNameType>(Ty)->getDecl();
     50   else
     51     return 0;
     52 }
     53 
     54 /// \brief Compute the DeclContext that is associated with the given type.
     55 ///
     56 /// \param T the type for which we are attempting to find a DeclContext.
     57 ///
     58 /// \returns the declaration context represented by the type T,
     59 /// or NULL if the declaration context cannot be computed (e.g., because it is
     60 /// dependent and not the current instantiation).
     61 DeclContext *Sema::computeDeclContext(QualType T) {
     62   if (!T->isDependentType())
     63     if (const TagType *Tag = T->getAs<TagType>())
     64       return Tag->getDecl();
     65 
     66   return ::getCurrentInstantiationOf(T, CurContext);
     67 }
     68 
     69 /// \brief Compute the DeclContext that is associated with the given
     70 /// scope specifier.
     71 ///
     72 /// \param SS the C++ scope specifier as it appears in the source
     73 ///
     74 /// \param EnteringContext when true, we will be entering the context of
     75 /// this scope specifier, so we can retrieve the declaration context of a
     76 /// class template or class template partial specialization even if it is
     77 /// not the current instantiation.
     78 ///
     79 /// \returns the declaration context represented by the scope specifier @p SS,
     80 /// or NULL if the declaration context cannot be computed (e.g., because it is
     81 /// dependent and not the current instantiation).
     82 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
     83                                       bool EnteringContext) {
     84   if (!SS.isSet() || SS.isInvalid())
     85     return 0;
     86 
     87   NestedNameSpecifier *NNS
     88     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
     89   if (NNS->isDependent()) {
     90     // If this nested-name-specifier refers to the current
     91     // instantiation, return its DeclContext.
     92     if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
     93       return Record;
     94 
     95     if (EnteringContext) {
     96       const Type *NNSType = NNS->getAsType();
     97       if (!NNSType) {
     98         return 0;
     99       }
    100 
    101       // Look through type alias templates, per C++0x [temp.dep.type]p1.
    102       NNSType = Context.getCanonicalType(NNSType);
    103       if (const TemplateSpecializationType *SpecType
    104             = NNSType->getAs<TemplateSpecializationType>()) {
    105         // We are entering the context of the nested name specifier, so try to
    106         // match the nested name specifier to either a primary class template
    107         // or a class template partial specialization.
    108         if (ClassTemplateDecl *ClassTemplate
    109               = dyn_cast_or_null<ClassTemplateDecl>(
    110                             SpecType->getTemplateName().getAsTemplateDecl())) {
    111           QualType ContextType
    112             = Context.getCanonicalType(QualType(SpecType, 0));
    113 
    114           // If the type of the nested name specifier is the same as the
    115           // injected class name of the named class template, we're entering
    116           // into that class template definition.
    117           QualType Injected
    118             = ClassTemplate->getInjectedClassNameSpecialization();
    119           if (Context.hasSameType(Injected, ContextType))
    120             return ClassTemplate->getTemplatedDecl();
    121 
    122           // If the type of the nested name specifier is the same as the
    123           // type of one of the class template's class template partial
    124           // specializations, we're entering into the definition of that
    125           // class template partial specialization.
    126           if (ClassTemplatePartialSpecializationDecl *PartialSpec
    127                 = ClassTemplate->findPartialSpecialization(ContextType))
    128             return PartialSpec;
    129         }
    130       } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
    131         // The nested name specifier refers to a member of a class template.
    132         return RecordT->getDecl();
    133       }
    134     }
    135 
    136     return 0;
    137   }
    138 
    139   switch (NNS->getKind()) {
    140   case NestedNameSpecifier::Identifier:
    141     llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
    142 
    143   case NestedNameSpecifier::Namespace:
    144     return NNS->getAsNamespace();
    145 
    146   case NestedNameSpecifier::NamespaceAlias:
    147     return NNS->getAsNamespaceAlias()->getNamespace();
    148 
    149   case NestedNameSpecifier::TypeSpec:
    150   case NestedNameSpecifier::TypeSpecWithTemplate: {
    151     const TagType *Tag = NNS->getAsType()->getAs<TagType>();
    152     assert(Tag && "Non-tag type in nested-name-specifier");
    153     return Tag->getDecl();
    154   }
    155 
    156   case NestedNameSpecifier::Global:
    157     return Context.getTranslationUnitDecl();
    158   }
    159 
    160   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
    161 }
    162 
    163 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
    164   if (!SS.isSet() || SS.isInvalid())
    165     return false;
    166 
    167   NestedNameSpecifier *NNS
    168     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
    169   return NNS->isDependent();
    170 }
    171 
    172 // \brief Determine whether this C++ scope specifier refers to an
    173 // unknown specialization, i.e., a dependent type that is not the
    174 // current instantiation.
    175 bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
    176   if (!isDependentScopeSpecifier(SS))
    177     return false;
    178 
    179   NestedNameSpecifier *NNS
    180     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
    181   return getCurrentInstantiationOf(NNS) == 0;
    182 }
    183 
    184 /// \brief If the given nested name specifier refers to the current
    185 /// instantiation, return the declaration that corresponds to that
    186 /// current instantiation (C++0x [temp.dep.type]p1).
    187 ///
    188 /// \param NNS a dependent nested name specifier.
    189 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
    190   assert(getLangOpts().CPlusPlus && "Only callable in C++");
    191   assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
    192 
    193   if (!NNS->getAsType())
    194     return 0;
    195 
    196   QualType T = QualType(NNS->getAsType(), 0);
    197   return ::getCurrentInstantiationOf(T, CurContext);
    198 }
    199 
    200 /// \brief Require that the context specified by SS be complete.
    201 ///
    202 /// If SS refers to a type, this routine checks whether the type is
    203 /// complete enough (or can be made complete enough) for name lookup
    204 /// into the DeclContext. A type that is not yet completed can be
    205 /// considered "complete enough" if it is a class/struct/union/enum
    206 /// that is currently being defined. Or, if we have a type that names
    207 /// a class template specialization that is not a complete type, we
    208 /// will attempt to instantiate that class template.
    209 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
    210                                       DeclContext *DC) {
    211   assert(DC != 0 && "given null context");
    212 
    213   TagDecl *tag = dyn_cast<TagDecl>(DC);
    214 
    215   // If this is a dependent type, then we consider it complete.
    216   if (!tag || tag->isDependentContext())
    217     return false;
    218 
    219   // If we're currently defining this type, then lookup into the
    220   // type is okay: don't complain that it isn't complete yet.
    221   QualType type = Context.getTypeDeclType(tag);
    222   const TagType *tagType = type->getAs<TagType>();
    223   if (tagType && tagType->isBeingDefined())
    224     return false;
    225 
    226   SourceLocation loc = SS.getLastQualifierNameLoc();
    227   if (loc.isInvalid()) loc = SS.getRange().getBegin();
    228 
    229   // The type must be complete.
    230   if (RequireCompleteType(loc, type,
    231                           PDiag(diag::err_incomplete_nested_name_spec)
    232                             << SS.getRange())) {
    233     SS.SetInvalid(SS.getRange());
    234     return true;
    235   }
    236 
    237   // Fixed enum types are complete, but they aren't valid as scopes
    238   // until we see a definition, so awkwardly pull out this special
    239   // case.
    240   const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
    241   if (!enumType || enumType->getDecl()->isCompleteDefinition())
    242     return false;
    243 
    244   // Try to instantiate the definition, if this is a specialization of an
    245   // enumeration temploid.
    246   EnumDecl *ED = enumType->getDecl();
    247   if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
    248     MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
    249     if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
    250       if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
    251                           TSK_ImplicitInstantiation)) {
    252         SS.SetInvalid(SS.getRange());
    253         return true;
    254       }
    255       return false;
    256     }
    257   }
    258 
    259   Diag(loc, diag::err_incomplete_nested_name_spec)
    260     << type << SS.getRange();
    261   SS.SetInvalid(SS.getRange());
    262   return true;
    263 }
    264 
    265 bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
    266                                         CXXScopeSpec &SS) {
    267   SS.MakeGlobal(Context, CCLoc);
    268   return false;
    269 }
    270 
    271 /// \brief Determines whether the given declaration is an valid acceptable
    272 /// result for name lookup of a nested-name-specifier.
    273 bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
    274   if (!SD)
    275     return false;
    276 
    277   // Namespace and namespace aliases are fine.
    278   if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
    279     return true;
    280 
    281   if (!isa<TypeDecl>(SD))
    282     return false;
    283 
    284   // Determine whether we have a class (or, in C++11, an enum) or
    285   // a typedef thereof. If so, build the nested-name-specifier.
    286   QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
    287   if (T->isDependentType())
    288     return true;
    289   else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
    290     if (TD->getUnderlyingType()->isRecordType() ||
    291         (Context.getLangOpts().CPlusPlus0x &&
    292          TD->getUnderlyingType()->isEnumeralType()))
    293       return true;
    294   } else if (isa<RecordDecl>(SD) ||
    295              (Context.getLangOpts().CPlusPlus0x && isa<EnumDecl>(SD)))
    296     return true;
    297 
    298   return false;
    299 }
    300 
    301 /// \brief If the given nested-name-specifier begins with a bare identifier
    302 /// (e.g., Base::), perform name lookup for that identifier as a
    303 /// nested-name-specifier within the given scope, and return the result of that
    304 /// name lookup.
    305 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
    306   if (!S || !NNS)
    307     return 0;
    308 
    309   while (NNS->getPrefix())
    310     NNS = NNS->getPrefix();
    311 
    312   if (NNS->getKind() != NestedNameSpecifier::Identifier)
    313     return 0;
    314 
    315   LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
    316                      LookupNestedNameSpecifierName);
    317   LookupName(Found, S);
    318   assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
    319 
    320   if (!Found.isSingleResult())
    321     return 0;
    322 
    323   NamedDecl *Result = Found.getFoundDecl();
    324   if (isAcceptableNestedNameSpecifier(Result))
    325     return Result;
    326 
    327   return 0;
    328 }
    329 
    330 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
    331                                         SourceLocation IdLoc,
    332                                         IdentifierInfo &II,
    333                                         ParsedType ObjectTypePtr) {
    334   QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
    335   LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
    336 
    337   // Determine where to perform name lookup
    338   DeclContext *LookupCtx = 0;
    339   bool isDependent = false;
    340   if (!ObjectType.isNull()) {
    341     // This nested-name-specifier occurs in a member access expression, e.g.,
    342     // x->B::f, and we are looking into the type of the object.
    343     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
    344     LookupCtx = computeDeclContext(ObjectType);
    345     isDependent = ObjectType->isDependentType();
    346   } else if (SS.isSet()) {
    347     // This nested-name-specifier occurs after another nested-name-specifier,
    348     // so long into the context associated with the prior nested-name-specifier.
    349     LookupCtx = computeDeclContext(SS, false);
    350     isDependent = isDependentScopeSpecifier(SS);
    351     Found.setContextRange(SS.getRange());
    352   }
    353 
    354   if (LookupCtx) {
    355     // Perform "qualified" name lookup into the declaration context we
    356     // computed, which is either the type of the base of a member access
    357     // expression or the declaration context associated with a prior
    358     // nested-name-specifier.
    359 
    360     // The declaration context must be complete.
    361     if (!LookupCtx->isDependentContext() &&
    362         RequireCompleteDeclContext(SS, LookupCtx))
    363       return false;
    364 
    365     LookupQualifiedName(Found, LookupCtx);
    366   } else if (isDependent) {
    367     return false;
    368   } else {
    369     LookupName(Found, S);
    370   }
    371   Found.suppressDiagnostics();
    372 
    373   if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
    374     return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
    375 
    376   return false;
    377 }
    378 
    379 namespace {
    380 
    381 // Callback to only accept typo corrections that can be a valid C++ member
    382 // intializer: either a non-static field member or a base class.
    383 class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
    384  public:
    385   explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
    386       : SRef(SRef) {}
    387 
    388   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
    389     return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
    390   }
    391 
    392  private:
    393   Sema &SRef;
    394 };
    395 
    396 }
    397 
    398 /// \brief Build a new nested-name-specifier for "identifier::", as described
    399 /// by ActOnCXXNestedNameSpecifier.
    400 ///
    401 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
    402 /// that it contains an extra parameter \p ScopeLookupResult, which provides
    403 /// the result of name lookup within the scope of the nested-name-specifier
    404 /// that was computed at template definition time.
    405 ///
    406 /// If ErrorRecoveryLookup is true, then this call is used to improve error
    407 /// recovery.  This means that it should not emit diagnostics, it should
    408 /// just return true on failure.  It also means it should only return a valid
    409 /// scope if it *knows* that the result is correct.  It should not return in a
    410 /// dependent context, for example. Nor will it extend \p SS with the scope
    411 /// specifier.
    412 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
    413                                        IdentifierInfo &Identifier,
    414                                        SourceLocation IdentifierLoc,
    415                                        SourceLocation CCLoc,
    416                                        QualType ObjectType,
    417                                        bool EnteringContext,
    418                                        CXXScopeSpec &SS,
    419                                        NamedDecl *ScopeLookupResult,
    420                                        bool ErrorRecoveryLookup) {
    421   LookupResult Found(*this, &Identifier, IdentifierLoc,
    422                      LookupNestedNameSpecifierName);
    423 
    424   // Determine where to perform name lookup
    425   DeclContext *LookupCtx = 0;
    426   bool isDependent = false;
    427   if (!ObjectType.isNull()) {
    428     // This nested-name-specifier occurs in a member access expression, e.g.,
    429     // x->B::f, and we are looking into the type of the object.
    430     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
    431     LookupCtx = computeDeclContext(ObjectType);
    432     isDependent = ObjectType->isDependentType();
    433   } else if (SS.isSet()) {
    434     // This nested-name-specifier occurs after another nested-name-specifier,
    435     // so look into the context associated with the prior nested-name-specifier.
    436     LookupCtx = computeDeclContext(SS, EnteringContext);
    437     isDependent = isDependentScopeSpecifier(SS);
    438     Found.setContextRange(SS.getRange());
    439   }
    440 
    441 
    442   bool ObjectTypeSearchedInScope = false;
    443   if (LookupCtx) {
    444     // Perform "qualified" name lookup into the declaration context we
    445     // computed, which is either the type of the base of a member access
    446     // expression or the declaration context associated with a prior
    447     // nested-name-specifier.
    448 
    449     // The declaration context must be complete.
    450     if (!LookupCtx->isDependentContext() &&
    451         RequireCompleteDeclContext(SS, LookupCtx))
    452       return true;
    453 
    454     LookupQualifiedName(Found, LookupCtx);
    455 
    456     if (!ObjectType.isNull() && Found.empty()) {
    457       // C++ [basic.lookup.classref]p4:
    458       //   If the id-expression in a class member access is a qualified-id of
    459       //   the form
    460       //
    461       //        class-name-or-namespace-name::...
    462       //
    463       //   the class-name-or-namespace-name following the . or -> operator is
    464       //   looked up both in the context of the entire postfix-expression and in
    465       //   the scope of the class of the object expression. If the name is found
    466       //   only in the scope of the class of the object expression, the name
    467       //   shall refer to a class-name. If the name is found only in the
    468       //   context of the entire postfix-expression, the name shall refer to a
    469       //   class-name or namespace-name. [...]
    470       //
    471       // Qualified name lookup into a class will not find a namespace-name,
    472       // so we do not need to diagnose that case specifically. However,
    473       // this qualified name lookup may find nothing. In that case, perform
    474       // unqualified name lookup in the given scope (if available) or
    475       // reconstruct the result from when name lookup was performed at template
    476       // definition time.
    477       if (S)
    478         LookupName(Found, S);
    479       else if (ScopeLookupResult)
    480         Found.addDecl(ScopeLookupResult);
    481 
    482       ObjectTypeSearchedInScope = true;
    483     }
    484   } else if (!isDependent) {
    485     // Perform unqualified name lookup in the current scope.
    486     LookupName(Found, S);
    487   }
    488 
    489   // If we performed lookup into a dependent context and did not find anything,
    490   // that's fine: just build a dependent nested-name-specifier.
    491   if (Found.empty() && isDependent &&
    492       !(LookupCtx && LookupCtx->isRecord() &&
    493         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
    494          !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
    495     // Don't speculate if we're just trying to improve error recovery.
    496     if (ErrorRecoveryLookup)
    497       return true;
    498 
    499     // We were not able to compute the declaration context for a dependent
    500     // base object type or prior nested-name-specifier, so this
    501     // nested-name-specifier refers to an unknown specialization. Just build
    502     // a dependent nested-name-specifier.
    503     SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
    504     return false;
    505   }
    506 
    507   // FIXME: Deal with ambiguities cleanly.
    508 
    509   if (Found.empty() && !ErrorRecoveryLookup) {
    510     // We haven't found anything, and we're not recovering from a
    511     // different kind of error, so look for typos.
    512     DeclarationName Name = Found.getLookupName();
    513     NestedNameSpecifierValidatorCCC Validator(*this);
    514     TypoCorrection Corrected;
    515     Found.clear();
    516     if ((Corrected = CorrectTypo(Found.getLookupNameInfo(),
    517                                  Found.getLookupKind(), S, &SS, Validator,
    518                                  LookupCtx, EnteringContext))) {
    519       std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
    520       std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
    521       if (LookupCtx)
    522         Diag(Found.getNameLoc(), diag::err_no_member_suggest)
    523           << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
    524           << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
    525       else
    526         Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
    527           << Name << CorrectedQuotedStr
    528           << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
    529 
    530       if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
    531         Diag(ND->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr;
    532         Found.addDecl(ND);
    533       }
    534       Found.setLookupName(Corrected.getCorrection());
    535     } else {
    536       Found.setLookupName(&Identifier);
    537     }
    538   }
    539 
    540   NamedDecl *SD = Found.getAsSingle<NamedDecl>();
    541   if (isAcceptableNestedNameSpecifier(SD)) {
    542     if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
    543       // C++ [basic.lookup.classref]p4:
    544       //   [...] If the name is found in both contexts, the
    545       //   class-name-or-namespace-name shall refer to the same entity.
    546       //
    547       // We already found the name in the scope of the object. Now, look
    548       // into the current scope (the scope of the postfix-expression) to
    549       // see if we can find the same name there. As above, if there is no
    550       // scope, reconstruct the result from the template instantiation itself.
    551       NamedDecl *OuterDecl;
    552       if (S) {
    553         LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
    554                                 LookupNestedNameSpecifierName);
    555         LookupName(FoundOuter, S);
    556         OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
    557       } else
    558         OuterDecl = ScopeLookupResult;
    559 
    560       if (isAcceptableNestedNameSpecifier(OuterDecl) &&
    561           OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
    562           (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
    563            !Context.hasSameType(
    564                             Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
    565                                Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
    566          if (ErrorRecoveryLookup)
    567            return true;
    568 
    569          Diag(IdentifierLoc,
    570               diag::err_nested_name_member_ref_lookup_ambiguous)
    571            << &Identifier;
    572          Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
    573            << ObjectType;
    574          Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
    575 
    576          // Fall through so that we'll pick the name we found in the object
    577          // type, since that's probably what the user wanted anyway.
    578        }
    579     }
    580 
    581     // If we're just performing this lookup for error-recovery purposes,
    582     // don't extend the nested-name-specifier. Just return now.
    583     if (ErrorRecoveryLookup)
    584       return false;
    585 
    586     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
    587       SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
    588       return false;
    589     }
    590 
    591     if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
    592       SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
    593       return false;
    594     }
    595 
    596     QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
    597     TypeLocBuilder TLB;
    598     if (isa<InjectedClassNameType>(T)) {
    599       InjectedClassNameTypeLoc InjectedTL
    600         = TLB.push<InjectedClassNameTypeLoc>(T);
    601       InjectedTL.setNameLoc(IdentifierLoc);
    602     } else if (isa<RecordType>(T)) {
    603       RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
    604       RecordTL.setNameLoc(IdentifierLoc);
    605     } else if (isa<TypedefType>(T)) {
    606       TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
    607       TypedefTL.setNameLoc(IdentifierLoc);
    608     } else if (isa<EnumType>(T)) {
    609       EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
    610       EnumTL.setNameLoc(IdentifierLoc);
    611     } else if (isa<TemplateTypeParmType>(T)) {
    612       TemplateTypeParmTypeLoc TemplateTypeTL
    613         = TLB.push<TemplateTypeParmTypeLoc>(T);
    614       TemplateTypeTL.setNameLoc(IdentifierLoc);
    615     } else if (isa<UnresolvedUsingType>(T)) {
    616       UnresolvedUsingTypeLoc UnresolvedTL
    617         = TLB.push<UnresolvedUsingTypeLoc>(T);
    618       UnresolvedTL.setNameLoc(IdentifierLoc);
    619     } else if (isa<SubstTemplateTypeParmType>(T)) {
    620       SubstTemplateTypeParmTypeLoc TL
    621         = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
    622       TL.setNameLoc(IdentifierLoc);
    623     } else if (isa<SubstTemplateTypeParmPackType>(T)) {
    624       SubstTemplateTypeParmPackTypeLoc TL
    625         = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
    626       TL.setNameLoc(IdentifierLoc);
    627     } else {
    628       llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
    629     }
    630 
    631     if (T->isEnumeralType())
    632       Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
    633 
    634     SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
    635               CCLoc);
    636     return false;
    637   }
    638 
    639   // Otherwise, we have an error case.  If we don't want diagnostics, just
    640   // return an error now.
    641   if (ErrorRecoveryLookup)
    642     return true;
    643 
    644   // If we didn't find anything during our lookup, try again with
    645   // ordinary name lookup, which can help us produce better error
    646   // messages.
    647   if (Found.empty()) {
    648     Found.clear(LookupOrdinaryName);
    649     LookupName(Found, S);
    650   }
    651 
    652   // In Microsoft mode, if we are within a templated function and we can't
    653   // resolve Identifier, then extend the SS with Identifier. This will have
    654   // the effect of resolving Identifier during template instantiation.
    655   // The goal is to be able to resolve a function call whose
    656   // nested-name-specifier is located inside a dependent base class.
    657   // Example:
    658   //
    659   // class C {
    660   // public:
    661   //    static void foo2() {  }
    662   // };
    663   // template <class T> class A { public: typedef C D; };
    664   //
    665   // template <class T> class B : public A<T> {
    666   // public:
    667   //   void foo() { D::foo2(); }
    668   // };
    669   if (getLangOpts().MicrosoftExt) {
    670     DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
    671     if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
    672       SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
    673       return false;
    674     }
    675   }
    676 
    677   unsigned DiagID;
    678   if (!Found.empty())
    679     DiagID = diag::err_expected_class_or_namespace;
    680   else if (SS.isSet()) {
    681     Diag(IdentifierLoc, diag::err_no_member)
    682       << &Identifier << LookupCtx << SS.getRange();
    683     return true;
    684   } else
    685     DiagID = diag::err_undeclared_var_use;
    686 
    687   if (SS.isSet())
    688     Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange();
    689   else
    690     Diag(IdentifierLoc, DiagID) << &Identifier;
    691 
    692   return true;
    693 }
    694 
    695 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
    696                                        IdentifierInfo &Identifier,
    697                                        SourceLocation IdentifierLoc,
    698                                        SourceLocation CCLoc,
    699                                        ParsedType ObjectType,
    700                                        bool EnteringContext,
    701                                        CXXScopeSpec &SS) {
    702   if (SS.isInvalid())
    703     return true;
    704 
    705   return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
    706                                      GetTypeFromParser(ObjectType),
    707                                      EnteringContext, SS,
    708                                      /*ScopeLookupResult=*/0, false);
    709 }
    710 
    711 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
    712                                                const DeclSpec &DS,
    713                                                SourceLocation ColonColonLoc) {
    714   if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
    715     return true;
    716 
    717   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
    718 
    719   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
    720   if (!T->isDependentType() && !T->getAs<TagType>()) {
    721     Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class)
    722       << T << getLangOpts().CPlusPlus;
    723     return true;
    724   }
    725 
    726   TypeLocBuilder TLB;
    727   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
    728   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
    729   SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
    730             ColonColonLoc);
    731   return false;
    732 }
    733 
    734 /// IsInvalidUnlessNestedName - This method is used for error recovery
    735 /// purposes to determine whether the specified identifier is only valid as
    736 /// a nested name specifier, for example a namespace name.  It is
    737 /// conservatively correct to always return false from this method.
    738 ///
    739 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
    740 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
    741                                      IdentifierInfo &Identifier,
    742                                      SourceLocation IdentifierLoc,
    743                                      SourceLocation ColonLoc,
    744                                      ParsedType ObjectType,
    745                                      bool EnteringContext) {
    746   if (SS.isInvalid())
    747     return false;
    748 
    749   return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
    750                                       GetTypeFromParser(ObjectType),
    751                                       EnteringContext, SS,
    752                                       /*ScopeLookupResult=*/0, true);
    753 }
    754 
    755 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
    756                                        CXXScopeSpec &SS,
    757                                        SourceLocation TemplateKWLoc,
    758                                        TemplateTy Template,
    759                                        SourceLocation TemplateNameLoc,
    760                                        SourceLocation LAngleLoc,
    761                                        ASTTemplateArgsPtr TemplateArgsIn,
    762                                        SourceLocation RAngleLoc,
    763                                        SourceLocation CCLoc,
    764                                        bool EnteringContext) {
    765   if (SS.isInvalid())
    766     return true;
    767 
    768   // Translate the parser's template argument list in our AST format.
    769   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
    770   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
    771 
    772   if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){
    773     // Handle a dependent template specialization for which we cannot resolve
    774     // the template name.
    775     assert(DTN->getQualifier()
    776              == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
    777     QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
    778                                                           DTN->getQualifier(),
    779                                                           DTN->getIdentifier(),
    780                                                                 TemplateArgs);
    781 
    782     // Create source-location information for this type.
    783     TypeLocBuilder Builder;
    784     DependentTemplateSpecializationTypeLoc SpecTL
    785       = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
    786     SpecTL.setElaboratedKeywordLoc(SourceLocation());
    787     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
    788     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
    789     SpecTL.setTemplateNameLoc(TemplateNameLoc);
    790     SpecTL.setLAngleLoc(LAngleLoc);
    791     SpecTL.setRAngleLoc(RAngleLoc);
    792     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
    793       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
    794 
    795     SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
    796               CCLoc);
    797     return false;
    798   }
    799 
    800 
    801   if (Template.get().getAsOverloadedTemplate() ||
    802       isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) {
    803     SourceRange R(TemplateNameLoc, RAngleLoc);
    804     if (SS.getRange().isValid())
    805       R.setBegin(SS.getRange().getBegin());
    806 
    807     Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
    808       << Template.get() << R;
    809     NoteAllFoundTemplates(Template.get());
    810     return true;
    811   }
    812 
    813   // We were able to resolve the template name to an actual template.
    814   // Build an appropriate nested-name-specifier.
    815   QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
    816                                    TemplateArgs);
    817   if (T.isNull())
    818     return true;
    819 
    820   // Alias template specializations can produce types which are not valid
    821   // nested name specifiers.
    822   if (!T->isDependentType() && !T->getAs<TagType>()) {
    823     Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
    824     NoteAllFoundTemplates(Template.get());
    825     return true;
    826   }
    827 
    828   // Provide source-location information for the template specialization type.
    829   TypeLocBuilder Builder;
    830   TemplateSpecializationTypeLoc SpecTL
    831     = Builder.push<TemplateSpecializationTypeLoc>(T);
    832   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
    833   SpecTL.setTemplateNameLoc(TemplateNameLoc);
    834   SpecTL.setLAngleLoc(LAngleLoc);
    835   SpecTL.setRAngleLoc(RAngleLoc);
    836   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
    837     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
    838 
    839 
    840   SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
    841             CCLoc);
    842   return false;
    843 }
    844 
    845 namespace {
    846   /// \brief A structure that stores a nested-name-specifier annotation,
    847   /// including both the nested-name-specifier
    848   struct NestedNameSpecifierAnnotation {
    849     NestedNameSpecifier *NNS;
    850   };
    851 }
    852 
    853 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
    854   if (SS.isEmpty() || SS.isInvalid())
    855     return 0;
    856 
    857   void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
    858                                                         SS.location_size()),
    859                                llvm::alignOf<NestedNameSpecifierAnnotation>());
    860   NestedNameSpecifierAnnotation *Annotation
    861     = new (Mem) NestedNameSpecifierAnnotation;
    862   Annotation->NNS = SS.getScopeRep();
    863   memcpy(Annotation + 1, SS.location_data(), SS.location_size());
    864   return Annotation;
    865 }
    866 
    867 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
    868                                                 SourceRange AnnotationRange,
    869                                                 CXXScopeSpec &SS) {
    870   if (!AnnotationPtr) {
    871     SS.SetInvalid(AnnotationRange);
    872     return;
    873   }
    874 
    875   NestedNameSpecifierAnnotation *Annotation
    876     = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
    877   SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
    878 }
    879 
    880 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
    881   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
    882 
    883   NestedNameSpecifier *Qualifier =
    884     static_cast<NestedNameSpecifier*>(SS.getScopeRep());
    885 
    886   // There are only two places a well-formed program may qualify a
    887   // declarator: first, when defining a namespace or class member
    888   // out-of-line, and second, when naming an explicitly-qualified
    889   // friend function.  The latter case is governed by
    890   // C++03 [basic.lookup.unqual]p10:
    891   //   In a friend declaration naming a member function, a name used
    892   //   in the function declarator and not part of a template-argument
    893   //   in a template-id is first looked up in the scope of the member
    894   //   function's class. If it is not found, or if the name is part of
    895   //   a template-argument in a template-id, the look up is as
    896   //   described for unqualified names in the definition of the class
    897   //   granting friendship.
    898   // i.e. we don't push a scope unless it's a class member.
    899 
    900   switch (Qualifier->getKind()) {
    901   case NestedNameSpecifier::Global:
    902   case NestedNameSpecifier::Namespace:
    903   case NestedNameSpecifier::NamespaceAlias:
    904     // These are always namespace scopes.  We never want to enter a
    905     // namespace scope from anything but a file context.
    906     return CurContext->getRedeclContext()->isFileContext();
    907 
    908   case NestedNameSpecifier::Identifier:
    909   case NestedNameSpecifier::TypeSpec:
    910   case NestedNameSpecifier::TypeSpecWithTemplate:
    911     // These are never namespace scopes.
    912     return true;
    913   }
    914 
    915   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
    916 }
    917 
    918 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
    919 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
    920 /// After this method is called, according to [C++ 3.4.3p3], names should be
    921 /// looked up in the declarator-id's scope, until the declarator is parsed and
    922 /// ActOnCXXExitDeclaratorScope is called.
    923 /// The 'SS' should be a non-empty valid CXXScopeSpec.
    924 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
    925   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
    926 
    927   if (SS.isInvalid()) return true;
    928 
    929   DeclContext *DC = computeDeclContext(SS, true);
    930   if (!DC) return true;
    931 
    932   // Before we enter a declarator's context, we need to make sure that
    933   // it is a complete declaration context.
    934   if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
    935     return true;
    936 
    937   EnterDeclaratorContext(S, DC);
    938 
    939   // Rebuild the nested name specifier for the new scope.
    940   if (DC->isDependentContext())
    941     RebuildNestedNameSpecifierInCurrentInstantiation(SS);
    942 
    943   return false;
    944 }
    945 
    946 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
    947 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
    948 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
    949 /// Used to indicate that names should revert to being looked up in the
    950 /// defining scope.
    951 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
    952   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
    953   if (SS.isInvalid())
    954     return;
    955   assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
    956          "exiting declarator scope we never really entered");
    957   ExitDeclaratorContext(S);
    958 }
    959