Home | History | Annotate | Download | only in core
      1 
      2 /*
      3  * Copyright 2006 The Android Open Source Project
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #ifndef SkMatrix_DEFINED
     11 #define SkMatrix_DEFINED
     12 
     13 #include "SkRect.h"
     14 
     15 class SkString;
     16 
     17 #ifdef SK_SCALAR_IS_FLOAT
     18     typedef SkScalar SkPersp;
     19     #define SkScalarToPersp(x) (x)
     20     #define SkPerspToScalar(x) (x)
     21 #else
     22     typedef SkFract SkPersp;
     23     #define SkScalarToPersp(x) SkFixedToFract(x)
     24     #define SkPerspToScalar(x) SkFractToFixed(x)
     25 #endif
     26 
     27 /** \class SkMatrix
     28 
     29     The SkMatrix class holds a 3x3 matrix for transforming coordinates.
     30     SkMatrix does not have a constructor, so it must be explicitly initialized
     31     using either reset() - to construct an identity matrix, or one of the set
     32     functions (e.g. setTranslate, setRotate, etc.).
     33 */
     34 class SK_API SkMatrix {
     35 public:
     36     /** Enum of bit fields for the mask return by getType().
     37         Use this to identify the complexity of the matrix.
     38     */
     39     enum TypeMask {
     40         kIdentity_Mask      = 0,
     41         kTranslate_Mask     = 0x01,  //!< set if the matrix has translation
     42         kScale_Mask         = 0x02,  //!< set if the matrix has X or Y scale
     43         kAffine_Mask        = 0x04,  //!< set if the matrix skews or rotates
     44         kPerspective_Mask   = 0x08   //!< set if the matrix is in perspective
     45     };
     46 
     47     /** Returns a mask bitfield describing the types of transformations
     48         that the matrix will perform. This information is used by routines
     49         like mapPoints, to optimize its inner loops to only perform as much
     50         arithmetic as is necessary.
     51     */
     52     TypeMask getType() const {
     53         if (fTypeMask & kUnknown_Mask) {
     54             fTypeMask = this->computeTypeMask();
     55         }
     56         // only return the public masks
     57         return (TypeMask)(fTypeMask & 0xF);
     58     }
     59 
     60     /** Returns true if the matrix is identity.
     61     */
     62     bool isIdentity() const {
     63         return this->getType() == 0;
     64     }
     65 
     66     /** Returns true if will map a rectangle to another rectangle. This can be
     67         true if the matrix is identity, scale-only, or rotates a multiple of
     68         90 degrees.
     69     */
     70     bool rectStaysRect() const {
     71         if (fTypeMask & kUnknown_Mask) {
     72             fTypeMask = this->computeTypeMask();
     73         }
     74         return (fTypeMask & kRectStaysRect_Mask) != 0;
     75     }
     76     // alias for rectStaysRect()
     77     bool preservesAxisAlignment() const { return this->rectStaysRect(); }
     78 
     79     /**
     80      *  Returns true if the matrix contains perspective elements.
     81      */
     82     bool hasPerspective() const {
     83         return SkToBool(this->getPerspectiveTypeMaskOnly() &
     84                         kPerspective_Mask);
     85     }
     86 
     87     enum {
     88         kMScaleX,
     89         kMSkewX,
     90         kMTransX,
     91         kMSkewY,
     92         kMScaleY,
     93         kMTransY,
     94         kMPersp0,
     95         kMPersp1,
     96         kMPersp2
     97     };
     98 
     99     /** Affine arrays are in column major order
    100         because that's how PDF and XPS like it.
    101      */
    102     enum {
    103         kAScaleX,
    104         kASkewY,
    105         kASkewX,
    106         kAScaleY,
    107         kATransX,
    108         kATransY
    109     };
    110 
    111     SkScalar operator[](int index) const {
    112         SkASSERT((unsigned)index < 9);
    113         return fMat[index];
    114     }
    115 
    116     SkScalar get(int index) const {
    117         SkASSERT((unsigned)index < 9);
    118         return fMat[index];
    119     }
    120 
    121     SkScalar getScaleX() const { return fMat[kMScaleX]; }
    122     SkScalar getScaleY() const { return fMat[kMScaleY]; }
    123     SkScalar getSkewY() const { return fMat[kMSkewY]; }
    124     SkScalar getSkewX() const { return fMat[kMSkewX]; }
    125     SkScalar getTranslateX() const { return fMat[kMTransX]; }
    126     SkScalar getTranslateY() const { return fMat[kMTransY]; }
    127     SkPersp getPerspX() const { return fMat[kMPersp0]; }
    128     SkPersp getPerspY() const { return fMat[kMPersp1]; }
    129 
    130     SkScalar& operator[](int index) {
    131         SkASSERT((unsigned)index < 9);
    132         this->setTypeMask(kUnknown_Mask);
    133         return fMat[index];
    134     }
    135 
    136     void set(int index, SkScalar value) {
    137         SkASSERT((unsigned)index < 9);
    138         fMat[index] = value;
    139         this->setTypeMask(kUnknown_Mask);
    140     }
    141 
    142     void setScaleX(SkScalar v) { this->set(kMScaleX, v); }
    143     void setScaleY(SkScalar v) { this->set(kMScaleY, v); }
    144     void setSkewY(SkScalar v) { this->set(kMSkewY, v); }
    145     void setSkewX(SkScalar v) { this->set(kMSkewX, v); }
    146     void setTranslateX(SkScalar v) { this->set(kMTransX, v); }
    147     void setTranslateY(SkScalar v) { this->set(kMTransY, v); }
    148     void setPerspX(SkPersp v) { this->set(kMPersp0, v); }
    149     void setPerspY(SkPersp v) { this->set(kMPersp1, v); }
    150 
    151     void setAll(SkScalar scaleX, SkScalar skewX, SkScalar transX,
    152                 SkScalar skewY, SkScalar scaleY, SkScalar transY,
    153                 SkPersp persp0, SkPersp persp1, SkPersp persp2) {
    154         fMat[kMScaleX] = scaleX;
    155         fMat[kMSkewX]  = skewX;
    156         fMat[kMTransX] = transX;
    157         fMat[kMSkewY]  = skewY;
    158         fMat[kMScaleY] = scaleY;
    159         fMat[kMTransY] = transY;
    160         fMat[kMPersp0] = persp0;
    161         fMat[kMPersp1] = persp1;
    162         fMat[kMPersp2] = persp2;
    163         this->setTypeMask(kUnknown_Mask);
    164     }
    165 
    166     /** Set the matrix to identity
    167     */
    168     void reset();
    169     // alias for reset()
    170     void setIdentity() { this->reset(); }
    171 
    172     /** Set the matrix to translate by (dx, dy).
    173     */
    174     void setTranslate(SkScalar dx, SkScalar dy);
    175     /** Set the matrix to scale by sx and sy, with a pivot point at (px, py).
    176         The pivot point is the coordinate that should remain unchanged by the
    177         specified transformation.
    178     */
    179     void setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
    180     /** Set the matrix to scale by sx and sy.
    181     */
    182     void setScale(SkScalar sx, SkScalar sy);
    183     /** Set the matrix to scale by 1/divx and 1/divy. Returns false and doesn't
    184         touch the matrix if either divx or divy is zero.
    185     */
    186     bool setIDiv(int divx, int divy);
    187     /** Set the matrix to rotate by the specified number of degrees, with a
    188         pivot point at (px, py). The pivot point is the coordinate that should
    189         remain unchanged by the specified transformation.
    190     */
    191     void setRotate(SkScalar degrees, SkScalar px, SkScalar py);
    192     /** Set the matrix to rotate about (0,0) by the specified number of degrees.
    193     */
    194     void setRotate(SkScalar degrees);
    195     /** Set the matrix to rotate by the specified sine and cosine values, with
    196         a pivot point at (px, py). The pivot point is the coordinate that
    197         should remain unchanged by the specified transformation.
    198     */
    199     void setSinCos(SkScalar sinValue, SkScalar cosValue,
    200                    SkScalar px, SkScalar py);
    201     /** Set the matrix to rotate by the specified sine and cosine values.
    202     */
    203     void setSinCos(SkScalar sinValue, SkScalar cosValue);
    204     /** Set the matrix to skew by sx and sy, with a pivot point at (px, py).
    205         The pivot point is the coordinate that should remain unchanged by the
    206         specified transformation.
    207     */
    208     void setSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
    209     /** Set the matrix to skew by sx and sy.
    210     */
    211     void setSkew(SkScalar kx, SkScalar ky);
    212     /** Set the matrix to the concatenation of the two specified matrices,
    213         returning true if the the result can be represented. Either of the
    214         two matrices may also be the target matrix. *this = a * b;
    215     */
    216     bool setConcat(const SkMatrix& a, const SkMatrix& b);
    217 
    218     /** Preconcats the matrix with the specified translation.
    219         M' = M * T(dx, dy)
    220     */
    221     bool preTranslate(SkScalar dx, SkScalar dy);
    222     /** Preconcats the matrix with the specified scale.
    223         M' = M * S(sx, sy, px, py)
    224     */
    225     bool preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
    226     /** Preconcats the matrix with the specified scale.
    227         M' = M * S(sx, sy)
    228     */
    229     bool preScale(SkScalar sx, SkScalar sy);
    230     /** Preconcats the matrix with the specified rotation.
    231         M' = M * R(degrees, px, py)
    232     */
    233     bool preRotate(SkScalar degrees, SkScalar px, SkScalar py);
    234     /** Preconcats the matrix with the specified rotation.
    235         M' = M * R(degrees)
    236     */
    237     bool preRotate(SkScalar degrees);
    238     /** Preconcats the matrix with the specified skew.
    239         M' = M * K(kx, ky, px, py)
    240     */
    241     bool preSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
    242     /** Preconcats the matrix with the specified skew.
    243         M' = M * K(kx, ky)
    244     */
    245     bool preSkew(SkScalar kx, SkScalar ky);
    246     /** Preconcats the matrix with the specified matrix.
    247         M' = M * other
    248     */
    249     bool preConcat(const SkMatrix& other);
    250 
    251     /** Postconcats the matrix with the specified translation.
    252         M' = T(dx, dy) * M
    253     */
    254     bool postTranslate(SkScalar dx, SkScalar dy);
    255     /** Postconcats the matrix with the specified scale.
    256         M' = S(sx, sy, px, py) * M
    257     */
    258     bool postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
    259     /** Postconcats the matrix with the specified scale.
    260         M' = S(sx, sy) * M
    261     */
    262     bool postScale(SkScalar sx, SkScalar sy);
    263     /** Postconcats the matrix by dividing it by the specified integers.
    264         M' = S(1/divx, 1/divy, 0, 0) * M
    265     */
    266     bool postIDiv(int divx, int divy);
    267     /** Postconcats the matrix with the specified rotation.
    268         M' = R(degrees, px, py) * M
    269     */
    270     bool postRotate(SkScalar degrees, SkScalar px, SkScalar py);
    271     /** Postconcats the matrix with the specified rotation.
    272         M' = R(degrees) * M
    273     */
    274     bool postRotate(SkScalar degrees);
    275     /** Postconcats the matrix with the specified skew.
    276         M' = K(kx, ky, px, py) * M
    277     */
    278     bool postSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
    279     /** Postconcats the matrix with the specified skew.
    280         M' = K(kx, ky) * M
    281     */
    282     bool postSkew(SkScalar kx, SkScalar ky);
    283     /** Postconcats the matrix with the specified matrix.
    284         M' = other * M
    285     */
    286     bool postConcat(const SkMatrix& other);
    287 
    288     enum ScaleToFit {
    289         /**
    290          * Scale in X and Y independently, so that src matches dst exactly.
    291          * This may change the aspect ratio of the src.
    292          */
    293         kFill_ScaleToFit,
    294         /**
    295          * Compute a scale that will maintain the original src aspect ratio,
    296          * but will also ensure that src fits entirely inside dst. At least one
    297          * axis (X or Y) will fit exactly. kStart aligns the result to the
    298          * left and top edges of dst.
    299          */
    300         kStart_ScaleToFit,
    301         /**
    302          * Compute a scale that will maintain the original src aspect ratio,
    303          * but will also ensure that src fits entirely inside dst. At least one
    304          * axis (X or Y) will fit exactly. The result is centered inside dst.
    305          */
    306         kCenter_ScaleToFit,
    307         /**
    308          * Compute a scale that will maintain the original src aspect ratio,
    309          * but will also ensure that src fits entirely inside dst. At least one
    310          * axis (X or Y) will fit exactly. kEnd aligns the result to the
    311          * right and bottom edges of dst.
    312          */
    313         kEnd_ScaleToFit
    314     };
    315 
    316     /** Set the matrix to the scale and translate values that map the source
    317         rectangle to the destination rectangle, returning true if the the result
    318         can be represented.
    319         @param src the source rectangle to map from.
    320         @param dst the destination rectangle to map to.
    321         @param stf the ScaleToFit option
    322         @return true if the matrix can be represented by the rectangle mapping.
    323     */
    324     bool setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf);
    325 
    326     /** Set the matrix such that the specified src points would map to the
    327         specified dst points. count must be within [0..4].
    328         @param src  The array of src points
    329         @param dst  The array of dst points
    330         @param count The number of points to use for the transformation
    331         @return true if the matrix was set to the specified transformation
    332     */
    333     bool setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count);
    334 
    335     /** If this matrix can be inverted, return true and if inverse is not null,
    336         set inverse to be the inverse of this matrix. If this matrix cannot be
    337         inverted, ignore inverse and return false
    338     */
    339     bool invert(SkMatrix* inverse) const;
    340 
    341     /** Fills the passed array with affine identity values
    342         in column major order.
    343         @param affine  The array to fill with affine identity values.
    344         Must not be NULL.
    345     */
    346     static void SetAffineIdentity(SkScalar affine[6]);
    347 
    348     /** Fills the passed array with the affine values in column major order.
    349         If the matrix is a perspective transform, returns false
    350         and does not change the passed array.
    351         @param affine  The array to fill with affine values. Ignored if NULL.
    352     */
    353     bool asAffine(SkScalar affine[6]) const;
    354 
    355     /** Apply this matrix to the array of points specified by src, and write
    356         the transformed points into the array of points specified by dst.
    357         dst[] = M * src[]
    358         @param dst  Where the transformed coordinates are written. It must
    359                     contain at least count entries
    360         @param src  The original coordinates that are to be transformed. It
    361                     must contain at least count entries
    362         @param count The number of points in src to read, and then transform
    363                      into dst.
    364     */
    365     void mapPoints(SkPoint dst[], const SkPoint src[], int count) const;
    366 
    367     /** Apply this matrix to the array of points, overwriting it with the
    368         transformed values.
    369         dst[] = M * pts[]
    370         @param pts  The points to be transformed. It must contain at least
    371                     count entries
    372         @param count The number of points in pts.
    373     */
    374     void mapPoints(SkPoint pts[], int count) const {
    375         this->mapPoints(pts, pts, count);
    376     }
    377 
    378     /** Like mapPoints but with custom byte stride between the points. Stride
    379      *  should be a multiple of sizeof(SkScalar).
    380      */
    381     void mapPointsWithStride(SkPoint pts[], size_t stride, int count) const {
    382         SkASSERT(stride >= sizeof(SkPoint));
    383         SkASSERT(0 == stride % sizeof(SkScalar));
    384         for (int i = 0; i < count; ++i) {
    385             this->mapPoints(pts, pts, 1);
    386             pts = (SkPoint*)((intptr_t)pts + stride);
    387         }
    388     }
    389 
    390     /** Like mapPoints but with custom byte stride between the points.
    391     */
    392     void mapPointsWithStride(SkPoint dst[], SkPoint src[],
    393                              size_t stride, int count) const {
    394         SkASSERT(stride >= sizeof(SkPoint));
    395         SkASSERT(0 == stride % sizeof(SkScalar));
    396         for (int i = 0; i < count; ++i) {
    397             this->mapPoints(dst, src, 1);
    398             src = (SkPoint*)((intptr_t)src + stride);
    399             dst = (SkPoint*)((intptr_t)dst + stride);
    400         }
    401     }
    402 
    403     void mapXY(SkScalar x, SkScalar y, SkPoint* result) const {
    404         SkASSERT(result);
    405         this->getMapXYProc()(*this, x, y, result);
    406     }
    407 
    408     /** Apply this matrix to the array of vectors specified by src, and write
    409         the transformed vectors into the array of vectors specified by dst.
    410         This is similar to mapPoints, but ignores any translation in the matrix.
    411         @param dst  Where the transformed coordinates are written. It must
    412                     contain at least count entries
    413         @param src  The original coordinates that are to be transformed. It
    414                     must contain at least count entries
    415         @param count The number of vectors in src to read, and then transform
    416                      into dst.
    417     */
    418     void mapVectors(SkVector dst[], const SkVector src[], int count) const;
    419 
    420     /** Apply this matrix to the array of vectors specified by src, and write
    421         the transformed vectors into the array of vectors specified by dst.
    422         This is similar to mapPoints, but ignores any translation in the matrix.
    423         @param vecs The vectors to be transformed. It must contain at least
    424                     count entries
    425         @param count The number of vectors in vecs.
    426     */
    427     void mapVectors(SkVector vecs[], int count) const {
    428         this->mapVectors(vecs, vecs, count);
    429     }
    430 
    431     /** Apply this matrix to the src rectangle, and write the transformed
    432         rectangle into dst. This is accomplished by transforming the 4 corners
    433         of src, and then setting dst to the bounds of those points.
    434         @param dst  Where the transformed rectangle is written.
    435         @param src  The original rectangle to be transformed.
    436         @return the result of calling rectStaysRect()
    437     */
    438     bool mapRect(SkRect* dst, const SkRect& src) const;
    439 
    440     /** Apply this matrix to the rectangle, and write the transformed rectangle
    441         back into it. This is accomplished by transforming the 4 corners of
    442         rect, and then setting it to the bounds of those points
    443         @param rect The rectangle to transform.
    444         @return the result of calling rectStaysRect()
    445     */
    446     bool mapRect(SkRect* rect) const {
    447         return this->mapRect(rect, *rect);
    448     }
    449 
    450     /** Return the mean radius of a circle after it has been mapped by
    451         this matrix. NOTE: in perspective this value assumes the circle
    452         has its center at the origin.
    453     */
    454     SkScalar mapRadius(SkScalar radius) const;
    455 
    456     typedef void (*MapXYProc)(const SkMatrix& mat, SkScalar x, SkScalar y,
    457                                  SkPoint* result);
    458 
    459     static MapXYProc GetMapXYProc(TypeMask mask) {
    460         SkASSERT((mask & ~kAllMasks) == 0);
    461         return gMapXYProcs[mask & kAllMasks];
    462     }
    463 
    464     MapXYProc getMapXYProc() const {
    465         return GetMapXYProc(this->getType());
    466     }
    467 
    468     typedef void (*MapPtsProc)(const SkMatrix& mat, SkPoint dst[],
    469                                   const SkPoint src[], int count);
    470 
    471     static MapPtsProc GetMapPtsProc(TypeMask mask) {
    472         SkASSERT((mask & ~kAllMasks) == 0);
    473         return gMapPtsProcs[mask & kAllMasks];
    474     }
    475 
    476     MapPtsProc getMapPtsProc() const {
    477         return GetMapPtsProc(this->getType());
    478     }
    479 
    480     /** If the matrix can be stepped in X (not complex perspective)
    481         then return true and if step[XY] is not null, return the step[XY] value.
    482         If it cannot, return false and ignore step.
    483     */
    484     bool fixedStepInX(SkScalar y, SkFixed* stepX, SkFixed* stepY) const;
    485 
    486 #ifdef SK_SCALAR_IS_FIXED
    487     friend bool operator==(const SkMatrix& a, const SkMatrix& b) {
    488         return memcmp(a.fMat, b.fMat, sizeof(a.fMat)) == 0;
    489     }
    490 
    491     friend bool operator!=(const SkMatrix& a, const SkMatrix& b) {
    492         return memcmp(a.fMat, b.fMat, sizeof(a.fMat)) != 0;
    493     }
    494 #else
    495     friend bool operator==(const SkMatrix& a, const SkMatrix& b);
    496     friend bool operator!=(const SkMatrix& a, const SkMatrix& b) {
    497         return !(a == b);
    498     }
    499 #endif
    500 
    501     enum {
    502         // flatten/unflatten will never return a value larger than this
    503         kMaxFlattenSize = 9 * sizeof(SkScalar) + sizeof(uint32_t)
    504     };
    505     // return the number of bytes written, whether or not buffer is null
    506     uint32_t flatten(void* buffer) const;
    507     // return the number of bytes read
    508     uint32_t unflatten(const void* buffer);
    509 
    510     void dump() const;
    511     void toDumpString(SkString*) const;
    512 
    513     /**
    514      * Calculates the maximum stretching factor of the matrix. If the matrix has
    515      * perspective -1 is returned.
    516      *
    517      * @return maximum strecthing factor
    518      */
    519     SkScalar getMaxStretch() const;
    520 
    521     /**
    522      *  Return a reference to a const identity matrix
    523      */
    524     static const SkMatrix& I();
    525 
    526     /**
    527      *  Return a reference to a const matrix that is "invalid", one that could
    528      *  never be used.
    529      */
    530     static const SkMatrix& InvalidMatrix();
    531 
    532     /**
    533      * Testing routine; the matrix's type cache should never need to be
    534      * manually invalidated during normal use.
    535      */
    536     void dirtyMatrixTypeCache() {
    537         this->setTypeMask(kUnknown_Mask);
    538     }
    539 
    540 private:
    541     enum {
    542         /** Set if the matrix will map a rectangle to another rectangle. This
    543             can be true if the matrix is scale-only, or rotates a multiple of
    544             90 degrees. This bit is not set if the matrix is identity.
    545 
    546             This bit will be set on identity matrices
    547         */
    548         kRectStaysRect_Mask = 0x10,
    549 
    550         /** Set if the perspective bit is valid even though the rest of
    551             the matrix is Unknown.
    552         */
    553         kOnlyPerspectiveValid_Mask = 0x40,
    554 
    555         kUnknown_Mask = 0x80,
    556 
    557         kORableMasks =  kTranslate_Mask |
    558                         kScale_Mask |
    559                         kAffine_Mask |
    560                         kPerspective_Mask,
    561 
    562         kAllMasks = kTranslate_Mask |
    563                     kScale_Mask |
    564                     kAffine_Mask |
    565                     kPerspective_Mask |
    566                     kRectStaysRect_Mask
    567     };
    568 
    569     SkScalar        fMat[9];
    570     mutable uint8_t fTypeMask;
    571 
    572     uint8_t computeTypeMask() const;
    573     uint8_t computePerspectiveTypeMask() const;
    574 
    575     void setTypeMask(int mask) {
    576         // allow kUnknown or a valid mask
    577         SkASSERT(kUnknown_Mask == mask || (mask & kAllMasks) == mask ||
    578                  ((kUnknown_Mask | kOnlyPerspectiveValid_Mask | kPerspective_Mask) & mask)
    579                  == mask);
    580         fTypeMask = SkToU8(mask);
    581     }
    582 
    583     void orTypeMask(int mask) {
    584         SkASSERT((mask & kORableMasks) == mask);
    585         fTypeMask = SkToU8(fTypeMask | mask);
    586     }
    587 
    588     void clearTypeMask(int mask) {
    589         // only allow a valid mask
    590         SkASSERT((mask & kAllMasks) == mask);
    591         fTypeMask &= ~mask;
    592     }
    593 
    594     TypeMask getPerspectiveTypeMaskOnly() const {
    595         if ((fTypeMask & kUnknown_Mask) &&
    596             !(fTypeMask & kOnlyPerspectiveValid_Mask)) {
    597             fTypeMask = this->computePerspectiveTypeMask();
    598         }
    599         return (TypeMask)(fTypeMask & 0xF);
    600     }
    601 
    602     /** Returns true if we already know that the matrix is identity;
    603         false otherwise.
    604     */
    605     bool isTriviallyIdentity() const {
    606         if (fTypeMask & kUnknown_Mask) {
    607             return false;
    608         }
    609         return ((fTypeMask & 0xF) == 0);
    610     }
    611 
    612     static bool Poly2Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);
    613     static bool Poly3Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);
    614     static bool Poly4Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);
    615 
    616     static void Identity_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
    617     static void Trans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
    618     static void Scale_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
    619     static void ScaleTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
    620     static void Rot_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
    621     static void RotTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
    622     static void Persp_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
    623 
    624     static const MapXYProc gMapXYProcs[];
    625 
    626     static void Identity_pts(const SkMatrix&, SkPoint[], const SkPoint[], int);
    627     static void Trans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
    628     static void Scale_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
    629     static void ScaleTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[],
    630                                int count);
    631     static void Rot_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
    632     static void RotTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[],
    633                              int count);
    634     static void Persp_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
    635 
    636     static const MapPtsProc gMapPtsProcs[];
    637 
    638     friend class SkPerspIter;
    639 };
    640 
    641 #endif
    642