Home | History | Annotate | Download | only in AST
      1 //===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines the Type interface and subclasses.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CLANG_AST_TYPE_H
     15 #define LLVM_CLANG_AST_TYPE_H
     16 
     17 #include "clang/Basic/Diagnostic.h"
     18 #include "clang/Basic/ExceptionSpecificationType.h"
     19 #include "clang/Basic/IdentifierTable.h"
     20 #include "clang/Basic/Linkage.h"
     21 #include "clang/Basic/PartialDiagnostic.h"
     22 #include "clang/Basic/Visibility.h"
     23 #include "clang/AST/NestedNameSpecifier.h"
     24 #include "clang/AST/TemplateName.h"
     25 #include "llvm/Support/type_traits.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/ADT/APSInt.h"
     28 #include "llvm/ADT/FoldingSet.h"
     29 #include "llvm/ADT/Optional.h"
     30 #include "llvm/ADT/PointerIntPair.h"
     31 #include "llvm/ADT/PointerUnion.h"
     32 #include "clang/Basic/LLVM.h"
     33 
     34 namespace clang {
     35   enum {
     36     TypeAlignmentInBits = 4,
     37     TypeAlignment = 1 << TypeAlignmentInBits
     38   };
     39   class Type;
     40   class ExtQuals;
     41   class QualType;
     42 }
     43 
     44 namespace llvm {
     45   template <typename T>
     46   class PointerLikeTypeTraits;
     47   template<>
     48   class PointerLikeTypeTraits< ::clang::Type*> {
     49   public:
     50     static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
     51     static inline ::clang::Type *getFromVoidPointer(void *P) {
     52       return static_cast< ::clang::Type*>(P);
     53     }
     54     enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
     55   };
     56   template<>
     57   class PointerLikeTypeTraits< ::clang::ExtQuals*> {
     58   public:
     59     static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
     60     static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
     61       return static_cast< ::clang::ExtQuals*>(P);
     62     }
     63     enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
     64   };
     65 
     66   template <>
     67   struct isPodLike<clang::QualType> { static const bool value = true; };
     68 }
     69 
     70 namespace clang {
     71   class ASTContext;
     72   class TypedefNameDecl;
     73   class TemplateDecl;
     74   class TemplateTypeParmDecl;
     75   class NonTypeTemplateParmDecl;
     76   class TemplateTemplateParmDecl;
     77   class TagDecl;
     78   class RecordDecl;
     79   class CXXRecordDecl;
     80   class EnumDecl;
     81   class FieldDecl;
     82   class FunctionDecl;
     83   class ObjCInterfaceDecl;
     84   class ObjCProtocolDecl;
     85   class ObjCMethodDecl;
     86   class UnresolvedUsingTypenameDecl;
     87   class Expr;
     88   class Stmt;
     89   class SourceLocation;
     90   class StmtIteratorBase;
     91   class TemplateArgument;
     92   class TemplateArgumentLoc;
     93   class TemplateArgumentListInfo;
     94   class ElaboratedType;
     95   class ExtQuals;
     96   class ExtQualsTypeCommonBase;
     97   struct PrintingPolicy;
     98 
     99   template <typename> class CanQual;
    100   typedef CanQual<Type> CanQualType;
    101 
    102   // Provide forward declarations for all of the *Type classes
    103 #define TYPE(Class, Base) class Class##Type;
    104 #include "clang/AST/TypeNodes.def"
    105 
    106 /// Qualifiers - The collection of all-type qualifiers we support.
    107 /// Clang supports five independent qualifiers:
    108 /// * C99: const, volatile, and restrict
    109 /// * Embedded C (TR18037): address spaces
    110 /// * Objective C: the GC attributes (none, weak, or strong)
    111 class Qualifiers {
    112 public:
    113   enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
    114     Const    = 0x1,
    115     Restrict = 0x2,
    116     Volatile = 0x4,
    117     CVRMask = Const | Volatile | Restrict
    118   };
    119 
    120   enum GC {
    121     GCNone = 0,
    122     Weak,
    123     Strong
    124   };
    125 
    126   enum ObjCLifetime {
    127     /// There is no lifetime qualification on this type.
    128     OCL_None,
    129 
    130     /// This object can be modified without requiring retains or
    131     /// releases.
    132     OCL_ExplicitNone,
    133 
    134     /// Assigning into this object requires the old value to be
    135     /// released and the new value to be retained.  The timing of the
    136     /// release of the old value is inexact: it may be moved to
    137     /// immediately after the last known point where the value is
    138     /// live.
    139     OCL_Strong,
    140 
    141     /// Reading or writing from this object requires a barrier call.
    142     OCL_Weak,
    143 
    144     /// Assigning into this object requires a lifetime extension.
    145     OCL_Autoreleasing
    146   };
    147 
    148   enum {
    149     /// The maximum supported address space number.
    150     /// 24 bits should be enough for anyone.
    151     MaxAddressSpace = 0xffffffu,
    152 
    153     /// The width of the "fast" qualifier mask.
    154     FastWidth = 3,
    155 
    156     /// The fast qualifier mask.
    157     FastMask = (1 << FastWidth) - 1
    158   };
    159 
    160   Qualifiers() : Mask(0) {}
    161 
    162   static Qualifiers fromFastMask(unsigned Mask) {
    163     Qualifiers Qs;
    164     Qs.addFastQualifiers(Mask);
    165     return Qs;
    166   }
    167 
    168   static Qualifiers fromCVRMask(unsigned CVR) {
    169     Qualifiers Qs;
    170     Qs.addCVRQualifiers(CVR);
    171     return Qs;
    172   }
    173 
    174   // Deserialize qualifiers from an opaque representation.
    175   static Qualifiers fromOpaqueValue(unsigned opaque) {
    176     Qualifiers Qs;
    177     Qs.Mask = opaque;
    178     return Qs;
    179   }
    180 
    181   // Serialize these qualifiers into an opaque representation.
    182   unsigned getAsOpaqueValue() const {
    183     return Mask;
    184   }
    185 
    186   bool hasConst() const { return Mask & Const; }
    187   void setConst(bool flag) {
    188     Mask = (Mask & ~Const) | (flag ? Const : 0);
    189   }
    190   void removeConst() { Mask &= ~Const; }
    191   void addConst() { Mask |= Const; }
    192 
    193   bool hasVolatile() const { return Mask & Volatile; }
    194   void setVolatile(bool flag) {
    195     Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
    196   }
    197   void removeVolatile() { Mask &= ~Volatile; }
    198   void addVolatile() { Mask |= Volatile; }
    199 
    200   bool hasRestrict() const { return Mask & Restrict; }
    201   void setRestrict(bool flag) {
    202     Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
    203   }
    204   void removeRestrict() { Mask &= ~Restrict; }
    205   void addRestrict() { Mask |= Restrict; }
    206 
    207   bool hasCVRQualifiers() const { return getCVRQualifiers(); }
    208   unsigned getCVRQualifiers() const { return Mask & CVRMask; }
    209   void setCVRQualifiers(unsigned mask) {
    210     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    211     Mask = (Mask & ~CVRMask) | mask;
    212   }
    213   void removeCVRQualifiers(unsigned mask) {
    214     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    215     Mask &= ~mask;
    216   }
    217   void removeCVRQualifiers() {
    218     removeCVRQualifiers(CVRMask);
    219   }
    220   void addCVRQualifiers(unsigned mask) {
    221     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    222     Mask |= mask;
    223   }
    224 
    225   bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
    226   GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
    227   void setObjCGCAttr(GC type) {
    228     Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
    229   }
    230   void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
    231   void addObjCGCAttr(GC type) {
    232     assert(type);
    233     setObjCGCAttr(type);
    234   }
    235   Qualifiers withoutObjCGCAttr() const {
    236     Qualifiers qs = *this;
    237     qs.removeObjCGCAttr();
    238     return qs;
    239   }
    240   Qualifiers withoutObjCLifetime() const {
    241     Qualifiers qs = *this;
    242     qs.removeObjCLifetime();
    243     return qs;
    244   }
    245 
    246   bool hasObjCLifetime() const { return Mask & LifetimeMask; }
    247   ObjCLifetime getObjCLifetime() const {
    248     return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
    249   }
    250   void setObjCLifetime(ObjCLifetime type) {
    251     Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
    252   }
    253   void removeObjCLifetime() { setObjCLifetime(OCL_None); }
    254   void addObjCLifetime(ObjCLifetime type) {
    255     assert(type);
    256     assert(!hasObjCLifetime());
    257     Mask |= (type << LifetimeShift);
    258   }
    259 
    260   /// True if the lifetime is neither None or ExplicitNone.
    261   bool hasNonTrivialObjCLifetime() const {
    262     ObjCLifetime lifetime = getObjCLifetime();
    263     return (lifetime > OCL_ExplicitNone);
    264   }
    265 
    266   /// True if the lifetime is either strong or weak.
    267   bool hasStrongOrWeakObjCLifetime() const {
    268     ObjCLifetime lifetime = getObjCLifetime();
    269     return (lifetime == OCL_Strong || lifetime == OCL_Weak);
    270   }
    271 
    272   bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
    273   unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
    274   void setAddressSpace(unsigned space) {
    275     assert(space <= MaxAddressSpace);
    276     Mask = (Mask & ~AddressSpaceMask)
    277          | (((uint32_t) space) << AddressSpaceShift);
    278   }
    279   void removeAddressSpace() { setAddressSpace(0); }
    280   void addAddressSpace(unsigned space) {
    281     assert(space);
    282     setAddressSpace(space);
    283   }
    284 
    285   // Fast qualifiers are those that can be allocated directly
    286   // on a QualType object.
    287   bool hasFastQualifiers() const { return getFastQualifiers(); }
    288   unsigned getFastQualifiers() const { return Mask & FastMask; }
    289   void setFastQualifiers(unsigned mask) {
    290     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    291     Mask = (Mask & ~FastMask) | mask;
    292   }
    293   void removeFastQualifiers(unsigned mask) {
    294     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    295     Mask &= ~mask;
    296   }
    297   void removeFastQualifiers() {
    298     removeFastQualifiers(FastMask);
    299   }
    300   void addFastQualifiers(unsigned mask) {
    301     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    302     Mask |= mask;
    303   }
    304 
    305   /// hasNonFastQualifiers - Return true if the set contains any
    306   /// qualifiers which require an ExtQuals node to be allocated.
    307   bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
    308   Qualifiers getNonFastQualifiers() const {
    309     Qualifiers Quals = *this;
    310     Quals.setFastQualifiers(0);
    311     return Quals;
    312   }
    313 
    314   /// hasQualifiers - Return true if the set contains any qualifiers.
    315   bool hasQualifiers() const { return Mask; }
    316   bool empty() const { return !Mask; }
    317 
    318   /// \brief Add the qualifiers from the given set to this set.
    319   void addQualifiers(Qualifiers Q) {
    320     // If the other set doesn't have any non-boolean qualifiers, just
    321     // bit-or it in.
    322     if (!(Q.Mask & ~CVRMask))
    323       Mask |= Q.Mask;
    324     else {
    325       Mask |= (Q.Mask & CVRMask);
    326       if (Q.hasAddressSpace())
    327         addAddressSpace(Q.getAddressSpace());
    328       if (Q.hasObjCGCAttr())
    329         addObjCGCAttr(Q.getObjCGCAttr());
    330       if (Q.hasObjCLifetime())
    331         addObjCLifetime(Q.getObjCLifetime());
    332     }
    333   }
    334 
    335   /// \brief Add the qualifiers from the given set to this set, given that
    336   /// they don't conflict.
    337   void addConsistentQualifiers(Qualifiers qs) {
    338     assert(getAddressSpace() == qs.getAddressSpace() ||
    339            !hasAddressSpace() || !qs.hasAddressSpace());
    340     assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
    341            !hasObjCGCAttr() || !qs.hasObjCGCAttr());
    342     assert(getObjCLifetime() == qs.getObjCLifetime() ||
    343            !hasObjCLifetime() || !qs.hasObjCLifetime());
    344     Mask |= qs.Mask;
    345   }
    346 
    347   /// \brief Determines if these qualifiers compatibly include another set.
    348   /// Generally this answers the question of whether an object with the other
    349   /// qualifiers can be safely used as an object with these qualifiers.
    350   bool compatiblyIncludes(Qualifiers other) const {
    351     return
    352       // Address spaces must match exactly.
    353       getAddressSpace() == other.getAddressSpace() &&
    354       // ObjC GC qualifiers can match, be added, or be removed, but can't be
    355       // changed.
    356       (getObjCGCAttr() == other.getObjCGCAttr() ||
    357        !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
    358       // ObjC lifetime qualifiers must match exactly.
    359       getObjCLifetime() == other.getObjCLifetime() &&
    360       // CVR qualifiers may subset.
    361       (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
    362   }
    363 
    364   /// \brief Determines if these qualifiers compatibly include another set of
    365   /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
    366   ///
    367   /// One set of Objective-C lifetime qualifiers compatibly includes the other
    368   /// if the lifetime qualifiers match, or if both are non-__weak and the
    369   /// including set also contains the 'const' qualifier.
    370   bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
    371     if (getObjCLifetime() == other.getObjCLifetime())
    372       return true;
    373 
    374     if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
    375       return false;
    376 
    377     return hasConst();
    378   }
    379 
    380   bool isSupersetOf(Qualifiers Other) const;
    381 
    382   /// \brief Determine whether this set of qualifiers is a strict superset of
    383   /// another set of qualifiers, not considering qualifier compatibility.
    384   bool isStrictSupersetOf(Qualifiers Other) const;
    385 
    386   bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
    387   bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
    388 
    389   operator bool() const { return hasQualifiers(); }
    390 
    391   Qualifiers &operator+=(Qualifiers R) {
    392     addQualifiers(R);
    393     return *this;
    394   }
    395 
    396   // Union two qualifier sets.  If an enumerated qualifier appears
    397   // in both sets, use the one from the right.
    398   friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
    399     L += R;
    400     return L;
    401   }
    402 
    403   Qualifiers &operator-=(Qualifiers R) {
    404     Mask = Mask & ~(R.Mask);
    405     return *this;
    406   }
    407 
    408   /// \brief Compute the difference between two qualifier sets.
    409   friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
    410     L -= R;
    411     return L;
    412   }
    413 
    414   std::string getAsString() const;
    415   std::string getAsString(const PrintingPolicy &Policy) const {
    416     std::string Buffer;
    417     getAsStringInternal(Buffer, Policy);
    418     return Buffer;
    419   }
    420   void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
    421 
    422   void Profile(llvm::FoldingSetNodeID &ID) const {
    423     ID.AddInteger(Mask);
    424   }
    425 
    426 private:
    427 
    428   // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
    429   //           |C R V|GCAttr|Lifetime|AddressSpace|
    430   uint32_t Mask;
    431 
    432   static const uint32_t GCAttrMask = 0x18;
    433   static const uint32_t GCAttrShift = 3;
    434   static const uint32_t LifetimeMask = 0xE0;
    435   static const uint32_t LifetimeShift = 5;
    436   static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
    437   static const uint32_t AddressSpaceShift = 8;
    438 };
    439 
    440 /// CallingConv - Specifies the calling convention that a function uses.
    441 enum CallingConv {
    442   CC_Default,
    443   CC_C,           // __attribute__((cdecl))
    444   CC_X86StdCall,  // __attribute__((stdcall))
    445   CC_X86FastCall, // __attribute__((fastcall))
    446   CC_X86ThisCall, // __attribute__((thiscall))
    447   CC_X86Pascal,   // __attribute__((pascal))
    448   CC_AAPCS,       // __attribute__((pcs("aapcs")))
    449   CC_AAPCS_VFP    // __attribute__((pcs("aapcs-vfp")))
    450 };
    451 
    452 /// A std::pair-like structure for storing a qualified type split
    453 /// into its local qualifiers and its locally-unqualified type.
    454 struct SplitQualType {
    455   /// The locally-unqualified type.
    456   const Type *Ty;
    457 
    458   /// The local qualifiers.
    459   Qualifiers Quals;
    460 
    461   SplitQualType() : Ty(0), Quals() {}
    462   SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
    463 
    464   SplitQualType getSingleStepDesugaredType() const; // end of this file
    465 
    466   // Make llvm::tie work.
    467   operator std::pair<const Type *,Qualifiers>() const {
    468     return std::pair<const Type *,Qualifiers>(Ty, Quals);
    469   }
    470 
    471   friend bool operator==(SplitQualType a, SplitQualType b) {
    472     return a.Ty == b.Ty && a.Quals == b.Quals;
    473   }
    474   friend bool operator!=(SplitQualType a, SplitQualType b) {
    475     return a.Ty != b.Ty || a.Quals != b.Quals;
    476   }
    477 };
    478 
    479 /// QualType - For efficiency, we don't store CV-qualified types as nodes on
    480 /// their own: instead each reference to a type stores the qualifiers.  This
    481 /// greatly reduces the number of nodes we need to allocate for types (for
    482 /// example we only need one for 'int', 'const int', 'volatile int',
    483 /// 'const volatile int', etc).
    484 ///
    485 /// As an added efficiency bonus, instead of making this a pair, we
    486 /// just store the two bits we care about in the low bits of the
    487 /// pointer.  To handle the packing/unpacking, we make QualType be a
    488 /// simple wrapper class that acts like a smart pointer.  A third bit
    489 /// indicates whether there are extended qualifiers present, in which
    490 /// case the pointer points to a special structure.
    491 class QualType {
    492   // Thankfully, these are efficiently composable.
    493   llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
    494                        Qualifiers::FastWidth> Value;
    495 
    496   const ExtQuals *getExtQualsUnsafe() const {
    497     return Value.getPointer().get<const ExtQuals*>();
    498   }
    499 
    500   const Type *getTypePtrUnsafe() const {
    501     return Value.getPointer().get<const Type*>();
    502   }
    503 
    504   const ExtQualsTypeCommonBase *getCommonPtr() const {
    505     assert(!isNull() && "Cannot retrieve a NULL type pointer");
    506     uintptr_t CommonPtrVal
    507       = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
    508     CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
    509     return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
    510   }
    511 
    512   friend class QualifierCollector;
    513 public:
    514   QualType() {}
    515 
    516   QualType(const Type *Ptr, unsigned Quals)
    517     : Value(Ptr, Quals) {}
    518   QualType(const ExtQuals *Ptr, unsigned Quals)
    519     : Value(Ptr, Quals) {}
    520 
    521   unsigned getLocalFastQualifiers() const { return Value.getInt(); }
    522   void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
    523 
    524   /// Retrieves a pointer to the underlying (unqualified) type.
    525   /// This should really return a const Type, but it's not worth
    526   /// changing all the users right now.
    527   ///
    528   /// This function requires that the type not be NULL. If the type might be
    529   /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
    530   const Type *getTypePtr() const;
    531 
    532   const Type *getTypePtrOrNull() const;
    533 
    534   /// Retrieves a pointer to the name of the base type.
    535   const IdentifierInfo *getBaseTypeIdentifier() const;
    536 
    537   /// Divides a QualType into its unqualified type and a set of local
    538   /// qualifiers.
    539   SplitQualType split() const;
    540 
    541   void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
    542   static QualType getFromOpaquePtr(const void *Ptr) {
    543     QualType T;
    544     T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
    545     return T;
    546   }
    547 
    548   const Type &operator*() const {
    549     return *getTypePtr();
    550   }
    551 
    552   const Type *operator->() const {
    553     return getTypePtr();
    554   }
    555 
    556   bool isCanonical() const;
    557   bool isCanonicalAsParam() const;
    558 
    559   /// isNull - Return true if this QualType doesn't point to a type yet.
    560   bool isNull() const {
    561     return Value.getPointer().isNull();
    562   }
    563 
    564   /// \brief Determine whether this particular QualType instance has the
    565   /// "const" qualifier set, without looking through typedefs that may have
    566   /// added "const" at a different level.
    567   bool isLocalConstQualified() const {
    568     return (getLocalFastQualifiers() & Qualifiers::Const);
    569   }
    570 
    571   /// \brief Determine whether this type is const-qualified.
    572   bool isConstQualified() const;
    573 
    574   /// \brief Determine whether this particular QualType instance has the
    575   /// "restrict" qualifier set, without looking through typedefs that may have
    576   /// added "restrict" at a different level.
    577   bool isLocalRestrictQualified() const {
    578     return (getLocalFastQualifiers() & Qualifiers::Restrict);
    579   }
    580 
    581   /// \brief Determine whether this type is restrict-qualified.
    582   bool isRestrictQualified() const;
    583 
    584   /// \brief Determine whether this particular QualType instance has the
    585   /// "volatile" qualifier set, without looking through typedefs that may have
    586   /// added "volatile" at a different level.
    587   bool isLocalVolatileQualified() const {
    588     return (getLocalFastQualifiers() & Qualifiers::Volatile);
    589   }
    590 
    591   /// \brief Determine whether this type is volatile-qualified.
    592   bool isVolatileQualified() const;
    593 
    594   /// \brief Determine whether this particular QualType instance has any
    595   /// qualifiers, without looking through any typedefs that might add
    596   /// qualifiers at a different level.
    597   bool hasLocalQualifiers() const {
    598     return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
    599   }
    600 
    601   /// \brief Determine whether this type has any qualifiers.
    602   bool hasQualifiers() const;
    603 
    604   /// \brief Determine whether this particular QualType instance has any
    605   /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
    606   /// instance.
    607   bool hasLocalNonFastQualifiers() const {
    608     return Value.getPointer().is<const ExtQuals*>();
    609   }
    610 
    611   /// \brief Retrieve the set of qualifiers local to this particular QualType
    612   /// instance, not including any qualifiers acquired through typedefs or
    613   /// other sugar.
    614   Qualifiers getLocalQualifiers() const;
    615 
    616   /// \brief Retrieve the set of qualifiers applied to this type.
    617   Qualifiers getQualifiers() const;
    618 
    619   /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
    620   /// local to this particular QualType instance, not including any qualifiers
    621   /// acquired through typedefs or other sugar.
    622   unsigned getLocalCVRQualifiers() const {
    623     return getLocalFastQualifiers();
    624   }
    625 
    626   /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
    627   /// applied to this type.
    628   unsigned getCVRQualifiers() const;
    629 
    630   bool isConstant(ASTContext& Ctx) const {
    631     return QualType::isConstant(*this, Ctx);
    632   }
    633 
    634   /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
    635   bool isPODType(ASTContext &Context) const;
    636 
    637   /// isCXX11PODType() - Return true if this is a POD type according to the
    638   /// more relaxed rules of the C++11 standard, regardless of the current
    639   /// compilation's language.
    640   /// (C++0x [basic.types]p9)
    641   bool isCXX11PODType(ASTContext &Context) const;
    642 
    643   /// isTrivialType - Return true if this is a trivial type
    644   /// (C++0x [basic.types]p9)
    645   bool isTrivialType(ASTContext &Context) const;
    646 
    647   /// isTriviallyCopyableType - Return true if this is a trivially
    648   /// copyable type (C++0x [basic.types]p9)
    649   bool isTriviallyCopyableType(ASTContext &Context) const;
    650 
    651   // Don't promise in the API that anything besides 'const' can be
    652   // easily added.
    653 
    654   /// addConst - add the specified type qualifier to this QualType.
    655   void addConst() {
    656     addFastQualifiers(Qualifiers::Const);
    657   }
    658   QualType withConst() const {
    659     return withFastQualifiers(Qualifiers::Const);
    660   }
    661 
    662   /// addVolatile - add the specified type qualifier to this QualType.
    663   void addVolatile() {
    664     addFastQualifiers(Qualifiers::Volatile);
    665   }
    666   QualType withVolatile() const {
    667     return withFastQualifiers(Qualifiers::Volatile);
    668   }
    669 
    670   /// Add the restrict qualifier to this QualType.
    671   void addRestrict() {
    672     addFastQualifiers(Qualifiers::Restrict);
    673   }
    674   QualType withRestrict() const {
    675     return withFastQualifiers(Qualifiers::Restrict);
    676   }
    677 
    678   QualType withCVRQualifiers(unsigned CVR) const {
    679     return withFastQualifiers(CVR);
    680   }
    681 
    682   void addFastQualifiers(unsigned TQs) {
    683     assert(!(TQs & ~Qualifiers::FastMask)
    684            && "non-fast qualifier bits set in mask!");
    685     Value.setInt(Value.getInt() | TQs);
    686   }
    687 
    688   void removeLocalConst();
    689   void removeLocalVolatile();
    690   void removeLocalRestrict();
    691   void removeLocalCVRQualifiers(unsigned Mask);
    692 
    693   void removeLocalFastQualifiers() { Value.setInt(0); }
    694   void removeLocalFastQualifiers(unsigned Mask) {
    695     assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
    696     Value.setInt(Value.getInt() & ~Mask);
    697   }
    698 
    699   // Creates a type with the given qualifiers in addition to any
    700   // qualifiers already on this type.
    701   QualType withFastQualifiers(unsigned TQs) const {
    702     QualType T = *this;
    703     T.addFastQualifiers(TQs);
    704     return T;
    705   }
    706 
    707   // Creates a type with exactly the given fast qualifiers, removing
    708   // any existing fast qualifiers.
    709   QualType withExactLocalFastQualifiers(unsigned TQs) const {
    710     return withoutLocalFastQualifiers().withFastQualifiers(TQs);
    711   }
    712 
    713   // Removes fast qualifiers, but leaves any extended qualifiers in place.
    714   QualType withoutLocalFastQualifiers() const {
    715     QualType T = *this;
    716     T.removeLocalFastQualifiers();
    717     return T;
    718   }
    719 
    720   QualType getCanonicalType() const;
    721 
    722   /// \brief Return this type with all of the instance-specific qualifiers
    723   /// removed, but without removing any qualifiers that may have been applied
    724   /// through typedefs.
    725   QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
    726 
    727   /// \brief Retrieve the unqualified variant of the given type,
    728   /// removing as little sugar as possible.
    729   ///
    730   /// This routine looks through various kinds of sugar to find the
    731   /// least-desugared type that is unqualified. For example, given:
    732   ///
    733   /// \code
    734   /// typedef int Integer;
    735   /// typedef const Integer CInteger;
    736   /// typedef CInteger DifferenceType;
    737   /// \endcode
    738   ///
    739   /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
    740   /// desugar until we hit the type \c Integer, which has no qualifiers on it.
    741   ///
    742   /// The resulting type might still be qualified if it's an array
    743   /// type.  To strip qualifiers even from within an array type, use
    744   /// ASTContext::getUnqualifiedArrayType.
    745   inline QualType getUnqualifiedType() const;
    746 
    747   /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
    748   /// given type, removing as little sugar as possible.
    749   ///
    750   /// Like getUnqualifiedType(), but also returns the set of
    751   /// qualifiers that were built up.
    752   ///
    753   /// The resulting type might still be qualified if it's an array
    754   /// type.  To strip qualifiers even from within an array type, use
    755   /// ASTContext::getUnqualifiedArrayType.
    756   inline SplitQualType getSplitUnqualifiedType() const;
    757 
    758   /// \brief Determine whether this type is more qualified than the other
    759   /// given type, requiring exact equality for non-CVR qualifiers.
    760   bool isMoreQualifiedThan(QualType Other) const;
    761 
    762   /// \brief Determine whether this type is at least as qualified as the other
    763   /// given type, requiring exact equality for non-CVR qualifiers.
    764   bool isAtLeastAsQualifiedAs(QualType Other) const;
    765 
    766   QualType getNonReferenceType() const;
    767 
    768   /// \brief Determine the type of a (typically non-lvalue) expression with the
    769   /// specified result type.
    770   ///
    771   /// This routine should be used for expressions for which the return type is
    772   /// explicitly specified (e.g., in a cast or call) and isn't necessarily
    773   /// an lvalue. It removes a top-level reference (since there are no
    774   /// expressions of reference type) and deletes top-level cvr-qualifiers
    775   /// from non-class types (in C++) or all types (in C).
    776   QualType getNonLValueExprType(ASTContext &Context) const;
    777 
    778   /// getDesugaredType - Return the specified type with any "sugar" removed from
    779   /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
    780   /// the type is already concrete, it returns it unmodified.  This is similar
    781   /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
    782   /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
    783   /// concrete.
    784   ///
    785   /// Qualifiers are left in place.
    786   QualType getDesugaredType(const ASTContext &Context) const {
    787     return getDesugaredType(*this, Context);
    788   }
    789 
    790   SplitQualType getSplitDesugaredType() const {
    791     return getSplitDesugaredType(*this);
    792   }
    793 
    794   /// \brief Return the specified type with one level of "sugar" removed from
    795   /// the type.
    796   ///
    797   /// This routine takes off the first typedef, typeof, etc. If the outer level
    798   /// of the type is already concrete, it returns it unmodified.
    799   QualType getSingleStepDesugaredType(const ASTContext &Context) const {
    800     return getSingleStepDesugaredTypeImpl(*this, Context);
    801   }
    802 
    803   /// IgnoreParens - Returns the specified type after dropping any
    804   /// outer-level parentheses.
    805   QualType IgnoreParens() const {
    806     if (isa<ParenType>(*this))
    807       return QualType::IgnoreParens(*this);
    808     return *this;
    809   }
    810 
    811   /// operator==/!= - Indicate whether the specified types and qualifiers are
    812   /// identical.
    813   friend bool operator==(const QualType &LHS, const QualType &RHS) {
    814     return LHS.Value == RHS.Value;
    815   }
    816   friend bool operator!=(const QualType &LHS, const QualType &RHS) {
    817     return LHS.Value != RHS.Value;
    818   }
    819   std::string getAsString() const {
    820     return getAsString(split());
    821   }
    822   static std::string getAsString(SplitQualType split) {
    823     return getAsString(split.Ty, split.Quals);
    824   }
    825   static std::string getAsString(const Type *ty, Qualifiers qs);
    826 
    827   std::string getAsString(const PrintingPolicy &Policy) const {
    828     std::string S;
    829     getAsStringInternal(S, Policy);
    830     return S;
    831   }
    832   void getAsStringInternal(std::string &Str,
    833                            const PrintingPolicy &Policy) const {
    834     return getAsStringInternal(split(), Str, Policy);
    835   }
    836   static void getAsStringInternal(SplitQualType split, std::string &out,
    837                                   const PrintingPolicy &policy) {
    838     return getAsStringInternal(split.Ty, split.Quals, out, policy);
    839   }
    840   static void getAsStringInternal(const Type *ty, Qualifiers qs,
    841                                   std::string &out,
    842                                   const PrintingPolicy &policy);
    843 
    844   void dump(const char *s) const;
    845   void dump() const;
    846 
    847   void Profile(llvm::FoldingSetNodeID &ID) const {
    848     ID.AddPointer(getAsOpaquePtr());
    849   }
    850 
    851   /// getAddressSpace - Return the address space of this type.
    852   inline unsigned getAddressSpace() const;
    853 
    854   /// getObjCGCAttr - Returns gc attribute of this type.
    855   inline Qualifiers::GC getObjCGCAttr() const;
    856 
    857   /// isObjCGCWeak true when Type is objc's weak.
    858   bool isObjCGCWeak() const {
    859     return getObjCGCAttr() == Qualifiers::Weak;
    860   }
    861 
    862   /// isObjCGCStrong true when Type is objc's strong.
    863   bool isObjCGCStrong() const {
    864     return getObjCGCAttr() == Qualifiers::Strong;
    865   }
    866 
    867   /// getObjCLifetime - Returns lifetime attribute of this type.
    868   Qualifiers::ObjCLifetime getObjCLifetime() const {
    869     return getQualifiers().getObjCLifetime();
    870   }
    871 
    872   bool hasNonTrivialObjCLifetime() const {
    873     return getQualifiers().hasNonTrivialObjCLifetime();
    874   }
    875 
    876   bool hasStrongOrWeakObjCLifetime() const {
    877     return getQualifiers().hasStrongOrWeakObjCLifetime();
    878   }
    879 
    880   enum DestructionKind {
    881     DK_none,
    882     DK_cxx_destructor,
    883     DK_objc_strong_lifetime,
    884     DK_objc_weak_lifetime
    885   };
    886 
    887   /// isDestructedType - nonzero if objects of this type require
    888   /// non-trivial work to clean up after.  Non-zero because it's
    889   /// conceivable that qualifiers (objc_gc(weak)?) could make
    890   /// something require destruction.
    891   DestructionKind isDestructedType() const {
    892     return isDestructedTypeImpl(*this);
    893   }
    894 
    895   /// \brief Determine whether expressions of the given type are forbidden
    896   /// from being lvalues in C.
    897   ///
    898   /// The expression types that are forbidden to be lvalues are:
    899   ///   - 'void', but not qualified void
    900   ///   - function types
    901   ///
    902   /// The exact rule here is C99 6.3.2.1:
    903   ///   An lvalue is an expression with an object type or an incomplete
    904   ///   type other than void.
    905   bool isCForbiddenLValueType() const;
    906 
    907   /// \brief Determine whether this type has trivial copy/move-assignment
    908   ///        semantics.
    909   bool hasTrivialAssignment(ASTContext &Context, bool Copying) const;
    910 
    911 private:
    912   // These methods are implemented in a separate translation unit;
    913   // "static"-ize them to avoid creating temporary QualTypes in the
    914   // caller.
    915   static bool isConstant(QualType T, ASTContext& Ctx);
    916   static QualType getDesugaredType(QualType T, const ASTContext &Context);
    917   static SplitQualType getSplitDesugaredType(QualType T);
    918   static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
    919   static QualType getSingleStepDesugaredTypeImpl(QualType type,
    920                                                  const ASTContext &C);
    921   static QualType IgnoreParens(QualType T);
    922   static DestructionKind isDestructedTypeImpl(QualType type);
    923 };
    924 
    925 } // end clang.
    926 
    927 namespace llvm {
    928 /// Implement simplify_type for QualType, so that we can dyn_cast from QualType
    929 /// to a specific Type class.
    930 template<> struct simplify_type<const ::clang::QualType> {
    931   typedef const ::clang::Type *SimpleType;
    932   static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
    933     return Val.getTypePtr();
    934   }
    935 };
    936 template<> struct simplify_type< ::clang::QualType>
    937   : public simplify_type<const ::clang::QualType> {};
    938 
    939 // Teach SmallPtrSet that QualType is "basically a pointer".
    940 template<>
    941 class PointerLikeTypeTraits<clang::QualType> {
    942 public:
    943   static inline void *getAsVoidPointer(clang::QualType P) {
    944     return P.getAsOpaquePtr();
    945   }
    946   static inline clang::QualType getFromVoidPointer(void *P) {
    947     return clang::QualType::getFromOpaquePtr(P);
    948   }
    949   // Various qualifiers go in low bits.
    950   enum { NumLowBitsAvailable = 0 };
    951 };
    952 
    953 } // end namespace llvm
    954 
    955 namespace clang {
    956 
    957 /// \brief Base class that is common to both the \c ExtQuals and \c Type
    958 /// classes, which allows \c QualType to access the common fields between the
    959 /// two.
    960 ///
    961 class ExtQualsTypeCommonBase {
    962   ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
    963     : BaseType(baseType), CanonicalType(canon) {}
    964 
    965   /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
    966   /// a self-referential pointer (for \c Type).
    967   ///
    968   /// This pointer allows an efficient mapping from a QualType to its
    969   /// underlying type pointer.
    970   const Type *const BaseType;
    971 
    972   /// \brief The canonical type of this type.  A QualType.
    973   QualType CanonicalType;
    974 
    975   friend class QualType;
    976   friend class Type;
    977   friend class ExtQuals;
    978 };
    979 
    980 /// ExtQuals - We can encode up to four bits in the low bits of a
    981 /// type pointer, but there are many more type qualifiers that we want
    982 /// to be able to apply to an arbitrary type.  Therefore we have this
    983 /// struct, intended to be heap-allocated and used by QualType to
    984 /// store qualifiers.
    985 ///
    986 /// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
    987 /// in three low bits on the QualType pointer; a fourth bit records whether
    988 /// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
    989 /// Objective-C GC attributes) are much more rare.
    990 class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
    991   // NOTE: changing the fast qualifiers should be straightforward as
    992   // long as you don't make 'const' non-fast.
    993   // 1. Qualifiers:
    994   //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
    995   //       Fast qualifiers must occupy the low-order bits.
    996   //    b) Update Qualifiers::FastWidth and FastMask.
    997   // 2. QualType:
    998   //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
    999   //    b) Update remove{Volatile,Restrict}, defined near the end of
   1000   //       this header.
   1001   // 3. ASTContext:
   1002   //    a) Update get{Volatile,Restrict}Type.
   1003 
   1004   /// Quals - the immutable set of qualifiers applied by this
   1005   /// node;  always contains extended qualifiers.
   1006   Qualifiers Quals;
   1007 
   1008   ExtQuals *this_() { return this; }
   1009 
   1010 public:
   1011   ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
   1012     : ExtQualsTypeCommonBase(baseType,
   1013                              canon.isNull() ? QualType(this_(), 0) : canon),
   1014       Quals(quals)
   1015   {
   1016     assert(Quals.hasNonFastQualifiers()
   1017            && "ExtQuals created with no fast qualifiers");
   1018     assert(!Quals.hasFastQualifiers()
   1019            && "ExtQuals created with fast qualifiers");
   1020   }
   1021 
   1022   Qualifiers getQualifiers() const { return Quals; }
   1023 
   1024   bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
   1025   Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
   1026 
   1027   bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
   1028   Qualifiers::ObjCLifetime getObjCLifetime() const {
   1029     return Quals.getObjCLifetime();
   1030   }
   1031 
   1032   bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
   1033   unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
   1034 
   1035   const Type *getBaseType() const { return BaseType; }
   1036 
   1037 public:
   1038   void Profile(llvm::FoldingSetNodeID &ID) const {
   1039     Profile(ID, getBaseType(), Quals);
   1040   }
   1041   static void Profile(llvm::FoldingSetNodeID &ID,
   1042                       const Type *BaseType,
   1043                       Qualifiers Quals) {
   1044     assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
   1045     ID.AddPointer(BaseType);
   1046     Quals.Profile(ID);
   1047   }
   1048 };
   1049 
   1050 /// \brief The kind of C++0x ref-qualifier associated with a function type,
   1051 /// which determines whether a member function's "this" object can be an
   1052 /// lvalue, rvalue, or neither.
   1053 enum RefQualifierKind {
   1054   /// \brief No ref-qualifier was provided.
   1055   RQ_None = 0,
   1056   /// \brief An lvalue ref-qualifier was provided (\c &).
   1057   RQ_LValue,
   1058   /// \brief An rvalue ref-qualifier was provided (\c &&).
   1059   RQ_RValue
   1060 };
   1061 
   1062 /// Type - This is the base class of the type hierarchy.  A central concept
   1063 /// with types is that each type always has a canonical type.  A canonical type
   1064 /// is the type with any typedef names stripped out of it or the types it
   1065 /// references.  For example, consider:
   1066 ///
   1067 ///  typedef int  foo;
   1068 ///  typedef foo* bar;
   1069 ///    'int *'    'foo *'    'bar'
   1070 ///
   1071 /// There will be a Type object created for 'int'.  Since int is canonical, its
   1072 /// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
   1073 /// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
   1074 /// there is a PointerType that represents 'int*', which, like 'int', is
   1075 /// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
   1076 /// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
   1077 /// is also 'int*'.
   1078 ///
   1079 /// Non-canonical types are useful for emitting diagnostics, without losing
   1080 /// information about typedefs being used.  Canonical types are useful for type
   1081 /// comparisons (they allow by-pointer equality tests) and useful for reasoning
   1082 /// about whether something has a particular form (e.g. is a function type),
   1083 /// because they implicitly, recursively, strip all typedefs out of a type.
   1084 ///
   1085 /// Types, once created, are immutable.
   1086 ///
   1087 class Type : public ExtQualsTypeCommonBase {
   1088 public:
   1089   enum TypeClass {
   1090 #define TYPE(Class, Base) Class,
   1091 #define LAST_TYPE(Class) TypeLast = Class,
   1092 #define ABSTRACT_TYPE(Class, Base)
   1093 #include "clang/AST/TypeNodes.def"
   1094     TagFirst = Record, TagLast = Enum
   1095   };
   1096 
   1097 private:
   1098   Type(const Type&);           // DO NOT IMPLEMENT.
   1099   void operator=(const Type&); // DO NOT IMPLEMENT.
   1100 
   1101   /// Bitfields required by the Type class.
   1102   class TypeBitfields {
   1103     friend class Type;
   1104     template <class T> friend class TypePropertyCache;
   1105 
   1106     /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
   1107     unsigned TC : 8;
   1108 
   1109     /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
   1110     /// Note that this should stay at the end of the ivars for Type so that
   1111     /// subclasses can pack their bitfields into the same word.
   1112     unsigned Dependent : 1;
   1113 
   1114     /// \brief Whether this type somehow involves a template parameter, even
   1115     /// if the resolution of the type does not depend on a template parameter.
   1116     unsigned InstantiationDependent : 1;
   1117 
   1118     /// \brief Whether this type is a variably-modified type (C99 6.7.5).
   1119     unsigned VariablyModified : 1;
   1120 
   1121     /// \brief Whether this type contains an unexpanded parameter pack
   1122     /// (for C++0x variadic templates).
   1123     unsigned ContainsUnexpandedParameterPack : 1;
   1124 
   1125     /// \brief Nonzero if the cache (i.e. the bitfields here starting
   1126     /// with 'Cache') is valid.  If so, then this is a
   1127     /// LangOptions::VisibilityMode+1.
   1128     mutable unsigned CacheValidAndVisibility : 2;
   1129 
   1130     /// \brief True if the visibility was set explicitly in the source code.
   1131     mutable unsigned CachedExplicitVisibility : 1;
   1132 
   1133     /// \brief Linkage of this type.
   1134     mutable unsigned CachedLinkage : 2;
   1135 
   1136     /// \brief Whether this type involves and local or unnamed types.
   1137     mutable unsigned CachedLocalOrUnnamed : 1;
   1138 
   1139     /// \brief FromAST - Whether this type comes from an AST file.
   1140     mutable unsigned FromAST : 1;
   1141 
   1142     bool isCacheValid() const {
   1143       return (CacheValidAndVisibility != 0);
   1144     }
   1145     Visibility getVisibility() const {
   1146       assert(isCacheValid() && "getting linkage from invalid cache");
   1147       return static_cast<Visibility>(CacheValidAndVisibility-1);
   1148     }
   1149     bool isVisibilityExplicit() const {
   1150       assert(isCacheValid() && "getting linkage from invalid cache");
   1151       return CachedExplicitVisibility;
   1152     }
   1153     Linkage getLinkage() const {
   1154       assert(isCacheValid() && "getting linkage from invalid cache");
   1155       return static_cast<Linkage>(CachedLinkage);
   1156     }
   1157     bool hasLocalOrUnnamedType() const {
   1158       assert(isCacheValid() && "getting linkage from invalid cache");
   1159       return CachedLocalOrUnnamed;
   1160     }
   1161   };
   1162   enum { NumTypeBits = 19 };
   1163 
   1164 protected:
   1165   // These classes allow subclasses to somewhat cleanly pack bitfields
   1166   // into Type.
   1167 
   1168   class ArrayTypeBitfields {
   1169     friend class ArrayType;
   1170 
   1171     unsigned : NumTypeBits;
   1172 
   1173     /// IndexTypeQuals - CVR qualifiers from declarations like
   1174     /// 'int X[static restrict 4]'. For function parameters only.
   1175     unsigned IndexTypeQuals : 3;
   1176 
   1177     /// SizeModifier - storage class qualifiers from declarations like
   1178     /// 'int X[static restrict 4]'. For function parameters only.
   1179     /// Actually an ArrayType::ArraySizeModifier.
   1180     unsigned SizeModifier : 3;
   1181   };
   1182 
   1183   class BuiltinTypeBitfields {
   1184     friend class BuiltinType;
   1185 
   1186     unsigned : NumTypeBits;
   1187 
   1188     /// The kind (BuiltinType::Kind) of builtin type this is.
   1189     unsigned Kind : 8;
   1190   };
   1191 
   1192   class FunctionTypeBitfields {
   1193     friend class FunctionType;
   1194 
   1195     unsigned : NumTypeBits;
   1196 
   1197     /// Extra information which affects how the function is called, like
   1198     /// regparm and the calling convention.
   1199     unsigned ExtInfo : 8;
   1200 
   1201     /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
   1202     /// other bitfields.
   1203     /// The qualifiers are part of FunctionProtoType because...
   1204     ///
   1205     /// C++ 8.3.5p4: The return type, the parameter type list and the
   1206     /// cv-qualifier-seq, [...], are part of the function type.
   1207     unsigned TypeQuals : 3;
   1208 
   1209     /// \brief The ref-qualifier associated with a \c FunctionProtoType.
   1210     ///
   1211     /// This is a value of type \c RefQualifierKind.
   1212     unsigned RefQualifier : 2;
   1213   };
   1214 
   1215   class ObjCObjectTypeBitfields {
   1216     friend class ObjCObjectType;
   1217 
   1218     unsigned : NumTypeBits;
   1219 
   1220     /// NumProtocols - The number of protocols stored directly on this
   1221     /// object type.
   1222     unsigned NumProtocols : 32 - NumTypeBits;
   1223   };
   1224 
   1225   class ReferenceTypeBitfields {
   1226     friend class ReferenceType;
   1227 
   1228     unsigned : NumTypeBits;
   1229 
   1230     /// True if the type was originally spelled with an lvalue sigil.
   1231     /// This is never true of rvalue references but can also be false
   1232     /// on lvalue references because of C++0x [dcl.typedef]p9,
   1233     /// as follows:
   1234     ///
   1235     ///   typedef int &ref;    // lvalue, spelled lvalue
   1236     ///   typedef int &&rvref; // rvalue
   1237     ///   ref &a;              // lvalue, inner ref, spelled lvalue
   1238     ///   ref &&a;             // lvalue, inner ref
   1239     ///   rvref &a;            // lvalue, inner ref, spelled lvalue
   1240     ///   rvref &&a;           // rvalue, inner ref
   1241     unsigned SpelledAsLValue : 1;
   1242 
   1243     /// True if the inner type is a reference type.  This only happens
   1244     /// in non-canonical forms.
   1245     unsigned InnerRef : 1;
   1246   };
   1247 
   1248   class TypeWithKeywordBitfields {
   1249     friend class TypeWithKeyword;
   1250 
   1251     unsigned : NumTypeBits;
   1252 
   1253     /// An ElaboratedTypeKeyword.  8 bits for efficient access.
   1254     unsigned Keyword : 8;
   1255   };
   1256 
   1257   class VectorTypeBitfields {
   1258     friend class VectorType;
   1259 
   1260     unsigned : NumTypeBits;
   1261 
   1262     /// VecKind - The kind of vector, either a generic vector type or some
   1263     /// target-specific vector type such as for AltiVec or Neon.
   1264     unsigned VecKind : 3;
   1265 
   1266     /// NumElements - The number of elements in the vector.
   1267     unsigned NumElements : 29 - NumTypeBits;
   1268   };
   1269 
   1270   class AttributedTypeBitfields {
   1271     friend class AttributedType;
   1272 
   1273     unsigned : NumTypeBits;
   1274 
   1275     /// AttrKind - an AttributedType::Kind
   1276     unsigned AttrKind : 32 - NumTypeBits;
   1277   };
   1278 
   1279   union {
   1280     TypeBitfields TypeBits;
   1281     ArrayTypeBitfields ArrayTypeBits;
   1282     AttributedTypeBitfields AttributedTypeBits;
   1283     BuiltinTypeBitfields BuiltinTypeBits;
   1284     FunctionTypeBitfields FunctionTypeBits;
   1285     ObjCObjectTypeBitfields ObjCObjectTypeBits;
   1286     ReferenceTypeBitfields ReferenceTypeBits;
   1287     TypeWithKeywordBitfields TypeWithKeywordBits;
   1288     VectorTypeBitfields VectorTypeBits;
   1289   };
   1290 
   1291 private:
   1292   /// \brief Set whether this type comes from an AST file.
   1293   void setFromAST(bool V = true) const {
   1294     TypeBits.FromAST = V;
   1295   }
   1296 
   1297   template <class T> friend class TypePropertyCache;
   1298 
   1299 protected:
   1300   // silence VC++ warning C4355: 'this' : used in base member initializer list
   1301   Type *this_() { return this; }
   1302   Type(TypeClass tc, QualType canon, bool Dependent,
   1303        bool InstantiationDependent, bool VariablyModified,
   1304        bool ContainsUnexpandedParameterPack)
   1305     : ExtQualsTypeCommonBase(this,
   1306                              canon.isNull() ? QualType(this_(), 0) : canon) {
   1307     TypeBits.TC = tc;
   1308     TypeBits.Dependent = Dependent;
   1309     TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
   1310     TypeBits.VariablyModified = VariablyModified;
   1311     TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
   1312     TypeBits.CacheValidAndVisibility = 0;
   1313     TypeBits.CachedExplicitVisibility = false;
   1314     TypeBits.CachedLocalOrUnnamed = false;
   1315     TypeBits.CachedLinkage = NoLinkage;
   1316     TypeBits.FromAST = false;
   1317   }
   1318   friend class ASTContext;
   1319 
   1320   void setDependent(bool D = true) {
   1321     TypeBits.Dependent = D;
   1322     if (D)
   1323       TypeBits.InstantiationDependent = true;
   1324   }
   1325   void setInstantiationDependent(bool D = true) {
   1326     TypeBits.InstantiationDependent = D; }
   1327   void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
   1328   }
   1329   void setContainsUnexpandedParameterPack(bool PP = true) {
   1330     TypeBits.ContainsUnexpandedParameterPack = PP;
   1331   }
   1332 
   1333 public:
   1334   TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
   1335 
   1336   /// \brief Whether this type comes from an AST file.
   1337   bool isFromAST() const { return TypeBits.FromAST; }
   1338 
   1339   /// \brief Whether this type is or contains an unexpanded parameter
   1340   /// pack, used to support C++0x variadic templates.
   1341   ///
   1342   /// A type that contains a parameter pack shall be expanded by the
   1343   /// ellipsis operator at some point. For example, the typedef in the
   1344   /// following example contains an unexpanded parameter pack 'T':
   1345   ///
   1346   /// \code
   1347   /// template<typename ...T>
   1348   /// struct X {
   1349   ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
   1350   /// };
   1351   /// \endcode
   1352   ///
   1353   /// Note that this routine does not specify which
   1354   bool containsUnexpandedParameterPack() const {
   1355     return TypeBits.ContainsUnexpandedParameterPack;
   1356   }
   1357 
   1358   /// Determines if this type would be canonical if it had no further
   1359   /// qualification.
   1360   bool isCanonicalUnqualified() const {
   1361     return CanonicalType == QualType(this, 0);
   1362   }
   1363 
   1364   /// Pull a single level of sugar off of this locally-unqualified type.
   1365   /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
   1366   /// or QualType::getSingleStepDesugaredType(const ASTContext&).
   1367   QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
   1368 
   1369   /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
   1370   /// object types, function types, and incomplete types.
   1371 
   1372   /// isIncompleteType - Return true if this is an incomplete type.
   1373   /// A type that can describe objects, but which lacks information needed to
   1374   /// determine its size (e.g. void, or a fwd declared struct). Clients of this
   1375   /// routine will need to determine if the size is actually required.
   1376   ///
   1377   /// \brief Def If non-NULL, and the type refers to some kind of declaration
   1378   /// that can be completed (such as a C struct, C++ class, or Objective-C
   1379   /// class), will be set to the declaration.
   1380   bool isIncompleteType(NamedDecl **Def = 0) const;
   1381 
   1382   /// isIncompleteOrObjectType - Return true if this is an incomplete or object
   1383   /// type, in other words, not a function type.
   1384   bool isIncompleteOrObjectType() const {
   1385     return !isFunctionType();
   1386   }
   1387 
   1388   /// \brief Determine whether this type is an object type.
   1389   bool isObjectType() const {
   1390     // C++ [basic.types]p8:
   1391     //   An object type is a (possibly cv-qualified) type that is not a
   1392     //   function type, not a reference type, and not a void type.
   1393     return !isReferenceType() && !isFunctionType() && !isVoidType();
   1394   }
   1395 
   1396   /// isLiteralType - Return true if this is a literal type
   1397   /// (C++0x [basic.types]p10)
   1398   bool isLiteralType() const;
   1399 
   1400   /// \brief Test if this type is a standard-layout type.
   1401   /// (C++0x [basic.type]p9)
   1402   bool isStandardLayoutType() const;
   1403 
   1404   /// Helper methods to distinguish type categories. All type predicates
   1405   /// operate on the canonical type, ignoring typedefs and qualifiers.
   1406 
   1407   /// isBuiltinType - returns true if the type is a builtin type.
   1408   bool isBuiltinType() const;
   1409 
   1410   /// isSpecificBuiltinType - Test for a particular builtin type.
   1411   bool isSpecificBuiltinType(unsigned K) const;
   1412 
   1413   /// isPlaceholderType - Test for a type which does not represent an
   1414   /// actual type-system type but is instead used as a placeholder for
   1415   /// various convenient purposes within Clang.  All such types are
   1416   /// BuiltinTypes.
   1417   bool isPlaceholderType() const;
   1418   const BuiltinType *getAsPlaceholderType() const;
   1419 
   1420   /// isSpecificPlaceholderType - Test for a specific placeholder type.
   1421   bool isSpecificPlaceholderType(unsigned K) const;
   1422 
   1423   /// isNonOverloadPlaceholderType - Test for a placeholder type
   1424   /// other than Overload;  see BuiltinType::isNonOverloadPlaceholderType.
   1425   bool isNonOverloadPlaceholderType() const;
   1426 
   1427   /// isIntegerType() does *not* include complex integers (a GCC extension).
   1428   /// isComplexIntegerType() can be used to test for complex integers.
   1429   bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
   1430   bool isEnumeralType() const;
   1431   bool isBooleanType() const;
   1432   bool isCharType() const;
   1433   bool isWideCharType() const;
   1434   bool isChar16Type() const;
   1435   bool isChar32Type() const;
   1436   bool isAnyCharacterType() const;
   1437   bool isIntegralType(ASTContext &Ctx) const;
   1438 
   1439   /// \brief Determine whether this type is an integral or enumeration type.
   1440   bool isIntegralOrEnumerationType() const;
   1441   /// \brief Determine whether this type is an integral or unscoped enumeration
   1442   /// type.
   1443   bool isIntegralOrUnscopedEnumerationType() const;
   1444 
   1445   /// Floating point categories.
   1446   bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
   1447   /// isComplexType() does *not* include complex integers (a GCC extension).
   1448   /// isComplexIntegerType() can be used to test for complex integers.
   1449   bool isComplexType() const;      // C99 6.2.5p11 (complex)
   1450   bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
   1451   bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
   1452   bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
   1453   bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
   1454   bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
   1455   bool isVoidType() const;         // C99 6.2.5p19
   1456   bool isDerivedType() const;      // C99 6.2.5p20
   1457   bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
   1458   bool isAggregateType() const;
   1459   bool isFundamentalType() const;
   1460   bool isCompoundType() const;
   1461 
   1462   // Type Predicates: Check to see if this type is structurally the specified
   1463   // type, ignoring typedefs and qualifiers.
   1464   bool isFunctionType() const;
   1465   bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
   1466   bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
   1467   bool isPointerType() const;
   1468   bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
   1469   bool isBlockPointerType() const;
   1470   bool isVoidPointerType() const;
   1471   bool isReferenceType() const;
   1472   bool isLValueReferenceType() const;
   1473   bool isRValueReferenceType() const;
   1474   bool isFunctionPointerType() const;
   1475   bool isMemberPointerType() const;
   1476   bool isMemberFunctionPointerType() const;
   1477   bool isMemberDataPointerType() const;
   1478   bool isArrayType() const;
   1479   bool isConstantArrayType() const;
   1480   bool isIncompleteArrayType() const;
   1481   bool isVariableArrayType() const;
   1482   bool isDependentSizedArrayType() const;
   1483   bool isRecordType() const;
   1484   bool isClassType() const;
   1485   bool isStructureType() const;
   1486   bool isStructureOrClassType() const;
   1487   bool isUnionType() const;
   1488   bool isComplexIntegerType() const;            // GCC _Complex integer type.
   1489   bool isVectorType() const;                    // GCC vector type.
   1490   bool isExtVectorType() const;                 // Extended vector type.
   1491   bool isObjCObjectPointerType() const;         // pointer to ObjC object
   1492   bool isObjCRetainableType() const;            // ObjC object or block pointer
   1493   bool isObjCLifetimeType() const;              // (array of)* retainable type
   1494   bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
   1495   bool isObjCNSObjectType() const;              // __attribute__((NSObject))
   1496   // FIXME: change this to 'raw' interface type, so we can used 'interface' type
   1497   // for the common case.
   1498   bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
   1499   bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
   1500   bool isObjCQualifiedIdType() const;           // id<foo>
   1501   bool isObjCQualifiedClassType() const;        // Class<foo>
   1502   bool isObjCObjectOrInterfaceType() const;
   1503   bool isObjCIdType() const;                    // id
   1504   bool isObjCClassType() const;                 // Class
   1505   bool isObjCSelType() const;                 // Class
   1506   bool isObjCBuiltinType() const;               // 'id' or 'Class'
   1507   bool isObjCARCBridgableType() const;
   1508   bool isCARCBridgableType() const;
   1509   bool isTemplateTypeParmType() const;          // C++ template type parameter
   1510   bool isNullPtrType() const;                   // C++0x nullptr_t
   1511   bool isAtomicType() const;                    // C11 _Atomic()
   1512 
   1513   /// Determines if this type, which must satisfy
   1514   /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
   1515   /// than implicitly __strong.
   1516   bool isObjCARCImplicitlyUnretainedType() const;
   1517 
   1518   /// Return the implicit lifetime for this type, which must not be dependent.
   1519   Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
   1520 
   1521   enum ScalarTypeKind {
   1522     STK_CPointer,
   1523     STK_BlockPointer,
   1524     STK_ObjCObjectPointer,
   1525     STK_MemberPointer,
   1526     STK_Bool,
   1527     STK_Integral,
   1528     STK_Floating,
   1529     STK_IntegralComplex,
   1530     STK_FloatingComplex
   1531   };
   1532   /// getScalarTypeKind - Given that this is a scalar type, classify it.
   1533   ScalarTypeKind getScalarTypeKind() const;
   1534 
   1535   /// isDependentType - Whether this type is a dependent type, meaning
   1536   /// that its definition somehow depends on a template parameter
   1537   /// (C++ [temp.dep.type]).
   1538   bool isDependentType() const { return TypeBits.Dependent; }
   1539 
   1540   /// \brief Determine whether this type is an instantiation-dependent type,
   1541   /// meaning that the type involves a template parameter (even if the
   1542   /// definition does not actually depend on the type substituted for that
   1543   /// template parameter).
   1544   bool isInstantiationDependentType() const {
   1545     return TypeBits.InstantiationDependent;
   1546   }
   1547 
   1548   /// \brief Whether this type is a variably-modified type (C99 6.7.5).
   1549   bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
   1550 
   1551   /// \brief Whether this type involves a variable-length array type
   1552   /// with a definite size.
   1553   bool hasSizedVLAType() const;
   1554 
   1555   /// \brief Whether this type is or contains a local or unnamed type.
   1556   bool hasUnnamedOrLocalType() const;
   1557 
   1558   bool isOverloadableType() const;
   1559 
   1560   /// \brief Determine wither this type is a C++ elaborated-type-specifier.
   1561   bool isElaboratedTypeSpecifier() const;
   1562 
   1563   bool canDecayToPointerType() const;
   1564 
   1565   /// hasPointerRepresentation - Whether this type is represented
   1566   /// natively as a pointer; this includes pointers, references, block
   1567   /// pointers, and Objective-C interface, qualified id, and qualified
   1568   /// interface types, as well as nullptr_t.
   1569   bool hasPointerRepresentation() const;
   1570 
   1571   /// hasObjCPointerRepresentation - Whether this type can represent
   1572   /// an objective pointer type for the purpose of GC'ability
   1573   bool hasObjCPointerRepresentation() const;
   1574 
   1575   /// \brief Determine whether this type has an integer representation
   1576   /// of some sort, e.g., it is an integer type or a vector.
   1577   bool hasIntegerRepresentation() const;
   1578 
   1579   /// \brief Determine whether this type has an signed integer representation
   1580   /// of some sort, e.g., it is an signed integer type or a vector.
   1581   bool hasSignedIntegerRepresentation() const;
   1582 
   1583   /// \brief Determine whether this type has an unsigned integer representation
   1584   /// of some sort, e.g., it is an unsigned integer type or a vector.
   1585   bool hasUnsignedIntegerRepresentation() const;
   1586 
   1587   /// \brief Determine whether this type has a floating-point representation
   1588   /// of some sort, e.g., it is a floating-point type or a vector thereof.
   1589   bool hasFloatingRepresentation() const;
   1590 
   1591   // Type Checking Functions: Check to see if this type is structurally the
   1592   // specified type, ignoring typedefs and qualifiers, and return a pointer to
   1593   // the best type we can.
   1594   const RecordType *getAsStructureType() const;
   1595   /// NOTE: getAs*ArrayType are methods on ASTContext.
   1596   const RecordType *getAsUnionType() const;
   1597   const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
   1598   // The following is a convenience method that returns an ObjCObjectPointerType
   1599   // for object declared using an interface.
   1600   const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
   1601   const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
   1602   const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
   1603   const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
   1604   const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
   1605 
   1606   /// \brief Retrieves the CXXRecordDecl that this type refers to, either
   1607   /// because the type is a RecordType or because it is the injected-class-name
   1608   /// type of a class template or class template partial specialization.
   1609   CXXRecordDecl *getAsCXXRecordDecl() const;
   1610 
   1611   /// \brief Get the AutoType whose type will be deduced for a variable with
   1612   /// an initializer of this type. This looks through declarators like pointer
   1613   /// types, but not through decltype or typedefs.
   1614   AutoType *getContainedAutoType() const;
   1615 
   1616   /// Member-template getAs<specific type>'.  Look through sugar for
   1617   /// an instance of <specific type>.   This scheme will eventually
   1618   /// replace the specific getAsXXXX methods above.
   1619   ///
   1620   /// There are some specializations of this member template listed
   1621   /// immediately following this class.
   1622   template <typename T> const T *getAs() const;
   1623 
   1624   /// A variant of getAs<> for array types which silently discards
   1625   /// qualifiers from the outermost type.
   1626   const ArrayType *getAsArrayTypeUnsafe() const;
   1627 
   1628   /// Member-template castAs<specific type>.  Look through sugar for
   1629   /// the underlying instance of <specific type>.
   1630   ///
   1631   /// This method has the same relationship to getAs<T> as cast<T> has
   1632   /// to dyn_cast<T>; which is to say, the underlying type *must*
   1633   /// have the intended type, and this method will never return null.
   1634   template <typename T> const T *castAs() const;
   1635 
   1636   /// A variant of castAs<> for array type which silently discards
   1637   /// qualifiers from the outermost type.
   1638   const ArrayType *castAsArrayTypeUnsafe() const;
   1639 
   1640   /// getBaseElementTypeUnsafe - Get the base element type of this
   1641   /// type, potentially discarding type qualifiers.  This method
   1642   /// should never be used when type qualifiers are meaningful.
   1643   const Type *getBaseElementTypeUnsafe() const;
   1644 
   1645   /// getArrayElementTypeNoTypeQual - If this is an array type, return the
   1646   /// element type of the array, potentially with type qualifiers missing.
   1647   /// This method should never be used when type qualifiers are meaningful.
   1648   const Type *getArrayElementTypeNoTypeQual() const;
   1649 
   1650   /// getPointeeType - If this is a pointer, ObjC object pointer, or block
   1651   /// pointer, this returns the respective pointee.
   1652   QualType getPointeeType() const;
   1653 
   1654   /// getUnqualifiedDesugaredType() - Return the specified type with
   1655   /// any "sugar" removed from the type, removing any typedefs,
   1656   /// typeofs, etc., as well as any qualifiers.
   1657   const Type *getUnqualifiedDesugaredType() const;
   1658 
   1659   /// More type predicates useful for type checking/promotion
   1660   bool isPromotableIntegerType() const; // C99 6.3.1.1p2
   1661 
   1662   /// isSignedIntegerType - Return true if this is an integer type that is
   1663   /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
   1664   /// or an enum decl which has a signed representation.
   1665   bool isSignedIntegerType() const;
   1666 
   1667   /// isUnsignedIntegerType - Return true if this is an integer type that is
   1668   /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
   1669   /// or an enum decl which has an unsigned representation.
   1670   bool isUnsignedIntegerType() const;
   1671 
   1672   /// Determines whether this is an integer type that is signed or an
   1673   /// enumeration types whose underlying type is a signed integer type.
   1674   bool isSignedIntegerOrEnumerationType() const;
   1675 
   1676   /// Determines whether this is an integer type that is unsigned or an
   1677   /// enumeration types whose underlying type is a unsigned integer type.
   1678   bool isUnsignedIntegerOrEnumerationType() const;
   1679 
   1680   /// isConstantSizeType - Return true if this is not a variable sized type,
   1681   /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
   1682   /// incomplete types.
   1683   bool isConstantSizeType() const;
   1684 
   1685   /// isSpecifierType - Returns true if this type can be represented by some
   1686   /// set of type specifiers.
   1687   bool isSpecifierType() const;
   1688 
   1689   /// \brief Determine the linkage of this type.
   1690   Linkage getLinkage() const;
   1691 
   1692   /// \brief Determine the visibility of this type.
   1693   Visibility getVisibility() const;
   1694 
   1695   /// \brief Return true if the visibility was explicitly set is the code.
   1696   bool isVisibilityExplicit() const;
   1697 
   1698   /// \brief Determine the linkage and visibility of this type.
   1699   std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
   1700 
   1701   /// \brief Note that the linkage is no longer known.
   1702   void ClearLinkageCache();
   1703 
   1704   const char *getTypeClassName() const;
   1705 
   1706   QualType getCanonicalTypeInternal() const {
   1707     return CanonicalType;
   1708   }
   1709   CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
   1710   LLVM_ATTRIBUTE_USED void dump() const;
   1711 
   1712   static bool classof(const Type *) { return true; }
   1713 
   1714   friend class ASTReader;
   1715   friend class ASTWriter;
   1716 };
   1717 
   1718 template <> inline const TypedefType *Type::getAs() const {
   1719   return dyn_cast<TypedefType>(this);
   1720 }
   1721 
   1722 // We can do canonical leaf types faster, because we don't have to
   1723 // worry about preserving child type decoration.
   1724 #define TYPE(Class, Base)
   1725 #define LEAF_TYPE(Class) \
   1726 template <> inline const Class##Type *Type::getAs() const { \
   1727   return dyn_cast<Class##Type>(CanonicalType); \
   1728 } \
   1729 template <> inline const Class##Type *Type::castAs() const { \
   1730   return cast<Class##Type>(CanonicalType); \
   1731 }
   1732 #include "clang/AST/TypeNodes.def"
   1733 
   1734 
   1735 /// BuiltinType - This class is used for builtin types like 'int'.  Builtin
   1736 /// types are always canonical and have a literal name field.
   1737 class BuiltinType : public Type {
   1738 public:
   1739   enum Kind {
   1740 #define BUILTIN_TYPE(Id, SingletonId) Id,
   1741 #define LAST_BUILTIN_TYPE(Id) LastKind = Id
   1742 #include "clang/AST/BuiltinTypes.def"
   1743   };
   1744 
   1745 public:
   1746   BuiltinType(Kind K)
   1747     : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
   1748            /*InstantiationDependent=*/(K == Dependent),
   1749            /*VariablyModified=*/false,
   1750            /*Unexpanded paramter pack=*/false) {
   1751     BuiltinTypeBits.Kind = K;
   1752   }
   1753 
   1754   Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
   1755   const char *getName(const PrintingPolicy &Policy) const;
   1756 
   1757   bool isSugared() const { return false; }
   1758   QualType desugar() const { return QualType(this, 0); }
   1759 
   1760   bool isInteger() const {
   1761     return getKind() >= Bool && getKind() <= Int128;
   1762   }
   1763 
   1764   bool isSignedInteger() const {
   1765     return getKind() >= Char_S && getKind() <= Int128;
   1766   }
   1767 
   1768   bool isUnsignedInteger() const {
   1769     return getKind() >= Bool && getKind() <= UInt128;
   1770   }
   1771 
   1772   bool isFloatingPoint() const {
   1773     return getKind() >= Half && getKind() <= LongDouble;
   1774   }
   1775 
   1776   /// Determines whether the given kind corresponds to a placeholder type.
   1777   static bool isPlaceholderTypeKind(Kind K) {
   1778     return K >= Overload;
   1779   }
   1780 
   1781   /// Determines whether this type is a placeholder type, i.e. a type
   1782   /// which cannot appear in arbitrary positions in a fully-formed
   1783   /// expression.
   1784   bool isPlaceholderType() const {
   1785     return isPlaceholderTypeKind(getKind());
   1786   }
   1787 
   1788   /// Determines whether this type is a placeholder type other than
   1789   /// Overload.  Most placeholder types require only syntactic
   1790   /// information about their context in order to be resolved (e.g.
   1791   /// whether it is a call expression), which means they can (and
   1792   /// should) be resolved in an earlier "phase" of analysis.
   1793   /// Overload expressions sometimes pick up further information
   1794   /// from their context, like whether the context expects a
   1795   /// specific function-pointer type, and so frequently need
   1796   /// special treatment.
   1797   bool isNonOverloadPlaceholderType() const {
   1798     return getKind() > Overload;
   1799   }
   1800 
   1801   static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
   1802   static bool classof(const BuiltinType *) { return true; }
   1803 };
   1804 
   1805 /// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
   1806 /// types (_Complex float etc) as well as the GCC integer complex extensions.
   1807 ///
   1808 class ComplexType : public Type, public llvm::FoldingSetNode {
   1809   QualType ElementType;
   1810   ComplexType(QualType Element, QualType CanonicalPtr) :
   1811     Type(Complex, CanonicalPtr, Element->isDependentType(),
   1812          Element->isInstantiationDependentType(),
   1813          Element->isVariablyModifiedType(),
   1814          Element->containsUnexpandedParameterPack()),
   1815     ElementType(Element) {
   1816   }
   1817   friend class ASTContext;  // ASTContext creates these.
   1818 
   1819 public:
   1820   QualType getElementType() const { return ElementType; }
   1821 
   1822   bool isSugared() const { return false; }
   1823   QualType desugar() const { return QualType(this, 0); }
   1824 
   1825   void Profile(llvm::FoldingSetNodeID &ID) {
   1826     Profile(ID, getElementType());
   1827   }
   1828   static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
   1829     ID.AddPointer(Element.getAsOpaquePtr());
   1830   }
   1831 
   1832   static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
   1833   static bool classof(const ComplexType *) { return true; }
   1834 };
   1835 
   1836 /// ParenType - Sugar for parentheses used when specifying types.
   1837 ///
   1838 class ParenType : public Type, public llvm::FoldingSetNode {
   1839   QualType Inner;
   1840 
   1841   ParenType(QualType InnerType, QualType CanonType) :
   1842     Type(Paren, CanonType, InnerType->isDependentType(),
   1843          InnerType->isInstantiationDependentType(),
   1844          InnerType->isVariablyModifiedType(),
   1845          InnerType->containsUnexpandedParameterPack()),
   1846     Inner(InnerType) {
   1847   }
   1848   friend class ASTContext;  // ASTContext creates these.
   1849 
   1850 public:
   1851 
   1852   QualType getInnerType() const { return Inner; }
   1853 
   1854   bool isSugared() const { return true; }
   1855   QualType desugar() const { return getInnerType(); }
   1856 
   1857   void Profile(llvm::FoldingSetNodeID &ID) {
   1858     Profile(ID, getInnerType());
   1859   }
   1860   static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
   1861     Inner.Profile(ID);
   1862   }
   1863 
   1864   static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
   1865   static bool classof(const ParenType *) { return true; }
   1866 };
   1867 
   1868 /// PointerType - C99 6.7.5.1 - Pointer Declarators.
   1869 ///
   1870 class PointerType : public Type, public llvm::FoldingSetNode {
   1871   QualType PointeeType;
   1872 
   1873   PointerType(QualType Pointee, QualType CanonicalPtr) :
   1874     Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
   1875          Pointee->isInstantiationDependentType(),
   1876          Pointee->isVariablyModifiedType(),
   1877          Pointee->containsUnexpandedParameterPack()),
   1878     PointeeType(Pointee) {
   1879   }
   1880   friend class ASTContext;  // ASTContext creates these.
   1881 
   1882 public:
   1883 
   1884   QualType getPointeeType() const { return PointeeType; }
   1885 
   1886   bool isSugared() const { return false; }
   1887   QualType desugar() const { return QualType(this, 0); }
   1888 
   1889   void Profile(llvm::FoldingSetNodeID &ID) {
   1890     Profile(ID, getPointeeType());
   1891   }
   1892   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
   1893     ID.AddPointer(Pointee.getAsOpaquePtr());
   1894   }
   1895 
   1896   static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
   1897   static bool classof(const PointerType *) { return true; }
   1898 };
   1899 
   1900 /// BlockPointerType - pointer to a block type.
   1901 /// This type is to represent types syntactically represented as
   1902 /// "void (^)(int)", etc. Pointee is required to always be a function type.
   1903 ///
   1904 class BlockPointerType : public Type, public llvm::FoldingSetNode {
   1905   QualType PointeeType;  // Block is some kind of pointer type
   1906   BlockPointerType(QualType Pointee, QualType CanonicalCls) :
   1907     Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
   1908          Pointee->isInstantiationDependentType(),
   1909          Pointee->isVariablyModifiedType(),
   1910          Pointee->containsUnexpandedParameterPack()),
   1911     PointeeType(Pointee) {
   1912   }
   1913   friend class ASTContext;  // ASTContext creates these.
   1914 
   1915 public:
   1916 
   1917   // Get the pointee type. Pointee is required to always be a function type.
   1918   QualType getPointeeType() const { return PointeeType; }
   1919 
   1920   bool isSugared() const { return false; }
   1921   QualType desugar() const { return QualType(this, 0); }
   1922 
   1923   void Profile(llvm::FoldingSetNodeID &ID) {
   1924       Profile(ID, getPointeeType());
   1925   }
   1926   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
   1927       ID.AddPointer(Pointee.getAsOpaquePtr());
   1928   }
   1929 
   1930   static bool classof(const Type *T) {
   1931     return T->getTypeClass() == BlockPointer;
   1932   }
   1933   static bool classof(const BlockPointerType *) { return true; }
   1934 };
   1935 
   1936 /// ReferenceType - Base for LValueReferenceType and RValueReferenceType
   1937 ///
   1938 class ReferenceType : public Type, public llvm::FoldingSetNode {
   1939   QualType PointeeType;
   1940 
   1941 protected:
   1942   ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
   1943                 bool SpelledAsLValue) :
   1944     Type(tc, CanonicalRef, Referencee->isDependentType(),
   1945          Referencee->isInstantiationDependentType(),
   1946          Referencee->isVariablyModifiedType(),
   1947          Referencee->containsUnexpandedParameterPack()),
   1948     PointeeType(Referencee)
   1949   {
   1950     ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
   1951     ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
   1952   }
   1953 
   1954 public:
   1955   bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
   1956   bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
   1957 
   1958   QualType getPointeeTypeAsWritten() const { return PointeeType; }
   1959   QualType getPointeeType() const {
   1960     // FIXME: this might strip inner qualifiers; okay?
   1961     const ReferenceType *T = this;
   1962     while (T->isInnerRef())
   1963       T = T->PointeeType->castAs<ReferenceType>();
   1964     return T->PointeeType;
   1965   }
   1966 
   1967   void Profile(llvm::FoldingSetNodeID &ID) {
   1968     Profile(ID, PointeeType, isSpelledAsLValue());
   1969   }
   1970   static void Profile(llvm::FoldingSetNodeID &ID,
   1971                       QualType Referencee,
   1972                       bool SpelledAsLValue) {
   1973     ID.AddPointer(Referencee.getAsOpaquePtr());
   1974     ID.AddBoolean(SpelledAsLValue);
   1975   }
   1976 
   1977   static bool classof(const Type *T) {
   1978     return T->getTypeClass() == LValueReference ||
   1979            T->getTypeClass() == RValueReference;
   1980   }
   1981   static bool classof(const ReferenceType *) { return true; }
   1982 };
   1983 
   1984 /// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
   1985 ///
   1986 class LValueReferenceType : public ReferenceType {
   1987   LValueReferenceType(QualType Referencee, QualType CanonicalRef,
   1988                       bool SpelledAsLValue) :
   1989     ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
   1990   {}
   1991   friend class ASTContext; // ASTContext creates these
   1992 public:
   1993   bool isSugared() const { return false; }
   1994   QualType desugar() const { return QualType(this, 0); }
   1995 
   1996   static bool classof(const Type *T) {
   1997     return T->getTypeClass() == LValueReference;
   1998   }
   1999   static bool classof(const LValueReferenceType *) { return true; }
   2000 };
   2001 
   2002 /// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
   2003 ///
   2004 class RValueReferenceType : public ReferenceType {
   2005   RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
   2006     ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
   2007   }
   2008   friend class ASTContext; // ASTContext creates these
   2009 public:
   2010   bool isSugared() const { return false; }
   2011   QualType desugar() const { return QualType(this, 0); }
   2012 
   2013   static bool classof(const Type *T) {
   2014     return T->getTypeClass() == RValueReference;
   2015   }
   2016   static bool classof(const RValueReferenceType *) { return true; }
   2017 };
   2018 
   2019 /// MemberPointerType - C++ 8.3.3 - Pointers to members
   2020 ///
   2021 class MemberPointerType : public Type, public llvm::FoldingSetNode {
   2022   QualType PointeeType;
   2023   /// The class of which the pointee is a member. Must ultimately be a
   2024   /// RecordType, but could be a typedef or a template parameter too.
   2025   const Type *Class;
   2026 
   2027   MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
   2028     Type(MemberPointer, CanonicalPtr,
   2029          Cls->isDependentType() || Pointee->isDependentType(),
   2030          (Cls->isInstantiationDependentType() ||
   2031           Pointee->isInstantiationDependentType()),
   2032          Pointee->isVariablyModifiedType(),
   2033          (Cls->containsUnexpandedParameterPack() ||
   2034           Pointee->containsUnexpandedParameterPack())),
   2035     PointeeType(Pointee), Class(Cls) {
   2036   }
   2037   friend class ASTContext; // ASTContext creates these.
   2038 
   2039 public:
   2040   QualType getPointeeType() const { return PointeeType; }
   2041 
   2042   /// Returns true if the member type (i.e. the pointee type) is a
   2043   /// function type rather than a data-member type.
   2044   bool isMemberFunctionPointer() const {
   2045     return PointeeType->isFunctionProtoType();
   2046   }
   2047 
   2048   /// Returns true if the member type (i.e. the pointee type) is a
   2049   /// data type rather than a function type.
   2050   bool isMemberDataPointer() const {
   2051     return !PointeeType->isFunctionProtoType();
   2052   }
   2053 
   2054   const Type *getClass() const { return Class; }
   2055 
   2056   bool isSugared() const { return false; }
   2057   QualType desugar() const { return QualType(this, 0); }
   2058 
   2059   void Profile(llvm::FoldingSetNodeID &ID) {
   2060     Profile(ID, getPointeeType(), getClass());
   2061   }
   2062   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
   2063                       const Type *Class) {
   2064     ID.AddPointer(Pointee.getAsOpaquePtr());
   2065     ID.AddPointer(Class);
   2066   }
   2067 
   2068   static bool classof(const Type *T) {
   2069     return T->getTypeClass() == MemberPointer;
   2070   }
   2071   static bool classof(const MemberPointerType *) { return true; }
   2072 };
   2073 
   2074 /// ArrayType - C99 6.7.5.2 - Array Declarators.
   2075 ///
   2076 class ArrayType : public Type, public llvm::FoldingSetNode {
   2077 public:
   2078   /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
   2079   /// an array with a static size (e.g. int X[static 4]), or an array
   2080   /// with a star size (e.g. int X[*]).
   2081   /// 'static' is only allowed on function parameters.
   2082   enum ArraySizeModifier {
   2083     Normal, Static, Star
   2084   };
   2085 private:
   2086   /// ElementType - The element type of the array.
   2087   QualType ElementType;
   2088 
   2089 protected:
   2090   // C++ [temp.dep.type]p1:
   2091   //   A type is dependent if it is...
   2092   //     - an array type constructed from any dependent type or whose
   2093   //       size is specified by a constant expression that is
   2094   //       value-dependent,
   2095   ArrayType(TypeClass tc, QualType et, QualType can,
   2096             ArraySizeModifier sm, unsigned tq,
   2097             bool ContainsUnexpandedParameterPack)
   2098     : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
   2099            et->isInstantiationDependentType() || tc == DependentSizedArray,
   2100            (tc == VariableArray || et->isVariablyModifiedType()),
   2101            ContainsUnexpandedParameterPack),
   2102       ElementType(et) {
   2103     ArrayTypeBits.IndexTypeQuals = tq;
   2104     ArrayTypeBits.SizeModifier = sm;
   2105   }
   2106 
   2107   friend class ASTContext;  // ASTContext creates these.
   2108 
   2109 public:
   2110   QualType getElementType() const { return ElementType; }
   2111   ArraySizeModifier getSizeModifier() const {
   2112     return ArraySizeModifier(ArrayTypeBits.SizeModifier);
   2113   }
   2114   Qualifiers getIndexTypeQualifiers() const {
   2115     return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
   2116   }
   2117   unsigned getIndexTypeCVRQualifiers() const {
   2118     return ArrayTypeBits.IndexTypeQuals;
   2119   }
   2120 
   2121   static bool classof(const Type *T) {
   2122     return T->getTypeClass() == ConstantArray ||
   2123            T->getTypeClass() == VariableArray ||
   2124            T->getTypeClass() == IncompleteArray ||
   2125            T->getTypeClass() == DependentSizedArray;
   2126   }
   2127   static bool classof(const ArrayType *) { return true; }
   2128 };
   2129 
   2130 /// ConstantArrayType - This class represents the canonical version of
   2131 /// C arrays with a specified constant size.  For example, the canonical
   2132 /// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
   2133 /// type is 'int' and the size is 404.
   2134 class ConstantArrayType : public ArrayType {
   2135   llvm::APInt Size; // Allows us to unique the type.
   2136 
   2137   ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
   2138                     ArraySizeModifier sm, unsigned tq)
   2139     : ArrayType(ConstantArray, et, can, sm, tq,
   2140                 et->containsUnexpandedParameterPack()),
   2141       Size(size) {}
   2142 protected:
   2143   ConstantArrayType(TypeClass tc, QualType et, QualType can,
   2144                     const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
   2145     : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
   2146       Size(size) {}
   2147   friend class ASTContext;  // ASTContext creates these.
   2148 public:
   2149   const llvm::APInt &getSize() const { return Size; }
   2150   bool isSugared() const { return false; }
   2151   QualType desugar() const { return QualType(this, 0); }
   2152 
   2153 
   2154   /// \brief Determine the number of bits required to address a member of
   2155   // an array with the given element type and number of elements.
   2156   static unsigned getNumAddressingBits(ASTContext &Context,
   2157                                        QualType ElementType,
   2158                                        const llvm::APInt &NumElements);
   2159 
   2160   /// \brief Determine the maximum number of active bits that an array's size
   2161   /// can require, which limits the maximum size of the array.
   2162   static unsigned getMaxSizeBits(ASTContext &Context);
   2163 
   2164   void Profile(llvm::FoldingSetNodeID &ID) {
   2165     Profile(ID, getElementType(), getSize(),
   2166             getSizeModifier(), getIndexTypeCVRQualifiers());
   2167   }
   2168   static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
   2169                       const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
   2170                       unsigned TypeQuals) {
   2171     ID.AddPointer(ET.getAsOpaquePtr());
   2172     ID.AddInteger(ArraySize.getZExtValue());
   2173     ID.AddInteger(SizeMod);
   2174     ID.AddInteger(TypeQuals);
   2175   }
   2176   static bool classof(const Type *T) {
   2177     return T->getTypeClass() == ConstantArray;
   2178   }
   2179   static bool classof(const ConstantArrayType *) { return true; }
   2180 };
   2181 
   2182 /// IncompleteArrayType - This class represents C arrays with an unspecified
   2183 /// size.  For example 'int A[]' has an IncompleteArrayType where the element
   2184 /// type is 'int' and the size is unspecified.
   2185 class IncompleteArrayType : public ArrayType {
   2186 
   2187   IncompleteArrayType(QualType et, QualType can,
   2188                       ArraySizeModifier sm, unsigned tq)
   2189     : ArrayType(IncompleteArray, et, can, sm, tq,
   2190                 et->containsUnexpandedParameterPack()) {}
   2191   friend class ASTContext;  // ASTContext creates these.
   2192 public:
   2193   bool isSugared() const { return false; }
   2194   QualType desugar() const { return QualType(this, 0); }
   2195 
   2196   static bool classof(const Type *T) {
   2197     return T->getTypeClass() == IncompleteArray;
   2198   }
   2199   static bool classof(const IncompleteArrayType *) { return true; }
   2200 
   2201   friend class StmtIteratorBase;
   2202 
   2203   void Profile(llvm::FoldingSetNodeID &ID) {
   2204     Profile(ID, getElementType(), getSizeModifier(),
   2205             getIndexTypeCVRQualifiers());
   2206   }
   2207 
   2208   static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
   2209                       ArraySizeModifier SizeMod, unsigned TypeQuals) {
   2210     ID.AddPointer(ET.getAsOpaquePtr());
   2211     ID.AddInteger(SizeMod);
   2212     ID.AddInteger(TypeQuals);
   2213   }
   2214 };
   2215 
   2216 /// VariableArrayType - This class represents C arrays with a specified size
   2217 /// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
   2218 /// Since the size expression is an arbitrary expression, we store it as such.
   2219 ///
   2220 /// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
   2221 /// should not be: two lexically equivalent variable array types could mean
   2222 /// different things, for example, these variables do not have the same type
   2223 /// dynamically:
   2224 ///
   2225 /// void foo(int x) {
   2226 ///   int Y[x];
   2227 ///   ++x;
   2228 ///   int Z[x];
   2229 /// }
   2230 ///
   2231 class VariableArrayType : public ArrayType {
   2232   /// SizeExpr - An assignment expression. VLA's are only permitted within
   2233   /// a function block.
   2234   Stmt *SizeExpr;
   2235   /// Brackets - The left and right array brackets.
   2236   SourceRange Brackets;
   2237 
   2238   VariableArrayType(QualType et, QualType can, Expr *e,
   2239                     ArraySizeModifier sm, unsigned tq,
   2240                     SourceRange brackets)
   2241     : ArrayType(VariableArray, et, can, sm, tq,
   2242                 et->containsUnexpandedParameterPack()),
   2243       SizeExpr((Stmt*) e), Brackets(brackets) {}
   2244   friend class ASTContext;  // ASTContext creates these.
   2245 
   2246 public:
   2247   Expr *getSizeExpr() const {
   2248     // We use C-style casts instead of cast<> here because we do not wish
   2249     // to have a dependency of Type.h on Stmt.h/Expr.h.
   2250     return (Expr*) SizeExpr;
   2251   }
   2252   SourceRange getBracketsRange() const { return Brackets; }
   2253   SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
   2254   SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
   2255 
   2256   bool isSugared() const { return false; }
   2257   QualType desugar() const { return QualType(this, 0); }
   2258 
   2259   static bool classof(const Type *T) {
   2260     return T->getTypeClass() == VariableArray;
   2261   }
   2262   static bool classof(const VariableArrayType *) { return true; }
   2263 
   2264   friend class StmtIteratorBase;
   2265 
   2266   void Profile(llvm::FoldingSetNodeID &ID) {
   2267     llvm_unreachable("Cannot unique VariableArrayTypes.");
   2268   }
   2269 };
   2270 
   2271 /// DependentSizedArrayType - This type represents an array type in
   2272 /// C++ whose size is a value-dependent expression. For example:
   2273 ///
   2274 /// \code
   2275 /// template<typename T, int Size>
   2276 /// class array {
   2277 ///   T data[Size];
   2278 /// };
   2279 /// \endcode
   2280 ///
   2281 /// For these types, we won't actually know what the array bound is
   2282 /// until template instantiation occurs, at which point this will
   2283 /// become either a ConstantArrayType or a VariableArrayType.
   2284 class DependentSizedArrayType : public ArrayType {
   2285   const ASTContext &Context;
   2286 
   2287   /// \brief An assignment expression that will instantiate to the
   2288   /// size of the array.
   2289   ///
   2290   /// The expression itself might be NULL, in which case the array
   2291   /// type will have its size deduced from an initializer.
   2292   Stmt *SizeExpr;
   2293 
   2294   /// Brackets - The left and right array brackets.
   2295   SourceRange Brackets;
   2296 
   2297   DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
   2298                           Expr *e, ArraySizeModifier sm, unsigned tq,
   2299                           SourceRange brackets);
   2300 
   2301   friend class ASTContext;  // ASTContext creates these.
   2302 
   2303 public:
   2304   Expr *getSizeExpr() const {
   2305     // We use C-style casts instead of cast<> here because we do not wish
   2306     // to have a dependency of Type.h on Stmt.h/Expr.h.
   2307     return (Expr*) SizeExpr;
   2308   }
   2309   SourceRange getBracketsRange() const { return Brackets; }
   2310   SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
   2311   SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
   2312 
   2313   bool isSugared() const { return false; }
   2314   QualType desugar() const { return QualType(this, 0); }
   2315 
   2316   static bool classof(const Type *T) {
   2317     return T->getTypeClass() == DependentSizedArray;
   2318   }
   2319   static bool classof(const DependentSizedArrayType *) { return true; }
   2320 
   2321   friend class StmtIteratorBase;
   2322 
   2323 
   2324   void Profile(llvm::FoldingSetNodeID &ID) {
   2325     Profile(ID, Context, getElementType(),
   2326             getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
   2327   }
   2328 
   2329   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   2330                       QualType ET, ArraySizeModifier SizeMod,
   2331                       unsigned TypeQuals, Expr *E);
   2332 };
   2333 
   2334 /// DependentSizedExtVectorType - This type represent an extended vector type
   2335 /// where either the type or size is dependent. For example:
   2336 /// @code
   2337 /// template<typename T, int Size>
   2338 /// class vector {
   2339 ///   typedef T __attribute__((ext_vector_type(Size))) type;
   2340 /// }
   2341 /// @endcode
   2342 class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
   2343   const ASTContext &Context;
   2344   Expr *SizeExpr;
   2345   /// ElementType - The element type of the array.
   2346   QualType ElementType;
   2347   SourceLocation loc;
   2348 
   2349   DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
   2350                               QualType can, Expr *SizeExpr, SourceLocation loc);
   2351 
   2352   friend class ASTContext;
   2353 
   2354 public:
   2355   Expr *getSizeExpr() const { return SizeExpr; }
   2356   QualType getElementType() const { return ElementType; }
   2357   SourceLocation getAttributeLoc() const { return loc; }
   2358 
   2359   bool isSugared() const { return false; }
   2360   QualType desugar() const { return QualType(this, 0); }
   2361 
   2362   static bool classof(const Type *T) {
   2363     return T->getTypeClass() == DependentSizedExtVector;
   2364   }
   2365   static bool classof(const DependentSizedExtVectorType *) { return true; }
   2366 
   2367   void Profile(llvm::FoldingSetNodeID &ID) {
   2368     Profile(ID, Context, getElementType(), getSizeExpr());
   2369   }
   2370 
   2371   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   2372                       QualType ElementType, Expr *SizeExpr);
   2373 };
   2374 
   2375 
   2376 /// VectorType - GCC generic vector type. This type is created using
   2377 /// __attribute__((vector_size(n)), where "n" specifies the vector size in
   2378 /// bytes; or from an Altivec __vector or vector declaration.
   2379 /// Since the constructor takes the number of vector elements, the
   2380 /// client is responsible for converting the size into the number of elements.
   2381 class VectorType : public Type, public llvm::FoldingSetNode {
   2382 public:
   2383   enum VectorKind {
   2384     GenericVector,  // not a target-specific vector type
   2385     AltiVecVector,  // is AltiVec vector
   2386     AltiVecPixel,   // is AltiVec 'vector Pixel'
   2387     AltiVecBool,    // is AltiVec 'vector bool ...'
   2388     NeonVector,     // is ARM Neon vector
   2389     NeonPolyVector  // is ARM Neon polynomial vector
   2390   };
   2391 protected:
   2392   /// ElementType - The element type of the vector.
   2393   QualType ElementType;
   2394 
   2395   VectorType(QualType vecType, unsigned nElements, QualType canonType,
   2396              VectorKind vecKind);
   2397 
   2398   VectorType(TypeClass tc, QualType vecType, unsigned nElements,
   2399              QualType canonType, VectorKind vecKind);
   2400 
   2401   friend class ASTContext;  // ASTContext creates these.
   2402 
   2403 public:
   2404 
   2405   QualType getElementType() const { return ElementType; }
   2406   unsigned getNumElements() const { return VectorTypeBits.NumElements; }
   2407 
   2408   bool isSugared() const { return false; }
   2409   QualType desugar() const { return QualType(this, 0); }
   2410 
   2411   VectorKind getVectorKind() const {
   2412     return VectorKind(VectorTypeBits.VecKind);
   2413   }
   2414 
   2415   void Profile(llvm::FoldingSetNodeID &ID) {
   2416     Profile(ID, getElementType(), getNumElements(),
   2417             getTypeClass(), getVectorKind());
   2418   }
   2419   static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
   2420                       unsigned NumElements, TypeClass TypeClass,
   2421                       VectorKind VecKind) {
   2422     ID.AddPointer(ElementType.getAsOpaquePtr());
   2423     ID.AddInteger(NumElements);
   2424     ID.AddInteger(TypeClass);
   2425     ID.AddInteger(VecKind);
   2426   }
   2427 
   2428   static bool classof(const Type *T) {
   2429     return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
   2430   }
   2431   static bool classof(const VectorType *) { return true; }
   2432 };
   2433 
   2434 /// ExtVectorType - Extended vector type. This type is created using
   2435 /// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
   2436 /// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
   2437 /// class enables syntactic extensions, like Vector Components for accessing
   2438 /// points, colors, and textures (modeled after OpenGL Shading Language).
   2439 class ExtVectorType : public VectorType {
   2440   ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
   2441     VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
   2442   friend class ASTContext;  // ASTContext creates these.
   2443 public:
   2444   static int getPointAccessorIdx(char c) {
   2445     switch (c) {
   2446     default: return -1;
   2447     case 'x': case 'r': return 0;
   2448     case 'y': case 'g': return 1;
   2449     case 'z': case 'b': return 2;
   2450     case 'w': case 'a': return 3;
   2451     }
   2452   }
   2453   static int getNumericAccessorIdx(char c) {
   2454     switch (c) {
   2455       default: return -1;
   2456       case '0': return 0;
   2457       case '1': return 1;
   2458       case '2': return 2;
   2459       case '3': return 3;
   2460       case '4': return 4;
   2461       case '5': return 5;
   2462       case '6': return 6;
   2463       case '7': return 7;
   2464       case '8': return 8;
   2465       case '9': return 9;
   2466       case 'A':
   2467       case 'a': return 10;
   2468       case 'B':
   2469       case 'b': return 11;
   2470       case 'C':
   2471       case 'c': return 12;
   2472       case 'D':
   2473       case 'd': return 13;
   2474       case 'E':
   2475       case 'e': return 14;
   2476       case 'F':
   2477       case 'f': return 15;
   2478     }
   2479   }
   2480 
   2481   static int getAccessorIdx(char c) {
   2482     if (int idx = getPointAccessorIdx(c)+1) return idx-1;
   2483     return getNumericAccessorIdx(c);
   2484   }
   2485 
   2486   bool isAccessorWithinNumElements(char c) const {
   2487     if (int idx = getAccessorIdx(c)+1)
   2488       return unsigned(idx-1) < getNumElements();
   2489     return false;
   2490   }
   2491   bool isSugared() const { return false; }
   2492   QualType desugar() const { return QualType(this, 0); }
   2493 
   2494   static bool classof(const Type *T) {
   2495     return T->getTypeClass() == ExtVector;
   2496   }
   2497   static bool classof(const ExtVectorType *) { return true; }
   2498 };
   2499 
   2500 /// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
   2501 /// class of FunctionNoProtoType and FunctionProtoType.
   2502 ///
   2503 class FunctionType : public Type {
   2504   // The type returned by the function.
   2505   QualType ResultType;
   2506 
   2507  public:
   2508   /// ExtInfo - A class which abstracts out some details necessary for
   2509   /// making a call.
   2510   ///
   2511   /// It is not actually used directly for storing this information in
   2512   /// a FunctionType, although FunctionType does currently use the
   2513   /// same bit-pattern.
   2514   ///
   2515   // If you add a field (say Foo), other than the obvious places (both,
   2516   // constructors, compile failures), what you need to update is
   2517   // * Operator==
   2518   // * getFoo
   2519   // * withFoo
   2520   // * functionType. Add Foo, getFoo.
   2521   // * ASTContext::getFooType
   2522   // * ASTContext::mergeFunctionTypes
   2523   // * FunctionNoProtoType::Profile
   2524   // * FunctionProtoType::Profile
   2525   // * TypePrinter::PrintFunctionProto
   2526   // * AST read and write
   2527   // * Codegen
   2528   class ExtInfo {
   2529     // Feel free to rearrange or add bits, but if you go over 8,
   2530     // you'll need to adjust both the Bits field below and
   2531     // Type::FunctionTypeBitfields.
   2532 
   2533     //   |  CC  |noreturn|produces|regparm|
   2534     //   |0 .. 2|   3    |    4   | 5 .. 7|
   2535     //
   2536     // regparm is either 0 (no regparm attribute) or the regparm value+1.
   2537     enum { CallConvMask = 0x7 };
   2538     enum { NoReturnMask = 0x8 };
   2539     enum { ProducesResultMask = 0x10 };
   2540     enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
   2541            RegParmOffset = 5 }; // Assumed to be the last field
   2542 
   2543     uint16_t Bits;
   2544 
   2545     ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
   2546 
   2547     friend class FunctionType;
   2548 
   2549    public:
   2550     // Constructor with no defaults. Use this when you know that you
   2551     // have all the elements (when reading an AST file for example).
   2552     ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
   2553             bool producesResult) {
   2554       assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
   2555       Bits = ((unsigned) cc) |
   2556              (noReturn ? NoReturnMask : 0) |
   2557              (producesResult ? ProducesResultMask : 0) |
   2558              (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
   2559     }
   2560 
   2561     // Constructor with all defaults. Use when for example creating a
   2562     // function know to use defaults.
   2563     ExtInfo() : Bits(0) {}
   2564 
   2565     bool getNoReturn() const { return Bits & NoReturnMask; }
   2566     bool getProducesResult() const { return Bits & ProducesResultMask; }
   2567     bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
   2568     unsigned getRegParm() const {
   2569       unsigned RegParm = Bits >> RegParmOffset;
   2570       if (RegParm > 0)
   2571         --RegParm;
   2572       return RegParm;
   2573     }
   2574     CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
   2575 
   2576     bool operator==(ExtInfo Other) const {
   2577       return Bits == Other.Bits;
   2578     }
   2579     bool operator!=(ExtInfo Other) const {
   2580       return Bits != Other.Bits;
   2581     }
   2582 
   2583     // Note that we don't have setters. That is by design, use
   2584     // the following with methods instead of mutating these objects.
   2585 
   2586     ExtInfo withNoReturn(bool noReturn) const {
   2587       if (noReturn)
   2588         return ExtInfo(Bits | NoReturnMask);
   2589       else
   2590         return ExtInfo(Bits & ~NoReturnMask);
   2591     }
   2592 
   2593     ExtInfo withProducesResult(bool producesResult) const {
   2594       if (producesResult)
   2595         return ExtInfo(Bits | ProducesResultMask);
   2596       else
   2597         return ExtInfo(Bits & ~ProducesResultMask);
   2598     }
   2599 
   2600     ExtInfo withRegParm(unsigned RegParm) const {
   2601       assert(RegParm < 7 && "Invalid regparm value");
   2602       return ExtInfo((Bits & ~RegParmMask) |
   2603                      ((RegParm + 1) << RegParmOffset));
   2604     }
   2605 
   2606     ExtInfo withCallingConv(CallingConv cc) const {
   2607       return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
   2608     }
   2609 
   2610     void Profile(llvm::FoldingSetNodeID &ID) const {
   2611       ID.AddInteger(Bits);
   2612     }
   2613   };
   2614 
   2615 protected:
   2616   FunctionType(TypeClass tc, QualType res,
   2617                unsigned typeQuals, RefQualifierKind RefQualifier,
   2618                QualType Canonical, bool Dependent,
   2619                bool InstantiationDependent,
   2620                bool VariablyModified, bool ContainsUnexpandedParameterPack,
   2621                ExtInfo Info)
   2622     : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
   2623            ContainsUnexpandedParameterPack),
   2624       ResultType(res) {
   2625     FunctionTypeBits.ExtInfo = Info.Bits;
   2626     FunctionTypeBits.TypeQuals = typeQuals;
   2627     FunctionTypeBits.RefQualifier = static_cast<unsigned>(RefQualifier);
   2628   }
   2629   unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
   2630 
   2631   RefQualifierKind getRefQualifier() const {
   2632     return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
   2633   }
   2634 
   2635 public:
   2636 
   2637   QualType getResultType() const { return ResultType; }
   2638 
   2639   bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
   2640   unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
   2641   bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
   2642   CallingConv getCallConv() const { return getExtInfo().getCC(); }
   2643   ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
   2644 
   2645   /// \brief Determine the type of an expression that calls a function of
   2646   /// this type.
   2647   QualType getCallResultType(ASTContext &Context) const {
   2648     return getResultType().getNonLValueExprType(Context);
   2649   }
   2650 
   2651   static StringRef getNameForCallConv(CallingConv CC);
   2652 
   2653   static bool classof(const Type *T) {
   2654     return T->getTypeClass() == FunctionNoProto ||
   2655            T->getTypeClass() == FunctionProto;
   2656   }
   2657   static bool classof(const FunctionType *) { return true; }
   2658 };
   2659 
   2660 /// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
   2661 /// no information available about its arguments.
   2662 class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
   2663   FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
   2664     : FunctionType(FunctionNoProto, Result, 0, RQ_None, Canonical,
   2665                    /*Dependent=*/false, /*InstantiationDependent=*/false,
   2666                    Result->isVariablyModifiedType(),
   2667                    /*ContainsUnexpandedParameterPack=*/false, Info) {}
   2668 
   2669   friend class ASTContext;  // ASTContext creates these.
   2670 
   2671 public:
   2672   // No additional state past what FunctionType provides.
   2673 
   2674   bool isSugared() const { return false; }
   2675   QualType desugar() const { return QualType(this, 0); }
   2676 
   2677   void Profile(llvm::FoldingSetNodeID &ID) {
   2678     Profile(ID, getResultType(), getExtInfo());
   2679   }
   2680   static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
   2681                       ExtInfo Info) {
   2682     Info.Profile(ID);
   2683     ID.AddPointer(ResultType.getAsOpaquePtr());
   2684   }
   2685 
   2686   static bool classof(const Type *T) {
   2687     return T->getTypeClass() == FunctionNoProto;
   2688   }
   2689   static bool classof(const FunctionNoProtoType *) { return true; }
   2690 };
   2691 
   2692 /// FunctionProtoType - Represents a prototype with argument type info, e.g.
   2693 /// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
   2694 /// arguments, not as having a single void argument. Such a type can have an
   2695 /// exception specification, but this specification is not part of the canonical
   2696 /// type.
   2697 class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
   2698 public:
   2699   /// ExtProtoInfo - Extra information about a function prototype.
   2700   struct ExtProtoInfo {
   2701     ExtProtoInfo() :
   2702       Variadic(false), HasTrailingReturn(false), TypeQuals(0),
   2703       ExceptionSpecType(EST_None), RefQualifier(RQ_None),
   2704       NumExceptions(0), Exceptions(0), NoexceptExpr(0),
   2705       ExceptionSpecDecl(0), ExceptionSpecTemplate(0),
   2706       ConsumedArguments(0) {}
   2707 
   2708     FunctionType::ExtInfo ExtInfo;
   2709     bool Variadic : 1;
   2710     bool HasTrailingReturn : 1;
   2711     unsigned char TypeQuals;
   2712     ExceptionSpecificationType ExceptionSpecType;
   2713     RefQualifierKind RefQualifier;
   2714     unsigned NumExceptions;
   2715     const QualType *Exceptions;
   2716     Expr *NoexceptExpr;
   2717     FunctionDecl *ExceptionSpecDecl;
   2718     FunctionDecl *ExceptionSpecTemplate;
   2719     const bool *ConsumedArguments;
   2720   };
   2721 
   2722 private:
   2723   /// \brief Determine whether there are any argument types that
   2724   /// contain an unexpanded parameter pack.
   2725   static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
   2726                                                  unsigned numArgs) {
   2727     for (unsigned Idx = 0; Idx < numArgs; ++Idx)
   2728       if (ArgArray[Idx]->containsUnexpandedParameterPack())
   2729         return true;
   2730 
   2731     return false;
   2732   }
   2733 
   2734   FunctionProtoType(QualType result, const QualType *args, unsigned numArgs,
   2735                     QualType canonical, const ExtProtoInfo &epi);
   2736 
   2737   /// NumArgs - The number of arguments this function has, not counting '...'.
   2738   unsigned NumArgs : 17;
   2739 
   2740   /// NumExceptions - The number of types in the exception spec, if any.
   2741   unsigned NumExceptions : 9;
   2742 
   2743   /// ExceptionSpecType - The type of exception specification this function has.
   2744   unsigned ExceptionSpecType : 3;
   2745 
   2746   /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
   2747   unsigned HasAnyConsumedArgs : 1;
   2748 
   2749   /// Variadic - Whether the function is variadic.
   2750   unsigned Variadic : 1;
   2751 
   2752   /// HasTrailingReturn - Whether this function has a trailing return type.
   2753   unsigned HasTrailingReturn : 1;
   2754 
   2755   // ArgInfo - There is an variable size array after the class in memory that
   2756   // holds the argument types.
   2757 
   2758   // Exceptions - There is another variable size array after ArgInfo that
   2759   // holds the exception types.
   2760 
   2761   // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
   2762   // to the expression in the noexcept() specifier.
   2763 
   2764   // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
   2765   // be a pair of FunctionDecl* pointing to the function which should be used to
   2766   // instantiate this function type's exception specification, and the function
   2767   // from which it should be instantiated.
   2768 
   2769   // ConsumedArgs - A variable size array, following Exceptions
   2770   // and of length NumArgs, holding flags indicating which arguments
   2771   // are consumed.  This only appears if HasAnyConsumedArgs is true.
   2772 
   2773   friend class ASTContext;  // ASTContext creates these.
   2774 
   2775   const bool *getConsumedArgsBuffer() const {
   2776     assert(hasAnyConsumedArgs());
   2777 
   2778     // Find the end of the exceptions.
   2779     Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
   2780     if (getExceptionSpecType() != EST_ComputedNoexcept)
   2781       eh_end += NumExceptions;
   2782     else
   2783       eh_end += 1; // NoexceptExpr
   2784 
   2785     return reinterpret_cast<const bool*>(eh_end);
   2786   }
   2787 
   2788 public:
   2789   unsigned getNumArgs() const { return NumArgs; }
   2790   QualType getArgType(unsigned i) const {
   2791     assert(i < NumArgs && "Invalid argument number!");
   2792     return arg_type_begin()[i];
   2793   }
   2794 
   2795   ExtProtoInfo getExtProtoInfo() const {
   2796     ExtProtoInfo EPI;
   2797     EPI.ExtInfo = getExtInfo();
   2798     EPI.Variadic = isVariadic();
   2799     EPI.HasTrailingReturn = hasTrailingReturn();
   2800     EPI.ExceptionSpecType = getExceptionSpecType();
   2801     EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
   2802     EPI.RefQualifier = getRefQualifier();
   2803     if (EPI.ExceptionSpecType == EST_Dynamic) {
   2804       EPI.NumExceptions = NumExceptions;
   2805       EPI.Exceptions = exception_begin();
   2806     } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
   2807       EPI.NoexceptExpr = getNoexceptExpr();
   2808     } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
   2809       EPI.ExceptionSpecDecl = getExceptionSpecDecl();
   2810       EPI.ExceptionSpecTemplate = getExceptionSpecTemplate();
   2811     }
   2812     if (hasAnyConsumedArgs())
   2813       EPI.ConsumedArguments = getConsumedArgsBuffer();
   2814     return EPI;
   2815   }
   2816 
   2817   /// \brief Get the kind of exception specification on this function.
   2818   ExceptionSpecificationType getExceptionSpecType() const {
   2819     return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
   2820   }
   2821   /// \brief Return whether this function has any kind of exception spec.
   2822   bool hasExceptionSpec() const {
   2823     return getExceptionSpecType() != EST_None;
   2824   }
   2825   /// \brief Return whether this function has a dynamic (throw) exception spec.
   2826   bool hasDynamicExceptionSpec() const {
   2827     return isDynamicExceptionSpec(getExceptionSpecType());
   2828   }
   2829   /// \brief Return whether this function has a noexcept exception spec.
   2830   bool hasNoexceptExceptionSpec() const {
   2831     return isNoexceptExceptionSpec(getExceptionSpecType());
   2832   }
   2833   /// \brief Result type of getNoexceptSpec().
   2834   enum NoexceptResult {
   2835     NR_NoNoexcept,  ///< There is no noexcept specifier.
   2836     NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
   2837     NR_Dependent,   ///< The noexcept specifier is dependent.
   2838     NR_Throw,       ///< The noexcept specifier evaluates to false.
   2839     NR_Nothrow      ///< The noexcept specifier evaluates to true.
   2840   };
   2841   /// \brief Get the meaning of the noexcept spec on this function, if any.
   2842   NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
   2843   unsigned getNumExceptions() const { return NumExceptions; }
   2844   QualType getExceptionType(unsigned i) const {
   2845     assert(i < NumExceptions && "Invalid exception number!");
   2846     return exception_begin()[i];
   2847   }
   2848   Expr *getNoexceptExpr() const {
   2849     if (getExceptionSpecType() != EST_ComputedNoexcept)
   2850       return 0;
   2851     // NoexceptExpr sits where the arguments end.
   2852     return *reinterpret_cast<Expr *const *>(arg_type_end());
   2853   }
   2854   /// \brief If this function type has an uninstantiated exception
   2855   /// specification, this is the function whose exception specification
   2856   /// is represented by this type.
   2857   FunctionDecl *getExceptionSpecDecl() const {
   2858     if (getExceptionSpecType() != EST_Uninstantiated)
   2859       return 0;
   2860     return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[0];
   2861   }
   2862   /// \brief If this function type has an uninstantiated exception
   2863   /// specification, this is the function whose exception specification
   2864   /// should be instantiated to find the exception specification for
   2865   /// this type.
   2866   FunctionDecl *getExceptionSpecTemplate() const {
   2867     if (getExceptionSpecType() != EST_Uninstantiated)
   2868       return 0;
   2869     return reinterpret_cast<FunctionDecl * const *>(arg_type_end())[1];
   2870   }
   2871   bool isNothrow(ASTContext &Ctx) const {
   2872     ExceptionSpecificationType EST = getExceptionSpecType();
   2873     assert(EST != EST_Delayed && EST != EST_Uninstantiated);
   2874     if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
   2875       return true;
   2876     if (EST != EST_ComputedNoexcept)
   2877       return false;
   2878     return getNoexceptSpec(Ctx) == NR_Nothrow;
   2879   }
   2880 
   2881   bool isVariadic() const { return Variadic; }
   2882 
   2883   /// \brief Determines whether this function prototype contains a
   2884   /// parameter pack at the end.
   2885   ///
   2886   /// A function template whose last parameter is a parameter pack can be
   2887   /// called with an arbitrary number of arguments, much like a variadic
   2888   /// function.
   2889   bool isTemplateVariadic() const;
   2890 
   2891   bool hasTrailingReturn() const { return HasTrailingReturn; }
   2892 
   2893   unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
   2894 
   2895 
   2896   /// \brief Retrieve the ref-qualifier associated with this function type.
   2897   RefQualifierKind getRefQualifier() const {
   2898     return FunctionType::getRefQualifier();
   2899   }
   2900 
   2901   typedef const QualType *arg_type_iterator;
   2902   arg_type_iterator arg_type_begin() const {
   2903     return reinterpret_cast<const QualType *>(this+1);
   2904   }
   2905   arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
   2906 
   2907   typedef const QualType *exception_iterator;
   2908   exception_iterator exception_begin() const {
   2909     // exceptions begin where arguments end
   2910     return arg_type_end();
   2911   }
   2912   exception_iterator exception_end() const {
   2913     if (getExceptionSpecType() != EST_Dynamic)
   2914       return exception_begin();
   2915     return exception_begin() + NumExceptions;
   2916   }
   2917 
   2918   bool hasAnyConsumedArgs() const {
   2919     return HasAnyConsumedArgs;
   2920   }
   2921   bool isArgConsumed(unsigned I) const {
   2922     assert(I < getNumArgs() && "argument index out of range!");
   2923     if (hasAnyConsumedArgs())
   2924       return getConsumedArgsBuffer()[I];
   2925     return false;
   2926   }
   2927 
   2928   bool isSugared() const { return false; }
   2929   QualType desugar() const { return QualType(this, 0); }
   2930 
   2931   void printExceptionSpecification(std::string &S,
   2932                                    PrintingPolicy Policy) const;
   2933 
   2934   static bool classof(const Type *T) {
   2935     return T->getTypeClass() == FunctionProto;
   2936   }
   2937   static bool classof(const FunctionProtoType *) { return true; }
   2938 
   2939   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
   2940   static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
   2941                       arg_type_iterator ArgTys, unsigned NumArgs,
   2942                       const ExtProtoInfo &EPI, const ASTContext &Context);
   2943 };
   2944 
   2945 
   2946 /// \brief Represents the dependent type named by a dependently-scoped
   2947 /// typename using declaration, e.g.
   2948 ///   using typename Base<T>::foo;
   2949 /// Template instantiation turns these into the underlying type.
   2950 class UnresolvedUsingType : public Type {
   2951   UnresolvedUsingTypenameDecl *Decl;
   2952 
   2953   UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
   2954     : Type(UnresolvedUsing, QualType(), true, true, false,
   2955            /*ContainsUnexpandedParameterPack=*/false),
   2956       Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
   2957   friend class ASTContext; // ASTContext creates these.
   2958 public:
   2959 
   2960   UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
   2961 
   2962   bool isSugared() const { return false; }
   2963   QualType desugar() const { return QualType(this, 0); }
   2964 
   2965   static bool classof(const Type *T) {
   2966     return T->getTypeClass() == UnresolvedUsing;
   2967   }
   2968   static bool classof(const UnresolvedUsingType *) { return true; }
   2969 
   2970   void Profile(llvm::FoldingSetNodeID &ID) {
   2971     return Profile(ID, Decl);
   2972   }
   2973   static void Profile(llvm::FoldingSetNodeID &ID,
   2974                       UnresolvedUsingTypenameDecl *D) {
   2975     ID.AddPointer(D);
   2976   }
   2977 };
   2978 
   2979 
   2980 class TypedefType : public Type {
   2981   TypedefNameDecl *Decl;
   2982 protected:
   2983   TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
   2984     : Type(tc, can, can->isDependentType(),
   2985            can->isInstantiationDependentType(),
   2986            can->isVariablyModifiedType(),
   2987            /*ContainsUnexpandedParameterPack=*/false),
   2988       Decl(const_cast<TypedefNameDecl*>(D)) {
   2989     assert(!isa<TypedefType>(can) && "Invalid canonical type");
   2990   }
   2991   friend class ASTContext;  // ASTContext creates these.
   2992 public:
   2993 
   2994   TypedefNameDecl *getDecl() const { return Decl; }
   2995 
   2996   bool isSugared() const { return true; }
   2997   QualType desugar() const;
   2998 
   2999   static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
   3000   static bool classof(const TypedefType *) { return true; }
   3001 };
   3002 
   3003 /// TypeOfExprType (GCC extension).
   3004 class TypeOfExprType : public Type {
   3005   Expr *TOExpr;
   3006 
   3007 protected:
   3008   TypeOfExprType(Expr *E, QualType can = QualType());
   3009   friend class ASTContext;  // ASTContext creates these.
   3010 public:
   3011   Expr *getUnderlyingExpr() const { return TOExpr; }
   3012 
   3013   /// \brief Remove a single level of sugar.
   3014   QualType desugar() const;
   3015 
   3016   /// \brief Returns whether this type directly provides sugar.
   3017   bool isSugared() const;
   3018 
   3019   static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
   3020   static bool classof(const TypeOfExprType *) { return true; }
   3021 };
   3022 
   3023 /// \brief Internal representation of canonical, dependent
   3024 /// typeof(expr) types.
   3025 ///
   3026 /// This class is used internally by the ASTContext to manage
   3027 /// canonical, dependent types, only. Clients will only see instances
   3028 /// of this class via TypeOfExprType nodes.
   3029 class DependentTypeOfExprType
   3030   : public TypeOfExprType, public llvm::FoldingSetNode {
   3031   const ASTContext &Context;
   3032 
   3033 public:
   3034   DependentTypeOfExprType(const ASTContext &Context, Expr *E)
   3035     : TypeOfExprType(E), Context(Context) { }
   3036 
   3037   void Profile(llvm::FoldingSetNodeID &ID) {
   3038     Profile(ID, Context, getUnderlyingExpr());
   3039   }
   3040 
   3041   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   3042                       Expr *E);
   3043 };
   3044 
   3045 /// TypeOfType (GCC extension).
   3046 class TypeOfType : public Type {
   3047   QualType TOType;
   3048   TypeOfType(QualType T, QualType can)
   3049     : Type(TypeOf, can, T->isDependentType(),
   3050            T->isInstantiationDependentType(),
   3051            T->isVariablyModifiedType(),
   3052            T->containsUnexpandedParameterPack()),
   3053       TOType(T) {
   3054     assert(!isa<TypedefType>(can) && "Invalid canonical type");
   3055   }
   3056   friend class ASTContext;  // ASTContext creates these.
   3057 public:
   3058   QualType getUnderlyingType() const { return TOType; }
   3059 
   3060   /// \brief Remove a single level of sugar.
   3061   QualType desugar() const { return getUnderlyingType(); }
   3062 
   3063   /// \brief Returns whether this type directly provides sugar.
   3064   bool isSugared() const { return true; }
   3065 
   3066   static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
   3067   static bool classof(const TypeOfType *) { return true; }
   3068 };
   3069 
   3070 /// DecltypeType (C++0x)
   3071 class DecltypeType : public Type {
   3072   Expr *E;
   3073   QualType UnderlyingType;
   3074 
   3075 protected:
   3076   DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
   3077   friend class ASTContext;  // ASTContext creates these.
   3078 public:
   3079   Expr *getUnderlyingExpr() const { return E; }
   3080   QualType getUnderlyingType() const { return UnderlyingType; }
   3081 
   3082   /// \brief Remove a single level of sugar.
   3083   QualType desugar() const;
   3084 
   3085   /// \brief Returns whether this type directly provides sugar.
   3086   bool isSugared() const;
   3087 
   3088   static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
   3089   static bool classof(const DecltypeType *) { return true; }
   3090 };
   3091 
   3092 /// \brief Internal representation of canonical, dependent
   3093 /// decltype(expr) types.
   3094 ///
   3095 /// This class is used internally by the ASTContext to manage
   3096 /// canonical, dependent types, only. Clients will only see instances
   3097 /// of this class via DecltypeType nodes.
   3098 class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
   3099   const ASTContext &Context;
   3100 
   3101 public:
   3102   DependentDecltypeType(const ASTContext &Context, Expr *E);
   3103 
   3104   void Profile(llvm::FoldingSetNodeID &ID) {
   3105     Profile(ID, Context, getUnderlyingExpr());
   3106   }
   3107 
   3108   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   3109                       Expr *E);
   3110 };
   3111 
   3112 /// \brief A unary type transform, which is a type constructed from another
   3113 class UnaryTransformType : public Type {
   3114 public:
   3115   enum UTTKind {
   3116     EnumUnderlyingType
   3117   };
   3118 
   3119 private:
   3120   /// The untransformed type.
   3121   QualType BaseType;
   3122   /// The transformed type if not dependent, otherwise the same as BaseType.
   3123   QualType UnderlyingType;
   3124 
   3125   UTTKind UKind;
   3126 protected:
   3127   UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
   3128                      QualType CanonicalTy);
   3129   friend class ASTContext;
   3130 public:
   3131   bool isSugared() const { return !isDependentType(); }
   3132   QualType desugar() const { return UnderlyingType; }
   3133 
   3134   QualType getUnderlyingType() const { return UnderlyingType; }
   3135   QualType getBaseType() const { return BaseType; }
   3136 
   3137   UTTKind getUTTKind() const { return UKind; }
   3138 
   3139   static bool classof(const Type *T) {
   3140     return T->getTypeClass() == UnaryTransform;
   3141   }
   3142   static bool classof(const UnaryTransformType *) { return true; }
   3143 };
   3144 
   3145 class TagType : public Type {
   3146   /// Stores the TagDecl associated with this type. The decl may point to any
   3147   /// TagDecl that declares the entity.
   3148   TagDecl * decl;
   3149 
   3150   friend class ASTReader;
   3151 
   3152 protected:
   3153   TagType(TypeClass TC, const TagDecl *D, QualType can);
   3154 
   3155 public:
   3156   TagDecl *getDecl() const;
   3157 
   3158   /// @brief Determines whether this type is in the process of being
   3159   /// defined.
   3160   bool isBeingDefined() const;
   3161 
   3162   static bool classof(const Type *T) {
   3163     return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
   3164   }
   3165   static bool classof(const TagType *) { return true; }
   3166 };
   3167 
   3168 /// RecordType - This is a helper class that allows the use of isa/cast/dyncast
   3169 /// to detect TagType objects of structs/unions/classes.
   3170 class RecordType : public TagType {
   3171 protected:
   3172   explicit RecordType(const RecordDecl *D)
   3173     : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3174   explicit RecordType(TypeClass TC, RecordDecl *D)
   3175     : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3176   friend class ASTContext;   // ASTContext creates these.
   3177 public:
   3178 
   3179   RecordDecl *getDecl() const {
   3180     return reinterpret_cast<RecordDecl*>(TagType::getDecl());
   3181   }
   3182 
   3183   // FIXME: This predicate is a helper to QualType/Type. It needs to
   3184   // recursively check all fields for const-ness. If any field is declared
   3185   // const, it needs to return false.
   3186   bool hasConstFields() const { return false; }
   3187 
   3188   bool isSugared() const { return false; }
   3189   QualType desugar() const { return QualType(this, 0); }
   3190 
   3191   static bool classof(const Type *T) { return T->getTypeClass() == Record; }
   3192   static bool classof(const RecordType *) { return true; }
   3193 };
   3194 
   3195 /// EnumType - This is a helper class that allows the use of isa/cast/dyncast
   3196 /// to detect TagType objects of enums.
   3197 class EnumType : public TagType {
   3198   explicit EnumType(const EnumDecl *D)
   3199     : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3200   friend class ASTContext;   // ASTContext creates these.
   3201 public:
   3202 
   3203   EnumDecl *getDecl() const {
   3204     return reinterpret_cast<EnumDecl*>(TagType::getDecl());
   3205   }
   3206 
   3207   bool isSugared() const { return false; }
   3208   QualType desugar() const { return QualType(this, 0); }
   3209 
   3210   static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
   3211   static bool classof(const EnumType *) { return true; }
   3212 };
   3213 
   3214 /// AttributedType - An attributed type is a type to which a type
   3215 /// attribute has been applied.  The "modified type" is the
   3216 /// fully-sugared type to which the attributed type was applied;
   3217 /// generally it is not canonically equivalent to the attributed type.
   3218 /// The "equivalent type" is the minimally-desugared type which the
   3219 /// type is canonically equivalent to.
   3220 ///
   3221 /// For example, in the following attributed type:
   3222 ///     int32_t __attribute__((vector_size(16)))
   3223 ///   - the modified type is the TypedefType for int32_t
   3224 ///   - the equivalent type is VectorType(16, int32_t)
   3225 ///   - the canonical type is VectorType(16, int)
   3226 class AttributedType : public Type, public llvm::FoldingSetNode {
   3227 public:
   3228   // It is really silly to have yet another attribute-kind enum, but
   3229   // clang::attr::Kind doesn't currently cover the pure type attrs.
   3230   enum Kind {
   3231     // Expression operand.
   3232     attr_address_space,
   3233     attr_regparm,
   3234     attr_vector_size,
   3235     attr_neon_vector_type,
   3236     attr_neon_polyvector_type,
   3237 
   3238     FirstExprOperandKind = attr_address_space,
   3239     LastExprOperandKind = attr_neon_polyvector_type,
   3240 
   3241     // Enumerated operand (string or keyword).
   3242     attr_objc_gc,
   3243     attr_objc_ownership,
   3244     attr_pcs,
   3245 
   3246     FirstEnumOperandKind = attr_objc_gc,
   3247     LastEnumOperandKind = attr_pcs,
   3248 
   3249     // No operand.
   3250     attr_noreturn,
   3251     attr_cdecl,
   3252     attr_fastcall,
   3253     attr_stdcall,
   3254     attr_thiscall,
   3255     attr_pascal
   3256   };
   3257 
   3258 private:
   3259   QualType ModifiedType;
   3260   QualType EquivalentType;
   3261 
   3262   friend class ASTContext; // creates these
   3263 
   3264   AttributedType(QualType canon, Kind attrKind,
   3265                  QualType modified, QualType equivalent)
   3266     : Type(Attributed, canon, canon->isDependentType(),
   3267            canon->isInstantiationDependentType(),
   3268            canon->isVariablyModifiedType(),
   3269            canon->containsUnexpandedParameterPack()),
   3270       ModifiedType(modified), EquivalentType(equivalent) {
   3271     AttributedTypeBits.AttrKind = attrKind;
   3272   }
   3273 
   3274 public:
   3275   Kind getAttrKind() const {
   3276     return static_cast<Kind>(AttributedTypeBits.AttrKind);
   3277   }
   3278 
   3279   QualType getModifiedType() const { return ModifiedType; }
   3280   QualType getEquivalentType() const { return EquivalentType; }
   3281 
   3282   bool isSugared() const { return true; }
   3283   QualType desugar() const { return getEquivalentType(); }
   3284 
   3285   void Profile(llvm::FoldingSetNodeID &ID) {
   3286     Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
   3287   }
   3288 
   3289   static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
   3290                       QualType modified, QualType equivalent) {
   3291     ID.AddInteger(attrKind);
   3292     ID.AddPointer(modified.getAsOpaquePtr());
   3293     ID.AddPointer(equivalent.getAsOpaquePtr());
   3294   }
   3295 
   3296   static bool classof(const Type *T) {
   3297     return T->getTypeClass() == Attributed;
   3298   }
   3299   static bool classof(const AttributedType *T) { return true; }
   3300 };
   3301 
   3302 class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
   3303   // Helper data collector for canonical types.
   3304   struct CanonicalTTPTInfo {
   3305     unsigned Depth : 15;
   3306     unsigned ParameterPack : 1;
   3307     unsigned Index : 16;
   3308   };
   3309 
   3310   union {
   3311     // Info for the canonical type.
   3312     CanonicalTTPTInfo CanTTPTInfo;
   3313     // Info for the non-canonical type.
   3314     TemplateTypeParmDecl *TTPDecl;
   3315   };
   3316 
   3317   /// Build a non-canonical type.
   3318   TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
   3319     : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
   3320            /*InstantiationDependent=*/true,
   3321            /*VariablyModified=*/false,
   3322            Canon->containsUnexpandedParameterPack()),
   3323       TTPDecl(TTPDecl) { }
   3324 
   3325   /// Build the canonical type.
   3326   TemplateTypeParmType(unsigned D, unsigned I, bool PP)
   3327     : Type(TemplateTypeParm, QualType(this, 0),
   3328            /*Dependent=*/true,
   3329            /*InstantiationDependent=*/true,
   3330            /*VariablyModified=*/false, PP) {
   3331     CanTTPTInfo.Depth = D;
   3332     CanTTPTInfo.Index = I;
   3333     CanTTPTInfo.ParameterPack = PP;
   3334   }
   3335 
   3336   friend class ASTContext;  // ASTContext creates these
   3337 
   3338   const CanonicalTTPTInfo& getCanTTPTInfo() const {
   3339     QualType Can = getCanonicalTypeInternal();
   3340     return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
   3341   }
   3342 
   3343 public:
   3344   unsigned getDepth() const { return getCanTTPTInfo().Depth; }
   3345   unsigned getIndex() const { return getCanTTPTInfo().Index; }
   3346   bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
   3347 
   3348   TemplateTypeParmDecl *getDecl() const {
   3349     return isCanonicalUnqualified() ? 0 : TTPDecl;
   3350   }
   3351 
   3352   IdentifierInfo *getIdentifier() const;
   3353 
   3354   bool isSugared() const { return false; }
   3355   QualType desugar() const { return QualType(this, 0); }
   3356 
   3357   void Profile(llvm::FoldingSetNodeID &ID) {
   3358     Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
   3359   }
   3360 
   3361   static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
   3362                       unsigned Index, bool ParameterPack,
   3363                       TemplateTypeParmDecl *TTPDecl) {
   3364     ID.AddInteger(Depth);
   3365     ID.AddInteger(Index);
   3366     ID.AddBoolean(ParameterPack);
   3367     ID.AddPointer(TTPDecl);
   3368   }
   3369 
   3370   static bool classof(const Type *T) {
   3371     return T->getTypeClass() == TemplateTypeParm;
   3372   }
   3373   static bool classof(const TemplateTypeParmType *T) { return true; }
   3374 };
   3375 
   3376 /// \brief Represents the result of substituting a type for a template
   3377 /// type parameter.
   3378 ///
   3379 /// Within an instantiated template, all template type parameters have
   3380 /// been replaced with these.  They are used solely to record that a
   3381 /// type was originally written as a template type parameter;
   3382 /// therefore they are never canonical.
   3383 class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
   3384   // The original type parameter.
   3385   const TemplateTypeParmType *Replaced;
   3386 
   3387   SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
   3388     : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
   3389            Canon->isInstantiationDependentType(),
   3390            Canon->isVariablyModifiedType(),
   3391            Canon->containsUnexpandedParameterPack()),
   3392       Replaced(Param) { }
   3393 
   3394   friend class ASTContext;
   3395 
   3396 public:
   3397   /// Gets the template parameter that was substituted for.
   3398   const TemplateTypeParmType *getReplacedParameter() const {
   3399     return Replaced;
   3400   }
   3401 
   3402   /// Gets the type that was substituted for the template
   3403   /// parameter.
   3404   QualType getReplacementType() const {
   3405     return getCanonicalTypeInternal();
   3406   }
   3407 
   3408   bool isSugared() const { return true; }
   3409   QualType desugar() const { return getReplacementType(); }
   3410 
   3411   void Profile(llvm::FoldingSetNodeID &ID) {
   3412     Profile(ID, getReplacedParameter(), getReplacementType());
   3413   }
   3414   static void Profile(llvm::FoldingSetNodeID &ID,
   3415                       const TemplateTypeParmType *Replaced,
   3416                       QualType Replacement) {
   3417     ID.AddPointer(Replaced);
   3418     ID.AddPointer(Replacement.getAsOpaquePtr());
   3419   }
   3420 
   3421   static bool classof(const Type *T) {
   3422     return T->getTypeClass() == SubstTemplateTypeParm;
   3423   }
   3424   static bool classof(const SubstTemplateTypeParmType *T) { return true; }
   3425 };
   3426 
   3427 /// \brief Represents the result of substituting a set of types for a template
   3428 /// type parameter pack.
   3429 ///
   3430 /// When a pack expansion in the source code contains multiple parameter packs
   3431 /// and those parameter packs correspond to different levels of template
   3432 /// parameter lists, this type node is used to represent a template type
   3433 /// parameter pack from an outer level, which has already had its argument pack
   3434 /// substituted but that still lives within a pack expansion that itself
   3435 /// could not be instantiated. When actually performing a substitution into
   3436 /// that pack expansion (e.g., when all template parameters have corresponding
   3437 /// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
   3438 /// at the current pack substitution index.
   3439 class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
   3440   /// \brief The original type parameter.
   3441   const TemplateTypeParmType *Replaced;
   3442 
   3443   /// \brief A pointer to the set of template arguments that this
   3444   /// parameter pack is instantiated with.
   3445   const TemplateArgument *Arguments;
   3446 
   3447   /// \brief The number of template arguments in \c Arguments.
   3448   unsigned NumArguments;
   3449 
   3450   SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
   3451                                 QualType Canon,
   3452                                 const TemplateArgument &ArgPack);
   3453 
   3454   friend class ASTContext;
   3455 
   3456 public:
   3457   IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
   3458 
   3459   /// Gets the template parameter that was substituted for.
   3460   const TemplateTypeParmType *getReplacedParameter() const {
   3461     return Replaced;
   3462   }
   3463 
   3464   bool isSugared() const { return false; }
   3465   QualType desugar() const { return QualType(this, 0); }
   3466 
   3467   TemplateArgument getArgumentPack() const;
   3468 
   3469   void Profile(llvm::FoldingSetNodeID &ID);
   3470   static void Profile(llvm::FoldingSetNodeID &ID,
   3471                       const TemplateTypeParmType *Replaced,
   3472                       const TemplateArgument &ArgPack);
   3473 
   3474   static bool classof(const Type *T) {
   3475     return T->getTypeClass() == SubstTemplateTypeParmPack;
   3476   }
   3477   static bool classof(const SubstTemplateTypeParmPackType *T) { return true; }
   3478 };
   3479 
   3480 /// \brief Represents a C++0x auto type.
   3481 ///
   3482 /// These types are usually a placeholder for a deduced type. However, within
   3483 /// templates and before the initializer is attached, there is no deduced type
   3484 /// and an auto type is type-dependent and canonical.
   3485 class AutoType : public Type, public llvm::FoldingSetNode {
   3486   AutoType(QualType DeducedType)
   3487     : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
   3488            /*Dependent=*/DeducedType.isNull(),
   3489            /*InstantiationDependent=*/DeducedType.isNull(),
   3490            /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
   3491     assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
   3492            "deduced a dependent type for auto");
   3493   }
   3494 
   3495   friend class ASTContext;  // ASTContext creates these
   3496 
   3497 public:
   3498   bool isSugared() const { return isDeduced(); }
   3499   QualType desugar() const { return getCanonicalTypeInternal(); }
   3500 
   3501   QualType getDeducedType() const {
   3502     return isDeduced() ? getCanonicalTypeInternal() : QualType();
   3503   }
   3504   bool isDeduced() const {
   3505     return !isDependentType();
   3506   }
   3507 
   3508   void Profile(llvm::FoldingSetNodeID &ID) {
   3509     Profile(ID, getDeducedType());
   3510   }
   3511 
   3512   static void Profile(llvm::FoldingSetNodeID &ID,
   3513                       QualType Deduced) {
   3514     ID.AddPointer(Deduced.getAsOpaquePtr());
   3515   }
   3516 
   3517   static bool classof(const Type *T) {
   3518     return T->getTypeClass() == Auto;
   3519   }
   3520   static bool classof(const AutoType *T) { return true; }
   3521 };
   3522 
   3523 /// \brief Represents a type template specialization; the template
   3524 /// must be a class template, a type alias template, or a template
   3525 /// template parameter.  A template which cannot be resolved to one of
   3526 /// these, e.g. because it is written with a dependent scope
   3527 /// specifier, is instead represented as a
   3528 /// @c DependentTemplateSpecializationType.
   3529 ///
   3530 /// A non-dependent template specialization type is always "sugar",
   3531 /// typically for a @c RecordType.  For example, a class template
   3532 /// specialization type of @c vector<int> will refer to a tag type for
   3533 /// the instantiation @c std::vector<int, std::allocator<int>>
   3534 ///
   3535 /// Template specializations are dependent if either the template or
   3536 /// any of the template arguments are dependent, in which case the
   3537 /// type may also be canonical.
   3538 ///
   3539 /// Instances of this type are allocated with a trailing array of
   3540 /// TemplateArguments, followed by a QualType representing the
   3541 /// non-canonical aliased type when the template is a type alias
   3542 /// template.
   3543 class TemplateSpecializationType
   3544   : public Type, public llvm::FoldingSetNode {
   3545   /// \brief The name of the template being specialized.  This is
   3546   /// either a TemplateName::Template (in which case it is a
   3547   /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
   3548   /// TypeAliasTemplateDecl*), a
   3549   /// TemplateName::SubstTemplateTemplateParmPack, or a
   3550   /// TemplateName::SubstTemplateTemplateParm (in which case the
   3551   /// replacement must, recursively, be one of these).
   3552   TemplateName Template;
   3553 
   3554   /// \brief - The number of template arguments named in this class
   3555   /// template specialization.
   3556   unsigned NumArgs : 31;
   3557 
   3558   /// \brief Whether this template specialization type is a substituted
   3559   /// type alias.
   3560   bool TypeAlias : 1;
   3561 
   3562   TemplateSpecializationType(TemplateName T,
   3563                              const TemplateArgument *Args,
   3564                              unsigned NumArgs, QualType Canon,
   3565                              QualType Aliased);
   3566 
   3567   friend class ASTContext;  // ASTContext creates these
   3568 
   3569 public:
   3570   /// \brief Determine whether any of the given template arguments are
   3571   /// dependent.
   3572   static bool anyDependentTemplateArguments(const TemplateArgument *Args,
   3573                                             unsigned NumArgs,
   3574                                             bool &InstantiationDependent);
   3575 
   3576   static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
   3577                                             unsigned NumArgs,
   3578                                             bool &InstantiationDependent);
   3579 
   3580   static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
   3581                                             bool &InstantiationDependent);
   3582 
   3583   /// \brief Print a template argument list, including the '<' and '>'
   3584   /// enclosing the template arguments.
   3585   static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
   3586                                                unsigned NumArgs,
   3587                                                const PrintingPolicy &Policy,
   3588                                                bool SkipBrackets = false);
   3589 
   3590   static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
   3591                                                unsigned NumArgs,
   3592                                                const PrintingPolicy &Policy);
   3593 
   3594   static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
   3595                                                const PrintingPolicy &Policy);
   3596 
   3597   /// True if this template specialization type matches a current
   3598   /// instantiation in the context in which it is found.
   3599   bool isCurrentInstantiation() const {
   3600     return isa<InjectedClassNameType>(getCanonicalTypeInternal());
   3601   }
   3602 
   3603   /// \brief Determine if this template specialization type is for a type alias
   3604   /// template that has been substituted.
   3605   ///
   3606   /// Nearly every template specialization type whose template is an alias
   3607   /// template will be substituted. However, this is not the case when
   3608   /// the specialization contains a pack expansion but the template alias
   3609   /// does not have a corresponding parameter pack, e.g.,
   3610   ///
   3611   /// \code
   3612   /// template<typename T, typename U, typename V> struct S;
   3613   /// template<typename T, typename U> using A = S<T, int, U>;
   3614   /// template<typename... Ts> struct X {
   3615   ///   typedef A<Ts...> type; // not a type alias
   3616   /// };
   3617   /// \endcode
   3618   bool isTypeAlias() const { return TypeAlias; }
   3619 
   3620   /// Get the aliased type, if this is a specialization of a type alias
   3621   /// template.
   3622   QualType getAliasedType() const {
   3623     assert(isTypeAlias() && "not a type alias template specialization");
   3624     return *reinterpret_cast<const QualType*>(end());
   3625   }
   3626 
   3627   typedef const TemplateArgument * iterator;
   3628 
   3629   iterator begin() const { return getArgs(); }
   3630   iterator end() const; // defined inline in TemplateBase.h
   3631 
   3632   /// \brief Retrieve the name of the template that we are specializing.
   3633   TemplateName getTemplateName() const { return Template; }
   3634 
   3635   /// \brief Retrieve the template arguments.
   3636   const TemplateArgument *getArgs() const {
   3637     return reinterpret_cast<const TemplateArgument *>(this + 1);
   3638   }
   3639 
   3640   /// \brief Retrieve the number of template arguments.
   3641   unsigned getNumArgs() const { return NumArgs; }
   3642 
   3643   /// \brief Retrieve a specific template argument as a type.
   3644   /// \precondition @c isArgType(Arg)
   3645   const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
   3646 
   3647   bool isSugared() const {
   3648     return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
   3649   }
   3650   QualType desugar() const { return getCanonicalTypeInternal(); }
   3651 
   3652   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
   3653     Profile(ID, Template, getArgs(), NumArgs, Ctx);
   3654     if (isTypeAlias())
   3655       getAliasedType().Profile(ID);
   3656   }
   3657 
   3658   static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
   3659                       const TemplateArgument *Args,
   3660                       unsigned NumArgs,
   3661                       const ASTContext &Context);
   3662 
   3663   static bool classof(const Type *T) {
   3664     return T->getTypeClass() == TemplateSpecialization;
   3665   }
   3666   static bool classof(const TemplateSpecializationType *T) { return true; }
   3667 };
   3668 
   3669 /// \brief The injected class name of a C++ class template or class
   3670 /// template partial specialization.  Used to record that a type was
   3671 /// spelled with a bare identifier rather than as a template-id; the
   3672 /// equivalent for non-templated classes is just RecordType.
   3673 ///
   3674 /// Injected class name types are always dependent.  Template
   3675 /// instantiation turns these into RecordTypes.
   3676 ///
   3677 /// Injected class name types are always canonical.  This works
   3678 /// because it is impossible to compare an injected class name type
   3679 /// with the corresponding non-injected template type, for the same
   3680 /// reason that it is impossible to directly compare template
   3681 /// parameters from different dependent contexts: injected class name
   3682 /// types can only occur within the scope of a particular templated
   3683 /// declaration, and within that scope every template specialization
   3684 /// will canonicalize to the injected class name (when appropriate
   3685 /// according to the rules of the language).
   3686 class InjectedClassNameType : public Type {
   3687   CXXRecordDecl *Decl;
   3688 
   3689   /// The template specialization which this type represents.
   3690   /// For example, in
   3691   ///   template <class T> class A { ... };
   3692   /// this is A<T>, whereas in
   3693   ///   template <class X, class Y> class A<B<X,Y> > { ... };
   3694   /// this is A<B<X,Y> >.
   3695   ///
   3696   /// It is always unqualified, always a template specialization type,
   3697   /// and always dependent.
   3698   QualType InjectedType;
   3699 
   3700   friend class ASTContext; // ASTContext creates these.
   3701   friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
   3702                           // currently suitable for AST reading, too much
   3703                           // interdependencies.
   3704   InjectedClassNameType(CXXRecordDecl *D, QualType TST)
   3705     : Type(InjectedClassName, QualType(), /*Dependent=*/true,
   3706            /*InstantiationDependent=*/true,
   3707            /*VariablyModified=*/false,
   3708            /*ContainsUnexpandedParameterPack=*/false),
   3709       Decl(D), InjectedType(TST) {
   3710     assert(isa<TemplateSpecializationType>(TST));
   3711     assert(!TST.hasQualifiers());
   3712     assert(TST->isDependentType());
   3713   }
   3714 
   3715 public:
   3716   QualType getInjectedSpecializationType() const { return InjectedType; }
   3717   const TemplateSpecializationType *getInjectedTST() const {
   3718     return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
   3719   }
   3720 
   3721   CXXRecordDecl *getDecl() const;
   3722 
   3723   bool isSugared() const { return false; }
   3724   QualType desugar() const { return QualType(this, 0); }
   3725 
   3726   static bool classof(const Type *T) {
   3727     return T->getTypeClass() == InjectedClassName;
   3728   }
   3729   static bool classof(const InjectedClassNameType *T) { return true; }
   3730 };
   3731 
   3732 /// \brief The kind of a tag type.
   3733 enum TagTypeKind {
   3734   /// \brief The "struct" keyword.
   3735   TTK_Struct,
   3736   /// \brief The "union" keyword.
   3737   TTK_Union,
   3738   /// \brief The "class" keyword.
   3739   TTK_Class,
   3740   /// \brief The "enum" keyword.
   3741   TTK_Enum
   3742 };
   3743 
   3744 /// \brief The elaboration keyword that precedes a qualified type name or
   3745 /// introduces an elaborated-type-specifier.
   3746 enum ElaboratedTypeKeyword {
   3747   /// \brief The "struct" keyword introduces the elaborated-type-specifier.
   3748   ETK_Struct,
   3749   /// \brief The "union" keyword introduces the elaborated-type-specifier.
   3750   ETK_Union,
   3751   /// \brief The "class" keyword introduces the elaborated-type-specifier.
   3752   ETK_Class,
   3753   /// \brief The "enum" keyword introduces the elaborated-type-specifier.
   3754   ETK_Enum,
   3755   /// \brief The "typename" keyword precedes the qualified type name, e.g.,
   3756   /// \c typename T::type.
   3757   ETK_Typename,
   3758   /// \brief No keyword precedes the qualified type name.
   3759   ETK_None
   3760 };
   3761 
   3762 /// A helper class for Type nodes having an ElaboratedTypeKeyword.
   3763 /// The keyword in stored in the free bits of the base class.
   3764 /// Also provides a few static helpers for converting and printing
   3765 /// elaborated type keyword and tag type kind enumerations.
   3766 class TypeWithKeyword : public Type {
   3767 protected:
   3768   TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
   3769                   QualType Canonical, bool Dependent,
   3770                   bool InstantiationDependent, bool VariablyModified,
   3771                   bool ContainsUnexpandedParameterPack)
   3772   : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
   3773          ContainsUnexpandedParameterPack) {
   3774     TypeWithKeywordBits.Keyword = Keyword;
   3775   }
   3776 
   3777 public:
   3778   ElaboratedTypeKeyword getKeyword() const {
   3779     return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
   3780   }
   3781 
   3782   /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
   3783   /// into an elaborated type keyword.
   3784   static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
   3785 
   3786   /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
   3787   /// into a tag type kind.  It is an error to provide a type specifier
   3788   /// which *isn't* a tag kind here.
   3789   static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
   3790 
   3791   /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
   3792   /// elaborated type keyword.
   3793   static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
   3794 
   3795   /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
   3796   // a TagTypeKind. It is an error to provide an elaborated type keyword
   3797   /// which *isn't* a tag kind here.
   3798   static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
   3799 
   3800   static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
   3801 
   3802   static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
   3803 
   3804   static const char *getTagTypeKindName(TagTypeKind Kind) {
   3805     return getKeywordName(getKeywordForTagTypeKind(Kind));
   3806   }
   3807 
   3808   class CannotCastToThisType {};
   3809   static CannotCastToThisType classof(const Type *);
   3810 };
   3811 
   3812 /// \brief Represents a type that was referred to using an elaborated type
   3813 /// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
   3814 /// or both.
   3815 ///
   3816 /// This type is used to keep track of a type name as written in the
   3817 /// source code, including tag keywords and any nested-name-specifiers.
   3818 /// The type itself is always "sugar", used to express what was written
   3819 /// in the source code but containing no additional semantic information.
   3820 class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
   3821 
   3822   /// \brief The nested name specifier containing the qualifier.
   3823   NestedNameSpecifier *NNS;
   3824 
   3825   /// \brief The type that this qualified name refers to.
   3826   QualType NamedType;
   3827 
   3828   ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
   3829                  QualType NamedType, QualType CanonType)
   3830     : TypeWithKeyword(Keyword, Elaborated, CanonType,
   3831                       NamedType->isDependentType(),
   3832                       NamedType->isInstantiationDependentType(),
   3833                       NamedType->isVariablyModifiedType(),
   3834                       NamedType->containsUnexpandedParameterPack()),
   3835       NNS(NNS), NamedType(NamedType) {
   3836     assert(!(Keyword == ETK_None && NNS == 0) &&
   3837            "ElaboratedType cannot have elaborated type keyword "
   3838            "and name qualifier both null.");
   3839   }
   3840 
   3841   friend class ASTContext;  // ASTContext creates these
   3842 
   3843 public:
   3844   ~ElaboratedType();
   3845 
   3846   /// \brief Retrieve the qualification on this type.
   3847   NestedNameSpecifier *getQualifier() const { return NNS; }
   3848 
   3849   /// \brief Retrieve the type named by the qualified-id.
   3850   QualType getNamedType() const { return NamedType; }
   3851 
   3852   /// \brief Remove a single level of sugar.
   3853   QualType desugar() const { return getNamedType(); }
   3854 
   3855   /// \brief Returns whether this type directly provides sugar.
   3856   bool isSugared() const { return true; }
   3857 
   3858   void Profile(llvm::FoldingSetNodeID &ID) {
   3859     Profile(ID, getKeyword(), NNS, NamedType);
   3860   }
   3861 
   3862   static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
   3863                       NestedNameSpecifier *NNS, QualType NamedType) {
   3864     ID.AddInteger(Keyword);
   3865     ID.AddPointer(NNS);
   3866     NamedType.Profile(ID);
   3867   }
   3868 
   3869   static bool classof(const Type *T) {
   3870     return T->getTypeClass() == Elaborated;
   3871   }
   3872   static bool classof(const ElaboratedType *T) { return true; }
   3873 };
   3874 
   3875 /// \brief Represents a qualified type name for which the type name is
   3876 /// dependent.
   3877 ///
   3878 /// DependentNameType represents a class of dependent types that involve a
   3879 /// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
   3880 /// name of a type. The DependentNameType may start with a "typename" (for a
   3881 /// typename-specifier), "class", "struct", "union", or "enum" (for a
   3882 /// dependent elaborated-type-specifier), or nothing (in contexts where we
   3883 /// know that we must be referring to a type, e.g., in a base class specifier).
   3884 class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
   3885 
   3886   /// \brief The nested name specifier containing the qualifier.
   3887   NestedNameSpecifier *NNS;
   3888 
   3889   /// \brief The type that this typename specifier refers to.
   3890   const IdentifierInfo *Name;
   3891 
   3892   DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
   3893                     const IdentifierInfo *Name, QualType CanonType)
   3894     : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
   3895                       /*InstantiationDependent=*/true,
   3896                       /*VariablyModified=*/false,
   3897                       NNS->containsUnexpandedParameterPack()),
   3898       NNS(NNS), Name(Name) {
   3899     assert(NNS->isDependent() &&
   3900            "DependentNameType requires a dependent nested-name-specifier");
   3901   }
   3902 
   3903   friend class ASTContext;  // ASTContext creates these
   3904 
   3905 public:
   3906   /// \brief Retrieve the qualification on this type.
   3907   NestedNameSpecifier *getQualifier() const { return NNS; }
   3908 
   3909   /// \brief Retrieve the type named by the typename specifier as an
   3910   /// identifier.
   3911   ///
   3912   /// This routine will return a non-NULL identifier pointer when the
   3913   /// form of the original typename was terminated by an identifier,
   3914   /// e.g., "typename T::type".
   3915   const IdentifierInfo *getIdentifier() const {
   3916     return Name;
   3917   }
   3918 
   3919   bool isSugared() const { return false; }
   3920   QualType desugar() const { return QualType(this, 0); }
   3921 
   3922   void Profile(llvm::FoldingSetNodeID &ID) {
   3923     Profile(ID, getKeyword(), NNS, Name);
   3924   }
   3925 
   3926   static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
   3927                       NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
   3928     ID.AddInteger(Keyword);
   3929     ID.AddPointer(NNS);
   3930     ID.AddPointer(Name);
   3931   }
   3932 
   3933   static bool classof(const Type *T) {
   3934     return T->getTypeClass() == DependentName;
   3935   }
   3936   static bool classof(const DependentNameType *T) { return true; }
   3937 };
   3938 
   3939 /// DependentTemplateSpecializationType - Represents a template
   3940 /// specialization type whose template cannot be resolved, e.g.
   3941 ///   A<T>::template B<T>
   3942 class DependentTemplateSpecializationType :
   3943   public TypeWithKeyword, public llvm::FoldingSetNode {
   3944 
   3945   /// \brief The nested name specifier containing the qualifier.
   3946   NestedNameSpecifier *NNS;
   3947 
   3948   /// \brief The identifier of the template.
   3949   const IdentifierInfo *Name;
   3950 
   3951   /// \brief - The number of template arguments named in this class
   3952   /// template specialization.
   3953   unsigned NumArgs;
   3954 
   3955   const TemplateArgument *getArgBuffer() const {
   3956     return reinterpret_cast<const TemplateArgument*>(this+1);
   3957   }
   3958   TemplateArgument *getArgBuffer() {
   3959     return reinterpret_cast<TemplateArgument*>(this+1);
   3960   }
   3961 
   3962   DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
   3963                                       NestedNameSpecifier *NNS,
   3964                                       const IdentifierInfo *Name,
   3965                                       unsigned NumArgs,
   3966                                       const TemplateArgument *Args,
   3967                                       QualType Canon);
   3968 
   3969   friend class ASTContext;  // ASTContext creates these
   3970 
   3971 public:
   3972   NestedNameSpecifier *getQualifier() const { return NNS; }
   3973   const IdentifierInfo *getIdentifier() const { return Name; }
   3974 
   3975   /// \brief Retrieve the template arguments.
   3976   const TemplateArgument *getArgs() const {
   3977     return getArgBuffer();
   3978   }
   3979 
   3980   /// \brief Retrieve the number of template arguments.
   3981   unsigned getNumArgs() const { return NumArgs; }
   3982 
   3983   const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
   3984 
   3985   typedef const TemplateArgument * iterator;
   3986   iterator begin() const { return getArgs(); }
   3987   iterator end() const; // inline in TemplateBase.h
   3988 
   3989   bool isSugared() const { return false; }
   3990   QualType desugar() const { return QualType(this, 0); }
   3991 
   3992   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
   3993     Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
   3994   }
   3995 
   3996   static void Profile(llvm::FoldingSetNodeID &ID,
   3997                       const ASTContext &Context,
   3998                       ElaboratedTypeKeyword Keyword,
   3999                       NestedNameSpecifier *Qualifier,
   4000                       const IdentifierInfo *Name,
   4001                       unsigned NumArgs,
   4002                       const TemplateArgument *Args);
   4003 
   4004   static bool classof(const Type *T) {
   4005     return T->getTypeClass() == DependentTemplateSpecialization;
   4006   }
   4007   static bool classof(const DependentTemplateSpecializationType *T) {
   4008     return true;
   4009   }
   4010 };
   4011 
   4012 /// \brief Represents a pack expansion of types.
   4013 ///
   4014 /// Pack expansions are part of C++0x variadic templates. A pack
   4015 /// expansion contains a pattern, which itself contains one or more
   4016 /// "unexpanded" parameter packs. When instantiated, a pack expansion
   4017 /// produces a series of types, each instantiated from the pattern of
   4018 /// the expansion, where the Ith instantiation of the pattern uses the
   4019 /// Ith arguments bound to each of the unexpanded parameter packs. The
   4020 /// pack expansion is considered to "expand" these unexpanded
   4021 /// parameter packs.
   4022 ///
   4023 /// \code
   4024 /// template<typename ...Types> struct tuple;
   4025 ///
   4026 /// template<typename ...Types>
   4027 /// struct tuple_of_references {
   4028 ///   typedef tuple<Types&...> type;
   4029 /// };
   4030 /// \endcode
   4031 ///
   4032 /// Here, the pack expansion \c Types&... is represented via a
   4033 /// PackExpansionType whose pattern is Types&.
   4034 class PackExpansionType : public Type, public llvm::FoldingSetNode {
   4035   /// \brief The pattern of the pack expansion.
   4036   QualType Pattern;
   4037 
   4038   /// \brief The number of expansions that this pack expansion will
   4039   /// generate when substituted (+1), or indicates that
   4040   ///
   4041   /// This field will only have a non-zero value when some of the parameter
   4042   /// packs that occur within the pattern have been substituted but others have
   4043   /// not.
   4044   unsigned NumExpansions;
   4045 
   4046   PackExpansionType(QualType Pattern, QualType Canon,
   4047                     llvm::Optional<unsigned> NumExpansions)
   4048     : Type(PackExpansion, Canon, /*Dependent=*/true,
   4049            /*InstantiationDependent=*/true,
   4050            /*VariableModified=*/Pattern->isVariablyModifiedType(),
   4051            /*ContainsUnexpandedParameterPack=*/false),
   4052       Pattern(Pattern),
   4053       NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
   4054 
   4055   friend class ASTContext;  // ASTContext creates these
   4056 
   4057 public:
   4058   /// \brief Retrieve the pattern of this pack expansion, which is the
   4059   /// type that will be repeatedly instantiated when instantiating the
   4060   /// pack expansion itself.
   4061   QualType getPattern() const { return Pattern; }
   4062 
   4063   /// \brief Retrieve the number of expansions that this pack expansion will
   4064   /// generate, if known.
   4065   llvm::Optional<unsigned> getNumExpansions() const {
   4066     if (NumExpansions)
   4067       return NumExpansions - 1;
   4068 
   4069     return llvm::Optional<unsigned>();
   4070   }
   4071 
   4072   bool isSugared() const { return false; }
   4073   QualType desugar() const { return QualType(this, 0); }
   4074 
   4075   void Profile(llvm::FoldingSetNodeID &ID) {
   4076     Profile(ID, getPattern(), getNumExpansions());
   4077   }
   4078 
   4079   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
   4080                       llvm::Optional<unsigned> NumExpansions) {
   4081     ID.AddPointer(Pattern.getAsOpaquePtr());
   4082     ID.AddBoolean(NumExpansions);
   4083     if (NumExpansions)
   4084       ID.AddInteger(*NumExpansions);
   4085   }
   4086 
   4087   static bool classof(const Type *T) {
   4088     return T->getTypeClass() == PackExpansion;
   4089   }
   4090   static bool classof(const PackExpansionType *T) {
   4091     return true;
   4092   }
   4093 };
   4094 
   4095 /// ObjCObjectType - Represents a class type in Objective C.
   4096 /// Every Objective C type is a combination of a base type and a
   4097 /// list of protocols.
   4098 ///
   4099 /// Given the following declarations:
   4100 ///   @class C;
   4101 ///   @protocol P;
   4102 ///
   4103 /// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
   4104 /// with base C and no protocols.
   4105 ///
   4106 /// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
   4107 ///
   4108 /// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
   4109 /// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
   4110 /// and no protocols.
   4111 ///
   4112 /// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
   4113 /// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
   4114 /// this should get its own sugar class to better represent the source.
   4115 class ObjCObjectType : public Type {
   4116   // ObjCObjectType.NumProtocols - the number of protocols stored
   4117   // after the ObjCObjectPointerType node.
   4118   //
   4119   // These protocols are those written directly on the type.  If
   4120   // protocol qualifiers ever become additive, the iterators will need
   4121   // to get kindof complicated.
   4122   //
   4123   // In the canonical object type, these are sorted alphabetically
   4124   // and uniqued.
   4125 
   4126   /// Either a BuiltinType or an InterfaceType or sugar for either.
   4127   QualType BaseType;
   4128 
   4129   ObjCProtocolDecl * const *getProtocolStorage() const {
   4130     return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
   4131   }
   4132 
   4133   ObjCProtocolDecl **getProtocolStorage();
   4134 
   4135 protected:
   4136   ObjCObjectType(QualType Canonical, QualType Base,
   4137                  ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
   4138 
   4139   enum Nonce_ObjCInterface { Nonce_ObjCInterface };
   4140   ObjCObjectType(enum Nonce_ObjCInterface)
   4141         : Type(ObjCInterface, QualType(), false, false, false, false),
   4142       BaseType(QualType(this_(), 0)) {
   4143     ObjCObjectTypeBits.NumProtocols = 0;
   4144   }
   4145 
   4146 public:
   4147   /// getBaseType - Gets the base type of this object type.  This is
   4148   /// always (possibly sugar for) one of:
   4149   ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
   4150   ///    user, which is a typedef for an ObjCPointerType)
   4151   ///  - the 'Class' builtin type (same caveat)
   4152   ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
   4153   QualType getBaseType() const { return BaseType; }
   4154 
   4155   bool isObjCId() const {
   4156     return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
   4157   }
   4158   bool isObjCClass() const {
   4159     return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
   4160   }
   4161   bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
   4162   bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
   4163   bool isObjCUnqualifiedIdOrClass() const {
   4164     if (!qual_empty()) return false;
   4165     if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
   4166       return T->getKind() == BuiltinType::ObjCId ||
   4167              T->getKind() == BuiltinType::ObjCClass;
   4168     return false;
   4169   }
   4170   bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
   4171   bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
   4172 
   4173   /// Gets the interface declaration for this object type, if the base type
   4174   /// really is an interface.
   4175   ObjCInterfaceDecl *getInterface() const;
   4176 
   4177   typedef ObjCProtocolDecl * const *qual_iterator;
   4178 
   4179   qual_iterator qual_begin() const { return getProtocolStorage(); }
   4180   qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
   4181 
   4182   bool qual_empty() const { return getNumProtocols() == 0; }
   4183 
   4184   /// getNumProtocols - Return the number of qualifying protocols in this
   4185   /// interface type, or 0 if there are none.
   4186   unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
   4187 
   4188   /// \brief Fetch a protocol by index.
   4189   ObjCProtocolDecl *getProtocol(unsigned I) const {
   4190     assert(I < getNumProtocols() && "Out-of-range protocol access");
   4191     return qual_begin()[I];
   4192   }
   4193 
   4194   bool isSugared() const { return false; }
   4195   QualType desugar() const { return QualType(this, 0); }
   4196 
   4197   static bool classof(const Type *T) {
   4198     return T->getTypeClass() == ObjCObject ||
   4199            T->getTypeClass() == ObjCInterface;
   4200   }
   4201   static bool classof(const ObjCObjectType *) { return true; }
   4202 };
   4203 
   4204 /// ObjCObjectTypeImpl - A class providing a concrete implementation
   4205 /// of ObjCObjectType, so as to not increase the footprint of
   4206 /// ObjCInterfaceType.  Code outside of ASTContext and the core type
   4207 /// system should not reference this type.
   4208 class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
   4209   friend class ASTContext;
   4210 
   4211   // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
   4212   // will need to be modified.
   4213 
   4214   ObjCObjectTypeImpl(QualType Canonical, QualType Base,
   4215                      ObjCProtocolDecl * const *Protocols,
   4216                      unsigned NumProtocols)
   4217     : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
   4218 
   4219 public:
   4220   void Profile(llvm::FoldingSetNodeID &ID);
   4221   static void Profile(llvm::FoldingSetNodeID &ID,
   4222                       QualType Base,
   4223                       ObjCProtocolDecl *const *protocols,
   4224                       unsigned NumProtocols);
   4225 };
   4226 
   4227 inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
   4228   return reinterpret_cast<ObjCProtocolDecl**>(
   4229             static_cast<ObjCObjectTypeImpl*>(this) + 1);
   4230 }
   4231 
   4232 /// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
   4233 /// object oriented design.  They basically correspond to C++ classes.  There
   4234 /// are two kinds of interface types, normal interfaces like "NSString" and
   4235 /// qualified interfaces, which are qualified with a protocol list like
   4236 /// "NSString<NSCopyable, NSAmazing>".
   4237 ///
   4238 /// ObjCInterfaceType guarantees the following properties when considered
   4239 /// as a subtype of its superclass, ObjCObjectType:
   4240 ///   - There are no protocol qualifiers.  To reinforce this, code which
   4241 ///     tries to invoke the protocol methods via an ObjCInterfaceType will
   4242 ///     fail to compile.
   4243 ///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
   4244 ///     T->getBaseType() == QualType(T, 0).
   4245 class ObjCInterfaceType : public ObjCObjectType {
   4246   mutable ObjCInterfaceDecl *Decl;
   4247 
   4248   ObjCInterfaceType(const ObjCInterfaceDecl *D)
   4249     : ObjCObjectType(Nonce_ObjCInterface),
   4250       Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
   4251   friend class ASTContext;  // ASTContext creates these.
   4252   friend class ASTReader;
   4253   friend class ObjCInterfaceDecl;
   4254 
   4255 public:
   4256   /// getDecl - Get the declaration of this interface.
   4257   ObjCInterfaceDecl *getDecl() const { return Decl; }
   4258 
   4259   bool isSugared() const { return false; }
   4260   QualType desugar() const { return QualType(this, 0); }
   4261 
   4262   static bool classof(const Type *T) {
   4263     return T->getTypeClass() == ObjCInterface;
   4264   }
   4265   static bool classof(const ObjCInterfaceType *) { return true; }
   4266 
   4267   // Nonsense to "hide" certain members of ObjCObjectType within this
   4268   // class.  People asking for protocols on an ObjCInterfaceType are
   4269   // not going to get what they want: ObjCInterfaceTypes are
   4270   // guaranteed to have no protocols.
   4271   enum {
   4272     qual_iterator,
   4273     qual_begin,
   4274     qual_end,
   4275     getNumProtocols,
   4276     getProtocol
   4277   };
   4278 };
   4279 
   4280 inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
   4281   if (const ObjCInterfaceType *T =
   4282         getBaseType()->getAs<ObjCInterfaceType>())
   4283     return T->getDecl();
   4284   return 0;
   4285 }
   4286 
   4287 /// ObjCObjectPointerType - Used to represent a pointer to an
   4288 /// Objective C object.  These are constructed from pointer
   4289 /// declarators when the pointee type is an ObjCObjectType (or sugar
   4290 /// for one).  In addition, the 'id' and 'Class' types are typedefs
   4291 /// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
   4292 /// are translated into these.
   4293 ///
   4294 /// Pointers to pointers to Objective C objects are still PointerTypes;
   4295 /// only the first level of pointer gets it own type implementation.
   4296 class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
   4297   QualType PointeeType;
   4298 
   4299   ObjCObjectPointerType(QualType Canonical, QualType Pointee)
   4300     : Type(ObjCObjectPointer, Canonical, false, false, false, false),
   4301       PointeeType(Pointee) {}
   4302   friend class ASTContext;  // ASTContext creates these.
   4303 
   4304 public:
   4305   /// getPointeeType - Gets the type pointed to by this ObjC pointer.
   4306   /// The result will always be an ObjCObjectType or sugar thereof.
   4307   QualType getPointeeType() const { return PointeeType; }
   4308 
   4309   /// getObjCObjectType - Gets the type pointed to by this ObjC
   4310   /// pointer.  This method always returns non-null.
   4311   ///
   4312   /// This method is equivalent to getPointeeType() except that
   4313   /// it discards any typedefs (or other sugar) between this
   4314   /// type and the "outermost" object type.  So for:
   4315   ///   @class A; @protocol P; @protocol Q;
   4316   ///   typedef A<P> AP;
   4317   ///   typedef A A1;
   4318   ///   typedef A1<P> A1P;
   4319   ///   typedef A1P<Q> A1PQ;
   4320   /// For 'A*', getObjectType() will return 'A'.
   4321   /// For 'A<P>*', getObjectType() will return 'A<P>'.
   4322   /// For 'AP*', getObjectType() will return 'A<P>'.
   4323   /// For 'A1*', getObjectType() will return 'A'.
   4324   /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
   4325   /// For 'A1P*', getObjectType() will return 'A1<P>'.
   4326   /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
   4327   ///   adding protocols to a protocol-qualified base discards the
   4328   ///   old qualifiers (for now).  But if it didn't, getObjectType()
   4329   ///   would return 'A1P<Q>' (and we'd have to make iterating over
   4330   ///   qualifiers more complicated).
   4331   const ObjCObjectType *getObjectType() const {
   4332     return PointeeType->castAs<ObjCObjectType>();
   4333   }
   4334 
   4335   /// getInterfaceType - If this pointer points to an Objective C
   4336   /// @interface type, gets the type for that interface.  Any protocol
   4337   /// qualifiers on the interface are ignored.
   4338   ///
   4339   /// \return null if the base type for this pointer is 'id' or 'Class'
   4340   const ObjCInterfaceType *getInterfaceType() const {
   4341     return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
   4342   }
   4343 
   4344   /// getInterfaceDecl - If this pointer points to an Objective @interface
   4345   /// type, gets the declaration for that interface.
   4346   ///
   4347   /// \return null if the base type for this pointer is 'id' or 'Class'
   4348   ObjCInterfaceDecl *getInterfaceDecl() const {
   4349     return getObjectType()->getInterface();
   4350   }
   4351 
   4352   /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
   4353   /// its object type is the primitive 'id' type with no protocols.
   4354   bool isObjCIdType() const {
   4355     return getObjectType()->isObjCUnqualifiedId();
   4356   }
   4357 
   4358   /// isObjCClassType - True if this is equivalent to the 'Class' type,
   4359   /// i.e. if its object tive is the primitive 'Class' type with no protocols.
   4360   bool isObjCClassType() const {
   4361     return getObjectType()->isObjCUnqualifiedClass();
   4362   }
   4363 
   4364   /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
   4365   /// non-empty set of protocols.
   4366   bool isObjCQualifiedIdType() const {
   4367     return getObjectType()->isObjCQualifiedId();
   4368   }
   4369 
   4370   /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
   4371   /// some non-empty set of protocols.
   4372   bool isObjCQualifiedClassType() const {
   4373     return getObjectType()->isObjCQualifiedClass();
   4374   }
   4375 
   4376   /// An iterator over the qualifiers on the object type.  Provided
   4377   /// for convenience.  This will always iterate over the full set of
   4378   /// protocols on a type, not just those provided directly.
   4379   typedef ObjCObjectType::qual_iterator qual_iterator;
   4380 
   4381   qual_iterator qual_begin() const {
   4382     return getObjectType()->qual_begin();
   4383   }
   4384   qual_iterator qual_end() const {
   4385     return getObjectType()->qual_end();
   4386   }
   4387   bool qual_empty() const { return getObjectType()->qual_empty(); }
   4388 
   4389   /// getNumProtocols - Return the number of qualifying protocols on
   4390   /// the object type.
   4391   unsigned getNumProtocols() const {
   4392     return getObjectType()->getNumProtocols();
   4393   }
   4394 
   4395   /// \brief Retrieve a qualifying protocol by index on the object
   4396   /// type.
   4397   ObjCProtocolDecl *getProtocol(unsigned I) const {
   4398     return getObjectType()->getProtocol(I);
   4399   }
   4400 
   4401   bool isSugared() const { return false; }
   4402   QualType desugar() const { return QualType(this, 0); }
   4403 
   4404   void Profile(llvm::FoldingSetNodeID &ID) {
   4405     Profile(ID, getPointeeType());
   4406   }
   4407   static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
   4408     ID.AddPointer(T.getAsOpaquePtr());
   4409   }
   4410   static bool classof(const Type *T) {
   4411     return T->getTypeClass() == ObjCObjectPointer;
   4412   }
   4413   static bool classof(const ObjCObjectPointerType *) { return true; }
   4414 };
   4415 
   4416 class AtomicType : public Type, public llvm::FoldingSetNode {
   4417   QualType ValueType;
   4418 
   4419   AtomicType(QualType ValTy, QualType Canonical)
   4420     : Type(Atomic, Canonical, ValTy->isDependentType(),
   4421            ValTy->isInstantiationDependentType(),
   4422            ValTy->isVariablyModifiedType(),
   4423            ValTy->containsUnexpandedParameterPack()),
   4424       ValueType(ValTy) {}
   4425   friend class ASTContext;  // ASTContext creates these.
   4426 
   4427   public:
   4428   /// getValueType - Gets the type contained by this atomic type, i.e.
   4429   /// the type returned by performing an atomic load of this atomic type.
   4430   QualType getValueType() const { return ValueType; }
   4431 
   4432   bool isSugared() const { return false; }
   4433   QualType desugar() const { return QualType(this, 0); }
   4434 
   4435   void Profile(llvm::FoldingSetNodeID &ID) {
   4436     Profile(ID, getValueType());
   4437   }
   4438   static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
   4439     ID.AddPointer(T.getAsOpaquePtr());
   4440   }
   4441   static bool classof(const Type *T) {
   4442     return T->getTypeClass() == Atomic;
   4443   }
   4444   static bool classof(const AtomicType *) { return true; }
   4445 };
   4446 
   4447 /// A qualifier set is used to build a set of qualifiers.
   4448 class QualifierCollector : public Qualifiers {
   4449 public:
   4450   QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
   4451 
   4452   /// Collect any qualifiers on the given type and return an
   4453   /// unqualified type.  The qualifiers are assumed to be consistent
   4454   /// with those already in the type.
   4455   const Type *strip(QualType type) {
   4456     addFastQualifiers(type.getLocalFastQualifiers());
   4457     if (!type.hasLocalNonFastQualifiers())
   4458       return type.getTypePtrUnsafe();
   4459 
   4460     const ExtQuals *extQuals = type.getExtQualsUnsafe();
   4461     addConsistentQualifiers(extQuals->getQualifiers());
   4462     return extQuals->getBaseType();
   4463   }
   4464 
   4465   /// Apply the collected qualifiers to the given type.
   4466   QualType apply(const ASTContext &Context, QualType QT) const;
   4467 
   4468   /// Apply the collected qualifiers to the given type.
   4469   QualType apply(const ASTContext &Context, const Type* T) const;
   4470 };
   4471 
   4472 
   4473 // Inline function definitions.
   4474 
   4475 inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
   4476   SplitQualType desugar =
   4477     Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
   4478   desugar.Quals.addConsistentQualifiers(Quals);
   4479   return desugar;
   4480 }
   4481 
   4482 inline const Type *QualType::getTypePtr() const {
   4483   return getCommonPtr()->BaseType;
   4484 }
   4485 
   4486 inline const Type *QualType::getTypePtrOrNull() const {
   4487   return (isNull() ? 0 : getCommonPtr()->BaseType);
   4488 }
   4489 
   4490 inline SplitQualType QualType::split() const {
   4491   if (!hasLocalNonFastQualifiers())
   4492     return SplitQualType(getTypePtrUnsafe(),
   4493                          Qualifiers::fromFastMask(getLocalFastQualifiers()));
   4494 
   4495   const ExtQuals *eq = getExtQualsUnsafe();
   4496   Qualifiers qs = eq->getQualifiers();
   4497   qs.addFastQualifiers(getLocalFastQualifiers());
   4498   return SplitQualType(eq->getBaseType(), qs);
   4499 }
   4500 
   4501 inline Qualifiers QualType::getLocalQualifiers() const {
   4502   Qualifiers Quals;
   4503   if (hasLocalNonFastQualifiers())
   4504     Quals = getExtQualsUnsafe()->getQualifiers();
   4505   Quals.addFastQualifiers(getLocalFastQualifiers());
   4506   return Quals;
   4507 }
   4508 
   4509 inline Qualifiers QualType::getQualifiers() const {
   4510   Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
   4511   quals.addFastQualifiers(getLocalFastQualifiers());
   4512   return quals;
   4513 }
   4514 
   4515 inline unsigned QualType::getCVRQualifiers() const {
   4516   unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
   4517   cvr |= getLocalCVRQualifiers();
   4518   return cvr;
   4519 }
   4520 
   4521 inline QualType QualType::getCanonicalType() const {
   4522   QualType canon = getCommonPtr()->CanonicalType;
   4523   return canon.withFastQualifiers(getLocalFastQualifiers());
   4524 }
   4525 
   4526 inline bool QualType::isCanonical() const {
   4527   return getTypePtr()->isCanonicalUnqualified();
   4528 }
   4529 
   4530 inline bool QualType::isCanonicalAsParam() const {
   4531   if (!isCanonical()) return false;
   4532   if (hasLocalQualifiers()) return false;
   4533 
   4534   const Type *T = getTypePtr();
   4535   if (T->isVariablyModifiedType() && T->hasSizedVLAType())
   4536     return false;
   4537 
   4538   return !isa<FunctionType>(T) && !isa<ArrayType>(T);
   4539 }
   4540 
   4541 inline bool QualType::isConstQualified() const {
   4542   return isLocalConstQualified() ||
   4543          getCommonPtr()->CanonicalType.isLocalConstQualified();
   4544 }
   4545 
   4546 inline bool QualType::isRestrictQualified() const {
   4547   return isLocalRestrictQualified() ||
   4548          getCommonPtr()->CanonicalType.isLocalRestrictQualified();
   4549 }
   4550 
   4551 
   4552 inline bool QualType::isVolatileQualified() const {
   4553   return isLocalVolatileQualified() ||
   4554          getCommonPtr()->CanonicalType.isLocalVolatileQualified();
   4555 }
   4556 
   4557 inline bool QualType::hasQualifiers() const {
   4558   return hasLocalQualifiers() ||
   4559          getCommonPtr()->CanonicalType.hasLocalQualifiers();
   4560 }
   4561 
   4562 inline QualType QualType::getUnqualifiedType() const {
   4563   if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
   4564     return QualType(getTypePtr(), 0);
   4565 
   4566   return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
   4567 }
   4568 
   4569 inline SplitQualType QualType::getSplitUnqualifiedType() const {
   4570   if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
   4571     return split();
   4572 
   4573   return getSplitUnqualifiedTypeImpl(*this);
   4574 }
   4575 
   4576 inline void QualType::removeLocalConst() {
   4577   removeLocalFastQualifiers(Qualifiers::Const);
   4578 }
   4579 
   4580 inline void QualType::removeLocalRestrict() {
   4581   removeLocalFastQualifiers(Qualifiers::Restrict);
   4582 }
   4583 
   4584 inline void QualType::removeLocalVolatile() {
   4585   removeLocalFastQualifiers(Qualifiers::Volatile);
   4586 }
   4587 
   4588 inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
   4589   assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
   4590   assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
   4591 
   4592   // Fast path: we don't need to touch the slow qualifiers.
   4593   removeLocalFastQualifiers(Mask);
   4594 }
   4595 
   4596 /// getAddressSpace - Return the address space of this type.
   4597 inline unsigned QualType::getAddressSpace() const {
   4598   return getQualifiers().getAddressSpace();
   4599 }
   4600 
   4601 /// getObjCGCAttr - Return the gc attribute of this type.
   4602 inline Qualifiers::GC QualType::getObjCGCAttr() const {
   4603   return getQualifiers().getObjCGCAttr();
   4604 }
   4605 
   4606 inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
   4607   if (const PointerType *PT = t.getAs<PointerType>()) {
   4608     if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
   4609       return FT->getExtInfo();
   4610   } else if (const FunctionType *FT = t.getAs<FunctionType>())
   4611     return FT->getExtInfo();
   4612 
   4613   return FunctionType::ExtInfo();
   4614 }
   4615 
   4616 inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
   4617   return getFunctionExtInfo(*t);
   4618 }
   4619 
   4620 /// isMoreQualifiedThan - Determine whether this type is more
   4621 /// qualified than the Other type. For example, "const volatile int"
   4622 /// is more qualified than "const int", "volatile int", and
   4623 /// "int". However, it is not more qualified than "const volatile
   4624 /// int".
   4625 inline bool QualType::isMoreQualifiedThan(QualType other) const {
   4626   Qualifiers myQuals = getQualifiers();
   4627   Qualifiers otherQuals = other.getQualifiers();
   4628   return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
   4629 }
   4630 
   4631 /// isAtLeastAsQualifiedAs - Determine whether this type is at last
   4632 /// as qualified as the Other type. For example, "const volatile
   4633 /// int" is at least as qualified as "const int", "volatile int",
   4634 /// "int", and "const volatile int".
   4635 inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
   4636   return getQualifiers().compatiblyIncludes(other.getQualifiers());
   4637 }
   4638 
   4639 /// getNonReferenceType - If Type is a reference type (e.g., const
   4640 /// int&), returns the type that the reference refers to ("const
   4641 /// int"). Otherwise, returns the type itself. This routine is used
   4642 /// throughout Sema to implement C++ 5p6:
   4643 ///
   4644 ///   If an expression initially has the type "reference to T" (8.3.2,
   4645 ///   8.5.3), the type is adjusted to "T" prior to any further
   4646 ///   analysis, the expression designates the object or function
   4647 ///   denoted by the reference, and the expression is an lvalue.
   4648 inline QualType QualType::getNonReferenceType() const {
   4649   if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
   4650     return RefType->getPointeeType();
   4651   else
   4652     return *this;
   4653 }
   4654 
   4655 inline bool QualType::isCForbiddenLValueType() const {
   4656   return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
   4657           getTypePtr()->isFunctionType());
   4658 }
   4659 
   4660 /// \brief Tests whether the type is categorized as a fundamental type.
   4661 ///
   4662 /// \returns True for types specified in C++0x [basic.fundamental].
   4663 inline bool Type::isFundamentalType() const {
   4664   return isVoidType() ||
   4665          // FIXME: It's really annoying that we don't have an
   4666          // 'isArithmeticType()' which agrees with the standard definition.
   4667          (isArithmeticType() && !isEnumeralType());
   4668 }
   4669 
   4670 /// \brief Tests whether the type is categorized as a compound type.
   4671 ///
   4672 /// \returns True for types specified in C++0x [basic.compound].
   4673 inline bool Type::isCompoundType() const {
   4674   // C++0x [basic.compound]p1:
   4675   //   Compound types can be constructed in the following ways:
   4676   //    -- arrays of objects of a given type [...];
   4677   return isArrayType() ||
   4678   //    -- functions, which have parameters of given types [...];
   4679          isFunctionType() ||
   4680   //    -- pointers to void or objects or functions [...];
   4681          isPointerType() ||
   4682   //    -- references to objects or functions of a given type. [...]
   4683          isReferenceType() ||
   4684   //    -- classes containing a sequence of objects of various types, [...];
   4685          isRecordType() ||
   4686   //    -- unions, which are classes capable of containing objects of different
   4687   //               types at different times;
   4688          isUnionType() ||
   4689   //    -- enumerations, which comprise a set of named constant values. [...];
   4690          isEnumeralType() ||
   4691   //    -- pointers to non-static class members, [...].
   4692          isMemberPointerType();
   4693 }
   4694 
   4695 inline bool Type::isFunctionType() const {
   4696   return isa<FunctionType>(CanonicalType);
   4697 }
   4698 inline bool Type::isPointerType() const {
   4699   return isa<PointerType>(CanonicalType);
   4700 }
   4701 inline bool Type::isAnyPointerType() const {
   4702   return isPointerType() || isObjCObjectPointerType();
   4703 }
   4704 inline bool Type::isBlockPointerType() const {
   4705   return isa<BlockPointerType>(CanonicalType);
   4706 }
   4707 inline bool Type::isReferenceType() const {
   4708   return isa<ReferenceType>(CanonicalType);
   4709 }
   4710 inline bool Type::isLValueReferenceType() const {
   4711   return isa<LValueReferenceType>(CanonicalType);
   4712 }
   4713 inline bool Type::isRValueReferenceType() const {
   4714   return isa<RValueReferenceType>(CanonicalType);
   4715 }
   4716 inline bool Type::isFunctionPointerType() const {
   4717   if (const PointerType *T = getAs<PointerType>())
   4718     return T->getPointeeType()->isFunctionType();
   4719   else
   4720     return false;
   4721 }
   4722 inline bool Type::isMemberPointerType() const {
   4723   return isa<MemberPointerType>(CanonicalType);
   4724 }
   4725 inline bool Type::isMemberFunctionPointerType() const {
   4726   if (const MemberPointerType* T = getAs<MemberPointerType>())
   4727     return T->isMemberFunctionPointer();
   4728   else
   4729     return false;
   4730 }
   4731 inline bool Type::isMemberDataPointerType() const {
   4732   if (const MemberPointerType* T = getAs<MemberPointerType>())
   4733     return T->isMemberDataPointer();
   4734   else
   4735     return false;
   4736 }
   4737 inline bool Type::isArrayType() const {
   4738   return isa<ArrayType>(CanonicalType);
   4739 }
   4740 inline bool Type::isConstantArrayType() const {
   4741   return isa<ConstantArrayType>(CanonicalType);
   4742 }
   4743 inline bool Type::isIncompleteArrayType() const {
   4744   return isa<IncompleteArrayType>(CanonicalType);
   4745 }
   4746 inline bool Type::isVariableArrayType() const {
   4747   return isa<VariableArrayType>(CanonicalType);
   4748 }
   4749 inline bool Type::isDependentSizedArrayType() const {
   4750   return isa<DependentSizedArrayType>(CanonicalType);
   4751 }
   4752 inline bool Type::isBuiltinType() const {
   4753   return isa<BuiltinType>(CanonicalType);
   4754 }
   4755 inline bool Type::isRecordType() const {
   4756   return isa<RecordType>(CanonicalType);
   4757 }
   4758 inline bool Type::isEnumeralType() const {
   4759   return isa<EnumType>(CanonicalType);
   4760 }
   4761 inline bool Type::isAnyComplexType() const {
   4762   return isa<ComplexType>(CanonicalType);
   4763 }
   4764 inline bool Type::isVectorType() const {
   4765   return isa<VectorType>(CanonicalType);
   4766 }
   4767 inline bool Type::isExtVectorType() const {
   4768   return isa<ExtVectorType>(CanonicalType);
   4769 }
   4770 inline bool Type::isObjCObjectPointerType() const {
   4771   return isa<ObjCObjectPointerType>(CanonicalType);
   4772 }
   4773 inline bool Type::isObjCObjectType() const {
   4774   return isa<ObjCObjectType>(CanonicalType);
   4775 }
   4776 inline bool Type::isObjCObjectOrInterfaceType() const {
   4777   return isa<ObjCInterfaceType>(CanonicalType) ||
   4778     isa<ObjCObjectType>(CanonicalType);
   4779 }
   4780 inline bool Type::isAtomicType() const {
   4781   return isa<AtomicType>(CanonicalType);
   4782 }
   4783 
   4784 inline bool Type::isObjCQualifiedIdType() const {
   4785   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4786     return OPT->isObjCQualifiedIdType();
   4787   return false;
   4788 }
   4789 inline bool Type::isObjCQualifiedClassType() const {
   4790   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4791     return OPT->isObjCQualifiedClassType();
   4792   return false;
   4793 }
   4794 inline bool Type::isObjCIdType() const {
   4795   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4796     return OPT->isObjCIdType();
   4797   return false;
   4798 }
   4799 inline bool Type::isObjCClassType() const {
   4800   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4801     return OPT->isObjCClassType();
   4802   return false;
   4803 }
   4804 inline bool Type::isObjCSelType() const {
   4805   if (const PointerType *OPT = getAs<PointerType>())
   4806     return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
   4807   return false;
   4808 }
   4809 inline bool Type::isObjCBuiltinType() const {
   4810   return isObjCIdType() || isObjCClassType() || isObjCSelType();
   4811 }
   4812 inline bool Type::isTemplateTypeParmType() const {
   4813   return isa<TemplateTypeParmType>(CanonicalType);
   4814 }
   4815 
   4816 inline bool Type::isSpecificBuiltinType(unsigned K) const {
   4817   if (const BuiltinType *BT = getAs<BuiltinType>())
   4818     if (BT->getKind() == (BuiltinType::Kind) K)
   4819       return true;
   4820   return false;
   4821 }
   4822 
   4823 inline bool Type::isPlaceholderType() const {
   4824   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   4825     return BT->isPlaceholderType();
   4826   return false;
   4827 }
   4828 
   4829 inline const BuiltinType *Type::getAsPlaceholderType() const {
   4830   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   4831     if (BT->isPlaceholderType())
   4832       return BT;
   4833   return 0;
   4834 }
   4835 
   4836 inline bool Type::isSpecificPlaceholderType(unsigned K) const {
   4837   assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
   4838   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   4839     return (BT->getKind() == (BuiltinType::Kind) K);
   4840   return false;
   4841 }
   4842 
   4843 inline bool Type::isNonOverloadPlaceholderType() const {
   4844   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   4845     return BT->isNonOverloadPlaceholderType();
   4846   return false;
   4847 }
   4848 
   4849 inline bool Type::isVoidType() const {
   4850   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   4851     return BT->getKind() == BuiltinType::Void;
   4852   return false;
   4853 }
   4854 
   4855 inline bool Type::isHalfType() const {
   4856   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   4857     return BT->getKind() == BuiltinType::Half;
   4858   // FIXME: Should we allow complex __fp16? Probably not.
   4859   return false;
   4860 }
   4861 
   4862 inline bool Type::isNullPtrType() const {
   4863   if (const BuiltinType *BT = getAs<BuiltinType>())
   4864     return BT->getKind() == BuiltinType::NullPtr;
   4865   return false;
   4866 }
   4867 
   4868 extern bool IsEnumDeclComplete(EnumDecl *);
   4869 extern bool IsEnumDeclScoped(EnumDecl *);
   4870 
   4871 inline bool Type::isIntegerType() const {
   4872   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   4873     return BT->getKind() >= BuiltinType::Bool &&
   4874            BT->getKind() <= BuiltinType::Int128;
   4875   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
   4876     // Incomplete enum types are not treated as integer types.
   4877     // FIXME: In C++, enum types are never integer types.
   4878     return IsEnumDeclComplete(ET->getDecl()) &&
   4879       !IsEnumDeclScoped(ET->getDecl());
   4880   }
   4881   return false;
   4882 }
   4883 
   4884 inline bool Type::isScalarType() const {
   4885   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   4886     return BT->getKind() > BuiltinType::Void &&
   4887            BT->getKind() <= BuiltinType::NullPtr;
   4888   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
   4889     // Enums are scalar types, but only if they are defined.  Incomplete enums
   4890     // are not treated as scalar types.
   4891     return IsEnumDeclComplete(ET->getDecl());
   4892   return isa<PointerType>(CanonicalType) ||
   4893          isa<BlockPointerType>(CanonicalType) ||
   4894          isa<MemberPointerType>(CanonicalType) ||
   4895          isa<ComplexType>(CanonicalType) ||
   4896          isa<ObjCObjectPointerType>(CanonicalType);
   4897 }
   4898 
   4899 inline bool Type::isIntegralOrEnumerationType() const {
   4900   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   4901     return BT->getKind() >= BuiltinType::Bool &&
   4902            BT->getKind() <= BuiltinType::Int128;
   4903 
   4904   // Check for a complete enum type; incomplete enum types are not properly an
   4905   // enumeration type in the sense required here.
   4906   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
   4907     return IsEnumDeclComplete(ET->getDecl());
   4908 
   4909   return false;
   4910 }
   4911 
   4912 inline bool Type::isBooleanType() const {
   4913   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   4914     return BT->getKind() == BuiltinType::Bool;
   4915   return false;
   4916 }
   4917 
   4918 /// \brief Determines whether this is a type for which one can define
   4919 /// an overloaded operator.
   4920 inline bool Type::isOverloadableType() const {
   4921   return isDependentType() || isRecordType() || isEnumeralType();
   4922 }
   4923 
   4924 /// \brief Determines whether this type can decay to a pointer type.
   4925 inline bool Type::canDecayToPointerType() const {
   4926   return isFunctionType() || isArrayType();
   4927 }
   4928 
   4929 inline bool Type::hasPointerRepresentation() const {
   4930   return (isPointerType() || isReferenceType() || isBlockPointerType() ||
   4931           isObjCObjectPointerType() || isNullPtrType());
   4932 }
   4933 
   4934 inline bool Type::hasObjCPointerRepresentation() const {
   4935   return isObjCObjectPointerType();
   4936 }
   4937 
   4938 inline const Type *Type::getBaseElementTypeUnsafe() const {
   4939   const Type *type = this;
   4940   while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
   4941     type = arrayType->getElementType().getTypePtr();
   4942   return type;
   4943 }
   4944 
   4945 /// Insertion operator for diagnostics.  This allows sending QualType's into a
   4946 /// diagnostic with <<.
   4947 inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
   4948                                            QualType T) {
   4949   DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
   4950                   DiagnosticsEngine::ak_qualtype);
   4951   return DB;
   4952 }
   4953 
   4954 /// Insertion operator for partial diagnostics.  This allows sending QualType's
   4955 /// into a diagnostic with <<.
   4956 inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
   4957                                            QualType T) {
   4958   PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
   4959                   DiagnosticsEngine::ak_qualtype);
   4960   return PD;
   4961 }
   4962 
   4963 // Helper class template that is used by Type::getAs to ensure that one does
   4964 // not try to look through a qualified type to get to an array type.
   4965 template<typename T,
   4966          bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
   4967                              llvm::is_base_of<ArrayType, T>::value)>
   4968 struct ArrayType_cannot_be_used_with_getAs { };
   4969 
   4970 template<typename T>
   4971 struct ArrayType_cannot_be_used_with_getAs<T, true>;
   4972 
   4973 /// Member-template getAs<specific type>'.
   4974 template <typename T> const T *Type::getAs() const {
   4975   ArrayType_cannot_be_used_with_getAs<T> at;
   4976   (void)at;
   4977 
   4978   // If this is directly a T type, return it.
   4979   if (const T *Ty = dyn_cast<T>(this))
   4980     return Ty;
   4981 
   4982   // If the canonical form of this type isn't the right kind, reject it.
   4983   if (!isa<T>(CanonicalType))
   4984     return 0;
   4985 
   4986   // If this is a typedef for the type, strip the typedef off without
   4987   // losing all typedef information.
   4988   return cast<T>(getUnqualifiedDesugaredType());
   4989 }
   4990 
   4991 inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
   4992   // If this is directly an array type, return it.
   4993   if (const ArrayType *arr = dyn_cast<ArrayType>(this))
   4994     return arr;
   4995 
   4996   // If the canonical form of this type isn't the right kind, reject it.
   4997   if (!isa<ArrayType>(CanonicalType))
   4998     return 0;
   4999 
   5000   // If this is a typedef for the type, strip the typedef off without
   5001   // losing all typedef information.
   5002   return cast<ArrayType>(getUnqualifiedDesugaredType());
   5003 }
   5004 
   5005 template <typename T> const T *Type::castAs() const {
   5006   ArrayType_cannot_be_used_with_getAs<T> at;
   5007   (void) at;
   5008 
   5009   assert(isa<T>(CanonicalType));
   5010   if (const T *ty = dyn_cast<T>(this)) return ty;
   5011   return cast<T>(getUnqualifiedDesugaredType());
   5012 }
   5013 
   5014 inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
   5015   assert(isa<ArrayType>(CanonicalType));
   5016   if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
   5017   return cast<ArrayType>(getUnqualifiedDesugaredType());
   5018 }
   5019 
   5020 }  // end namespace clang
   5021 
   5022 #endif
   5023