Home | History | Annotate | Download | only in AST
      1 //===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines the Expr interface and subclasses.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CLANG_AST_EXPR_H
     15 #define LLVM_CLANG_AST_EXPR_H
     16 
     17 #include "clang/AST/APValue.h"
     18 #include "clang/AST/Stmt.h"
     19 #include "clang/AST/Type.h"
     20 #include "clang/AST/DeclAccessPair.h"
     21 #include "clang/AST/OperationKinds.h"
     22 #include "clang/AST/ASTVector.h"
     23 #include "clang/AST/TemplateBase.h"
     24 #include "clang/Basic/TargetInfo.h"
     25 #include "clang/Basic/TypeTraits.h"
     26 #include "llvm/ADT/APSInt.h"
     27 #include "llvm/ADT/APFloat.h"
     28 #include "llvm/ADT/SmallVector.h"
     29 #include "llvm/ADT/StringRef.h"
     30 #include "llvm/Support/Compiler.h"
     31 #include <cctype>
     32 
     33 namespace clang {
     34   class ASTContext;
     35   class APValue;
     36   class Decl;
     37   class IdentifierInfo;
     38   class ParmVarDecl;
     39   class NamedDecl;
     40   class ValueDecl;
     41   class BlockDecl;
     42   class CXXBaseSpecifier;
     43   class CXXOperatorCallExpr;
     44   class CXXMemberCallExpr;
     45   class ObjCPropertyRefExpr;
     46   class OpaqueValueExpr;
     47 
     48 /// \brief A simple array of base specifiers.
     49 typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
     50 
     51 /// Expr - This represents one expression.  Note that Expr's are subclasses of
     52 /// Stmt.  This allows an expression to be transparently used any place a Stmt
     53 /// is required.
     54 ///
     55 class Expr : public Stmt {
     56   QualType TR;
     57 
     58 protected:
     59   Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
     60        bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
     61     : Stmt(SC)
     62   {
     63     ExprBits.TypeDependent = TD;
     64     ExprBits.ValueDependent = VD;
     65     ExprBits.InstantiationDependent = ID;
     66     ExprBits.ValueKind = VK;
     67     ExprBits.ObjectKind = OK;
     68     ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
     69     setType(T);
     70   }
     71 
     72   /// \brief Construct an empty expression.
     73   explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
     74 
     75 public:
     76   QualType getType() const { return TR; }
     77   void setType(QualType t) {
     78     // In C++, the type of an expression is always adjusted so that it
     79     // will not have reference type an expression will never have
     80     // reference type (C++ [expr]p6). Use
     81     // QualType::getNonReferenceType() to retrieve the non-reference
     82     // type. Additionally, inspect Expr::isLvalue to determine whether
     83     // an expression that is adjusted in this manner should be
     84     // considered an lvalue.
     85     assert((t.isNull() || !t->isReferenceType()) &&
     86            "Expressions can't have reference type");
     87 
     88     TR = t;
     89   }
     90 
     91   /// isValueDependent - Determines whether this expression is
     92   /// value-dependent (C++ [temp.dep.constexpr]). For example, the
     93   /// array bound of "Chars" in the following example is
     94   /// value-dependent.
     95   /// @code
     96   /// template<int Size, char (&Chars)[Size]> struct meta_string;
     97   /// @endcode
     98   bool isValueDependent() const { return ExprBits.ValueDependent; }
     99 
    100   /// \brief Set whether this expression is value-dependent or not.
    101   void setValueDependent(bool VD) {
    102     ExprBits.ValueDependent = VD;
    103     if (VD)
    104       ExprBits.InstantiationDependent = true;
    105   }
    106 
    107   /// isTypeDependent - Determines whether this expression is
    108   /// type-dependent (C++ [temp.dep.expr]), which means that its type
    109   /// could change from one template instantiation to the next. For
    110   /// example, the expressions "x" and "x + y" are type-dependent in
    111   /// the following code, but "y" is not type-dependent:
    112   /// @code
    113   /// template<typename T>
    114   /// void add(T x, int y) {
    115   ///   x + y;
    116   /// }
    117   /// @endcode
    118   bool isTypeDependent() const { return ExprBits.TypeDependent; }
    119 
    120   /// \brief Set whether this expression is type-dependent or not.
    121   void setTypeDependent(bool TD) {
    122     ExprBits.TypeDependent = TD;
    123     if (TD)
    124       ExprBits.InstantiationDependent = true;
    125   }
    126 
    127   /// \brief Whether this expression is instantiation-dependent, meaning that
    128   /// it depends in some way on a template parameter, even if neither its type
    129   /// nor (constant) value can change due to the template instantiation.
    130   ///
    131   /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
    132   /// instantiation-dependent (since it involves a template parameter \c T), but
    133   /// is neither type- nor value-dependent, since the type of the inner
    134   /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
    135   /// \c sizeof is known.
    136   ///
    137   /// \code
    138   /// template<typename T>
    139   /// void f(T x, T y) {
    140   ///   sizeof(sizeof(T() + T());
    141   /// }
    142   /// \endcode
    143   ///
    144   bool isInstantiationDependent() const {
    145     return ExprBits.InstantiationDependent;
    146   }
    147 
    148   /// \brief Set whether this expression is instantiation-dependent or not.
    149   void setInstantiationDependent(bool ID) {
    150     ExprBits.InstantiationDependent = ID;
    151   }
    152 
    153   /// \brief Whether this expression contains an unexpanded parameter
    154   /// pack (for C++0x variadic templates).
    155   ///
    156   /// Given the following function template:
    157   ///
    158   /// \code
    159   /// template<typename F, typename ...Types>
    160   /// void forward(const F &f, Types &&...args) {
    161   ///   f(static_cast<Types&&>(args)...);
    162   /// }
    163   /// \endcode
    164   ///
    165   /// The expressions \c args and \c static_cast<Types&&>(args) both
    166   /// contain parameter packs.
    167   bool containsUnexpandedParameterPack() const {
    168     return ExprBits.ContainsUnexpandedParameterPack;
    169   }
    170 
    171   /// \brief Set the bit that describes whether this expression
    172   /// contains an unexpanded parameter pack.
    173   void setContainsUnexpandedParameterPack(bool PP = true) {
    174     ExprBits.ContainsUnexpandedParameterPack = PP;
    175   }
    176 
    177   /// getExprLoc - Return the preferred location for the arrow when diagnosing
    178   /// a problem with a generic expression.
    179   SourceLocation getExprLoc() const LLVM_READONLY;
    180 
    181   /// isUnusedResultAWarning - Return true if this immediate expression should
    182   /// be warned about if the result is unused.  If so, fill in Loc and Ranges
    183   /// with location to warn on and the source range[s] to report with the
    184   /// warning.
    185   bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
    186                               SourceRange &R2, ASTContext &Ctx) const;
    187 
    188   /// isLValue - True if this expression is an "l-value" according to
    189   /// the rules of the current language.  C and C++ give somewhat
    190   /// different rules for this concept, but in general, the result of
    191   /// an l-value expression identifies a specific object whereas the
    192   /// result of an r-value expression is a value detached from any
    193   /// specific storage.
    194   ///
    195   /// C++0x divides the concept of "r-value" into pure r-values
    196   /// ("pr-values") and so-called expiring values ("x-values"), which
    197   /// identify specific objects that can be safely cannibalized for
    198   /// their resources.  This is an unfortunate abuse of terminology on
    199   /// the part of the C++ committee.  In Clang, when we say "r-value",
    200   /// we generally mean a pr-value.
    201   bool isLValue() const { return getValueKind() == VK_LValue; }
    202   bool isRValue() const { return getValueKind() == VK_RValue; }
    203   bool isXValue() const { return getValueKind() == VK_XValue; }
    204   bool isGLValue() const { return getValueKind() != VK_RValue; }
    205 
    206   enum LValueClassification {
    207     LV_Valid,
    208     LV_NotObjectType,
    209     LV_IncompleteVoidType,
    210     LV_DuplicateVectorComponents,
    211     LV_InvalidExpression,
    212     LV_InvalidMessageExpression,
    213     LV_MemberFunction,
    214     LV_SubObjCPropertySetting,
    215     LV_ClassTemporary
    216   };
    217   /// Reasons why an expression might not be an l-value.
    218   LValueClassification ClassifyLValue(ASTContext &Ctx) const;
    219 
    220   /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
    221   /// does not have an incomplete type, does not have a const-qualified type,
    222   /// and if it is a structure or union, does not have any member (including,
    223   /// recursively, any member or element of all contained aggregates or unions)
    224   /// with a const-qualified type.
    225   ///
    226   /// \param Loc [in] [out] - A source location which *may* be filled
    227   /// in with the location of the expression making this a
    228   /// non-modifiable lvalue, if specified.
    229   enum isModifiableLvalueResult {
    230     MLV_Valid,
    231     MLV_NotObjectType,
    232     MLV_IncompleteVoidType,
    233     MLV_DuplicateVectorComponents,
    234     MLV_InvalidExpression,
    235     MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
    236     MLV_IncompleteType,
    237     MLV_ConstQualified,
    238     MLV_ArrayType,
    239     MLV_ReadonlyProperty,
    240     MLV_NoSetterProperty,
    241     MLV_MemberFunction,
    242     MLV_SubObjCPropertySetting,
    243     MLV_InvalidMessageExpression,
    244     MLV_ClassTemporary
    245   };
    246   isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
    247                                               SourceLocation *Loc = 0) const;
    248 
    249   /// \brief The return type of classify(). Represents the C++0x expression
    250   ///        taxonomy.
    251   class Classification {
    252   public:
    253     /// \brief The various classification results. Most of these mean prvalue.
    254     enum Kinds {
    255       CL_LValue,
    256       CL_XValue,
    257       CL_Function, // Functions cannot be lvalues in C.
    258       CL_Void, // Void cannot be an lvalue in C.
    259       CL_AddressableVoid, // Void expression whose address can be taken in C.
    260       CL_DuplicateVectorComponents, // A vector shuffle with dupes.
    261       CL_MemberFunction, // An expression referring to a member function
    262       CL_SubObjCPropertySetting,
    263       CL_ClassTemporary, // A prvalue of class type
    264       CL_ObjCMessageRValue, // ObjC message is an rvalue
    265       CL_PRValue // A prvalue for any other reason, of any other type
    266     };
    267     /// \brief The results of modification testing.
    268     enum ModifiableType {
    269       CM_Untested, // testModifiable was false.
    270       CM_Modifiable,
    271       CM_RValue, // Not modifiable because it's an rvalue
    272       CM_Function, // Not modifiable because it's a function; C++ only
    273       CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
    274       CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
    275       CM_ConstQualified,
    276       CM_ArrayType,
    277       CM_IncompleteType
    278     };
    279 
    280   private:
    281     friend class Expr;
    282 
    283     unsigned short Kind;
    284     unsigned short Modifiable;
    285 
    286     explicit Classification(Kinds k, ModifiableType m)
    287       : Kind(k), Modifiable(m)
    288     {}
    289 
    290   public:
    291     Classification() {}
    292 
    293     Kinds getKind() const { return static_cast<Kinds>(Kind); }
    294     ModifiableType getModifiable() const {
    295       assert(Modifiable != CM_Untested && "Did not test for modifiability.");
    296       return static_cast<ModifiableType>(Modifiable);
    297     }
    298     bool isLValue() const { return Kind == CL_LValue; }
    299     bool isXValue() const { return Kind == CL_XValue; }
    300     bool isGLValue() const { return Kind <= CL_XValue; }
    301     bool isPRValue() const { return Kind >= CL_Function; }
    302     bool isRValue() const { return Kind >= CL_XValue; }
    303     bool isModifiable() const { return getModifiable() == CM_Modifiable; }
    304 
    305     /// \brief Create a simple, modifiably lvalue
    306     static Classification makeSimpleLValue() {
    307       return Classification(CL_LValue, CM_Modifiable);
    308     }
    309 
    310   };
    311   /// \brief Classify - Classify this expression according to the C++0x
    312   ///        expression taxonomy.
    313   ///
    314   /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
    315   /// old lvalue vs rvalue. This function determines the type of expression this
    316   /// is. There are three expression types:
    317   /// - lvalues are classical lvalues as in C++03.
    318   /// - prvalues are equivalent to rvalues in C++03.
    319   /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
    320   ///   function returning an rvalue reference.
    321   /// lvalues and xvalues are collectively referred to as glvalues, while
    322   /// prvalues and xvalues together form rvalues.
    323   Classification Classify(ASTContext &Ctx) const {
    324     return ClassifyImpl(Ctx, 0);
    325   }
    326 
    327   /// \brief ClassifyModifiable - Classify this expression according to the
    328   ///        C++0x expression taxonomy, and see if it is valid on the left side
    329   ///        of an assignment.
    330   ///
    331   /// This function extends classify in that it also tests whether the
    332   /// expression is modifiable (C99 6.3.2.1p1).
    333   /// \param Loc A source location that might be filled with a relevant location
    334   ///            if the expression is not modifiable.
    335   Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
    336     return ClassifyImpl(Ctx, &Loc);
    337   }
    338 
    339   /// getValueKindForType - Given a formal return or parameter type,
    340   /// give its value kind.
    341   static ExprValueKind getValueKindForType(QualType T) {
    342     if (const ReferenceType *RT = T->getAs<ReferenceType>())
    343       return (isa<LValueReferenceType>(RT)
    344                 ? VK_LValue
    345                 : (RT->getPointeeType()->isFunctionType()
    346                      ? VK_LValue : VK_XValue));
    347     return VK_RValue;
    348   }
    349 
    350   /// getValueKind - The value kind that this expression produces.
    351   ExprValueKind getValueKind() const {
    352     return static_cast<ExprValueKind>(ExprBits.ValueKind);
    353   }
    354 
    355   /// getObjectKind - The object kind that this expression produces.
    356   /// Object kinds are meaningful only for expressions that yield an
    357   /// l-value or x-value.
    358   ExprObjectKind getObjectKind() const {
    359     return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
    360   }
    361 
    362   bool isOrdinaryOrBitFieldObject() const {
    363     ExprObjectKind OK = getObjectKind();
    364     return (OK == OK_Ordinary || OK == OK_BitField);
    365   }
    366 
    367   /// setValueKind - Set the value kind produced by this expression.
    368   void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
    369 
    370   /// setObjectKind - Set the object kind produced by this expression.
    371   void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
    372 
    373 private:
    374   Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
    375 
    376 public:
    377 
    378   /// \brief If this expression refers to a bit-field, retrieve the
    379   /// declaration of that bit-field.
    380   FieldDecl *getBitField();
    381 
    382   const FieldDecl *getBitField() const {
    383     return const_cast<Expr*>(this)->getBitField();
    384   }
    385 
    386   /// \brief If this expression is an l-value for an Objective C
    387   /// property, find the underlying property reference expression.
    388   const ObjCPropertyRefExpr *getObjCProperty() const;
    389 
    390   /// \brief Returns whether this expression refers to a vector element.
    391   bool refersToVectorElement() const;
    392 
    393   /// \brief Returns whether this expression has a placeholder type.
    394   bool hasPlaceholderType() const {
    395     return getType()->isPlaceholderType();
    396   }
    397 
    398   /// \brief Returns whether this expression has a specific placeholder type.
    399   bool hasPlaceholderType(BuiltinType::Kind K) const {
    400     assert(BuiltinType::isPlaceholderTypeKind(K));
    401     if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
    402       return BT->getKind() == K;
    403     return false;
    404   }
    405 
    406   /// isKnownToHaveBooleanValue - Return true if this is an integer expression
    407   /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
    408   /// but also int expressions which are produced by things like comparisons in
    409   /// C.
    410   bool isKnownToHaveBooleanValue() const;
    411 
    412   /// isIntegerConstantExpr - Return true if this expression is a valid integer
    413   /// constant expression, and, if so, return its value in Result.  If not a
    414   /// valid i-c-e, return false and fill in Loc (if specified) with the location
    415   /// of the invalid expression.
    416   ///
    417   /// Note: This does not perform the implicit conversions required by C++11
    418   /// [expr.const]p5.
    419   bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
    420                              SourceLocation *Loc = 0,
    421                              bool isEvaluated = true) const;
    422   bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const;
    423 
    424   /// isCXX98IntegralConstantExpr - Return true if this expression is an
    425   /// integral constant expression in C++98. Can only be used in C++.
    426   bool isCXX98IntegralConstantExpr(ASTContext &Ctx) const;
    427 
    428   /// isCXX11ConstantExpr - Return true if this expression is a constant
    429   /// expression in C++11. Can only be used in C++.
    430   ///
    431   /// Note: This does not perform the implicit conversions required by C++11
    432   /// [expr.const]p5.
    433   bool isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result = 0,
    434                            SourceLocation *Loc = 0) const;
    435 
    436   /// isPotentialConstantExpr - Return true if this function's definition
    437   /// might be usable in a constant expression in C++11, if it were marked
    438   /// constexpr. Return false if the function can never produce a constant
    439   /// expression, along with diagnostics describing why not.
    440   static bool isPotentialConstantExpr(const FunctionDecl *FD,
    441                                       llvm::SmallVectorImpl<
    442                                         PartialDiagnosticAt> &Diags);
    443 
    444   /// isConstantInitializer - Returns true if this expression can be emitted to
    445   /// IR as a constant, and thus can be used as a constant initializer in C.
    446   bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
    447 
    448   /// EvalStatus is a struct with detailed info about an evaluation in progress.
    449   struct EvalStatus {
    450     /// HasSideEffects - Whether the evaluated expression has side effects.
    451     /// For example, (f() && 0) can be folded, but it still has side effects.
    452     bool HasSideEffects;
    453 
    454     /// Diag - If this is non-null, it will be filled in with a stack of notes
    455     /// indicating why evaluation failed (or why it failed to produce a constant
    456     /// expression).
    457     /// If the expression is unfoldable, the notes will indicate why it's not
    458     /// foldable. If the expression is foldable, but not a constant expression,
    459     /// the notes will describes why it isn't a constant expression. If the
    460     /// expression *is* a constant expression, no notes will be produced.
    461     llvm::SmallVectorImpl<PartialDiagnosticAt> *Diag;
    462 
    463     EvalStatus() : HasSideEffects(false), Diag(0) {}
    464 
    465     // hasSideEffects - Return true if the evaluated expression has
    466     // side effects.
    467     bool hasSideEffects() const {
    468       return HasSideEffects;
    469     }
    470   };
    471 
    472   /// EvalResult is a struct with detailed info about an evaluated expression.
    473   struct EvalResult : EvalStatus {
    474     /// Val - This is the value the expression can be folded to.
    475     APValue Val;
    476 
    477     // isGlobalLValue - Return true if the evaluated lvalue expression
    478     // is global.
    479     bool isGlobalLValue() const;
    480   };
    481 
    482   /// EvaluateAsRValue - Return true if this is a constant which we can fold to
    483   /// an rvalue using any crazy technique (that has nothing to do with language
    484   /// standards) that we want to, even if the expression has side-effects. If
    485   /// this function returns true, it returns the folded constant in Result. If
    486   /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
    487   /// applied.
    488   bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
    489 
    490   /// EvaluateAsBooleanCondition - Return true if this is a constant
    491   /// which we we can fold and convert to a boolean condition using
    492   /// any crazy technique that we want to, even if the expression has
    493   /// side-effects.
    494   bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
    495 
    496   enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
    497 
    498   /// EvaluateAsInt - Return true if this is a constant which we can fold and
    499   /// convert to an integer, using any crazy technique that we want to.
    500   bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
    501                      SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
    502 
    503   /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
    504   /// constant folded without side-effects, but discard the result.
    505   bool isEvaluatable(const ASTContext &Ctx) const;
    506 
    507   /// HasSideEffects - This routine returns true for all those expressions
    508   /// which must be evaluated each time and must not be optimized away
    509   /// or evaluated at compile time. Example is a function call, volatile
    510   /// variable read.
    511   bool HasSideEffects(const ASTContext &Ctx) const;
    512 
    513   /// \brief Determine whether this expression involves a call to any function
    514   /// that is not trivial.
    515   bool hasNonTrivialCall(ASTContext &Ctx);
    516 
    517   /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
    518   /// integer. This must be called on an expression that constant folds to an
    519   /// integer.
    520   llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx) const;
    521 
    522   /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
    523   /// lvalue with link time known address, with no side-effects.
    524   bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
    525 
    526   /// EvaluateAsInitializer - Evaluate an expression as if it were the
    527   /// initializer of the given declaration. Returns true if the initializer
    528   /// can be folded to a constant, and produces any relevant notes. In C++11,
    529   /// notes will be produced if the expression is not a constant expression.
    530   bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
    531                              const VarDecl *VD,
    532                        llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
    533 
    534   /// \brief Enumeration used to describe the kind of Null pointer constant
    535   /// returned from \c isNullPointerConstant().
    536   enum NullPointerConstantKind {
    537     /// \brief Expression is not a Null pointer constant.
    538     NPCK_NotNull = 0,
    539 
    540     /// \brief Expression is a Null pointer constant built from a zero integer.
    541     NPCK_ZeroInteger,
    542 
    543     /// \brief Expression is a C++0X nullptr.
    544     NPCK_CXX0X_nullptr,
    545 
    546     /// \brief Expression is a GNU-style __null constant.
    547     NPCK_GNUNull
    548   };
    549 
    550   /// \brief Enumeration used to describe how \c isNullPointerConstant()
    551   /// should cope with value-dependent expressions.
    552   enum NullPointerConstantValueDependence {
    553     /// \brief Specifies that the expression should never be value-dependent.
    554     NPC_NeverValueDependent = 0,
    555 
    556     /// \brief Specifies that a value-dependent expression of integral or
    557     /// dependent type should be considered a null pointer constant.
    558     NPC_ValueDependentIsNull,
    559 
    560     /// \brief Specifies that a value-dependent expression should be considered
    561     /// to never be a null pointer constant.
    562     NPC_ValueDependentIsNotNull
    563   };
    564 
    565   /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
    566   /// a Null pointer constant. The return value can further distinguish the
    567   /// kind of NULL pointer constant that was detected.
    568   NullPointerConstantKind isNullPointerConstant(
    569       ASTContext &Ctx,
    570       NullPointerConstantValueDependence NPC) const;
    571 
    572   /// isOBJCGCCandidate - Return true if this expression may be used in a read/
    573   /// write barrier.
    574   bool isOBJCGCCandidate(ASTContext &Ctx) const;
    575 
    576   /// \brief Returns true if this expression is a bound member function.
    577   bool isBoundMemberFunction(ASTContext &Ctx) const;
    578 
    579   /// \brief Given an expression of bound-member type, find the type
    580   /// of the member.  Returns null if this is an *overloaded* bound
    581   /// member expression.
    582   static QualType findBoundMemberType(const Expr *expr);
    583 
    584   /// IgnoreImpCasts - Skip past any implicit casts which might
    585   /// surround this expression.  Only skips ImplicitCastExprs.
    586   Expr *IgnoreImpCasts() LLVM_READONLY;
    587 
    588   /// IgnoreImplicit - Skip past any implicit AST nodes which might
    589   /// surround this expression.
    590   Expr *IgnoreImplicit() LLVM_READONLY {
    591     return cast<Expr>(Stmt::IgnoreImplicit());
    592   }
    593 
    594   /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
    595   ///  its subexpression.  If that subexpression is also a ParenExpr,
    596   ///  then this method recursively returns its subexpression, and so forth.
    597   ///  Otherwise, the method returns the current Expr.
    598   Expr *IgnoreParens() LLVM_READONLY;
    599 
    600   /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
    601   /// or CastExprs, returning their operand.
    602   Expr *IgnoreParenCasts() LLVM_READONLY;
    603 
    604   /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
    605   /// any ParenExpr or ImplicitCastExprs, returning their operand.
    606   Expr *IgnoreParenImpCasts() LLVM_READONLY;
    607 
    608   /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
    609   /// call to a conversion operator, return the argument.
    610   Expr *IgnoreConversionOperator() LLVM_READONLY;
    611 
    612   const Expr *IgnoreConversionOperator() const LLVM_READONLY {
    613     return const_cast<Expr*>(this)->IgnoreConversionOperator();
    614   }
    615 
    616   const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
    617     return const_cast<Expr*>(this)->IgnoreParenImpCasts();
    618   }
    619 
    620   /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
    621   /// CastExprs that represent lvalue casts, returning their operand.
    622   Expr *IgnoreParenLValueCasts() LLVM_READONLY;
    623 
    624   const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
    625     return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
    626   }
    627 
    628   /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
    629   /// value (including ptr->int casts of the same size).  Strip off any
    630   /// ParenExpr or CastExprs, returning their operand.
    631   Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
    632 
    633   /// \brief Determine whether this expression is a default function argument.
    634   ///
    635   /// Default arguments are implicitly generated in the abstract syntax tree
    636   /// by semantic analysis for function calls, object constructions, etc. in
    637   /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
    638   /// this routine also looks through any implicit casts to determine whether
    639   /// the expression is a default argument.
    640   bool isDefaultArgument() const;
    641 
    642   /// \brief Determine whether the result of this expression is a
    643   /// temporary object of the given class type.
    644   bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
    645 
    646   /// \brief Whether this expression is an implicit reference to 'this' in C++.
    647   bool isImplicitCXXThis() const;
    648 
    649   const Expr *IgnoreImpCasts() const LLVM_READONLY {
    650     return const_cast<Expr*>(this)->IgnoreImpCasts();
    651   }
    652   const Expr *IgnoreParens() const LLVM_READONLY {
    653     return const_cast<Expr*>(this)->IgnoreParens();
    654   }
    655   const Expr *IgnoreParenCasts() const LLVM_READONLY {
    656     return const_cast<Expr*>(this)->IgnoreParenCasts();
    657   }
    658   const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
    659     return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
    660   }
    661 
    662   static bool hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs);
    663 
    664   static bool classof(const Stmt *T) {
    665     return T->getStmtClass() >= firstExprConstant &&
    666            T->getStmtClass() <= lastExprConstant;
    667   }
    668   static bool classof(const Expr *) { return true; }
    669 };
    670 
    671 
    672 //===----------------------------------------------------------------------===//
    673 // Primary Expressions.
    674 //===----------------------------------------------------------------------===//
    675 
    676 /// OpaqueValueExpr - An expression referring to an opaque object of a
    677 /// fixed type and value class.  These don't correspond to concrete
    678 /// syntax; instead they're used to express operations (usually copy
    679 /// operations) on values whose source is generally obvious from
    680 /// context.
    681 class OpaqueValueExpr : public Expr {
    682   friend class ASTStmtReader;
    683   Expr *SourceExpr;
    684   SourceLocation Loc;
    685 
    686 public:
    687   OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
    688                   ExprObjectKind OK = OK_Ordinary,
    689                   Expr *SourceExpr = 0)
    690     : Expr(OpaqueValueExprClass, T, VK, OK,
    691            T->isDependentType(),
    692            T->isDependentType() ||
    693            (SourceExpr && SourceExpr->isValueDependent()),
    694            T->isInstantiationDependentType(),
    695            false),
    696       SourceExpr(SourceExpr), Loc(Loc) {
    697   }
    698 
    699   /// Given an expression which invokes a copy constructor --- i.e.  a
    700   /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
    701   /// find the OpaqueValueExpr that's the source of the construction.
    702   static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
    703 
    704   explicit OpaqueValueExpr(EmptyShell Empty)
    705     : Expr(OpaqueValueExprClass, Empty) { }
    706 
    707   /// \brief Retrieve the location of this expression.
    708   SourceLocation getLocation() const { return Loc; }
    709 
    710   SourceRange getSourceRange() const LLVM_READONLY {
    711     if (SourceExpr) return SourceExpr->getSourceRange();
    712     return Loc;
    713   }
    714   SourceLocation getExprLoc() const LLVM_READONLY {
    715     if (SourceExpr) return SourceExpr->getExprLoc();
    716     return Loc;
    717   }
    718 
    719   child_range children() { return child_range(); }
    720 
    721   /// The source expression of an opaque value expression is the
    722   /// expression which originally generated the value.  This is
    723   /// provided as a convenience for analyses that don't wish to
    724   /// precisely model the execution behavior of the program.
    725   ///
    726   /// The source expression is typically set when building the
    727   /// expression which binds the opaque value expression in the first
    728   /// place.
    729   Expr *getSourceExpr() const { return SourceExpr; }
    730 
    731   static bool classof(const Stmt *T) {
    732     return T->getStmtClass() == OpaqueValueExprClass;
    733   }
    734   static bool classof(const OpaqueValueExpr *) { return true; }
    735 };
    736 
    737 /// \brief A reference to a declared variable, function, enum, etc.
    738 /// [C99 6.5.1p2]
    739 ///
    740 /// This encodes all the information about how a declaration is referenced
    741 /// within an expression.
    742 ///
    743 /// There are several optional constructs attached to DeclRefExprs only when
    744 /// they apply in order to conserve memory. These are laid out past the end of
    745 /// the object, and flags in the DeclRefExprBitfield track whether they exist:
    746 ///
    747 ///   DeclRefExprBits.HasQualifier:
    748 ///       Specifies when this declaration reference expression has a C++
    749 ///       nested-name-specifier.
    750 ///   DeclRefExprBits.HasFoundDecl:
    751 ///       Specifies when this declaration reference expression has a record of
    752 ///       a NamedDecl (different from the referenced ValueDecl) which was found
    753 ///       during name lookup and/or overload resolution.
    754 ///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
    755 ///       Specifies when this declaration reference expression has an explicit
    756 ///       C++ template keyword and/or template argument list.
    757 ///   DeclRefExprBits.RefersToEnclosingLocal
    758 ///       Specifies when this declaration reference expression (validly)
    759 ///       refers to a local variable from a different function.
    760 class DeclRefExpr : public Expr {
    761   /// \brief The declaration that we are referencing.
    762   ValueDecl *D;
    763 
    764   /// \brief The location of the declaration name itself.
    765   SourceLocation Loc;
    766 
    767   /// \brief Provides source/type location info for the declaration name
    768   /// embedded in D.
    769   DeclarationNameLoc DNLoc;
    770 
    771   /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
    772   NestedNameSpecifierLoc &getInternalQualifierLoc() {
    773     assert(hasQualifier());
    774     return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
    775   }
    776 
    777   /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
    778   const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
    779     return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
    780   }
    781 
    782   /// \brief Test whether there is a distinct FoundDecl attached to the end of
    783   /// this DRE.
    784   bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
    785 
    786   /// \brief Helper to retrieve the optional NamedDecl through which this
    787   /// reference occured.
    788   NamedDecl *&getInternalFoundDecl() {
    789     assert(hasFoundDecl());
    790     if (hasQualifier())
    791       return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
    792     return *reinterpret_cast<NamedDecl **>(this + 1);
    793   }
    794 
    795   /// \brief Helper to retrieve the optional NamedDecl through which this
    796   /// reference occured.
    797   NamedDecl *getInternalFoundDecl() const {
    798     return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
    799   }
    800 
    801   DeclRefExpr(ASTContext &Ctx,
    802               NestedNameSpecifierLoc QualifierLoc,
    803               SourceLocation TemplateKWLoc,
    804               ValueDecl *D, bool refersToEnclosingLocal,
    805               const DeclarationNameInfo &NameInfo,
    806               NamedDecl *FoundD,
    807               const TemplateArgumentListInfo *TemplateArgs,
    808               QualType T, ExprValueKind VK);
    809 
    810   /// \brief Construct an empty declaration reference expression.
    811   explicit DeclRefExpr(EmptyShell Empty)
    812     : Expr(DeclRefExprClass, Empty) { }
    813 
    814   /// \brief Computes the type- and value-dependence flags for this
    815   /// declaration reference expression.
    816   void computeDependence(ASTContext &C);
    817 
    818 public:
    819   DeclRefExpr(ValueDecl *D, bool refersToEnclosingLocal, QualType T,
    820               ExprValueKind VK, SourceLocation L,
    821               const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
    822     : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
    823       D(D), Loc(L), DNLoc(LocInfo) {
    824     DeclRefExprBits.HasQualifier = 0;
    825     DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
    826     DeclRefExprBits.HasFoundDecl = 0;
    827     DeclRefExprBits.HadMultipleCandidates = 0;
    828     DeclRefExprBits.RefersToEnclosingLocal = refersToEnclosingLocal;
    829     computeDependence(D->getASTContext());
    830   }
    831 
    832   static DeclRefExpr *Create(ASTContext &Context,
    833                              NestedNameSpecifierLoc QualifierLoc,
    834                              SourceLocation TemplateKWLoc,
    835                              ValueDecl *D,
    836                              bool isEnclosingLocal,
    837                              SourceLocation NameLoc,
    838                              QualType T, ExprValueKind VK,
    839                              NamedDecl *FoundD = 0,
    840                              const TemplateArgumentListInfo *TemplateArgs = 0);
    841 
    842   static DeclRefExpr *Create(ASTContext &Context,
    843                              NestedNameSpecifierLoc QualifierLoc,
    844                              SourceLocation TemplateKWLoc,
    845                              ValueDecl *D,
    846                              bool isEnclosingLocal,
    847                              const DeclarationNameInfo &NameInfo,
    848                              QualType T, ExprValueKind VK,
    849                              NamedDecl *FoundD = 0,
    850                              const TemplateArgumentListInfo *TemplateArgs = 0);
    851 
    852   /// \brief Construct an empty declaration reference expression.
    853   static DeclRefExpr *CreateEmpty(ASTContext &Context,
    854                                   bool HasQualifier,
    855                                   bool HasFoundDecl,
    856                                   bool HasTemplateKWAndArgsInfo,
    857                                   unsigned NumTemplateArgs);
    858 
    859   ValueDecl *getDecl() { return D; }
    860   const ValueDecl *getDecl() const { return D; }
    861   void setDecl(ValueDecl *NewD) { D = NewD; }
    862 
    863   DeclarationNameInfo getNameInfo() const {
    864     return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
    865   }
    866 
    867   SourceLocation getLocation() const { return Loc; }
    868   void setLocation(SourceLocation L) { Loc = L; }
    869   SourceRange getSourceRange() const LLVM_READONLY;
    870   SourceLocation getLocStart() const LLVM_READONLY;
    871   SourceLocation getLocEnd() const LLVM_READONLY;
    872 
    873   /// \brief Determine whether this declaration reference was preceded by a
    874   /// C++ nested-name-specifier, e.g., \c N::foo.
    875   bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
    876 
    877   /// \brief If the name was qualified, retrieves the nested-name-specifier
    878   /// that precedes the name. Otherwise, returns NULL.
    879   NestedNameSpecifier *getQualifier() const {
    880     if (!hasQualifier())
    881       return 0;
    882 
    883     return getInternalQualifierLoc().getNestedNameSpecifier();
    884   }
    885 
    886   /// \brief If the name was qualified, retrieves the nested-name-specifier
    887   /// that precedes the name, with source-location information.
    888   NestedNameSpecifierLoc getQualifierLoc() const {
    889     if (!hasQualifier())
    890       return NestedNameSpecifierLoc();
    891 
    892     return getInternalQualifierLoc();
    893   }
    894 
    895   /// \brief Get the NamedDecl through which this reference occured.
    896   ///
    897   /// This Decl may be different from the ValueDecl actually referred to in the
    898   /// presence of using declarations, etc. It always returns non-NULL, and may
    899   /// simple return the ValueDecl when appropriate.
    900   NamedDecl *getFoundDecl() {
    901     return hasFoundDecl() ? getInternalFoundDecl() : D;
    902   }
    903 
    904   /// \brief Get the NamedDecl through which this reference occurred.
    905   /// See non-const variant.
    906   const NamedDecl *getFoundDecl() const {
    907     return hasFoundDecl() ? getInternalFoundDecl() : D;
    908   }
    909 
    910   bool hasTemplateKWAndArgsInfo() const {
    911     return DeclRefExprBits.HasTemplateKWAndArgsInfo;
    912   }
    913 
    914   /// \brief Return the optional template keyword and arguments info.
    915   ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
    916     if (!hasTemplateKWAndArgsInfo())
    917       return 0;
    918 
    919     if (hasFoundDecl())
    920       return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
    921         &getInternalFoundDecl() + 1);
    922 
    923     if (hasQualifier())
    924       return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
    925         &getInternalQualifierLoc() + 1);
    926 
    927     return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
    928   }
    929 
    930   /// \brief Return the optional template keyword and arguments info.
    931   const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
    932     return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
    933   }
    934 
    935   /// \brief Retrieve the location of the template keyword preceding
    936   /// this name, if any.
    937   SourceLocation getTemplateKeywordLoc() const {
    938     if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
    939     return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
    940   }
    941 
    942   /// \brief Retrieve the location of the left angle bracket starting the
    943   /// explicit template argument list following the name, if any.
    944   SourceLocation getLAngleLoc() const {
    945     if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
    946     return getTemplateKWAndArgsInfo()->LAngleLoc;
    947   }
    948 
    949   /// \brief Retrieve the location of the right angle bracket ending the
    950   /// explicit template argument list following the name, if any.
    951   SourceLocation getRAngleLoc() const {
    952     if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
    953     return getTemplateKWAndArgsInfo()->RAngleLoc;
    954   }
    955 
    956   /// \brief Determines whether the name in this declaration reference
    957   /// was preceded by the template keyword.
    958   bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
    959 
    960   /// \brief Determines whether this declaration reference was followed by an
    961   /// explicit template argument list.
    962   bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
    963 
    964   /// \brief Retrieve the explicit template argument list that followed the
    965   /// member template name.
    966   ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
    967     assert(hasExplicitTemplateArgs());
    968     return *getTemplateKWAndArgsInfo();
    969   }
    970 
    971   /// \brief Retrieve the explicit template argument list that followed the
    972   /// member template name.
    973   const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
    974     return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
    975   }
    976 
    977   /// \brief Retrieves the optional explicit template arguments.
    978   /// This points to the same data as getExplicitTemplateArgs(), but
    979   /// returns null if there are no explicit template arguments.
    980   const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
    981     if (!hasExplicitTemplateArgs()) return 0;
    982     return &getExplicitTemplateArgs();
    983   }
    984 
    985   /// \brief Copies the template arguments (if present) into the given
    986   /// structure.
    987   void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
    988     if (hasExplicitTemplateArgs())
    989       getExplicitTemplateArgs().copyInto(List);
    990   }
    991 
    992   /// \brief Retrieve the template arguments provided as part of this
    993   /// template-id.
    994   const TemplateArgumentLoc *getTemplateArgs() const {
    995     if (!hasExplicitTemplateArgs())
    996       return 0;
    997 
    998     return getExplicitTemplateArgs().getTemplateArgs();
    999   }
   1000 
   1001   /// \brief Retrieve the number of template arguments provided as part of this
   1002   /// template-id.
   1003   unsigned getNumTemplateArgs() const {
   1004     if (!hasExplicitTemplateArgs())
   1005       return 0;
   1006 
   1007     return getExplicitTemplateArgs().NumTemplateArgs;
   1008   }
   1009 
   1010   /// \brief Returns true if this expression refers to a function that
   1011   /// was resolved from an overloaded set having size greater than 1.
   1012   bool hadMultipleCandidates() const {
   1013     return DeclRefExprBits.HadMultipleCandidates;
   1014   }
   1015   /// \brief Sets the flag telling whether this expression refers to
   1016   /// a function that was resolved from an overloaded set having size
   1017   /// greater than 1.
   1018   void setHadMultipleCandidates(bool V = true) {
   1019     DeclRefExprBits.HadMultipleCandidates = V;
   1020   }
   1021 
   1022   /// Does this DeclRefExpr refer to a local declaration from an
   1023   /// enclosing function scope?
   1024   bool refersToEnclosingLocal() const {
   1025     return DeclRefExprBits.RefersToEnclosingLocal;
   1026   }
   1027 
   1028   static bool classof(const Stmt *T) {
   1029     return T->getStmtClass() == DeclRefExprClass;
   1030   }
   1031   static bool classof(const DeclRefExpr *) { return true; }
   1032 
   1033   // Iterators
   1034   child_range children() { return child_range(); }
   1035 
   1036   friend class ASTStmtReader;
   1037   friend class ASTStmtWriter;
   1038 };
   1039 
   1040 /// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
   1041 class PredefinedExpr : public Expr {
   1042 public:
   1043   enum IdentType {
   1044     Func,
   1045     Function,
   1046     PrettyFunction,
   1047     /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
   1048     /// 'virtual' keyword is omitted for virtual member functions.
   1049     PrettyFunctionNoVirtual
   1050   };
   1051 
   1052 private:
   1053   SourceLocation Loc;
   1054   IdentType Type;
   1055 public:
   1056   PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
   1057     : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
   1058            type->isDependentType(), type->isDependentType(),
   1059            type->isInstantiationDependentType(),
   1060            /*ContainsUnexpandedParameterPack=*/false),
   1061       Loc(l), Type(IT) {}
   1062 
   1063   /// \brief Construct an empty predefined expression.
   1064   explicit PredefinedExpr(EmptyShell Empty)
   1065     : Expr(PredefinedExprClass, Empty) { }
   1066 
   1067   IdentType getIdentType() const { return Type; }
   1068   void setIdentType(IdentType IT) { Type = IT; }
   1069 
   1070   SourceLocation getLocation() const { return Loc; }
   1071   void setLocation(SourceLocation L) { Loc = L; }
   1072 
   1073   static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
   1074 
   1075   SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
   1076 
   1077   static bool classof(const Stmt *T) {
   1078     return T->getStmtClass() == PredefinedExprClass;
   1079   }
   1080   static bool classof(const PredefinedExpr *) { return true; }
   1081 
   1082   // Iterators
   1083   child_range children() { return child_range(); }
   1084 };
   1085 
   1086 /// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
   1087 /// leaking memory.
   1088 ///
   1089 /// For large floats/integers, APFloat/APInt will allocate memory from the heap
   1090 /// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
   1091 /// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
   1092 /// the APFloat/APInt values will never get freed. APNumericStorage uses
   1093 /// ASTContext's allocator for memory allocation.
   1094 class APNumericStorage {
   1095   union {
   1096     uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
   1097     uint64_t *pVal;  ///< Used to store the >64 bits integer value.
   1098   };
   1099   unsigned BitWidth;
   1100 
   1101   bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
   1102 
   1103   APNumericStorage(const APNumericStorage&); // do not implement
   1104   APNumericStorage& operator=(const APNumericStorage&); // do not implement
   1105 
   1106 protected:
   1107   APNumericStorage() : VAL(0), BitWidth(0) { }
   1108 
   1109   llvm::APInt getIntValue() const {
   1110     unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
   1111     if (NumWords > 1)
   1112       return llvm::APInt(BitWidth, NumWords, pVal);
   1113     else
   1114       return llvm::APInt(BitWidth, VAL);
   1115   }
   1116   void setIntValue(ASTContext &C, const llvm::APInt &Val);
   1117 };
   1118 
   1119 class APIntStorage : private APNumericStorage {
   1120 public:
   1121   llvm::APInt getValue() const { return getIntValue(); }
   1122   void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
   1123 };
   1124 
   1125 class APFloatStorage : private APNumericStorage {
   1126 public:
   1127   llvm::APFloat getValue(bool IsIEEE) const {
   1128     return llvm::APFloat(getIntValue(), IsIEEE);
   1129   }
   1130   void setValue(ASTContext &C, const llvm::APFloat &Val) {
   1131     setIntValue(C, Val.bitcastToAPInt());
   1132   }
   1133 };
   1134 
   1135 class IntegerLiteral : public Expr, public APIntStorage {
   1136   SourceLocation Loc;
   1137 
   1138   /// \brief Construct an empty integer literal.
   1139   explicit IntegerLiteral(EmptyShell Empty)
   1140     : Expr(IntegerLiteralClass, Empty) { }
   1141 
   1142 public:
   1143   // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
   1144   // or UnsignedLongLongTy
   1145   IntegerLiteral(ASTContext &C, const llvm::APInt &V,
   1146                  QualType type, SourceLocation l)
   1147     : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
   1148            false, false),
   1149       Loc(l) {
   1150     assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
   1151     assert(V.getBitWidth() == C.getIntWidth(type) &&
   1152            "Integer type is not the correct size for constant.");
   1153     setValue(C, V);
   1154   }
   1155 
   1156   /// \brief Returns a new integer literal with value 'V' and type 'type'.
   1157   /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
   1158   /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
   1159   /// \param V - the value that the returned integer literal contains.
   1160   static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
   1161                                 QualType type, SourceLocation l);
   1162   /// \brief Returns a new empty integer literal.
   1163   static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
   1164 
   1165   SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
   1166 
   1167   /// \brief Retrieve the location of the literal.
   1168   SourceLocation getLocation() const { return Loc; }
   1169 
   1170   void setLocation(SourceLocation Location) { Loc = Location; }
   1171 
   1172   static bool classof(const Stmt *T) {
   1173     return T->getStmtClass() == IntegerLiteralClass;
   1174   }
   1175   static bool classof(const IntegerLiteral *) { return true; }
   1176 
   1177   // Iterators
   1178   child_range children() { return child_range(); }
   1179 };
   1180 
   1181 class CharacterLiteral : public Expr {
   1182 public:
   1183   enum CharacterKind {
   1184     Ascii,
   1185     Wide,
   1186     UTF16,
   1187     UTF32
   1188   };
   1189 
   1190 private:
   1191   unsigned Value;
   1192   SourceLocation Loc;
   1193 public:
   1194   // type should be IntTy
   1195   CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
   1196                    SourceLocation l)
   1197     : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
   1198            false, false),
   1199       Value(value), Loc(l) {
   1200     CharacterLiteralBits.Kind = kind;
   1201   }
   1202 
   1203   /// \brief Construct an empty character literal.
   1204   CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
   1205 
   1206   SourceLocation getLocation() const { return Loc; }
   1207   CharacterKind getKind() const {
   1208     return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
   1209   }
   1210 
   1211   SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
   1212 
   1213   unsigned getValue() const { return Value; }
   1214 
   1215   void setLocation(SourceLocation Location) { Loc = Location; }
   1216   void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
   1217   void setValue(unsigned Val) { Value = Val; }
   1218 
   1219   static bool classof(const Stmt *T) {
   1220     return T->getStmtClass() == CharacterLiteralClass;
   1221   }
   1222   static bool classof(const CharacterLiteral *) { return true; }
   1223 
   1224   // Iterators
   1225   child_range children() { return child_range(); }
   1226 };
   1227 
   1228 class FloatingLiteral : public Expr, private APFloatStorage {
   1229   SourceLocation Loc;
   1230 
   1231   FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
   1232                   QualType Type, SourceLocation L)
   1233     : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
   1234            false, false), Loc(L) {
   1235     FloatingLiteralBits.IsIEEE =
   1236       &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
   1237     FloatingLiteralBits.IsExact = isexact;
   1238     setValue(C, V);
   1239   }
   1240 
   1241   /// \brief Construct an empty floating-point literal.
   1242   explicit FloatingLiteral(ASTContext &C, EmptyShell Empty)
   1243     : Expr(FloatingLiteralClass, Empty) {
   1244     FloatingLiteralBits.IsIEEE =
   1245       &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
   1246     FloatingLiteralBits.IsExact = false;
   1247   }
   1248 
   1249 public:
   1250   static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
   1251                                  bool isexact, QualType Type, SourceLocation L);
   1252   static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
   1253 
   1254   llvm::APFloat getValue() const {
   1255     return APFloatStorage::getValue(FloatingLiteralBits.IsIEEE);
   1256   }
   1257   void setValue(ASTContext &C, const llvm::APFloat &Val) {
   1258     APFloatStorage::setValue(C, Val);
   1259   }
   1260 
   1261   bool isExact() const { return FloatingLiteralBits.IsExact; }
   1262   void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
   1263 
   1264   /// getValueAsApproximateDouble - This returns the value as an inaccurate
   1265   /// double.  Note that this may cause loss of precision, but is useful for
   1266   /// debugging dumps, etc.
   1267   double getValueAsApproximateDouble() const;
   1268 
   1269   SourceLocation getLocation() const { return Loc; }
   1270   void setLocation(SourceLocation L) { Loc = L; }
   1271 
   1272   SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
   1273 
   1274   static bool classof(const Stmt *T) {
   1275     return T->getStmtClass() == FloatingLiteralClass;
   1276   }
   1277   static bool classof(const FloatingLiteral *) { return true; }
   1278 
   1279   // Iterators
   1280   child_range children() { return child_range(); }
   1281 };
   1282 
   1283 /// ImaginaryLiteral - We support imaginary integer and floating point literals,
   1284 /// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
   1285 /// IntegerLiteral classes.  Instances of this class always have a Complex type
   1286 /// whose element type matches the subexpression.
   1287 ///
   1288 class ImaginaryLiteral : public Expr {
   1289   Stmt *Val;
   1290 public:
   1291   ImaginaryLiteral(Expr *val, QualType Ty)
   1292     : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
   1293            false, false),
   1294       Val(val) {}
   1295 
   1296   /// \brief Build an empty imaginary literal.
   1297   explicit ImaginaryLiteral(EmptyShell Empty)
   1298     : Expr(ImaginaryLiteralClass, Empty) { }
   1299 
   1300   const Expr *getSubExpr() const { return cast<Expr>(Val); }
   1301   Expr *getSubExpr() { return cast<Expr>(Val); }
   1302   void setSubExpr(Expr *E) { Val = E; }
   1303 
   1304   SourceRange getSourceRange() const LLVM_READONLY { return Val->getSourceRange(); }
   1305   static bool classof(const Stmt *T) {
   1306     return T->getStmtClass() == ImaginaryLiteralClass;
   1307   }
   1308   static bool classof(const ImaginaryLiteral *) { return true; }
   1309 
   1310   // Iterators
   1311   child_range children() { return child_range(&Val, &Val+1); }
   1312 };
   1313 
   1314 /// StringLiteral - This represents a string literal expression, e.g. "foo"
   1315 /// or L"bar" (wide strings).  The actual string is returned by getStrData()
   1316 /// is NOT null-terminated, and the length of the string is determined by
   1317 /// calling getByteLength().  The C type for a string is always a
   1318 /// ConstantArrayType.  In C++, the char type is const qualified, in C it is
   1319 /// not.
   1320 ///
   1321 /// Note that strings in C can be formed by concatenation of multiple string
   1322 /// literal pptokens in translation phase #6.  This keeps track of the locations
   1323 /// of each of these pieces.
   1324 ///
   1325 /// Strings in C can also be truncated and extended by assigning into arrays,
   1326 /// e.g. with constructs like:
   1327 ///   char X[2] = "foobar";
   1328 /// In this case, getByteLength() will return 6, but the string literal will
   1329 /// have type "char[2]".
   1330 class StringLiteral : public Expr {
   1331 public:
   1332   enum StringKind {
   1333     Ascii,
   1334     Wide,
   1335     UTF8,
   1336     UTF16,
   1337     UTF32
   1338   };
   1339 
   1340 private:
   1341   friend class ASTStmtReader;
   1342 
   1343   union {
   1344     const char *asChar;
   1345     const uint16_t *asUInt16;
   1346     const uint32_t *asUInt32;
   1347   } StrData;
   1348   unsigned Length;
   1349   unsigned CharByteWidth : 4;
   1350   unsigned Kind : 3;
   1351   unsigned IsPascal : 1;
   1352   unsigned NumConcatenated;
   1353   SourceLocation TokLocs[1];
   1354 
   1355   StringLiteral(QualType Ty) :
   1356     Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
   1357          false) {}
   1358 
   1359   static int mapCharByteWidth(TargetInfo const &target,StringKind k);
   1360 
   1361 public:
   1362   /// This is the "fully general" constructor that allows representation of
   1363   /// strings formed from multiple concatenated tokens.
   1364   static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
   1365                                bool Pascal, QualType Ty,
   1366                                const SourceLocation *Loc, unsigned NumStrs);
   1367 
   1368   /// Simple constructor for string literals made from one token.
   1369   static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
   1370                                bool Pascal, QualType Ty,
   1371                                SourceLocation Loc) {
   1372     return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
   1373   }
   1374 
   1375   /// \brief Construct an empty string literal.
   1376   static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
   1377 
   1378   StringRef getString() const {
   1379     assert(CharByteWidth==1
   1380            && "This function is used in places that assume strings use char");
   1381     return StringRef(StrData.asChar, getByteLength());
   1382   }
   1383 
   1384   /// Allow clients that need the byte representation, such as ASTWriterStmt
   1385   /// ::VisitStringLiteral(), access.
   1386   StringRef getBytes() const {
   1387     // FIXME: StringRef may not be the right type to use as a result for this.
   1388     if (CharByteWidth == 1)
   1389       return StringRef(StrData.asChar, getByteLength());
   1390     if (CharByteWidth == 4)
   1391       return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
   1392                        getByteLength());
   1393     assert(CharByteWidth == 2 && "unsupported CharByteWidth");
   1394     return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
   1395                      getByteLength());
   1396   }
   1397 
   1398   uint32_t getCodeUnit(size_t i) const {
   1399     assert(i < Length && "out of bounds access");
   1400     if (CharByteWidth == 1)
   1401       return static_cast<unsigned char>(StrData.asChar[i]);
   1402     if (CharByteWidth == 4)
   1403       return StrData.asUInt32[i];
   1404     assert(CharByteWidth == 2 && "unsupported CharByteWidth");
   1405     return StrData.asUInt16[i];
   1406   }
   1407 
   1408   unsigned getByteLength() const { return CharByteWidth*Length; }
   1409   unsigned getLength() const { return Length; }
   1410   unsigned getCharByteWidth() const { return CharByteWidth; }
   1411 
   1412   /// \brief Sets the string data to the given string data.
   1413   void setString(ASTContext &C, StringRef Str,
   1414                  StringKind Kind, bool IsPascal);
   1415 
   1416   StringKind getKind() const { return static_cast<StringKind>(Kind); }
   1417 
   1418 
   1419   bool isAscii() const { return Kind == Ascii; }
   1420   bool isWide() const { return Kind == Wide; }
   1421   bool isUTF8() const { return Kind == UTF8; }
   1422   bool isUTF16() const { return Kind == UTF16; }
   1423   bool isUTF32() const { return Kind == UTF32; }
   1424   bool isPascal() const { return IsPascal; }
   1425 
   1426   bool containsNonAsciiOrNull() const {
   1427     StringRef Str = getString();
   1428     for (unsigned i = 0, e = Str.size(); i != e; ++i)
   1429       if (!isascii(Str[i]) || !Str[i])
   1430         return true;
   1431     return false;
   1432   }
   1433 
   1434   /// getNumConcatenated - Get the number of string literal tokens that were
   1435   /// concatenated in translation phase #6 to form this string literal.
   1436   unsigned getNumConcatenated() const { return NumConcatenated; }
   1437 
   1438   SourceLocation getStrTokenLoc(unsigned TokNum) const {
   1439     assert(TokNum < NumConcatenated && "Invalid tok number");
   1440     return TokLocs[TokNum];
   1441   }
   1442   void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
   1443     assert(TokNum < NumConcatenated && "Invalid tok number");
   1444     TokLocs[TokNum] = L;
   1445   }
   1446 
   1447   /// getLocationOfByte - Return a source location that points to the specified
   1448   /// byte of this string literal.
   1449   ///
   1450   /// Strings are amazingly complex.  They can be formed from multiple tokens
   1451   /// and can have escape sequences in them in addition to the usual trigraph
   1452   /// and escaped newline business.  This routine handles this complexity.
   1453   ///
   1454   SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
   1455                                    const LangOptions &Features,
   1456                                    const TargetInfo &Target) const;
   1457 
   1458   typedef const SourceLocation *tokloc_iterator;
   1459   tokloc_iterator tokloc_begin() const { return TokLocs; }
   1460   tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
   1461 
   1462   SourceRange getSourceRange() const LLVM_READONLY {
   1463     return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
   1464   }
   1465   static bool classof(const Stmt *T) {
   1466     return T->getStmtClass() == StringLiteralClass;
   1467   }
   1468   static bool classof(const StringLiteral *) { return true; }
   1469 
   1470   // Iterators
   1471   child_range children() { return child_range(); }
   1472 };
   1473 
   1474 /// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
   1475 /// AST node is only formed if full location information is requested.
   1476 class ParenExpr : public Expr {
   1477   SourceLocation L, R;
   1478   Stmt *Val;
   1479 public:
   1480   ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
   1481     : Expr(ParenExprClass, val->getType(),
   1482            val->getValueKind(), val->getObjectKind(),
   1483            val->isTypeDependent(), val->isValueDependent(),
   1484            val->isInstantiationDependent(),
   1485            val->containsUnexpandedParameterPack()),
   1486       L(l), R(r), Val(val) {}
   1487 
   1488   /// \brief Construct an empty parenthesized expression.
   1489   explicit ParenExpr(EmptyShell Empty)
   1490     : Expr(ParenExprClass, Empty) { }
   1491 
   1492   const Expr *getSubExpr() const { return cast<Expr>(Val); }
   1493   Expr *getSubExpr() { return cast<Expr>(Val); }
   1494   void setSubExpr(Expr *E) { Val = E; }
   1495 
   1496   SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(L, R); }
   1497 
   1498   /// \brief Get the location of the left parentheses '('.
   1499   SourceLocation getLParen() const { return L; }
   1500   void setLParen(SourceLocation Loc) { L = Loc; }
   1501 
   1502   /// \brief Get the location of the right parentheses ')'.
   1503   SourceLocation getRParen() const { return R; }
   1504   void setRParen(SourceLocation Loc) { R = Loc; }
   1505 
   1506   static bool classof(const Stmt *T) {
   1507     return T->getStmtClass() == ParenExprClass;
   1508   }
   1509   static bool classof(const ParenExpr *) { return true; }
   1510 
   1511   // Iterators
   1512   child_range children() { return child_range(&Val, &Val+1); }
   1513 };
   1514 
   1515 
   1516 /// UnaryOperator - This represents the unary-expression's (except sizeof and
   1517 /// alignof), the postinc/postdec operators from postfix-expression, and various
   1518 /// extensions.
   1519 ///
   1520 /// Notes on various nodes:
   1521 ///
   1522 /// Real/Imag - These return the real/imag part of a complex operand.  If
   1523 ///   applied to a non-complex value, the former returns its operand and the
   1524 ///   later returns zero in the type of the operand.
   1525 ///
   1526 class UnaryOperator : public Expr {
   1527 public:
   1528   typedef UnaryOperatorKind Opcode;
   1529 
   1530 private:
   1531   unsigned Opc : 5;
   1532   SourceLocation Loc;
   1533   Stmt *Val;
   1534 public:
   1535 
   1536   UnaryOperator(Expr *input, Opcode opc, QualType type,
   1537                 ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
   1538     : Expr(UnaryOperatorClass, type, VK, OK,
   1539            input->isTypeDependent() || type->isDependentType(),
   1540            input->isValueDependent(),
   1541            (input->isInstantiationDependent() ||
   1542             type->isInstantiationDependentType()),
   1543            input->containsUnexpandedParameterPack()),
   1544       Opc(opc), Loc(l), Val(input) {}
   1545 
   1546   /// \brief Build an empty unary operator.
   1547   explicit UnaryOperator(EmptyShell Empty)
   1548     : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
   1549 
   1550   Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
   1551   void setOpcode(Opcode O) { Opc = O; }
   1552 
   1553   Expr *getSubExpr() const { return cast<Expr>(Val); }
   1554   void setSubExpr(Expr *E) { Val = E; }
   1555 
   1556   /// getOperatorLoc - Return the location of the operator.
   1557   SourceLocation getOperatorLoc() const { return Loc; }
   1558   void setOperatorLoc(SourceLocation L) { Loc = L; }
   1559 
   1560   /// isPostfix - Return true if this is a postfix operation, like x++.
   1561   static bool isPostfix(Opcode Op) {
   1562     return Op == UO_PostInc || Op == UO_PostDec;
   1563   }
   1564 
   1565   /// isPrefix - Return true if this is a prefix operation, like --x.
   1566   static bool isPrefix(Opcode Op) {
   1567     return Op == UO_PreInc || Op == UO_PreDec;
   1568   }
   1569 
   1570   bool isPrefix() const { return isPrefix(getOpcode()); }
   1571   bool isPostfix() const { return isPostfix(getOpcode()); }
   1572 
   1573   static bool isIncrementOp(Opcode Op) {
   1574     return Op == UO_PreInc || Op == UO_PostInc;
   1575   }
   1576   bool isIncrementOp() const {
   1577     return isIncrementOp(getOpcode());
   1578   }
   1579 
   1580   static bool isDecrementOp(Opcode Op) {
   1581     return Op == UO_PreDec || Op == UO_PostDec;
   1582   }
   1583   bool isDecrementOp() const {
   1584     return isDecrementOp(getOpcode());
   1585   }
   1586 
   1587   static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
   1588   bool isIncrementDecrementOp() const {
   1589     return isIncrementDecrementOp(getOpcode());
   1590   }
   1591 
   1592   static bool isArithmeticOp(Opcode Op) {
   1593     return Op >= UO_Plus && Op <= UO_LNot;
   1594   }
   1595   bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
   1596 
   1597   /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
   1598   /// corresponds to, e.g. "sizeof" or "[pre]++"
   1599   static const char *getOpcodeStr(Opcode Op);
   1600 
   1601   /// \brief Retrieve the unary opcode that corresponds to the given
   1602   /// overloaded operator.
   1603   static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
   1604 
   1605   /// \brief Retrieve the overloaded operator kind that corresponds to
   1606   /// the given unary opcode.
   1607   static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
   1608 
   1609   SourceRange getSourceRange() const LLVM_READONLY {
   1610     if (isPostfix())
   1611       return SourceRange(Val->getLocStart(), Loc);
   1612     else
   1613       return SourceRange(Loc, Val->getLocEnd());
   1614   }
   1615   SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
   1616 
   1617   static bool classof(const Stmt *T) {
   1618     return T->getStmtClass() == UnaryOperatorClass;
   1619   }
   1620   static bool classof(const UnaryOperator *) { return true; }
   1621 
   1622   // Iterators
   1623   child_range children() { return child_range(&Val, &Val+1); }
   1624 };
   1625 
   1626 /// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
   1627 /// offsetof(record-type, member-designator). For example, given:
   1628 /// @code
   1629 /// struct S {
   1630 ///   float f;
   1631 ///   double d;
   1632 /// };
   1633 /// struct T {
   1634 ///   int i;
   1635 ///   struct S s[10];
   1636 /// };
   1637 /// @endcode
   1638 /// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
   1639 
   1640 class OffsetOfExpr : public Expr {
   1641 public:
   1642   // __builtin_offsetof(type, identifier(.identifier|[expr])*)
   1643   class OffsetOfNode {
   1644   public:
   1645     /// \brief The kind of offsetof node we have.
   1646     enum Kind {
   1647       /// \brief An index into an array.
   1648       Array = 0x00,
   1649       /// \brief A field.
   1650       Field = 0x01,
   1651       /// \brief A field in a dependent type, known only by its name.
   1652       Identifier = 0x02,
   1653       /// \brief An implicit indirection through a C++ base class, when the
   1654       /// field found is in a base class.
   1655       Base = 0x03
   1656     };
   1657 
   1658   private:
   1659     enum { MaskBits = 2, Mask = 0x03 };
   1660 
   1661     /// \brief The source range that covers this part of the designator.
   1662     SourceRange Range;
   1663 
   1664     /// \brief The data describing the designator, which comes in three
   1665     /// different forms, depending on the lower two bits.
   1666     ///   - An unsigned index into the array of Expr*'s stored after this node
   1667     ///     in memory, for [constant-expression] designators.
   1668     ///   - A FieldDecl*, for references to a known field.
   1669     ///   - An IdentifierInfo*, for references to a field with a given name
   1670     ///     when the class type is dependent.
   1671     ///   - A CXXBaseSpecifier*, for references that look at a field in a
   1672     ///     base class.
   1673     uintptr_t Data;
   1674 
   1675   public:
   1676     /// \brief Create an offsetof node that refers to an array element.
   1677     OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
   1678                  SourceLocation RBracketLoc)
   1679       : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
   1680 
   1681     /// \brief Create an offsetof node that refers to a field.
   1682     OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
   1683                  SourceLocation NameLoc)
   1684       : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
   1685         Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
   1686 
   1687     /// \brief Create an offsetof node that refers to an identifier.
   1688     OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
   1689                  SourceLocation NameLoc)
   1690       : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
   1691         Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
   1692 
   1693     /// \brief Create an offsetof node that refers into a C++ base class.
   1694     explicit OffsetOfNode(const CXXBaseSpecifier *Base)
   1695       : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
   1696 
   1697     /// \brief Determine what kind of offsetof node this is.
   1698     Kind getKind() const {
   1699       return static_cast<Kind>(Data & Mask);
   1700     }
   1701 
   1702     /// \brief For an array element node, returns the index into the array
   1703     /// of expressions.
   1704     unsigned getArrayExprIndex() const {
   1705       assert(getKind() == Array);
   1706       return Data >> 2;
   1707     }
   1708 
   1709     /// \brief For a field offsetof node, returns the field.
   1710     FieldDecl *getField() const {
   1711       assert(getKind() == Field);
   1712       return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
   1713     }
   1714 
   1715     /// \brief For a field or identifier offsetof node, returns the name of
   1716     /// the field.
   1717     IdentifierInfo *getFieldName() const;
   1718 
   1719     /// \brief For a base class node, returns the base specifier.
   1720     CXXBaseSpecifier *getBase() const {
   1721       assert(getKind() == Base);
   1722       return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
   1723     }
   1724 
   1725     /// \brief Retrieve the source range that covers this offsetof node.
   1726     ///
   1727     /// For an array element node, the source range contains the locations of
   1728     /// the square brackets. For a field or identifier node, the source range
   1729     /// contains the location of the period (if there is one) and the
   1730     /// identifier.
   1731     SourceRange getSourceRange() const LLVM_READONLY { return Range; }
   1732   };
   1733 
   1734 private:
   1735 
   1736   SourceLocation OperatorLoc, RParenLoc;
   1737   // Base type;
   1738   TypeSourceInfo *TSInfo;
   1739   // Number of sub-components (i.e. instances of OffsetOfNode).
   1740   unsigned NumComps;
   1741   // Number of sub-expressions (i.e. array subscript expressions).
   1742   unsigned NumExprs;
   1743 
   1744   OffsetOfExpr(ASTContext &C, QualType type,
   1745                SourceLocation OperatorLoc, TypeSourceInfo *tsi,
   1746                OffsetOfNode* compsPtr, unsigned numComps,
   1747                Expr** exprsPtr, unsigned numExprs,
   1748                SourceLocation RParenLoc);
   1749 
   1750   explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
   1751     : Expr(OffsetOfExprClass, EmptyShell()),
   1752       TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
   1753 
   1754 public:
   1755 
   1756   static OffsetOfExpr *Create(ASTContext &C, QualType type,
   1757                               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
   1758                               OffsetOfNode* compsPtr, unsigned numComps,
   1759                               Expr** exprsPtr, unsigned numExprs,
   1760                               SourceLocation RParenLoc);
   1761 
   1762   static OffsetOfExpr *CreateEmpty(ASTContext &C,
   1763                                    unsigned NumComps, unsigned NumExprs);
   1764 
   1765   /// getOperatorLoc - Return the location of the operator.
   1766   SourceLocation getOperatorLoc() const { return OperatorLoc; }
   1767   void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
   1768 
   1769   /// \brief Return the location of the right parentheses.
   1770   SourceLocation getRParenLoc() const { return RParenLoc; }
   1771   void setRParenLoc(SourceLocation R) { RParenLoc = R; }
   1772 
   1773   TypeSourceInfo *getTypeSourceInfo() const {
   1774     return TSInfo;
   1775   }
   1776   void setTypeSourceInfo(TypeSourceInfo *tsi) {
   1777     TSInfo = tsi;
   1778   }
   1779 
   1780   const OffsetOfNode &getComponent(unsigned Idx) const {
   1781     assert(Idx < NumComps && "Subscript out of range");
   1782     return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
   1783   }
   1784 
   1785   void setComponent(unsigned Idx, OffsetOfNode ON) {
   1786     assert(Idx < NumComps && "Subscript out of range");
   1787     reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
   1788   }
   1789 
   1790   unsigned getNumComponents() const {
   1791     return NumComps;
   1792   }
   1793 
   1794   Expr* getIndexExpr(unsigned Idx) {
   1795     assert(Idx < NumExprs && "Subscript out of range");
   1796     return reinterpret_cast<Expr **>(
   1797                     reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
   1798   }
   1799   const Expr *getIndexExpr(unsigned Idx) const {
   1800     return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
   1801   }
   1802 
   1803   void setIndexExpr(unsigned Idx, Expr* E) {
   1804     assert(Idx < NumComps && "Subscript out of range");
   1805     reinterpret_cast<Expr **>(
   1806                 reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
   1807   }
   1808 
   1809   unsigned getNumExpressions() const {
   1810     return NumExprs;
   1811   }
   1812 
   1813   SourceRange getSourceRange() const LLVM_READONLY {
   1814     return SourceRange(OperatorLoc, RParenLoc);
   1815   }
   1816 
   1817   static bool classof(const Stmt *T) {
   1818     return T->getStmtClass() == OffsetOfExprClass;
   1819   }
   1820 
   1821   static bool classof(const OffsetOfExpr *) { return true; }
   1822 
   1823   // Iterators
   1824   child_range children() {
   1825     Stmt **begin =
   1826       reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
   1827                                + NumComps);
   1828     return child_range(begin, begin + NumExprs);
   1829   }
   1830 };
   1831 
   1832 /// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
   1833 /// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
   1834 /// vec_step (OpenCL 1.1 6.11.12).
   1835 class UnaryExprOrTypeTraitExpr : public Expr {
   1836   union {
   1837     TypeSourceInfo *Ty;
   1838     Stmt *Ex;
   1839   } Argument;
   1840   SourceLocation OpLoc, RParenLoc;
   1841 
   1842 public:
   1843   UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
   1844                            QualType resultType, SourceLocation op,
   1845                            SourceLocation rp) :
   1846       Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
   1847            false, // Never type-dependent (C++ [temp.dep.expr]p3).
   1848            // Value-dependent if the argument is type-dependent.
   1849            TInfo->getType()->isDependentType(),
   1850            TInfo->getType()->isInstantiationDependentType(),
   1851            TInfo->getType()->containsUnexpandedParameterPack()),
   1852       OpLoc(op), RParenLoc(rp) {
   1853     UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
   1854     UnaryExprOrTypeTraitExprBits.IsType = true;
   1855     Argument.Ty = TInfo;
   1856   }
   1857 
   1858   UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
   1859                            QualType resultType, SourceLocation op,
   1860                            SourceLocation rp) :
   1861       Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
   1862            false, // Never type-dependent (C++ [temp.dep.expr]p3).
   1863            // Value-dependent if the argument is type-dependent.
   1864            E->isTypeDependent(),
   1865            E->isInstantiationDependent(),
   1866            E->containsUnexpandedParameterPack()),
   1867       OpLoc(op), RParenLoc(rp) {
   1868     UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
   1869     UnaryExprOrTypeTraitExprBits.IsType = false;
   1870     Argument.Ex = E;
   1871   }
   1872 
   1873   /// \brief Construct an empty sizeof/alignof expression.
   1874   explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
   1875     : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
   1876 
   1877   UnaryExprOrTypeTrait getKind() const {
   1878     return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
   1879   }
   1880   void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
   1881 
   1882   bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
   1883   QualType getArgumentType() const {
   1884     return getArgumentTypeInfo()->getType();
   1885   }
   1886   TypeSourceInfo *getArgumentTypeInfo() const {
   1887     assert(isArgumentType() && "calling getArgumentType() when arg is expr");
   1888     return Argument.Ty;
   1889   }
   1890   Expr *getArgumentExpr() {
   1891     assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
   1892     return static_cast<Expr*>(Argument.Ex);
   1893   }
   1894   const Expr *getArgumentExpr() const {
   1895     return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
   1896   }
   1897 
   1898   void setArgument(Expr *E) {
   1899     Argument.Ex = E;
   1900     UnaryExprOrTypeTraitExprBits.IsType = false;
   1901   }
   1902   void setArgument(TypeSourceInfo *TInfo) {
   1903     Argument.Ty = TInfo;
   1904     UnaryExprOrTypeTraitExprBits.IsType = true;
   1905   }
   1906 
   1907   /// Gets the argument type, or the type of the argument expression, whichever
   1908   /// is appropriate.
   1909   QualType getTypeOfArgument() const {
   1910     return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
   1911   }
   1912 
   1913   SourceLocation getOperatorLoc() const { return OpLoc; }
   1914   void setOperatorLoc(SourceLocation L) { OpLoc = L; }
   1915 
   1916   SourceLocation getRParenLoc() const { return RParenLoc; }
   1917   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
   1918 
   1919   SourceRange getSourceRange() const LLVM_READONLY {
   1920     return SourceRange(OpLoc, RParenLoc);
   1921   }
   1922 
   1923   static bool classof(const Stmt *T) {
   1924     return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
   1925   }
   1926   static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
   1927 
   1928   // Iterators
   1929   child_range children();
   1930 };
   1931 
   1932 //===----------------------------------------------------------------------===//
   1933 // Postfix Operators.
   1934 //===----------------------------------------------------------------------===//
   1935 
   1936 /// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
   1937 class ArraySubscriptExpr : public Expr {
   1938   enum { LHS, RHS, END_EXPR=2 };
   1939   Stmt* SubExprs[END_EXPR];
   1940   SourceLocation RBracketLoc;
   1941 public:
   1942   ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
   1943                      ExprValueKind VK, ExprObjectKind OK,
   1944                      SourceLocation rbracketloc)
   1945   : Expr(ArraySubscriptExprClass, t, VK, OK,
   1946          lhs->isTypeDependent() || rhs->isTypeDependent(),
   1947          lhs->isValueDependent() || rhs->isValueDependent(),
   1948          (lhs->isInstantiationDependent() ||
   1949           rhs->isInstantiationDependent()),
   1950          (lhs->containsUnexpandedParameterPack() ||
   1951           rhs->containsUnexpandedParameterPack())),
   1952     RBracketLoc(rbracketloc) {
   1953     SubExprs[LHS] = lhs;
   1954     SubExprs[RHS] = rhs;
   1955   }
   1956 
   1957   /// \brief Create an empty array subscript expression.
   1958   explicit ArraySubscriptExpr(EmptyShell Shell)
   1959     : Expr(ArraySubscriptExprClass, Shell) { }
   1960 
   1961   /// An array access can be written A[4] or 4[A] (both are equivalent).
   1962   /// - getBase() and getIdx() always present the normalized view: A[4].
   1963   ///    In this case getBase() returns "A" and getIdx() returns "4".
   1964   /// - getLHS() and getRHS() present the syntactic view. e.g. for
   1965   ///    4[A] getLHS() returns "4".
   1966   /// Note: Because vector element access is also written A[4] we must
   1967   /// predicate the format conversion in getBase and getIdx only on the
   1968   /// the type of the RHS, as it is possible for the LHS to be a vector of
   1969   /// integer type
   1970   Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
   1971   const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
   1972   void setLHS(Expr *E) { SubExprs[LHS] = E; }
   1973 
   1974   Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
   1975   const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
   1976   void setRHS(Expr *E) { SubExprs[RHS] = E; }
   1977 
   1978   Expr *getBase() {
   1979     return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
   1980   }
   1981 
   1982   const Expr *getBase() const {
   1983     return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
   1984   }
   1985 
   1986   Expr *getIdx() {
   1987     return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
   1988   }
   1989 
   1990   const Expr *getIdx() const {
   1991     return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
   1992   }
   1993 
   1994   SourceRange getSourceRange() const LLVM_READONLY {
   1995     return SourceRange(getLHS()->getLocStart(), RBracketLoc);
   1996   }
   1997 
   1998   SourceLocation getRBracketLoc() const { return RBracketLoc; }
   1999   void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
   2000 
   2001   SourceLocation getExprLoc() const LLVM_READONLY { return getBase()->getExprLoc(); }
   2002 
   2003   static bool classof(const Stmt *T) {
   2004     return T->getStmtClass() == ArraySubscriptExprClass;
   2005   }
   2006   static bool classof(const ArraySubscriptExpr *) { return true; }
   2007 
   2008   // Iterators
   2009   child_range children() {
   2010     return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
   2011   }
   2012 };
   2013 
   2014 
   2015 /// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
   2016 /// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
   2017 /// while its subclasses may represent alternative syntax that (semantically)
   2018 /// results in a function call. For example, CXXOperatorCallExpr is
   2019 /// a subclass for overloaded operator calls that use operator syntax, e.g.,
   2020 /// "str1 + str2" to resolve to a function call.
   2021 class CallExpr : public Expr {
   2022   enum { FN=0, PREARGS_START=1 };
   2023   Stmt **SubExprs;
   2024   unsigned NumArgs;
   2025   SourceLocation RParenLoc;
   2026 
   2027 protected:
   2028   // These versions of the constructor are for derived classes.
   2029   CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
   2030            Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
   2031            SourceLocation rparenloc);
   2032   CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
   2033 
   2034   Stmt *getPreArg(unsigned i) {
   2035     assert(i < getNumPreArgs() && "Prearg access out of range!");
   2036     return SubExprs[PREARGS_START+i];
   2037   }
   2038   const Stmt *getPreArg(unsigned i) const {
   2039     assert(i < getNumPreArgs() && "Prearg access out of range!");
   2040     return SubExprs[PREARGS_START+i];
   2041   }
   2042   void setPreArg(unsigned i, Stmt *PreArg) {
   2043     assert(i < getNumPreArgs() && "Prearg access out of range!");
   2044     SubExprs[PREARGS_START+i] = PreArg;
   2045   }
   2046 
   2047   unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
   2048 
   2049 public:
   2050   CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
   2051            ExprValueKind VK, SourceLocation rparenloc);
   2052 
   2053   /// \brief Build an empty call expression.
   2054   CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
   2055 
   2056   const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
   2057   Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
   2058   void setCallee(Expr *F) { SubExprs[FN] = F; }
   2059 
   2060   Decl *getCalleeDecl();
   2061   const Decl *getCalleeDecl() const {
   2062     return const_cast<CallExpr*>(this)->getCalleeDecl();
   2063   }
   2064 
   2065   /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
   2066   FunctionDecl *getDirectCallee();
   2067   const FunctionDecl *getDirectCallee() const {
   2068     return const_cast<CallExpr*>(this)->getDirectCallee();
   2069   }
   2070 
   2071   /// getNumArgs - Return the number of actual arguments to this call.
   2072   ///
   2073   unsigned getNumArgs() const { return NumArgs; }
   2074 
   2075   /// \brief Retrieve the call arguments.
   2076   Expr **getArgs() {
   2077     return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
   2078   }
   2079   const Expr *const *getArgs() const {
   2080     return const_cast<CallExpr*>(this)->getArgs();
   2081   }
   2082 
   2083   /// getArg - Return the specified argument.
   2084   Expr *getArg(unsigned Arg) {
   2085     assert(Arg < NumArgs && "Arg access out of range!");
   2086     return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
   2087   }
   2088   const Expr *getArg(unsigned Arg) const {
   2089     assert(Arg < NumArgs && "Arg access out of range!");
   2090     return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
   2091   }
   2092 
   2093   /// setArg - Set the specified argument.
   2094   void setArg(unsigned Arg, Expr *ArgExpr) {
   2095     assert(Arg < NumArgs && "Arg access out of range!");
   2096     SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
   2097   }
   2098 
   2099   /// setNumArgs - This changes the number of arguments present in this call.
   2100   /// Any orphaned expressions are deleted by this, and any new operands are set
   2101   /// to null.
   2102   void setNumArgs(ASTContext& C, unsigned NumArgs);
   2103 
   2104   typedef ExprIterator arg_iterator;
   2105   typedef ConstExprIterator const_arg_iterator;
   2106 
   2107   arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
   2108   arg_iterator arg_end() {
   2109     return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
   2110   }
   2111   const_arg_iterator arg_begin() const {
   2112     return SubExprs+PREARGS_START+getNumPreArgs();
   2113   }
   2114   const_arg_iterator arg_end() const {
   2115     return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
   2116   }
   2117 
   2118   /// getNumCommas - Return the number of commas that must have been present in
   2119   /// this function call.
   2120   unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
   2121 
   2122   /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
   2123   /// not, return 0.
   2124   unsigned isBuiltinCall() const;
   2125 
   2126   /// getCallReturnType - Get the return type of the call expr. This is not
   2127   /// always the type of the expr itself, if the return type is a reference
   2128   /// type.
   2129   QualType getCallReturnType() const;
   2130 
   2131   SourceLocation getRParenLoc() const { return RParenLoc; }
   2132   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
   2133 
   2134   SourceRange getSourceRange() const LLVM_READONLY;
   2135   SourceLocation getLocStart() const LLVM_READONLY;
   2136   SourceLocation getLocEnd() const LLVM_READONLY;
   2137 
   2138   static bool classof(const Stmt *T) {
   2139     return T->getStmtClass() >= firstCallExprConstant &&
   2140            T->getStmtClass() <= lastCallExprConstant;
   2141   }
   2142   static bool classof(const CallExpr *) { return true; }
   2143 
   2144   // Iterators
   2145   child_range children() {
   2146     return child_range(&SubExprs[0],
   2147                        &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
   2148   }
   2149 };
   2150 
   2151 /// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
   2152 ///
   2153 class MemberExpr : public Expr {
   2154   /// Extra data stored in some member expressions.
   2155   struct MemberNameQualifier {
   2156     /// \brief The nested-name-specifier that qualifies the name, including
   2157     /// source-location information.
   2158     NestedNameSpecifierLoc QualifierLoc;
   2159 
   2160     /// \brief The DeclAccessPair through which the MemberDecl was found due to
   2161     /// name qualifiers.
   2162     DeclAccessPair FoundDecl;
   2163   };
   2164 
   2165   /// Base - the expression for the base pointer or structure references.  In
   2166   /// X.F, this is "X".
   2167   Stmt *Base;
   2168 
   2169   /// MemberDecl - This is the decl being referenced by the field/member name.
   2170   /// In X.F, this is the decl referenced by F.
   2171   ValueDecl *MemberDecl;
   2172 
   2173   /// MemberDNLoc - Provides source/type location info for the
   2174   /// declaration name embedded in MemberDecl.
   2175   DeclarationNameLoc MemberDNLoc;
   2176 
   2177   /// MemberLoc - This is the location of the member name.
   2178   SourceLocation MemberLoc;
   2179 
   2180   /// IsArrow - True if this is "X->F", false if this is "X.F".
   2181   bool IsArrow : 1;
   2182 
   2183   /// \brief True if this member expression used a nested-name-specifier to
   2184   /// refer to the member, e.g., "x->Base::f", or found its member via a using
   2185   /// declaration.  When true, a MemberNameQualifier
   2186   /// structure is allocated immediately after the MemberExpr.
   2187   bool HasQualifierOrFoundDecl : 1;
   2188 
   2189   /// \brief True if this member expression specified a template keyword
   2190   /// and/or a template argument list explicitly, e.g., x->f<int>,
   2191   /// x->template f, x->template f<int>.
   2192   /// When true, an ASTTemplateKWAndArgsInfo structure and its
   2193   /// TemplateArguments (if any) are allocated immediately after
   2194   /// the MemberExpr or, if the member expression also has a qualifier,
   2195   /// after the MemberNameQualifier structure.
   2196   bool HasTemplateKWAndArgsInfo : 1;
   2197 
   2198   /// \brief True if this member expression refers to a method that
   2199   /// was resolved from an overloaded set having size greater than 1.
   2200   bool HadMultipleCandidates : 1;
   2201 
   2202   /// \brief Retrieve the qualifier that preceded the member name, if any.
   2203   MemberNameQualifier *getMemberQualifier() {
   2204     assert(HasQualifierOrFoundDecl);
   2205     return reinterpret_cast<MemberNameQualifier *> (this + 1);
   2206   }
   2207 
   2208   /// \brief Retrieve the qualifier that preceded the member name, if any.
   2209   const MemberNameQualifier *getMemberQualifier() const {
   2210     return const_cast<MemberExpr *>(this)->getMemberQualifier();
   2211   }
   2212 
   2213 public:
   2214   MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
   2215              const DeclarationNameInfo &NameInfo, QualType ty,
   2216              ExprValueKind VK, ExprObjectKind OK)
   2217     : Expr(MemberExprClass, ty, VK, OK,
   2218            base->isTypeDependent(),
   2219            base->isValueDependent(),
   2220            base->isInstantiationDependent(),
   2221            base->containsUnexpandedParameterPack()),
   2222       Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
   2223       MemberLoc(NameInfo.getLoc()), IsArrow(isarrow),
   2224       HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
   2225       HadMultipleCandidates(false) {
   2226     assert(memberdecl->getDeclName() == NameInfo.getName());
   2227   }
   2228 
   2229   // NOTE: this constructor should be used only when it is known that
   2230   // the member name can not provide additional syntactic info
   2231   // (i.e., source locations for C++ operator names or type source info
   2232   // for constructors, destructors and conversion operators).
   2233   MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
   2234              SourceLocation l, QualType ty,
   2235              ExprValueKind VK, ExprObjectKind OK)
   2236     : Expr(MemberExprClass, ty, VK, OK,
   2237            base->isTypeDependent(), base->isValueDependent(),
   2238            base->isInstantiationDependent(),
   2239            base->containsUnexpandedParameterPack()),
   2240       Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
   2241       IsArrow(isarrow),
   2242       HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
   2243       HadMultipleCandidates(false) {}
   2244 
   2245   static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
   2246                             NestedNameSpecifierLoc QualifierLoc,
   2247                             SourceLocation TemplateKWLoc,
   2248                             ValueDecl *memberdecl, DeclAccessPair founddecl,
   2249                             DeclarationNameInfo MemberNameInfo,
   2250                             const TemplateArgumentListInfo *targs,
   2251                             QualType ty, ExprValueKind VK, ExprObjectKind OK);
   2252 
   2253   void setBase(Expr *E) { Base = E; }
   2254   Expr *getBase() const { return cast<Expr>(Base); }
   2255 
   2256   /// \brief Retrieve the member declaration to which this expression refers.
   2257   ///
   2258   /// The returned declaration will either be a FieldDecl or (in C++)
   2259   /// a CXXMethodDecl.
   2260   ValueDecl *getMemberDecl() const { return MemberDecl; }
   2261   void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
   2262 
   2263   /// \brief Retrieves the declaration found by lookup.
   2264   DeclAccessPair getFoundDecl() const {
   2265     if (!HasQualifierOrFoundDecl)
   2266       return DeclAccessPair::make(getMemberDecl(),
   2267                                   getMemberDecl()->getAccess());
   2268     return getMemberQualifier()->FoundDecl;
   2269   }
   2270 
   2271   /// \brief Determines whether this member expression actually had
   2272   /// a C++ nested-name-specifier prior to the name of the member, e.g.,
   2273   /// x->Base::foo.
   2274   bool hasQualifier() const { return getQualifier() != 0; }
   2275 
   2276   /// \brief If the member name was qualified, retrieves the
   2277   /// nested-name-specifier that precedes the member name. Otherwise, returns
   2278   /// NULL.
   2279   NestedNameSpecifier *getQualifier() const {
   2280     if (!HasQualifierOrFoundDecl)
   2281       return 0;
   2282 
   2283     return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
   2284   }
   2285 
   2286   /// \brief If the member name was qualified, retrieves the
   2287   /// nested-name-specifier that precedes the member name, with source-location
   2288   /// information.
   2289   NestedNameSpecifierLoc getQualifierLoc() const {
   2290     if (!hasQualifier())
   2291       return NestedNameSpecifierLoc();
   2292 
   2293     return getMemberQualifier()->QualifierLoc;
   2294   }
   2295 
   2296   /// \brief Return the optional template keyword and arguments info.
   2297   ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
   2298     if (!HasTemplateKWAndArgsInfo)
   2299       return 0;
   2300 
   2301     if (!HasQualifierOrFoundDecl)
   2302       return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
   2303 
   2304     return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
   2305                                                       getMemberQualifier() + 1);
   2306   }
   2307 
   2308   /// \brief Return the optional template keyword and arguments info.
   2309   const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
   2310     return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
   2311   }
   2312 
   2313   /// \brief Retrieve the location of the template keyword preceding
   2314   /// the member name, if any.
   2315   SourceLocation getTemplateKeywordLoc() const {
   2316     if (!HasTemplateKWAndArgsInfo) return SourceLocation();
   2317     return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
   2318   }
   2319 
   2320   /// \brief Retrieve the location of the left angle bracket starting the
   2321   /// explicit template argument list following the member name, if any.
   2322   SourceLocation getLAngleLoc() const {
   2323     if (!HasTemplateKWAndArgsInfo) return SourceLocation();
   2324     return getTemplateKWAndArgsInfo()->LAngleLoc;
   2325   }
   2326 
   2327   /// \brief Retrieve the location of the right angle bracket ending the
   2328   /// explicit template argument list following the member name, if any.
   2329   SourceLocation getRAngleLoc() const {
   2330     if (!HasTemplateKWAndArgsInfo) return SourceLocation();
   2331     return getTemplateKWAndArgsInfo()->RAngleLoc;
   2332   }
   2333 
   2334   /// Determines whether the member name was preceded by the template keyword.
   2335   bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
   2336 
   2337   /// \brief Determines whether the member name was followed by an
   2338   /// explicit template argument list.
   2339   bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
   2340 
   2341   /// \brief Copies the template arguments (if present) into the given
   2342   /// structure.
   2343   void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
   2344     if (hasExplicitTemplateArgs())
   2345       getExplicitTemplateArgs().copyInto(List);
   2346   }
   2347 
   2348   /// \brief Retrieve the explicit template argument list that
   2349   /// follow the member template name.  This must only be called on an
   2350   /// expression with explicit template arguments.
   2351   ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
   2352     assert(hasExplicitTemplateArgs());
   2353     return *getTemplateKWAndArgsInfo();
   2354   }
   2355 
   2356   /// \brief Retrieve the explicit template argument list that
   2357   /// followed the member template name.  This must only be called on
   2358   /// an expression with explicit template arguments.
   2359   const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
   2360     return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
   2361   }
   2362 
   2363   /// \brief Retrieves the optional explicit template arguments.
   2364   /// This points to the same data as getExplicitTemplateArgs(), but
   2365   /// returns null if there are no explicit template arguments.
   2366   const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
   2367     if (!hasExplicitTemplateArgs()) return 0;
   2368     return &getExplicitTemplateArgs();
   2369   }
   2370 
   2371   /// \brief Retrieve the template arguments provided as part of this
   2372   /// template-id.
   2373   const TemplateArgumentLoc *getTemplateArgs() const {
   2374     if (!hasExplicitTemplateArgs())
   2375       return 0;
   2376 
   2377     return getExplicitTemplateArgs().getTemplateArgs();
   2378   }
   2379 
   2380   /// \brief Retrieve the number of template arguments provided as part of this
   2381   /// template-id.
   2382   unsigned getNumTemplateArgs() const {
   2383     if (!hasExplicitTemplateArgs())
   2384       return 0;
   2385 
   2386     return getExplicitTemplateArgs().NumTemplateArgs;
   2387   }
   2388 
   2389   /// \brief Retrieve the member declaration name info.
   2390   DeclarationNameInfo getMemberNameInfo() const {
   2391     return DeclarationNameInfo(MemberDecl->getDeclName(),
   2392                                MemberLoc, MemberDNLoc);
   2393   }
   2394 
   2395   bool isArrow() const { return IsArrow; }
   2396   void setArrow(bool A) { IsArrow = A; }
   2397 
   2398   /// getMemberLoc - Return the location of the "member", in X->F, it is the
   2399   /// location of 'F'.
   2400   SourceLocation getMemberLoc() const { return MemberLoc; }
   2401   void setMemberLoc(SourceLocation L) { MemberLoc = L; }
   2402 
   2403   SourceRange getSourceRange() const LLVM_READONLY;
   2404   SourceLocation getLocStart() const LLVM_READONLY;
   2405   SourceLocation getLocEnd() const LLVM_READONLY;
   2406 
   2407   SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
   2408 
   2409   /// \brief Determine whether the base of this explicit is implicit.
   2410   bool isImplicitAccess() const {
   2411     return getBase() && getBase()->isImplicitCXXThis();
   2412   }
   2413 
   2414   /// \brief Returns true if this member expression refers to a method that
   2415   /// was resolved from an overloaded set having size greater than 1.
   2416   bool hadMultipleCandidates() const {
   2417     return HadMultipleCandidates;
   2418   }
   2419   /// \brief Sets the flag telling whether this expression refers to
   2420   /// a method that was resolved from an overloaded set having size
   2421   /// greater than 1.
   2422   void setHadMultipleCandidates(bool V = true) {
   2423     HadMultipleCandidates = V;
   2424   }
   2425 
   2426   static bool classof(const Stmt *T) {
   2427     return T->getStmtClass() == MemberExprClass;
   2428   }
   2429   static bool classof(const MemberExpr *) { return true; }
   2430 
   2431   // Iterators
   2432   child_range children() { return child_range(&Base, &Base+1); }
   2433 
   2434   friend class ASTReader;
   2435   friend class ASTStmtWriter;
   2436 };
   2437 
   2438 /// CompoundLiteralExpr - [C99 6.5.2.5]
   2439 ///
   2440 class CompoundLiteralExpr : public Expr {
   2441   /// LParenLoc - If non-null, this is the location of the left paren in a
   2442   /// compound literal like "(int){4}".  This can be null if this is a
   2443   /// synthesized compound expression.
   2444   SourceLocation LParenLoc;
   2445 
   2446   /// The type as written.  This can be an incomplete array type, in
   2447   /// which case the actual expression type will be different.
   2448   /// The int part of the pair stores whether this expr is file scope.
   2449   llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
   2450   Stmt *Init;
   2451 public:
   2452   CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
   2453                       QualType T, ExprValueKind VK, Expr *init, bool fileScope)
   2454     : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
   2455            tinfo->getType()->isDependentType(),
   2456            init->isValueDependent(),
   2457            (init->isInstantiationDependent() ||
   2458             tinfo->getType()->isInstantiationDependentType()),
   2459            init->containsUnexpandedParameterPack()),
   2460       LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
   2461 
   2462   /// \brief Construct an empty compound literal.
   2463   explicit CompoundLiteralExpr(EmptyShell Empty)
   2464     : Expr(CompoundLiteralExprClass, Empty) { }
   2465 
   2466   const Expr *getInitializer() const { return cast<Expr>(Init); }
   2467   Expr *getInitializer() { return cast<Expr>(Init); }
   2468   void setInitializer(Expr *E) { Init = E; }
   2469 
   2470   bool isFileScope() const { return TInfoAndScope.getInt(); }
   2471   void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
   2472 
   2473   SourceLocation getLParenLoc() const { return LParenLoc; }
   2474   void setLParenLoc(SourceLocation L) { LParenLoc = L; }
   2475 
   2476   TypeSourceInfo *getTypeSourceInfo() const {
   2477     return TInfoAndScope.getPointer();
   2478   }
   2479   void setTypeSourceInfo(TypeSourceInfo *tinfo) {
   2480     TInfoAndScope.setPointer(tinfo);
   2481   }
   2482 
   2483   SourceRange getSourceRange() const LLVM_READONLY {
   2484     // FIXME: Init should never be null.
   2485     if (!Init)
   2486       return SourceRange();
   2487     if (LParenLoc.isInvalid())
   2488       return Init->getSourceRange();
   2489     return SourceRange(LParenLoc, Init->getLocEnd());
   2490   }
   2491 
   2492   static bool classof(const Stmt *T) {
   2493     return T->getStmtClass() == CompoundLiteralExprClass;
   2494   }
   2495   static bool classof(const CompoundLiteralExpr *) { return true; }
   2496 
   2497   // Iterators
   2498   child_range children() { return child_range(&Init, &Init+1); }
   2499 };
   2500 
   2501 /// CastExpr - Base class for type casts, including both implicit
   2502 /// casts (ImplicitCastExpr) and explicit casts that have some
   2503 /// representation in the source code (ExplicitCastExpr's derived
   2504 /// classes).
   2505 class CastExpr : public Expr {
   2506 public:
   2507   typedef clang::CastKind CastKind;
   2508 
   2509 private:
   2510   Stmt *Op;
   2511 
   2512   void CheckCastConsistency() const;
   2513 
   2514   const CXXBaseSpecifier * const *path_buffer() const {
   2515     return const_cast<CastExpr*>(this)->path_buffer();
   2516   }
   2517   CXXBaseSpecifier **path_buffer();
   2518 
   2519   void setBasePathSize(unsigned basePathSize) {
   2520     CastExprBits.BasePathSize = basePathSize;
   2521     assert(CastExprBits.BasePathSize == basePathSize &&
   2522            "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
   2523   }
   2524 
   2525 protected:
   2526   CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
   2527            const CastKind kind, Expr *op, unsigned BasePathSize) :
   2528     Expr(SC, ty, VK, OK_Ordinary,
   2529          // Cast expressions are type-dependent if the type is
   2530          // dependent (C++ [temp.dep.expr]p3).
   2531          ty->isDependentType(),
   2532          // Cast expressions are value-dependent if the type is
   2533          // dependent or if the subexpression is value-dependent.
   2534          ty->isDependentType() || (op && op->isValueDependent()),
   2535          (ty->isInstantiationDependentType() ||
   2536           (op && op->isInstantiationDependent())),
   2537          (ty->containsUnexpandedParameterPack() ||
   2538           op->containsUnexpandedParameterPack())),
   2539     Op(op) {
   2540     assert(kind != CK_Invalid && "creating cast with invalid cast kind");
   2541     CastExprBits.Kind = kind;
   2542     setBasePathSize(BasePathSize);
   2543 #ifndef NDEBUG
   2544     CheckCastConsistency();
   2545 #endif
   2546   }
   2547 
   2548   /// \brief Construct an empty cast.
   2549   CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
   2550     : Expr(SC, Empty) {
   2551     setBasePathSize(BasePathSize);
   2552   }
   2553 
   2554 public:
   2555   CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
   2556   void setCastKind(CastKind K) { CastExprBits.Kind = K; }
   2557   const char *getCastKindName() const;
   2558 
   2559   Expr *getSubExpr() { return cast<Expr>(Op); }
   2560   const Expr *getSubExpr() const { return cast<Expr>(Op); }
   2561   void setSubExpr(Expr *E) { Op = E; }
   2562 
   2563   /// \brief Retrieve the cast subexpression as it was written in the source
   2564   /// code, looking through any implicit casts or other intermediate nodes
   2565   /// introduced by semantic analysis.
   2566   Expr *getSubExprAsWritten();
   2567   const Expr *getSubExprAsWritten() const {
   2568     return const_cast<CastExpr *>(this)->getSubExprAsWritten();
   2569   }
   2570 
   2571   typedef CXXBaseSpecifier **path_iterator;
   2572   typedef const CXXBaseSpecifier * const *path_const_iterator;
   2573   bool path_empty() const { return CastExprBits.BasePathSize == 0; }
   2574   unsigned path_size() const { return CastExprBits.BasePathSize; }
   2575   path_iterator path_begin() { return path_buffer(); }
   2576   path_iterator path_end() { return path_buffer() + path_size(); }
   2577   path_const_iterator path_begin() const { return path_buffer(); }
   2578   path_const_iterator path_end() const { return path_buffer() + path_size(); }
   2579 
   2580   void setCastPath(const CXXCastPath &Path);
   2581 
   2582   static bool classof(const Stmt *T) {
   2583     return T->getStmtClass() >= firstCastExprConstant &&
   2584            T->getStmtClass() <= lastCastExprConstant;
   2585   }
   2586   static bool classof(const CastExpr *) { return true; }
   2587 
   2588   // Iterators
   2589   child_range children() { return child_range(&Op, &Op+1); }
   2590 };
   2591 
   2592 /// ImplicitCastExpr - Allows us to explicitly represent implicit type
   2593 /// conversions, which have no direct representation in the original
   2594 /// source code. For example: converting T[]->T*, void f()->void
   2595 /// (*f)(), float->double, short->int, etc.
   2596 ///
   2597 /// In C, implicit casts always produce rvalues. However, in C++, an
   2598 /// implicit cast whose result is being bound to a reference will be
   2599 /// an lvalue or xvalue. For example:
   2600 ///
   2601 /// @code
   2602 /// class Base { };
   2603 /// class Derived : public Base { };
   2604 /// Derived &&ref();
   2605 /// void f(Derived d) {
   2606 ///   Base& b = d; // initializer is an ImplicitCastExpr
   2607 ///                // to an lvalue of type Base
   2608 ///   Base&& r = ref(); // initializer is an ImplicitCastExpr
   2609 ///                     // to an xvalue of type Base
   2610 /// }
   2611 /// @endcode
   2612 class ImplicitCastExpr : public CastExpr {
   2613 private:
   2614   ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
   2615                    unsigned BasePathLength, ExprValueKind VK)
   2616     : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
   2617   }
   2618 
   2619   /// \brief Construct an empty implicit cast.
   2620   explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
   2621     : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
   2622 
   2623 public:
   2624   enum OnStack_t { OnStack };
   2625   ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
   2626                    ExprValueKind VK)
   2627     : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
   2628   }
   2629 
   2630   static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
   2631                                   CastKind Kind, Expr *Operand,
   2632                                   const CXXCastPath *BasePath,
   2633                                   ExprValueKind Cat);
   2634 
   2635   static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
   2636 
   2637   SourceRange getSourceRange() const LLVM_READONLY {
   2638     return getSubExpr()->getSourceRange();
   2639   }
   2640   SourceLocation getLocStart() const LLVM_READONLY {
   2641     return getSubExpr()->getLocStart();
   2642   }
   2643   SourceLocation getLocEnd() const LLVM_READONLY {
   2644     return getSubExpr()->getLocEnd();
   2645   }
   2646 
   2647   static bool classof(const Stmt *T) {
   2648     return T->getStmtClass() == ImplicitCastExprClass;
   2649   }
   2650   static bool classof(const ImplicitCastExpr *) { return true; }
   2651 };
   2652 
   2653 inline Expr *Expr::IgnoreImpCasts() {
   2654   Expr *e = this;
   2655   while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
   2656     e = ice->getSubExpr();
   2657   return e;
   2658 }
   2659 
   2660 /// ExplicitCastExpr - An explicit cast written in the source
   2661 /// code.
   2662 ///
   2663 /// This class is effectively an abstract class, because it provides
   2664 /// the basic representation of an explicitly-written cast without
   2665 /// specifying which kind of cast (C cast, functional cast, static
   2666 /// cast, etc.) was written; specific derived classes represent the
   2667 /// particular style of cast and its location information.
   2668 ///
   2669 /// Unlike implicit casts, explicit cast nodes have two different
   2670 /// types: the type that was written into the source code, and the
   2671 /// actual type of the expression as determined by semantic
   2672 /// analysis. These types may differ slightly. For example, in C++ one
   2673 /// can cast to a reference type, which indicates that the resulting
   2674 /// expression will be an lvalue or xvalue. The reference type, however,
   2675 /// will not be used as the type of the expression.
   2676 class ExplicitCastExpr : public CastExpr {
   2677   /// TInfo - Source type info for the (written) type
   2678   /// this expression is casting to.
   2679   TypeSourceInfo *TInfo;
   2680 
   2681 protected:
   2682   ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
   2683                    CastKind kind, Expr *op, unsigned PathSize,
   2684                    TypeSourceInfo *writtenTy)
   2685     : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
   2686 
   2687   /// \brief Construct an empty explicit cast.
   2688   ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
   2689     : CastExpr(SC, Shell, PathSize) { }
   2690 
   2691 public:
   2692   /// getTypeInfoAsWritten - Returns the type source info for the type
   2693   /// that this expression is casting to.
   2694   TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
   2695   void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
   2696 
   2697   /// getTypeAsWritten - Returns the type that this expression is
   2698   /// casting to, as written in the source code.
   2699   QualType getTypeAsWritten() const { return TInfo->getType(); }
   2700 
   2701   static bool classof(const Stmt *T) {
   2702      return T->getStmtClass() >= firstExplicitCastExprConstant &&
   2703             T->getStmtClass() <= lastExplicitCastExprConstant;
   2704   }
   2705   static bool classof(const ExplicitCastExpr *) { return true; }
   2706 };
   2707 
   2708 /// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
   2709 /// cast in C++ (C++ [expr.cast]), which uses the syntax
   2710 /// (Type)expr. For example: @c (int)f.
   2711 class CStyleCastExpr : public ExplicitCastExpr {
   2712   SourceLocation LPLoc; // the location of the left paren
   2713   SourceLocation RPLoc; // the location of the right paren
   2714 
   2715   CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
   2716                  unsigned PathSize, TypeSourceInfo *writtenTy,
   2717                  SourceLocation l, SourceLocation r)
   2718     : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
   2719                        writtenTy), LPLoc(l), RPLoc(r) {}
   2720 
   2721   /// \brief Construct an empty C-style explicit cast.
   2722   explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
   2723     : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
   2724 
   2725 public:
   2726   static CStyleCastExpr *Create(ASTContext &Context, QualType T,
   2727                                 ExprValueKind VK, CastKind K,
   2728                                 Expr *Op, const CXXCastPath *BasePath,
   2729                                 TypeSourceInfo *WrittenTy, SourceLocation L,
   2730                                 SourceLocation R);
   2731 
   2732   static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
   2733 
   2734   SourceLocation getLParenLoc() const { return LPLoc; }
   2735   void setLParenLoc(SourceLocation L) { LPLoc = L; }
   2736 
   2737   SourceLocation getRParenLoc() const { return RPLoc; }
   2738   void setRParenLoc(SourceLocation L) { RPLoc = L; }
   2739 
   2740   SourceRange getSourceRange() const LLVM_READONLY {
   2741     return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
   2742   }
   2743   static bool classof(const Stmt *T) {
   2744     return T->getStmtClass() == CStyleCastExprClass;
   2745   }
   2746   static bool classof(const CStyleCastExpr *) { return true; }
   2747 };
   2748 
   2749 /// \brief A builtin binary operation expression such as "x + y" or "x <= y".
   2750 ///
   2751 /// This expression node kind describes a builtin binary operation,
   2752 /// such as "x + y" for integer values "x" and "y". The operands will
   2753 /// already have been converted to appropriate types (e.g., by
   2754 /// performing promotions or conversions).
   2755 ///
   2756 /// In C++, where operators may be overloaded, a different kind of
   2757 /// expression node (CXXOperatorCallExpr) is used to express the
   2758 /// invocation of an overloaded operator with operator syntax. Within
   2759 /// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
   2760 /// used to store an expression "x + y" depends on the subexpressions
   2761 /// for x and y. If neither x or y is type-dependent, and the "+"
   2762 /// operator resolves to a built-in operation, BinaryOperator will be
   2763 /// used to express the computation (x and y may still be
   2764 /// value-dependent). If either x or y is type-dependent, or if the
   2765 /// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
   2766 /// be used to express the computation.
   2767 class BinaryOperator : public Expr {
   2768 public:
   2769   typedef BinaryOperatorKind Opcode;
   2770 
   2771 private:
   2772   unsigned Opc : 6;
   2773   SourceLocation OpLoc;
   2774 
   2775   enum { LHS, RHS, END_EXPR };
   2776   Stmt* SubExprs[END_EXPR];
   2777 public:
   2778 
   2779   BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
   2780                  ExprValueKind VK, ExprObjectKind OK,
   2781                  SourceLocation opLoc)
   2782     : Expr(BinaryOperatorClass, ResTy, VK, OK,
   2783            lhs->isTypeDependent() || rhs->isTypeDependent(),
   2784            lhs->isValueDependent() || rhs->isValueDependent(),
   2785            (lhs->isInstantiationDependent() ||
   2786             rhs->isInstantiationDependent()),
   2787            (lhs->containsUnexpandedParameterPack() ||
   2788             rhs->containsUnexpandedParameterPack())),
   2789       Opc(opc), OpLoc(opLoc) {
   2790     SubExprs[LHS] = lhs;
   2791     SubExprs[RHS] = rhs;
   2792     assert(!isCompoundAssignmentOp() &&
   2793            "Use ArithAssignBinaryOperator for compound assignments");
   2794   }
   2795 
   2796   /// \brief Construct an empty binary operator.
   2797   explicit BinaryOperator(EmptyShell Empty)
   2798     : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
   2799 
   2800   SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
   2801   SourceLocation getOperatorLoc() const { return OpLoc; }
   2802   void setOperatorLoc(SourceLocation L) { OpLoc = L; }
   2803 
   2804   Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
   2805   void setOpcode(Opcode O) { Opc = O; }
   2806 
   2807   Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
   2808   void setLHS(Expr *E) { SubExprs[LHS] = E; }
   2809   Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
   2810   void setRHS(Expr *E) { SubExprs[RHS] = E; }
   2811 
   2812   SourceRange getSourceRange() const LLVM_READONLY {
   2813     return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
   2814   }
   2815 
   2816   /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
   2817   /// corresponds to, e.g. "<<=".
   2818   static const char *getOpcodeStr(Opcode Op);
   2819 
   2820   const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
   2821 
   2822   /// \brief Retrieve the binary opcode that corresponds to the given
   2823   /// overloaded operator.
   2824   static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
   2825 
   2826   /// \brief Retrieve the overloaded operator kind that corresponds to
   2827   /// the given binary opcode.
   2828   static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
   2829 
   2830   /// predicates to categorize the respective opcodes.
   2831   bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
   2832   bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
   2833   static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
   2834   bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
   2835   static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
   2836   bool isShiftOp() const { return isShiftOp(getOpcode()); }
   2837 
   2838   static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
   2839   bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
   2840 
   2841   static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
   2842   bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
   2843 
   2844   static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
   2845   bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
   2846 
   2847   static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
   2848   bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
   2849 
   2850   static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
   2851   bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
   2852 
   2853   static bool isAssignmentOp(Opcode Opc) {
   2854     return Opc >= BO_Assign && Opc <= BO_OrAssign;
   2855   }
   2856   bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
   2857 
   2858   static bool isCompoundAssignmentOp(Opcode Opc) {
   2859     return Opc > BO_Assign && Opc <= BO_OrAssign;
   2860   }
   2861   bool isCompoundAssignmentOp() const {
   2862     return isCompoundAssignmentOp(getOpcode());
   2863   }
   2864   static Opcode getOpForCompoundAssignment(Opcode Opc) {
   2865     assert(isCompoundAssignmentOp(Opc));
   2866     if (Opc >= BO_AndAssign)
   2867       return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
   2868     else
   2869       return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
   2870   }
   2871 
   2872   static bool isShiftAssignOp(Opcode Opc) {
   2873     return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
   2874   }
   2875   bool isShiftAssignOp() const {
   2876     return isShiftAssignOp(getOpcode());
   2877   }
   2878 
   2879   static bool classof(const Stmt *S) {
   2880     return S->getStmtClass() >= firstBinaryOperatorConstant &&
   2881            S->getStmtClass() <= lastBinaryOperatorConstant;
   2882   }
   2883   static bool classof(const BinaryOperator *) { return true; }
   2884 
   2885   // Iterators
   2886   child_range children() {
   2887     return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
   2888   }
   2889 
   2890 protected:
   2891   BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
   2892                  ExprValueKind VK, ExprObjectKind OK,
   2893                  SourceLocation opLoc, bool dead)
   2894     : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
   2895            lhs->isTypeDependent() || rhs->isTypeDependent(),
   2896            lhs->isValueDependent() || rhs->isValueDependent(),
   2897            (lhs->isInstantiationDependent() ||
   2898             rhs->isInstantiationDependent()),
   2899            (lhs->containsUnexpandedParameterPack() ||
   2900             rhs->containsUnexpandedParameterPack())),
   2901       Opc(opc), OpLoc(opLoc) {
   2902     SubExprs[LHS] = lhs;
   2903     SubExprs[RHS] = rhs;
   2904   }
   2905 
   2906   BinaryOperator(StmtClass SC, EmptyShell Empty)
   2907     : Expr(SC, Empty), Opc(BO_MulAssign) { }
   2908 };
   2909 
   2910 /// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
   2911 /// track of the type the operation is performed in.  Due to the semantics of
   2912 /// these operators, the operands are promoted, the arithmetic performed, an
   2913 /// implicit conversion back to the result type done, then the assignment takes
   2914 /// place.  This captures the intermediate type which the computation is done
   2915 /// in.
   2916 class CompoundAssignOperator : public BinaryOperator {
   2917   QualType ComputationLHSType;
   2918   QualType ComputationResultType;
   2919 public:
   2920   CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
   2921                          ExprValueKind VK, ExprObjectKind OK,
   2922                          QualType CompLHSType, QualType CompResultType,
   2923                          SourceLocation OpLoc)
   2924     : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
   2925       ComputationLHSType(CompLHSType),
   2926       ComputationResultType(CompResultType) {
   2927     assert(isCompoundAssignmentOp() &&
   2928            "Only should be used for compound assignments");
   2929   }
   2930 
   2931   /// \brief Build an empty compound assignment operator expression.
   2932   explicit CompoundAssignOperator(EmptyShell Empty)
   2933     : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
   2934 
   2935   // The two computation types are the type the LHS is converted
   2936   // to for the computation and the type of the result; the two are
   2937   // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
   2938   QualType getComputationLHSType() const { return ComputationLHSType; }
   2939   void setComputationLHSType(QualType T) { ComputationLHSType = T; }
   2940 
   2941   QualType getComputationResultType() const { return ComputationResultType; }
   2942   void setComputationResultType(QualType T) { ComputationResultType = T; }
   2943 
   2944   static bool classof(const CompoundAssignOperator *) { return true; }
   2945   static bool classof(const Stmt *S) {
   2946     return S->getStmtClass() == CompoundAssignOperatorClass;
   2947   }
   2948 };
   2949 
   2950 /// AbstractConditionalOperator - An abstract base class for
   2951 /// ConditionalOperator and BinaryConditionalOperator.
   2952 class AbstractConditionalOperator : public Expr {
   2953   SourceLocation QuestionLoc, ColonLoc;
   2954   friend class ASTStmtReader;
   2955 
   2956 protected:
   2957   AbstractConditionalOperator(StmtClass SC, QualType T,
   2958                               ExprValueKind VK, ExprObjectKind OK,
   2959                               bool TD, bool VD, bool ID,
   2960                               bool ContainsUnexpandedParameterPack,
   2961                               SourceLocation qloc,
   2962                               SourceLocation cloc)
   2963     : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
   2964       QuestionLoc(qloc), ColonLoc(cloc) {}
   2965 
   2966   AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
   2967     : Expr(SC, Empty) { }
   2968 
   2969 public:
   2970   // getCond - Return the expression representing the condition for
   2971   //   the ?: operator.
   2972   Expr *getCond() const;
   2973 
   2974   // getTrueExpr - Return the subexpression representing the value of
   2975   //   the expression if the condition evaluates to true.
   2976   Expr *getTrueExpr() const;
   2977 
   2978   // getFalseExpr - Return the subexpression representing the value of
   2979   //   the expression if the condition evaluates to false.  This is
   2980   //   the same as getRHS.
   2981   Expr *getFalseExpr() const;
   2982 
   2983   SourceLocation getQuestionLoc() const { return QuestionLoc; }
   2984   SourceLocation getColonLoc() const { return ColonLoc; }
   2985 
   2986   static bool classof(const Stmt *T) {
   2987     return T->getStmtClass() == ConditionalOperatorClass ||
   2988            T->getStmtClass() == BinaryConditionalOperatorClass;
   2989   }
   2990   static bool classof(const AbstractConditionalOperator *) { return true; }
   2991 };
   2992 
   2993 /// ConditionalOperator - The ?: ternary operator.  The GNU "missing
   2994 /// middle" extension is a BinaryConditionalOperator.
   2995 class ConditionalOperator : public AbstractConditionalOperator {
   2996   enum { COND, LHS, RHS, END_EXPR };
   2997   Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
   2998 
   2999   friend class ASTStmtReader;
   3000 public:
   3001   ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
   3002                       SourceLocation CLoc, Expr *rhs,
   3003                       QualType t, ExprValueKind VK, ExprObjectKind OK)
   3004     : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
   3005            // FIXME: the type of the conditional operator doesn't
   3006            // depend on the type of the conditional, but the standard
   3007            // seems to imply that it could. File a bug!
   3008            (lhs->isTypeDependent() || rhs->isTypeDependent()),
   3009            (cond->isValueDependent() || lhs->isValueDependent() ||
   3010             rhs->isValueDependent()),
   3011            (cond->isInstantiationDependent() ||
   3012             lhs->isInstantiationDependent() ||
   3013             rhs->isInstantiationDependent()),
   3014            (cond->containsUnexpandedParameterPack() ||
   3015             lhs->containsUnexpandedParameterPack() ||
   3016             rhs->containsUnexpandedParameterPack()),
   3017                                   QLoc, CLoc) {
   3018     SubExprs[COND] = cond;
   3019     SubExprs[LHS] = lhs;
   3020     SubExprs[RHS] = rhs;
   3021   }
   3022 
   3023   /// \brief Build an empty conditional operator.
   3024   explicit ConditionalOperator(EmptyShell Empty)
   3025     : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
   3026 
   3027   // getCond - Return the expression representing the condition for
   3028   //   the ?: operator.
   3029   Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
   3030 
   3031   // getTrueExpr - Return the subexpression representing the value of
   3032   //   the expression if the condition evaluates to true.
   3033   Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
   3034 
   3035   // getFalseExpr - Return the subexpression representing the value of
   3036   //   the expression if the condition evaluates to false.  This is
   3037   //   the same as getRHS.
   3038   Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
   3039 
   3040   Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
   3041   Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
   3042 
   3043   SourceRange getSourceRange() const LLVM_READONLY {
   3044     return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
   3045   }
   3046   static bool classof(const Stmt *T) {
   3047     return T->getStmtClass() == ConditionalOperatorClass;
   3048   }
   3049   static bool classof(const ConditionalOperator *) { return true; }
   3050 
   3051   // Iterators
   3052   child_range children() {
   3053     return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
   3054   }
   3055 };
   3056 
   3057 /// BinaryConditionalOperator - The GNU extension to the conditional
   3058 /// operator which allows the middle operand to be omitted.
   3059 ///
   3060 /// This is a different expression kind on the assumption that almost
   3061 /// every client ends up needing to know that these are different.
   3062 class BinaryConditionalOperator : public AbstractConditionalOperator {
   3063   enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
   3064 
   3065   /// - the common condition/left-hand-side expression, which will be
   3066   ///   evaluated as the opaque value
   3067   /// - the condition, expressed in terms of the opaque value
   3068   /// - the left-hand-side, expressed in terms of the opaque value
   3069   /// - the right-hand-side
   3070   Stmt *SubExprs[NUM_SUBEXPRS];
   3071   OpaqueValueExpr *OpaqueValue;
   3072 
   3073   friend class ASTStmtReader;
   3074 public:
   3075   BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
   3076                             Expr *cond, Expr *lhs, Expr *rhs,
   3077                             SourceLocation qloc, SourceLocation cloc,
   3078                             QualType t, ExprValueKind VK, ExprObjectKind OK)
   3079     : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
   3080            (common->isTypeDependent() || rhs->isTypeDependent()),
   3081            (common->isValueDependent() || rhs->isValueDependent()),
   3082            (common->isInstantiationDependent() ||
   3083             rhs->isInstantiationDependent()),
   3084            (common->containsUnexpandedParameterPack() ||
   3085             rhs->containsUnexpandedParameterPack()),
   3086                                   qloc, cloc),
   3087       OpaqueValue(opaqueValue) {
   3088     SubExprs[COMMON] = common;
   3089     SubExprs[COND] = cond;
   3090     SubExprs[LHS] = lhs;
   3091     SubExprs[RHS] = rhs;
   3092     assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
   3093   }
   3094 
   3095   /// \brief Build an empty conditional operator.
   3096   explicit BinaryConditionalOperator(EmptyShell Empty)
   3097     : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
   3098 
   3099   /// \brief getCommon - Return the common expression, written to the
   3100   ///   left of the condition.  The opaque value will be bound to the
   3101   ///   result of this expression.
   3102   Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
   3103 
   3104   /// \brief getOpaqueValue - Return the opaque value placeholder.
   3105   OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
   3106 
   3107   /// \brief getCond - Return the condition expression; this is defined
   3108   ///   in terms of the opaque value.
   3109   Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
   3110 
   3111   /// \brief getTrueExpr - Return the subexpression which will be
   3112   ///   evaluated if the condition evaluates to true;  this is defined
   3113   ///   in terms of the opaque value.
   3114   Expr *getTrueExpr() const {
   3115     return cast<Expr>(SubExprs[LHS]);
   3116   }
   3117 
   3118   /// \brief getFalseExpr - Return the subexpression which will be
   3119   ///   evaluated if the condnition evaluates to false; this is
   3120   ///   defined in terms of the opaque value.
   3121   Expr *getFalseExpr() const {
   3122     return cast<Expr>(SubExprs[RHS]);
   3123   }
   3124 
   3125   SourceRange getSourceRange() const LLVM_READONLY {
   3126     return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
   3127   }
   3128   static bool classof(const Stmt *T) {
   3129     return T->getStmtClass() == BinaryConditionalOperatorClass;
   3130   }
   3131   static bool classof(const BinaryConditionalOperator *) { return true; }
   3132 
   3133   // Iterators
   3134   child_range children() {
   3135     return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
   3136   }
   3137 };
   3138 
   3139 inline Expr *AbstractConditionalOperator::getCond() const {
   3140   if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
   3141     return co->getCond();
   3142   return cast<BinaryConditionalOperator>(this)->getCond();
   3143 }
   3144 
   3145 inline Expr *AbstractConditionalOperator::getTrueExpr() const {
   3146   if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
   3147     return co->getTrueExpr();
   3148   return cast<BinaryConditionalOperator>(this)->getTrueExpr();
   3149 }
   3150 
   3151 inline Expr *AbstractConditionalOperator::getFalseExpr() const {
   3152   if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
   3153     return co->getFalseExpr();
   3154   return cast<BinaryConditionalOperator>(this)->getFalseExpr();
   3155 }
   3156 
   3157 /// AddrLabelExpr - The GNU address of label extension, representing &&label.
   3158 class AddrLabelExpr : public Expr {
   3159   SourceLocation AmpAmpLoc, LabelLoc;
   3160   LabelDecl *Label;
   3161 public:
   3162   AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
   3163                 QualType t)
   3164     : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
   3165            false),
   3166       AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
   3167 
   3168   /// \brief Build an empty address of a label expression.
   3169   explicit AddrLabelExpr(EmptyShell Empty)
   3170     : Expr(AddrLabelExprClass, Empty) { }
   3171 
   3172   SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
   3173   void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
   3174   SourceLocation getLabelLoc() const { return LabelLoc; }
   3175   void setLabelLoc(SourceLocation L) { LabelLoc = L; }
   3176 
   3177   SourceRange getSourceRange() const LLVM_READONLY {
   3178     return SourceRange(AmpAmpLoc, LabelLoc);
   3179   }
   3180 
   3181   LabelDecl *getLabel() const { return Label; }
   3182   void setLabel(LabelDecl *L) { Label = L; }
   3183 
   3184   static bool classof(const Stmt *T) {
   3185     return T->getStmtClass() == AddrLabelExprClass;
   3186   }
   3187   static bool classof(const AddrLabelExpr *) { return true; }
   3188 
   3189   // Iterators
   3190   child_range children() { return child_range(); }
   3191 };
   3192 
   3193 /// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
   3194 /// The StmtExpr contains a single CompoundStmt node, which it evaluates and
   3195 /// takes the value of the last subexpression.
   3196 ///
   3197 /// A StmtExpr is always an r-value; values "returned" out of a
   3198 /// StmtExpr will be copied.
   3199 class StmtExpr : public Expr {
   3200   Stmt *SubStmt;
   3201   SourceLocation LParenLoc, RParenLoc;
   3202 public:
   3203   // FIXME: Does type-dependence need to be computed differently?
   3204   // FIXME: Do we need to compute instantiation instantiation-dependence for
   3205   // statements? (ugh!)
   3206   StmtExpr(CompoundStmt *substmt, QualType T,
   3207            SourceLocation lp, SourceLocation rp) :
   3208     Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
   3209          T->isDependentType(), false, false, false),
   3210     SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
   3211 
   3212   /// \brief Build an empty statement expression.
   3213   explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
   3214 
   3215   CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
   3216   const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
   3217   void setSubStmt(CompoundStmt *S) { SubStmt = S; }
   3218 
   3219   SourceRange getSourceRange() const LLVM_READONLY {
   3220     return SourceRange(LParenLoc, RParenLoc);
   3221   }
   3222 
   3223   SourceLocation getLParenLoc() const { return LParenLoc; }
   3224   void setLParenLoc(SourceLocation L) { LParenLoc = L; }
   3225   SourceLocation getRParenLoc() const { return RParenLoc; }
   3226   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
   3227 
   3228   static bool classof(const Stmt *T) {
   3229     return T->getStmtClass() == StmtExprClass;
   3230   }
   3231   static bool classof(const StmtExpr *) { return true; }
   3232 
   3233   // Iterators
   3234   child_range children() { return child_range(&SubStmt, &SubStmt+1); }
   3235 };
   3236 
   3237 
   3238 /// ShuffleVectorExpr - clang-specific builtin-in function
   3239 /// __builtin_shufflevector.
   3240 /// This AST node represents a operator that does a constant
   3241 /// shuffle, similar to LLVM's shufflevector instruction. It takes
   3242 /// two vectors and a variable number of constant indices,
   3243 /// and returns the appropriately shuffled vector.
   3244 class ShuffleVectorExpr : public Expr {
   3245   SourceLocation BuiltinLoc, RParenLoc;
   3246 
   3247   // SubExprs - the list of values passed to the __builtin_shufflevector
   3248   // function. The first two are vectors, and the rest are constant
   3249   // indices.  The number of values in this list is always
   3250   // 2+the number of indices in the vector type.
   3251   Stmt **SubExprs;
   3252   unsigned NumExprs;
   3253 
   3254 public:
   3255   ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
   3256                     QualType Type, SourceLocation BLoc,
   3257                     SourceLocation RP);
   3258 
   3259   /// \brief Build an empty vector-shuffle expression.
   3260   explicit ShuffleVectorExpr(EmptyShell Empty)
   3261     : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
   3262 
   3263   SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
   3264   void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
   3265 
   3266   SourceLocation getRParenLoc() const { return RParenLoc; }
   3267   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
   3268 
   3269   SourceRange getSourceRange() const LLVM_READONLY {
   3270     return SourceRange(BuiltinLoc, RParenLoc);
   3271   }
   3272   static bool classof(const Stmt *T) {
   3273     return T->getStmtClass() == ShuffleVectorExprClass;
   3274   }
   3275   static bool classof(const ShuffleVectorExpr *) { return true; }
   3276 
   3277   /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
   3278   /// constant expression, the actual arguments passed in, and the function
   3279   /// pointers.
   3280   unsigned getNumSubExprs() const { return NumExprs; }
   3281 
   3282   /// \brief Retrieve the array of expressions.
   3283   Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
   3284 
   3285   /// getExpr - Return the Expr at the specified index.
   3286   Expr *getExpr(unsigned Index) {
   3287     assert((Index < NumExprs) && "Arg access out of range!");
   3288     return cast<Expr>(SubExprs[Index]);
   3289   }
   3290   const Expr *getExpr(unsigned Index) const {
   3291     assert((Index < NumExprs) && "Arg access out of range!");
   3292     return cast<Expr>(SubExprs[Index]);
   3293   }
   3294 
   3295   void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
   3296 
   3297   unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
   3298     assert((N < NumExprs - 2) && "Shuffle idx out of range!");
   3299     return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue();
   3300   }
   3301 
   3302   // Iterators
   3303   child_range children() {
   3304     return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
   3305   }
   3306 };
   3307 
   3308 /// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
   3309 /// This AST node is similar to the conditional operator (?:) in C, with
   3310 /// the following exceptions:
   3311 /// - the test expression must be a integer constant expression.
   3312 /// - the expression returned acts like the chosen subexpression in every
   3313 ///   visible way: the type is the same as that of the chosen subexpression,
   3314 ///   and all predicates (whether it's an l-value, whether it's an integer
   3315 ///   constant expression, etc.) return the same result as for the chosen
   3316 ///   sub-expression.
   3317 class ChooseExpr : public Expr {
   3318   enum { COND, LHS, RHS, END_EXPR };
   3319   Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
   3320   SourceLocation BuiltinLoc, RParenLoc;
   3321 public:
   3322   ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
   3323              QualType t, ExprValueKind VK, ExprObjectKind OK,
   3324              SourceLocation RP, bool TypeDependent, bool ValueDependent)
   3325     : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
   3326            (cond->isInstantiationDependent() ||
   3327             lhs->isInstantiationDependent() ||
   3328             rhs->isInstantiationDependent()),
   3329            (cond->containsUnexpandedParameterPack() ||
   3330             lhs->containsUnexpandedParameterPack() ||
   3331             rhs->containsUnexpandedParameterPack())),
   3332       BuiltinLoc(BLoc), RParenLoc(RP) {
   3333       SubExprs[COND] = cond;
   3334       SubExprs[LHS] = lhs;
   3335       SubExprs[RHS] = rhs;
   3336     }
   3337 
   3338   /// \brief Build an empty __builtin_choose_expr.
   3339   explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
   3340 
   3341   /// isConditionTrue - Return whether the condition is true (i.e. not
   3342   /// equal to zero).
   3343   bool isConditionTrue(const ASTContext &C) const;
   3344 
   3345   /// getChosenSubExpr - Return the subexpression chosen according to the
   3346   /// condition.
   3347   Expr *getChosenSubExpr(const ASTContext &C) const {
   3348     return isConditionTrue(C) ? getLHS() : getRHS();
   3349   }
   3350 
   3351   Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
   3352   void setCond(Expr *E) { SubExprs[COND] = E; }
   3353   Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
   3354   void setLHS(Expr *E) { SubExprs[LHS] = E; }
   3355   Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
   3356   void setRHS(Expr *E) { SubExprs[RHS] = E; }
   3357 
   3358   SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
   3359   void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
   3360 
   3361   SourceLocation getRParenLoc() const { return RParenLoc; }
   3362   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
   3363 
   3364   SourceRange getSourceRange() const LLVM_READONLY {
   3365     return SourceRange(BuiltinLoc, RParenLoc);
   3366   }
   3367   static bool classof(const Stmt *T) {
   3368     return T->getStmtClass() == ChooseExprClass;
   3369   }
   3370   static bool classof(const ChooseExpr *) { return true; }
   3371 
   3372   // Iterators
   3373   child_range children() {
   3374     return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
   3375   }
   3376 };
   3377 
   3378 /// GNUNullExpr - Implements the GNU __null extension, which is a name
   3379 /// for a null pointer constant that has integral type (e.g., int or
   3380 /// long) and is the same size and alignment as a pointer. The __null
   3381 /// extension is typically only used by system headers, which define
   3382 /// NULL as __null in C++ rather than using 0 (which is an integer
   3383 /// that may not match the size of a pointer).
   3384 class GNUNullExpr : public Expr {
   3385   /// TokenLoc - The location of the __null keyword.
   3386   SourceLocation TokenLoc;
   3387 
   3388 public:
   3389   GNUNullExpr(QualType Ty, SourceLocation Loc)
   3390     : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
   3391            false),
   3392       TokenLoc(Loc) { }
   3393 
   3394   /// \brief Build an empty GNU __null expression.
   3395   explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
   3396 
   3397   /// getTokenLocation - The location of the __null token.
   3398   SourceLocation getTokenLocation() const { return TokenLoc; }
   3399   void setTokenLocation(SourceLocation L) { TokenLoc = L; }
   3400 
   3401   SourceRange getSourceRange() const LLVM_READONLY {
   3402     return SourceRange(TokenLoc);
   3403   }
   3404   static bool classof(const Stmt *T) {
   3405     return T->getStmtClass() == GNUNullExprClass;
   3406   }
   3407   static bool classof(const GNUNullExpr *) { return true; }
   3408 
   3409   // Iterators
   3410   child_range children() { return child_range(); }
   3411 };
   3412 
   3413 /// VAArgExpr, used for the builtin function __builtin_va_arg.
   3414 class VAArgExpr : public Expr {
   3415   Stmt *Val;
   3416   TypeSourceInfo *TInfo;
   3417   SourceLocation BuiltinLoc, RParenLoc;
   3418 public:
   3419   VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
   3420             SourceLocation RPLoc, QualType t)
   3421     : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
   3422            t->isDependentType(), false,
   3423            (TInfo->getType()->isInstantiationDependentType() ||
   3424             e->isInstantiationDependent()),
   3425            (TInfo->getType()->containsUnexpandedParameterPack() ||
   3426             e->containsUnexpandedParameterPack())),
   3427       Val(e), TInfo(TInfo),
   3428       BuiltinLoc(BLoc),
   3429       RParenLoc(RPLoc) { }
   3430 
   3431   /// \brief Create an empty __builtin_va_arg expression.
   3432   explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
   3433 
   3434   const Expr *getSubExpr() const { return cast<Expr>(Val); }
   3435   Expr *getSubExpr() { return cast<Expr>(Val); }
   3436   void setSubExpr(Expr *E) { Val = E; }
   3437 
   3438   TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
   3439   void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
   3440 
   3441   SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
   3442   void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
   3443 
   3444   SourceLocation getRParenLoc() const { return RParenLoc; }
   3445   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
   3446 
   3447   SourceRange getSourceRange() const LLVM_READONLY {
   3448     return SourceRange(BuiltinLoc, RParenLoc);
   3449   }
   3450   static bool classof(const Stmt *T) {
   3451     return T->getStmtClass() == VAArgExprClass;
   3452   }
   3453   static bool classof(const VAArgExpr *) { return true; }
   3454 
   3455   // Iterators
   3456   child_range children() { return child_range(&Val, &Val+1); }
   3457 };
   3458 
   3459 /// @brief Describes an C or C++ initializer list.
   3460 ///
   3461 /// InitListExpr describes an initializer list, which can be used to
   3462 /// initialize objects of different types, including
   3463 /// struct/class/union types, arrays, and vectors. For example:
   3464 ///
   3465 /// @code
   3466 /// struct foo x = { 1, { 2, 3 } };
   3467 /// @endcode
   3468 ///
   3469 /// Prior to semantic analysis, an initializer list will represent the
   3470 /// initializer list as written by the user, but will have the
   3471 /// placeholder type "void". This initializer list is called the
   3472 /// syntactic form of the initializer, and may contain C99 designated
   3473 /// initializers (represented as DesignatedInitExprs), initializations
   3474 /// of subobject members without explicit braces, and so on. Clients
   3475 /// interested in the original syntax of the initializer list should
   3476 /// use the syntactic form of the initializer list.
   3477 ///
   3478 /// After semantic analysis, the initializer list will represent the
   3479 /// semantic form of the initializer, where the initializations of all
   3480 /// subobjects are made explicit with nested InitListExpr nodes and
   3481 /// C99 designators have been eliminated by placing the designated
   3482 /// initializations into the subobject they initialize. Additionally,
   3483 /// any "holes" in the initialization, where no initializer has been
   3484 /// specified for a particular subobject, will be replaced with
   3485 /// implicitly-generated ImplicitValueInitExpr expressions that
   3486 /// value-initialize the subobjects. Note, however, that the
   3487 /// initializer lists may still have fewer initializers than there are
   3488 /// elements to initialize within the object.
   3489 ///
   3490 /// Given the semantic form of the initializer list, one can retrieve
   3491 /// the original syntactic form of that initializer list (if it
   3492 /// exists) using getSyntacticForm(). Since many initializer lists
   3493 /// have the same syntactic and semantic forms, getSyntacticForm() may
   3494 /// return NULL, indicating that the current initializer list also
   3495 /// serves as its syntactic form.
   3496 class InitListExpr : public Expr {
   3497   // FIXME: Eliminate this vector in favor of ASTContext allocation
   3498   typedef ASTVector<Stmt *> InitExprsTy;
   3499   InitExprsTy InitExprs;
   3500   SourceLocation LBraceLoc, RBraceLoc;
   3501 
   3502   /// Contains the initializer list that describes the syntactic form
   3503   /// written in the source code.
   3504   InitListExpr *SyntacticForm;
   3505 
   3506   /// \brief Either:
   3507   ///  If this initializer list initializes an array with more elements than
   3508   ///  there are initializers in the list, specifies an expression to be used
   3509   ///  for value initialization of the rest of the elements.
   3510   /// Or
   3511   ///  If this initializer list initializes a union, specifies which
   3512   ///  field within the union will be initialized.
   3513   llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
   3514 
   3515 public:
   3516   InitListExpr(ASTContext &C, SourceLocation lbraceloc,
   3517                Expr **initexprs, unsigned numinits,
   3518                SourceLocation rbraceloc);
   3519 
   3520   /// \brief Build an empty initializer list.
   3521   explicit InitListExpr(ASTContext &C, EmptyShell Empty)
   3522     : Expr(InitListExprClass, Empty), InitExprs(C) { }
   3523 
   3524   unsigned getNumInits() const { return InitExprs.size(); }
   3525 
   3526   /// \brief Retrieve the set of initializers.
   3527   Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
   3528 
   3529   const Expr *getInit(unsigned Init) const {
   3530     assert(Init < getNumInits() && "Initializer access out of range!");
   3531     return cast_or_null<Expr>(InitExprs[Init]);
   3532   }
   3533 
   3534   Expr *getInit(unsigned Init) {
   3535     assert(Init < getNumInits() && "Initializer access out of range!");
   3536     return cast_or_null<Expr>(InitExprs[Init]);
   3537   }
   3538 
   3539   void setInit(unsigned Init, Expr *expr) {
   3540     assert(Init < getNumInits() && "Initializer access out of range!");
   3541     InitExprs[Init] = expr;
   3542   }
   3543 
   3544   /// \brief Reserve space for some number of initializers.
   3545   void reserveInits(ASTContext &C, unsigned NumInits);
   3546 
   3547   /// @brief Specify the number of initializers
   3548   ///
   3549   /// If there are more than @p NumInits initializers, the remaining
   3550   /// initializers will be destroyed. If there are fewer than @p
   3551   /// NumInits initializers, NULL expressions will be added for the
   3552   /// unknown initializers.
   3553   void resizeInits(ASTContext &Context, unsigned NumInits);
   3554 
   3555   /// @brief Updates the initializer at index @p Init with the new
   3556   /// expression @p expr, and returns the old expression at that
   3557   /// location.
   3558   ///
   3559   /// When @p Init is out of range for this initializer list, the
   3560   /// initializer list will be extended with NULL expressions to
   3561   /// accommodate the new entry.
   3562   Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
   3563 
   3564   /// \brief If this initializer list initializes an array with more elements
   3565   /// than there are initializers in the list, specifies an expression to be
   3566   /// used for value initialization of the rest of the elements.
   3567   Expr *getArrayFiller() {
   3568     return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
   3569   }
   3570   const Expr *getArrayFiller() const {
   3571     return const_cast<InitListExpr *>(this)->getArrayFiller();
   3572   }
   3573   void setArrayFiller(Expr *filler);
   3574 
   3575   /// \brief Return true if this is an array initializer and its array "filler"
   3576   /// has been set.
   3577   bool hasArrayFiller() const { return getArrayFiller(); }
   3578 
   3579   /// \brief If this initializes a union, specifies which field in the
   3580   /// union to initialize.
   3581   ///
   3582   /// Typically, this field is the first named field within the
   3583   /// union. However, a designated initializer can specify the
   3584   /// initialization of a different field within the union.
   3585   FieldDecl *getInitializedFieldInUnion() {
   3586     return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
   3587   }
   3588   const FieldDecl *getInitializedFieldInUnion() const {
   3589     return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
   3590   }
   3591   void setInitializedFieldInUnion(FieldDecl *FD) {
   3592     ArrayFillerOrUnionFieldInit = FD;
   3593   }
   3594 
   3595   // Explicit InitListExpr's originate from source code (and have valid source
   3596   // locations). Implicit InitListExpr's are created by the semantic analyzer.
   3597   bool isExplicit() {
   3598     return LBraceLoc.isValid() && RBraceLoc.isValid();
   3599   }
   3600 
   3601   // Is this an initializer for an array of characters, initialized by a string
   3602   // literal or an @encode?
   3603   bool isStringLiteralInit() const;
   3604 
   3605   SourceLocation getLBraceLoc() const { return LBraceLoc; }
   3606   void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
   3607   SourceLocation getRBraceLoc() const { return RBraceLoc; }
   3608   void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
   3609 
   3610   /// @brief Retrieve the initializer list that describes the
   3611   /// syntactic form of the initializer.
   3612   ///
   3613   ///
   3614   InitListExpr *getSyntacticForm() const { return SyntacticForm; }
   3615   void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
   3616 
   3617   bool hadArrayRangeDesignator() const {
   3618     return InitListExprBits.HadArrayRangeDesignator != 0;
   3619   }
   3620   void sawArrayRangeDesignator(bool ARD = true) {
   3621     InitListExprBits.HadArrayRangeDesignator = ARD;
   3622   }
   3623 
   3624   bool initializesStdInitializerList() const {
   3625     return InitListExprBits.InitializesStdInitializerList != 0;
   3626   }
   3627   void setInitializesStdInitializerList(bool ISIL = true) {
   3628     InitListExprBits.InitializesStdInitializerList = ISIL;
   3629   }
   3630 
   3631   SourceRange getSourceRange() const LLVM_READONLY;
   3632 
   3633   static bool classof(const Stmt *T) {
   3634     return T->getStmtClass() == InitListExprClass;
   3635   }
   3636   static bool classof(const InitListExpr *) { return true; }
   3637 
   3638   // Iterators
   3639   child_range children() {
   3640     if (InitExprs.empty()) return child_range();
   3641     return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
   3642   }
   3643 
   3644   typedef InitExprsTy::iterator iterator;
   3645   typedef InitExprsTy::const_iterator const_iterator;
   3646   typedef InitExprsTy::reverse_iterator reverse_iterator;
   3647   typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
   3648 
   3649   iterator begin() { return InitExprs.begin(); }
   3650   const_iterator begin() const { return InitExprs.begin(); }
   3651   iterator end() { return InitExprs.end(); }
   3652   const_iterator end() const { return InitExprs.end(); }
   3653   reverse_iterator rbegin() { return InitExprs.rbegin(); }
   3654   const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
   3655   reverse_iterator rend() { return InitExprs.rend(); }
   3656   const_reverse_iterator rend() const { return InitExprs.rend(); }
   3657 
   3658   friend class ASTStmtReader;
   3659   friend class ASTStmtWriter;
   3660 };
   3661 
   3662 /// @brief Represents a C99 designated initializer expression.
   3663 ///
   3664 /// A designated initializer expression (C99 6.7.8) contains one or
   3665 /// more designators (which can be field designators, array
   3666 /// designators, or GNU array-range designators) followed by an
   3667 /// expression that initializes the field or element(s) that the
   3668 /// designators refer to. For example, given:
   3669 ///
   3670 /// @code
   3671 /// struct point {
   3672 ///   double x;
   3673 ///   double y;
   3674 /// };
   3675 /// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
   3676 /// @endcode
   3677 ///
   3678 /// The InitListExpr contains three DesignatedInitExprs, the first of
   3679 /// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
   3680 /// designators, one array designator for @c [2] followed by one field
   3681 /// designator for @c .y. The initalization expression will be 1.0.
   3682 class DesignatedInitExpr : public Expr {
   3683 public:
   3684   /// \brief Forward declaration of the Designator class.
   3685   class Designator;
   3686 
   3687 private:
   3688   /// The location of the '=' or ':' prior to the actual initializer
   3689   /// expression.
   3690   SourceLocation EqualOrColonLoc;
   3691 
   3692   /// Whether this designated initializer used the GNU deprecated
   3693   /// syntax rather than the C99 '=' syntax.
   3694   bool GNUSyntax : 1;
   3695 
   3696   /// The number of designators in this initializer expression.
   3697   unsigned NumDesignators : 15;
   3698 
   3699   /// The number of subexpressions of this initializer expression,
   3700   /// which contains both the initializer and any additional
   3701   /// expressions used by array and array-range designators.
   3702   unsigned NumSubExprs : 16;
   3703 
   3704   /// \brief The designators in this designated initialization
   3705   /// expression.
   3706   Designator *Designators;
   3707 
   3708 
   3709   DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
   3710                      const Designator *Designators,
   3711                      SourceLocation EqualOrColonLoc, bool GNUSyntax,
   3712                      Expr **IndexExprs, unsigned NumIndexExprs,
   3713                      Expr *Init);
   3714 
   3715   explicit DesignatedInitExpr(unsigned NumSubExprs)
   3716     : Expr(DesignatedInitExprClass, EmptyShell()),
   3717       NumDesignators(0), NumSubExprs(NumSubExprs), Designators(0) { }
   3718 
   3719 public:
   3720   /// A field designator, e.g., ".x".
   3721   struct FieldDesignator {
   3722     /// Refers to the field that is being initialized. The low bit
   3723     /// of this field determines whether this is actually a pointer
   3724     /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
   3725     /// initially constructed, a field designator will store an
   3726     /// IdentifierInfo*. After semantic analysis has resolved that
   3727     /// name, the field designator will instead store a FieldDecl*.
   3728     uintptr_t NameOrField;
   3729 
   3730     /// The location of the '.' in the designated initializer.
   3731     unsigned DotLoc;
   3732 
   3733     /// The location of the field name in the designated initializer.
   3734     unsigned FieldLoc;
   3735   };
   3736 
   3737   /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
   3738   struct ArrayOrRangeDesignator {
   3739     /// Location of the first index expression within the designated
   3740     /// initializer expression's list of subexpressions.
   3741     unsigned Index;
   3742     /// The location of the '[' starting the array range designator.
   3743     unsigned LBracketLoc;
   3744     /// The location of the ellipsis separating the start and end
   3745     /// indices. Only valid for GNU array-range designators.
   3746     unsigned EllipsisLoc;
   3747     /// The location of the ']' terminating the array range designator.
   3748     unsigned RBracketLoc;
   3749   };
   3750 
   3751   /// @brief Represents a single C99 designator.
   3752   ///
   3753   /// @todo This class is infuriatingly similar to clang::Designator,
   3754   /// but minor differences (storing indices vs. storing pointers)
   3755   /// keep us from reusing it. Try harder, later, to rectify these
   3756   /// differences.
   3757   class Designator {
   3758     /// @brief The kind of designator this describes.
   3759     enum {
   3760       FieldDesignator,
   3761       ArrayDesignator,
   3762       ArrayRangeDesignator
   3763     } Kind;
   3764 
   3765     union {
   3766       /// A field designator, e.g., ".x".
   3767       struct FieldDesignator Field;
   3768       /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
   3769       struct ArrayOrRangeDesignator ArrayOrRange;
   3770     };
   3771     friend class DesignatedInitExpr;
   3772 
   3773   public:
   3774     Designator() {}
   3775 
   3776     /// @brief Initializes a field designator.
   3777     Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
   3778                SourceLocation FieldLoc)
   3779       : Kind(FieldDesignator) {
   3780       Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
   3781       Field.DotLoc = DotLoc.getRawEncoding();
   3782       Field.FieldLoc = FieldLoc.getRawEncoding();
   3783     }
   3784 
   3785     /// @brief Initializes an array designator.
   3786     Designator(unsigned Index, SourceLocation LBracketLoc,
   3787                SourceLocation RBracketLoc)
   3788       : Kind(ArrayDesignator) {
   3789       ArrayOrRange.Index = Index;
   3790       ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
   3791       ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
   3792       ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
   3793     }
   3794 
   3795     /// @brief Initializes a GNU array-range designator.
   3796     Designator(unsigned Index, SourceLocation LBracketLoc,
   3797                SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
   3798       : Kind(ArrayRangeDesignator) {
   3799       ArrayOrRange.Index = Index;
   3800       ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
   3801       ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
   3802       ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
   3803     }
   3804 
   3805     bool isFieldDesignator() const { return Kind == FieldDesignator; }
   3806     bool isArrayDesignator() const { return Kind == ArrayDesignator; }
   3807     bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
   3808 
   3809     IdentifierInfo *getFieldName() const;
   3810 
   3811     FieldDecl *getField() const {
   3812       assert(Kind == FieldDesignator && "Only valid on a field designator");
   3813       if (Field.NameOrField & 0x01)
   3814         return 0;
   3815       else
   3816         return reinterpret_cast<FieldDecl *>(Field.NameOrField);
   3817     }
   3818 
   3819     void setField(FieldDecl *FD) {
   3820       assert(Kind == FieldDesignator && "Only valid on a field designator");
   3821       Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
   3822     }
   3823 
   3824     SourceLocation getDotLoc() const {
   3825       assert(Kind == FieldDesignator && "Only valid on a field designator");
   3826       return SourceLocation::getFromRawEncoding(Field.DotLoc);
   3827     }
   3828 
   3829     SourceLocation getFieldLoc() const {
   3830       assert(Kind == FieldDesignator && "Only valid on a field designator");
   3831       return SourceLocation::getFromRawEncoding(Field.FieldLoc);
   3832     }
   3833 
   3834     SourceLocation getLBracketLoc() const {
   3835       assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
   3836              "Only valid on an array or array-range designator");
   3837       return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
   3838     }
   3839 
   3840     SourceLocation getRBracketLoc() const {
   3841       assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
   3842              "Only valid on an array or array-range designator");
   3843       return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
   3844     }
   3845 
   3846     SourceLocation getEllipsisLoc() const {
   3847       assert(Kind == ArrayRangeDesignator &&
   3848              "Only valid on an array-range designator");
   3849       return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
   3850     }
   3851 
   3852     unsigned getFirstExprIndex() const {
   3853       assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
   3854              "Only valid on an array or array-range designator");
   3855       return ArrayOrRange.Index;
   3856     }
   3857 
   3858     SourceLocation getStartLocation() const {
   3859       if (Kind == FieldDesignator)
   3860         return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
   3861       else
   3862         return getLBracketLoc();
   3863     }
   3864     SourceLocation getEndLocation() const {
   3865       return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
   3866     }
   3867     SourceRange getSourceRange() const LLVM_READONLY {
   3868       return SourceRange(getStartLocation(), getEndLocation());
   3869     }
   3870   };
   3871 
   3872   static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
   3873                                     unsigned NumDesignators,
   3874                                     Expr **IndexExprs, unsigned NumIndexExprs,
   3875                                     SourceLocation EqualOrColonLoc,
   3876                                     bool GNUSyntax, Expr *Init);
   3877 
   3878   static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
   3879 
   3880   /// @brief Returns the number of designators in this initializer.
   3881   unsigned size() const { return NumDesignators; }
   3882 
   3883   // Iterator access to the designators.
   3884   typedef Designator *designators_iterator;
   3885   designators_iterator designators_begin() { return Designators; }
   3886   designators_iterator designators_end() {
   3887     return Designators + NumDesignators;
   3888   }
   3889 
   3890   typedef const Designator *const_designators_iterator;
   3891   const_designators_iterator designators_begin() const { return Designators; }
   3892   const_designators_iterator designators_end() const {
   3893     return Designators + NumDesignators;
   3894   }
   3895 
   3896   typedef std::reverse_iterator<designators_iterator>
   3897           reverse_designators_iterator;
   3898   reverse_designators_iterator designators_rbegin() {
   3899     return reverse_designators_iterator(designators_end());
   3900   }
   3901   reverse_designators_iterator designators_rend() {
   3902     return reverse_designators_iterator(designators_begin());
   3903   }
   3904 
   3905   typedef std::reverse_iterator<const_designators_iterator>
   3906           const_reverse_designators_iterator;
   3907   const_reverse_designators_iterator designators_rbegin() const {
   3908     return const_reverse_designators_iterator(designators_end());
   3909   }
   3910   const_reverse_designators_iterator designators_rend() const {
   3911     return const_reverse_designators_iterator(designators_begin());
   3912   }
   3913 
   3914   Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
   3915 
   3916   void setDesignators(ASTContext &C, const Designator *Desigs,
   3917                       unsigned NumDesigs);
   3918 
   3919   Expr *getArrayIndex(const Designator& D);
   3920   Expr *getArrayRangeStart(const Designator& D);
   3921   Expr *getArrayRangeEnd(const Designator& D);
   3922 
   3923   /// @brief Retrieve the location of the '=' that precedes the
   3924   /// initializer value itself, if present.
   3925   SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
   3926   void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
   3927 
   3928   /// @brief Determines whether this designated initializer used the
   3929   /// deprecated GNU syntax for designated initializers.
   3930   bool usesGNUSyntax() const { return GNUSyntax; }
   3931   void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
   3932 
   3933   /// @brief Retrieve the initializer value.
   3934   Expr *getInit() const {
   3935     return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
   3936   }
   3937 
   3938   void setInit(Expr *init) {
   3939     *child_begin() = init;
   3940   }
   3941 
   3942   /// \brief Retrieve the total number of subexpressions in this
   3943   /// designated initializer expression, including the actual
   3944   /// initialized value and any expressions that occur within array
   3945   /// and array-range designators.
   3946   unsigned getNumSubExprs() const { return NumSubExprs; }
   3947 
   3948   Expr *getSubExpr(unsigned Idx) {
   3949     assert(Idx < NumSubExprs && "Subscript out of range");
   3950     char* Ptr = static_cast<char*>(static_cast<void *>(this));
   3951     Ptr += sizeof(DesignatedInitExpr);
   3952     return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
   3953   }
   3954 
   3955   void setSubExpr(unsigned Idx, Expr *E) {
   3956     assert(Idx < NumSubExprs && "Subscript out of range");
   3957     char* Ptr = static_cast<char*>(static_cast<void *>(this));
   3958     Ptr += sizeof(DesignatedInitExpr);
   3959     reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
   3960   }
   3961 
   3962   /// \brief Replaces the designator at index @p Idx with the series
   3963   /// of designators in [First, Last).
   3964   void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
   3965                         const Designator *Last);
   3966 
   3967   SourceRange getDesignatorsSourceRange() const;
   3968 
   3969   SourceRange getSourceRange() const LLVM_READONLY;
   3970 
   3971   static bool classof(const Stmt *T) {
   3972     return T->getStmtClass() == DesignatedInitExprClass;
   3973   }
   3974   static bool classof(const DesignatedInitExpr *) { return true; }
   3975 
   3976   // Iterators
   3977   child_range children() {
   3978     Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
   3979     return child_range(begin, begin + NumSubExprs);
   3980   }
   3981 };
   3982 
   3983 /// \brief Represents an implicitly-generated value initialization of
   3984 /// an object of a given type.
   3985 ///
   3986 /// Implicit value initializations occur within semantic initializer
   3987 /// list expressions (InitListExpr) as placeholders for subobject
   3988 /// initializations not explicitly specified by the user.
   3989 ///
   3990 /// \see InitListExpr
   3991 class ImplicitValueInitExpr : public Expr {
   3992 public:
   3993   explicit ImplicitValueInitExpr(QualType ty)
   3994     : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
   3995            false, false, ty->isInstantiationDependentType(), false) { }
   3996 
   3997   /// \brief Construct an empty implicit value initialization.
   3998   explicit ImplicitValueInitExpr(EmptyShell Empty)
   3999     : Expr(ImplicitValueInitExprClass, Empty) { }
   4000 
   4001   static bool classof(const Stmt *T) {
   4002     return T->getStmtClass() == ImplicitValueInitExprClass;
   4003   }
   4004   static bool classof(const ImplicitValueInitExpr *) { return true; }
   4005 
   4006   SourceRange getSourceRange() const LLVM_READONLY {
   4007     return SourceRange();
   4008   }
   4009 
   4010   // Iterators
   4011   child_range children() { return child_range(); }
   4012 };
   4013 
   4014 
   4015 class ParenListExpr : public Expr {
   4016   Stmt **Exprs;
   4017   unsigned NumExprs;
   4018   SourceLocation LParenLoc, RParenLoc;
   4019 
   4020 public:
   4021   ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
   4022                 unsigned numexprs, SourceLocation rparenloc);
   4023 
   4024   /// \brief Build an empty paren list.
   4025   explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
   4026 
   4027   unsigned getNumExprs() const { return NumExprs; }
   4028 
   4029   const Expr* getExpr(unsigned Init) const {
   4030     assert(Init < getNumExprs() && "Initializer access out of range!");
   4031     return cast_or_null<Expr>(Exprs[Init]);
   4032   }
   4033 
   4034   Expr* getExpr(unsigned Init) {
   4035     assert(Init < getNumExprs() && "Initializer access out of range!");
   4036     return cast_or_null<Expr>(Exprs[Init]);
   4037   }
   4038 
   4039   Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
   4040 
   4041   SourceLocation getLParenLoc() const { return LParenLoc; }
   4042   SourceLocation getRParenLoc() const { return RParenLoc; }
   4043 
   4044   SourceRange getSourceRange() const LLVM_READONLY {
   4045     return SourceRange(LParenLoc, RParenLoc);
   4046   }
   4047   static bool classof(const Stmt *T) {
   4048     return T->getStmtClass() == ParenListExprClass;
   4049   }
   4050   static bool classof(const ParenListExpr *) { return true; }
   4051 
   4052   // Iterators
   4053   child_range children() {
   4054     return child_range(&Exprs[0], &Exprs[0]+NumExprs);
   4055   }
   4056 
   4057   friend class ASTStmtReader;
   4058   friend class ASTStmtWriter;
   4059 };
   4060 
   4061 
   4062 /// \brief Represents a C11 generic selection.
   4063 ///
   4064 /// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
   4065 /// expression, followed by one or more generic associations.  Each generic
   4066 /// association specifies a type name and an expression, or "default" and an
   4067 /// expression (in which case it is known as a default generic association).
   4068 /// The type and value of the generic selection are identical to those of its
   4069 /// result expression, which is defined as the expression in the generic
   4070 /// association with a type name that is compatible with the type of the
   4071 /// controlling expression, or the expression in the default generic association
   4072 /// if no types are compatible.  For example:
   4073 ///
   4074 /// @code
   4075 /// _Generic(X, double: 1, float: 2, default: 3)
   4076 /// @endcode
   4077 ///
   4078 /// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
   4079 /// or 3 if "hello".
   4080 ///
   4081 /// As an extension, generic selections are allowed in C++, where the following
   4082 /// additional semantics apply:
   4083 ///
   4084 /// Any generic selection whose controlling expression is type-dependent or
   4085 /// which names a dependent type in its association list is result-dependent,
   4086 /// which means that the choice of result expression is dependent.
   4087 /// Result-dependent generic associations are both type- and value-dependent.
   4088 class GenericSelectionExpr : public Expr {
   4089   enum { CONTROLLING, END_EXPR };
   4090   TypeSourceInfo **AssocTypes;
   4091   Stmt **SubExprs;
   4092   unsigned NumAssocs, ResultIndex;
   4093   SourceLocation GenericLoc, DefaultLoc, RParenLoc;
   4094 
   4095 public:
   4096   GenericSelectionExpr(ASTContext &Context,
   4097                        SourceLocation GenericLoc, Expr *ControllingExpr,
   4098                        TypeSourceInfo **AssocTypes, Expr **AssocExprs,
   4099                        unsigned NumAssocs, SourceLocation DefaultLoc,
   4100                        SourceLocation RParenLoc,
   4101                        bool ContainsUnexpandedParameterPack,
   4102                        unsigned ResultIndex);
   4103 
   4104   /// This constructor is used in the result-dependent case.
   4105   GenericSelectionExpr(ASTContext &Context,
   4106                        SourceLocation GenericLoc, Expr *ControllingExpr,
   4107                        TypeSourceInfo **AssocTypes, Expr **AssocExprs,
   4108                        unsigned NumAssocs, SourceLocation DefaultLoc,
   4109                        SourceLocation RParenLoc,
   4110                        bool ContainsUnexpandedParameterPack);
   4111 
   4112   explicit GenericSelectionExpr(EmptyShell Empty)
   4113     : Expr(GenericSelectionExprClass, Empty) { }
   4114 
   4115   unsigned getNumAssocs() const { return NumAssocs; }
   4116 
   4117   SourceLocation getGenericLoc() const { return GenericLoc; }
   4118   SourceLocation getDefaultLoc() const { return DefaultLoc; }
   4119   SourceLocation getRParenLoc() const { return RParenLoc; }
   4120 
   4121   const Expr *getAssocExpr(unsigned i) const {
   4122     return cast<Expr>(SubExprs[END_EXPR+i]);
   4123   }
   4124   Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
   4125 
   4126   const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
   4127     return AssocTypes[i];
   4128   }
   4129   TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
   4130 
   4131   QualType getAssocType(unsigned i) const {
   4132     if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
   4133       return TS->getType();
   4134     else
   4135       return QualType();
   4136   }
   4137 
   4138   const Expr *getControllingExpr() const {
   4139     return cast<Expr>(SubExprs[CONTROLLING]);
   4140   }
   4141   Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
   4142 
   4143   /// Whether this generic selection is result-dependent.
   4144   bool isResultDependent() const { return ResultIndex == -1U; }
   4145 
   4146   /// The zero-based index of the result expression's generic association in
   4147   /// the generic selection's association list.  Defined only if the
   4148   /// generic selection is not result-dependent.
   4149   unsigned getResultIndex() const {
   4150     assert(!isResultDependent() && "Generic selection is result-dependent");
   4151     return ResultIndex;
   4152   }
   4153 
   4154   /// The generic selection's result expression.  Defined only if the
   4155   /// generic selection is not result-dependent.
   4156   const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
   4157   Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
   4158 
   4159   SourceRange getSourceRange() const LLVM_READONLY {
   4160     return SourceRange(GenericLoc, RParenLoc);
   4161   }
   4162   static bool classof(const Stmt *T) {
   4163     return T->getStmtClass() == GenericSelectionExprClass;
   4164   }
   4165   static bool classof(const GenericSelectionExpr *) { return true; }
   4166 
   4167   child_range children() {
   4168     return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
   4169   }
   4170 
   4171   friend class ASTStmtReader;
   4172 };
   4173 
   4174 //===----------------------------------------------------------------------===//
   4175 // Clang Extensions
   4176 //===----------------------------------------------------------------------===//
   4177 
   4178 
   4179 /// ExtVectorElementExpr - This represents access to specific elements of a
   4180 /// vector, and may occur on the left hand side or right hand side.  For example
   4181 /// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
   4182 ///
   4183 /// Note that the base may have either vector or pointer to vector type, just
   4184 /// like a struct field reference.
   4185 ///
   4186 class ExtVectorElementExpr : public Expr {
   4187   Stmt *Base;
   4188   IdentifierInfo *Accessor;
   4189   SourceLocation AccessorLoc;
   4190 public:
   4191   ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
   4192                        IdentifierInfo &accessor, SourceLocation loc)
   4193     : Expr(ExtVectorElementExprClass, ty, VK,
   4194            (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
   4195            base->isTypeDependent(), base->isValueDependent(),
   4196            base->isInstantiationDependent(),
   4197            base->containsUnexpandedParameterPack()),
   4198       Base(base), Accessor(&accessor), AccessorLoc(loc) {}
   4199 
   4200   /// \brief Build an empty vector element expression.
   4201   explicit ExtVectorElementExpr(EmptyShell Empty)
   4202     : Expr(ExtVectorElementExprClass, Empty) { }
   4203 
   4204   const Expr *getBase() const { return cast<Expr>(Base); }
   4205   Expr *getBase() { return cast<Expr>(Base); }
   4206   void setBase(Expr *E) { Base = E; }
   4207 
   4208   IdentifierInfo &getAccessor() const { return *Accessor; }
   4209   void setAccessor(IdentifierInfo *II) { Accessor = II; }
   4210 
   4211   SourceLocation getAccessorLoc() const { return AccessorLoc; }
   4212   void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
   4213 
   4214   /// getNumElements - Get the number of components being selected.
   4215   unsigned getNumElements() const;
   4216 
   4217   /// containsDuplicateElements - Return true if any element access is
   4218   /// repeated.
   4219   bool containsDuplicateElements() const;
   4220 
   4221   /// getEncodedElementAccess - Encode the elements accessed into an llvm
   4222   /// aggregate Constant of ConstantInt(s).
   4223   void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
   4224 
   4225   SourceRange getSourceRange() const LLVM_READONLY {
   4226     return SourceRange(getBase()->getLocStart(), AccessorLoc);
   4227   }
   4228 
   4229   /// isArrow - Return true if the base expression is a pointer to vector,
   4230   /// return false if the base expression is a vector.
   4231   bool isArrow() const;
   4232 
   4233   static bool classof(const Stmt *T) {
   4234     return T->getStmtClass() == ExtVectorElementExprClass;
   4235   }
   4236   static bool classof(const ExtVectorElementExpr *) { return true; }
   4237 
   4238   // Iterators
   4239   child_range children() { return child_range(&Base, &Base+1); }
   4240 };
   4241 
   4242 
   4243 /// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
   4244 /// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
   4245 class BlockExpr : public Expr {
   4246 protected:
   4247   BlockDecl *TheBlock;
   4248 public:
   4249   BlockExpr(BlockDecl *BD, QualType ty)
   4250     : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
   4251            ty->isDependentType(), ty->isDependentType(),
   4252            ty->isInstantiationDependentType() || BD->isDependentContext(),
   4253            false),
   4254       TheBlock(BD) {}
   4255 
   4256   /// \brief Build an empty block expression.
   4257   explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
   4258 
   4259   const BlockDecl *getBlockDecl() const { return TheBlock; }
   4260   BlockDecl *getBlockDecl() { return TheBlock; }
   4261   void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
   4262 
   4263   // Convenience functions for probing the underlying BlockDecl.
   4264   SourceLocation getCaretLocation() const;
   4265   const Stmt *getBody() const;
   4266   Stmt *getBody();
   4267 
   4268   SourceRange getSourceRange() const LLVM_READONLY {
   4269     return SourceRange(getCaretLocation(), getBody()->getLocEnd());
   4270   }
   4271 
   4272   /// getFunctionType - Return the underlying function type for this block.
   4273   const FunctionProtoType *getFunctionType() const;
   4274 
   4275   static bool classof(const Stmt *T) {
   4276     return T->getStmtClass() == BlockExprClass;
   4277   }
   4278   static bool classof(const BlockExpr *) { return true; }
   4279 
   4280   // Iterators
   4281   child_range children() { return child_range(); }
   4282 };
   4283 
   4284 /// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
   4285 /// This AST node provides support for reinterpreting a type to another
   4286 /// type of the same size.
   4287 class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
   4288 private:
   4289   Stmt *SrcExpr;
   4290   SourceLocation BuiltinLoc, RParenLoc;
   4291 
   4292   friend class ASTReader;
   4293   friend class ASTStmtReader;
   4294   explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
   4295 
   4296 public:
   4297   AsTypeExpr(Expr* SrcExpr, QualType DstType,
   4298              ExprValueKind VK, ExprObjectKind OK,
   4299              SourceLocation BuiltinLoc, SourceLocation RParenLoc)
   4300     : Expr(AsTypeExprClass, DstType, VK, OK,
   4301            DstType->isDependentType(),
   4302            DstType->isDependentType() || SrcExpr->isValueDependent(),
   4303            (DstType->isInstantiationDependentType() ||
   4304             SrcExpr->isInstantiationDependent()),
   4305            (DstType->containsUnexpandedParameterPack() ||
   4306             SrcExpr->containsUnexpandedParameterPack())),
   4307   SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
   4308 
   4309   /// getSrcExpr - Return the Expr to be converted.
   4310   Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
   4311 
   4312   /// getBuiltinLoc - Return the location of the __builtin_astype token.
   4313   SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
   4314 
   4315   /// getRParenLoc - Return the location of final right parenthesis.
   4316   SourceLocation getRParenLoc() const { return RParenLoc; }
   4317 
   4318   SourceRange getSourceRange() const LLVM_READONLY {
   4319     return SourceRange(BuiltinLoc, RParenLoc);
   4320   }
   4321 
   4322   static bool classof(const Stmt *T) {
   4323     return T->getStmtClass() == AsTypeExprClass;
   4324   }
   4325   static bool classof(const AsTypeExpr *) { return true; }
   4326 
   4327   // Iterators
   4328   child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
   4329 };
   4330 
   4331 /// PseudoObjectExpr - An expression which accesses a pseudo-object
   4332 /// l-value.  A pseudo-object is an abstract object, accesses to which
   4333 /// are translated to calls.  The pseudo-object expression has a
   4334 /// syntactic form, which shows how the expression was actually
   4335 /// written in the source code, and a semantic form, which is a series
   4336 /// of expressions to be executed in order which detail how the
   4337 /// operation is actually evaluated.  Optionally, one of the semantic
   4338 /// forms may also provide a result value for the expression.
   4339 ///
   4340 /// If any of the semantic-form expressions is an OpaqueValueExpr,
   4341 /// that OVE is required to have a source expression, and it is bound
   4342 /// to the result of that source expression.  Such OVEs may appear
   4343 /// only in subsequent semantic-form expressions and as
   4344 /// sub-expressions of the syntactic form.
   4345 ///
   4346 /// PseudoObjectExpr should be used only when an operation can be
   4347 /// usefully described in terms of fairly simple rewrite rules on
   4348 /// objects and functions that are meant to be used by end-developers.
   4349 /// For example, under the Itanium ABI, dynamic casts are implemented
   4350 /// as a call to a runtime function called __dynamic_cast; using this
   4351 /// class to describe that would be inappropriate because that call is
   4352 /// not really part of the user-visible semantics, and instead the
   4353 /// cast is properly reflected in the AST and IR-generation has been
   4354 /// taught to generate the call as necessary.  In contrast, an
   4355 /// Objective-C property access is semantically defined to be
   4356 /// equivalent to a particular message send, and this is very much
   4357 /// part of the user model.  The name of this class encourages this
   4358 /// modelling design.
   4359 class PseudoObjectExpr : public Expr {
   4360   // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
   4361   // Always at least two, because the first sub-expression is the
   4362   // syntactic form.
   4363 
   4364   // PseudoObjectExprBits.ResultIndex - The index of the
   4365   // sub-expression holding the result.  0 means the result is void,
   4366   // which is unambiguous because it's the index of the syntactic
   4367   // form.  Note that this is therefore 1 higher than the value passed
   4368   // in to Create, which is an index within the semantic forms.
   4369   // Note also that ASTStmtWriter assumes this encoding.
   4370 
   4371   Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
   4372   const Expr * const *getSubExprsBuffer() const {
   4373     return reinterpret_cast<const Expr * const *>(this + 1);
   4374   }
   4375 
   4376   friend class ASTStmtReader;
   4377 
   4378   PseudoObjectExpr(QualType type, ExprValueKind VK,
   4379                    Expr *syntactic, ArrayRef<Expr*> semantic,
   4380                    unsigned resultIndex);
   4381 
   4382   PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
   4383 
   4384   unsigned getNumSubExprs() const {
   4385     return PseudoObjectExprBits.NumSubExprs;
   4386   }
   4387 
   4388 public:
   4389   /// NoResult - A value for the result index indicating that there is
   4390   /// no semantic result.
   4391   enum { NoResult = ~0U };
   4392 
   4393   static PseudoObjectExpr *Create(ASTContext &Context, Expr *syntactic,
   4394                                   ArrayRef<Expr*> semantic,
   4395                                   unsigned resultIndex);
   4396 
   4397   static PseudoObjectExpr *Create(ASTContext &Context, EmptyShell shell,
   4398                                   unsigned numSemanticExprs);
   4399 
   4400   /// Return the syntactic form of this expression, i.e. the
   4401   /// expression it actually looks like.  Likely to be expressed in
   4402   /// terms of OpaqueValueExprs bound in the semantic form.
   4403   Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
   4404   const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
   4405 
   4406   /// Return the index of the result-bearing expression into the semantics
   4407   /// expressions, or PseudoObjectExpr::NoResult if there is none.
   4408   unsigned getResultExprIndex() const {
   4409     if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
   4410     return PseudoObjectExprBits.ResultIndex - 1;
   4411   }
   4412 
   4413   /// Return the result-bearing expression, or null if there is none.
   4414   Expr *getResultExpr() {
   4415     if (PseudoObjectExprBits.ResultIndex == 0)
   4416       return 0;
   4417     return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
   4418   }
   4419   const Expr *getResultExpr() const {
   4420     return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
   4421   }
   4422 
   4423   unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
   4424 
   4425   typedef Expr * const *semantics_iterator;
   4426   typedef const Expr * const *const_semantics_iterator;
   4427   semantics_iterator semantics_begin() {
   4428     return getSubExprsBuffer() + 1;
   4429   }
   4430   const_semantics_iterator semantics_begin() const {
   4431     return getSubExprsBuffer() + 1;
   4432   }
   4433   semantics_iterator semantics_end() {
   4434     return getSubExprsBuffer() + getNumSubExprs();
   4435   }
   4436   const_semantics_iterator semantics_end() const {
   4437     return getSubExprsBuffer() + getNumSubExprs();
   4438   }
   4439   Expr *getSemanticExpr(unsigned index) {
   4440     assert(index + 1 < getNumSubExprs());
   4441     return getSubExprsBuffer()[index + 1];
   4442   }
   4443   const Expr *getSemanticExpr(unsigned index) const {
   4444     return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
   4445   }
   4446 
   4447   SourceLocation getExprLoc() const LLVM_READONLY {
   4448     return getSyntacticForm()->getExprLoc();
   4449   }
   4450   SourceRange getSourceRange() const LLVM_READONLY {
   4451     return getSyntacticForm()->getSourceRange();
   4452   }
   4453 
   4454   child_range children() {
   4455     Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
   4456     return child_range(cs, cs + getNumSubExprs());
   4457   }
   4458 
   4459   static bool classof(const Stmt *T) {
   4460     return T->getStmtClass() == PseudoObjectExprClass;
   4461   }
   4462   static bool classof(const PseudoObjectExpr *) { return true; }
   4463 };
   4464 
   4465 /// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
   4466 /// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
   4467 /// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
   4468 /// All of these instructions take one primary pointer and at least one memory
   4469 /// order.
   4470 class AtomicExpr : public Expr {
   4471 public:
   4472   enum AtomicOp {
   4473 #define BUILTIN(ID, TYPE, ATTRS)
   4474 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
   4475 #include "clang/Basic/Builtins.def"
   4476     // Avoid trailing comma
   4477     BI_First = 0
   4478   };
   4479 
   4480 private:
   4481   enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
   4482   Stmt* SubExprs[END_EXPR];
   4483   unsigned NumSubExprs;
   4484   SourceLocation BuiltinLoc, RParenLoc;
   4485   AtomicOp Op;
   4486 
   4487   friend class ASTStmtReader;
   4488 
   4489 public:
   4490   AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, QualType t,
   4491              AtomicOp op, SourceLocation RP);
   4492 
   4493   /// \brief Determine the number of arguments the specified atomic builtin
   4494   /// should have.
   4495   static unsigned getNumSubExprs(AtomicOp Op);
   4496 
   4497   /// \brief Build an empty AtomicExpr.
   4498   explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
   4499 
   4500   Expr *getPtr() const {
   4501     return cast<Expr>(SubExprs[PTR]);
   4502   }
   4503   Expr *getOrder() const {
   4504     return cast<Expr>(SubExprs[ORDER]);
   4505   }
   4506   Expr *getVal1() const {
   4507     if (Op == AO__c11_atomic_init)
   4508       return cast<Expr>(SubExprs[ORDER]);
   4509     assert(NumSubExprs > VAL1);
   4510     return cast<Expr>(SubExprs[VAL1]);
   4511   }
   4512   Expr *getOrderFail() const {
   4513     assert(NumSubExprs > ORDER_FAIL);
   4514     return cast<Expr>(SubExprs[ORDER_FAIL]);
   4515   }
   4516   Expr *getVal2() const {
   4517     if (Op == AO__atomic_exchange)
   4518       return cast<Expr>(SubExprs[ORDER_FAIL]);
   4519     assert(NumSubExprs > VAL2);
   4520     return cast<Expr>(SubExprs[VAL2]);
   4521   }
   4522   Expr *getWeak() const {
   4523     assert(NumSubExprs > WEAK);
   4524     return cast<Expr>(SubExprs[WEAK]);
   4525   }
   4526 
   4527   AtomicOp getOp() const { return Op; }
   4528   unsigned getNumSubExprs() { return NumSubExprs; }
   4529 
   4530   Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
   4531 
   4532   bool isVolatile() const {
   4533     return getPtr()->getType()->getPointeeType().isVolatileQualified();
   4534   }
   4535 
   4536   bool isCmpXChg() const {
   4537     return getOp() == AO__c11_atomic_compare_exchange_strong ||
   4538            getOp() == AO__c11_atomic_compare_exchange_weak ||
   4539            getOp() == AO__atomic_compare_exchange ||
   4540            getOp() == AO__atomic_compare_exchange_n;
   4541   }
   4542 
   4543   SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
   4544   SourceLocation getRParenLoc() const { return RParenLoc; }
   4545 
   4546   SourceRange getSourceRange() const LLVM_READONLY {
   4547     return SourceRange(BuiltinLoc, RParenLoc);
   4548   }
   4549   static bool classof(const Stmt *T) {
   4550     return T->getStmtClass() == AtomicExprClass;
   4551   }
   4552   static bool classof(const AtomicExpr *) { return true; }
   4553 
   4554   // Iterators
   4555   child_range children() {
   4556     return child_range(SubExprs, SubExprs+NumSubExprs);
   4557   }
   4558 };
   4559 }  // end namespace clang
   4560 
   4561 #endif
   4562