Home | History | Annotate | Download | only in VMCore
      1 //===-- Instruction.cpp - Implement the Instruction class -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Instruction class for the VMCore library.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Instruction.h"
     15 #include "llvm/Type.h"
     16 #include "llvm/Instructions.h"
     17 #include "llvm/Constants.h"
     18 #include "llvm/Module.h"
     19 #include "llvm/Support/CallSite.h"
     20 #include "llvm/Support/LeakDetector.h"
     21 using namespace llvm;
     22 
     23 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
     24                          Instruction *InsertBefore)
     25   : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
     26   // Make sure that we get added to a basicblock
     27   LeakDetector::addGarbageObject(this);
     28 
     29   // If requested, insert this instruction into a basic block...
     30   if (InsertBefore) {
     31     assert(InsertBefore->getParent() &&
     32            "Instruction to insert before is not in a basic block!");
     33     InsertBefore->getParent()->getInstList().insert(InsertBefore, this);
     34   }
     35 }
     36 
     37 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
     38                          BasicBlock *InsertAtEnd)
     39   : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
     40   // Make sure that we get added to a basicblock
     41   LeakDetector::addGarbageObject(this);
     42 
     43   // append this instruction into the basic block
     44   assert(InsertAtEnd && "Basic block to append to may not be NULL!");
     45   InsertAtEnd->getInstList().push_back(this);
     46 }
     47 
     48 
     49 // Out of line virtual method, so the vtable, etc has a home.
     50 Instruction::~Instruction() {
     51   assert(Parent == 0 && "Instruction still linked in the program!");
     52   if (hasMetadataHashEntry())
     53     clearMetadataHashEntries();
     54 }
     55 
     56 
     57 void Instruction::setParent(BasicBlock *P) {
     58   if (getParent()) {
     59     if (!P) LeakDetector::addGarbageObject(this);
     60   } else {
     61     if (P) LeakDetector::removeGarbageObject(this);
     62   }
     63 
     64   Parent = P;
     65 }
     66 
     67 void Instruction::removeFromParent() {
     68   getParent()->getInstList().remove(this);
     69 }
     70 
     71 void Instruction::eraseFromParent() {
     72   getParent()->getInstList().erase(this);
     73 }
     74 
     75 /// insertBefore - Insert an unlinked instructions into a basic block
     76 /// immediately before the specified instruction.
     77 void Instruction::insertBefore(Instruction *InsertPos) {
     78   InsertPos->getParent()->getInstList().insert(InsertPos, this);
     79 }
     80 
     81 /// insertAfter - Insert an unlinked instructions into a basic block
     82 /// immediately after the specified instruction.
     83 void Instruction::insertAfter(Instruction *InsertPos) {
     84   InsertPos->getParent()->getInstList().insertAfter(InsertPos, this);
     85 }
     86 
     87 /// moveBefore - Unlink this instruction from its current basic block and
     88 /// insert it into the basic block that MovePos lives in, right before
     89 /// MovePos.
     90 void Instruction::moveBefore(Instruction *MovePos) {
     91   MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(),
     92                                              this);
     93 }
     94 
     95 
     96 const char *Instruction::getOpcodeName(unsigned OpCode) {
     97   switch (OpCode) {
     98   // Terminators
     99   case Ret:    return "ret";
    100   case Br:     return "br";
    101   case Switch: return "switch";
    102   case IndirectBr: return "indirectbr";
    103   case Invoke: return "invoke";
    104   case Resume: return "resume";
    105   case Unreachable: return "unreachable";
    106 
    107   // Standard binary operators...
    108   case Add: return "add";
    109   case FAdd: return "fadd";
    110   case Sub: return "sub";
    111   case FSub: return "fsub";
    112   case Mul: return "mul";
    113   case FMul: return "fmul";
    114   case UDiv: return "udiv";
    115   case SDiv: return "sdiv";
    116   case FDiv: return "fdiv";
    117   case URem: return "urem";
    118   case SRem: return "srem";
    119   case FRem: return "frem";
    120 
    121   // Logical operators...
    122   case And: return "and";
    123   case Or : return "or";
    124   case Xor: return "xor";
    125 
    126   // Memory instructions...
    127   case Alloca:        return "alloca";
    128   case Load:          return "load";
    129   case Store:         return "store";
    130   case AtomicCmpXchg: return "cmpxchg";
    131   case AtomicRMW:     return "atomicrmw";
    132   case Fence:         return "fence";
    133   case GetElementPtr: return "getelementptr";
    134 
    135   // Convert instructions...
    136   case Trunc:     return "trunc";
    137   case ZExt:      return "zext";
    138   case SExt:      return "sext";
    139   case FPTrunc:   return "fptrunc";
    140   case FPExt:     return "fpext";
    141   case FPToUI:    return "fptoui";
    142   case FPToSI:    return "fptosi";
    143   case UIToFP:    return "uitofp";
    144   case SIToFP:    return "sitofp";
    145   case IntToPtr:  return "inttoptr";
    146   case PtrToInt:  return "ptrtoint";
    147   case BitCast:   return "bitcast";
    148 
    149   // Other instructions...
    150   case ICmp:           return "icmp";
    151   case FCmp:           return "fcmp";
    152   case PHI:            return "phi";
    153   case Select:         return "select";
    154   case Call:           return "call";
    155   case Shl:            return "shl";
    156   case LShr:           return "lshr";
    157   case AShr:           return "ashr";
    158   case VAArg:          return "va_arg";
    159   case ExtractElement: return "extractelement";
    160   case InsertElement:  return "insertelement";
    161   case ShuffleVector:  return "shufflevector";
    162   case ExtractValue:   return "extractvalue";
    163   case InsertValue:    return "insertvalue";
    164   case LandingPad:     return "landingpad";
    165 
    166   default: return "<Invalid operator> ";
    167   }
    168 }
    169 
    170 /// isIdenticalTo - Return true if the specified instruction is exactly
    171 /// identical to the current one.  This means that all operands match and any
    172 /// extra information (e.g. load is volatile) agree.
    173 bool Instruction::isIdenticalTo(const Instruction *I) const {
    174   return isIdenticalToWhenDefined(I) &&
    175          SubclassOptionalData == I->SubclassOptionalData;
    176 }
    177 
    178 /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
    179 /// ignores the SubclassOptionalData flags, which specify conditions
    180 /// under which the instruction's result is undefined.
    181 bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
    182   if (getOpcode() != I->getOpcode() ||
    183       getNumOperands() != I->getNumOperands() ||
    184       getType() != I->getType())
    185     return false;
    186 
    187   // We have two instructions of identical opcode and #operands.  Check to see
    188   // if all operands are the same.
    189   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    190     if (getOperand(i) != I->getOperand(i))
    191       return false;
    192 
    193   // Check special state that is a part of some instructions.
    194   if (const LoadInst *LI = dyn_cast<LoadInst>(this))
    195     return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
    196            LI->getAlignment() == cast<LoadInst>(I)->getAlignment() &&
    197            LI->getOrdering() == cast<LoadInst>(I)->getOrdering() &&
    198            LI->getSynchScope() == cast<LoadInst>(I)->getSynchScope();
    199   if (const StoreInst *SI = dyn_cast<StoreInst>(this))
    200     return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
    201            SI->getAlignment() == cast<StoreInst>(I)->getAlignment() &&
    202            SI->getOrdering() == cast<StoreInst>(I)->getOrdering() &&
    203            SI->getSynchScope() == cast<StoreInst>(I)->getSynchScope();
    204   if (const CmpInst *CI = dyn_cast<CmpInst>(this))
    205     return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
    206   if (const CallInst *CI = dyn_cast<CallInst>(this))
    207     return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
    208            CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
    209            CI->getAttributes() == cast<CallInst>(I)->getAttributes();
    210   if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
    211     return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
    212            CI->getAttributes() == cast<InvokeInst>(I)->getAttributes();
    213   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
    214     return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
    215   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
    216     return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
    217   if (const FenceInst *FI = dyn_cast<FenceInst>(this))
    218     return FI->getOrdering() == cast<FenceInst>(FI)->getOrdering() &&
    219            FI->getSynchScope() == cast<FenceInst>(FI)->getSynchScope();
    220   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(this))
    221     return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I)->isVolatile() &&
    222            CXI->getOrdering() == cast<AtomicCmpXchgInst>(I)->getOrdering() &&
    223            CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I)->getSynchScope();
    224   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(this))
    225     return RMWI->getOperation() == cast<AtomicRMWInst>(I)->getOperation() &&
    226            RMWI->isVolatile() == cast<AtomicRMWInst>(I)->isVolatile() &&
    227            RMWI->getOrdering() == cast<AtomicRMWInst>(I)->getOrdering() &&
    228            RMWI->getSynchScope() == cast<AtomicRMWInst>(I)->getSynchScope();
    229 
    230   return true;
    231 }
    232 
    233 // isSameOperationAs
    234 // This should be kept in sync with isEquivalentOperation in
    235 // lib/Transforms/IPO/MergeFunctions.cpp.
    236 bool Instruction::isSameOperationAs(const Instruction *I) const {
    237   if (getOpcode() != I->getOpcode() ||
    238       getNumOperands() != I->getNumOperands() ||
    239       getType() != I->getType())
    240     return false;
    241 
    242   // We have two instructions of identical opcode and #operands.  Check to see
    243   // if all operands are the same type
    244   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    245     if (getOperand(i)->getType() != I->getOperand(i)->getType())
    246       return false;
    247 
    248   // Check special state that is a part of some instructions.
    249   if (const LoadInst *LI = dyn_cast<LoadInst>(this))
    250     return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
    251            LI->getAlignment() == cast<LoadInst>(I)->getAlignment() &&
    252            LI->getOrdering() == cast<LoadInst>(I)->getOrdering() &&
    253            LI->getSynchScope() == cast<LoadInst>(I)->getSynchScope();
    254   if (const StoreInst *SI = dyn_cast<StoreInst>(this))
    255     return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
    256            SI->getAlignment() == cast<StoreInst>(I)->getAlignment() &&
    257            SI->getOrdering() == cast<StoreInst>(I)->getOrdering() &&
    258            SI->getSynchScope() == cast<StoreInst>(I)->getSynchScope();
    259   if (const CmpInst *CI = dyn_cast<CmpInst>(this))
    260     return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
    261   if (const CallInst *CI = dyn_cast<CallInst>(this))
    262     return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
    263            CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
    264            CI->getAttributes() == cast<CallInst>(I)->getAttributes();
    265   if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
    266     return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
    267            CI->getAttributes() ==
    268              cast<InvokeInst>(I)->getAttributes();
    269   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
    270     return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
    271   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
    272     return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
    273   if (const FenceInst *FI = dyn_cast<FenceInst>(this))
    274     return FI->getOrdering() == cast<FenceInst>(I)->getOrdering() &&
    275            FI->getSynchScope() == cast<FenceInst>(I)->getSynchScope();
    276   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(this))
    277     return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I)->isVolatile() &&
    278            CXI->getOrdering() == cast<AtomicCmpXchgInst>(I)->getOrdering() &&
    279            CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I)->getSynchScope();
    280   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(this))
    281     return RMWI->getOperation() == cast<AtomicRMWInst>(I)->getOperation() &&
    282            RMWI->isVolatile() == cast<AtomicRMWInst>(I)->isVolatile() &&
    283            RMWI->getOrdering() == cast<AtomicRMWInst>(I)->getOrdering() &&
    284            RMWI->getSynchScope() == cast<AtomicRMWInst>(I)->getSynchScope();
    285 
    286   return true;
    287 }
    288 
    289 /// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
    290 /// specified block.  Note that PHI nodes are considered to evaluate their
    291 /// operands in the corresponding predecessor block.
    292 bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
    293   for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
    294     // PHI nodes uses values in the corresponding predecessor block.  For other
    295     // instructions, just check to see whether the parent of the use matches up.
    296     const User *U = *UI;
    297     const PHINode *PN = dyn_cast<PHINode>(U);
    298     if (PN == 0) {
    299       if (cast<Instruction>(U)->getParent() != BB)
    300         return true;
    301       continue;
    302     }
    303 
    304     if (PN->getIncomingBlock(UI) != BB)
    305       return true;
    306   }
    307   return false;
    308 }
    309 
    310 /// mayReadFromMemory - Return true if this instruction may read memory.
    311 ///
    312 bool Instruction::mayReadFromMemory() const {
    313   switch (getOpcode()) {
    314   default: return false;
    315   case Instruction::VAArg:
    316   case Instruction::Load:
    317   case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
    318   case Instruction::AtomicCmpXchg:
    319   case Instruction::AtomicRMW:
    320     return true;
    321   case Instruction::Call:
    322     return !cast<CallInst>(this)->doesNotAccessMemory();
    323   case Instruction::Invoke:
    324     return !cast<InvokeInst>(this)->doesNotAccessMemory();
    325   case Instruction::Store:
    326     return !cast<StoreInst>(this)->isUnordered();
    327   }
    328 }
    329 
    330 /// mayWriteToMemory - Return true if this instruction may modify memory.
    331 ///
    332 bool Instruction::mayWriteToMemory() const {
    333   switch (getOpcode()) {
    334   default: return false;
    335   case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
    336   case Instruction::Store:
    337   case Instruction::VAArg:
    338   case Instruction::AtomicCmpXchg:
    339   case Instruction::AtomicRMW:
    340     return true;
    341   case Instruction::Call:
    342     return !cast<CallInst>(this)->onlyReadsMemory();
    343   case Instruction::Invoke:
    344     return !cast<InvokeInst>(this)->onlyReadsMemory();
    345   case Instruction::Load:
    346     return !cast<LoadInst>(this)->isUnordered();
    347   }
    348 }
    349 
    350 /// mayThrow - Return true if this instruction may throw an exception.
    351 ///
    352 bool Instruction::mayThrow() const {
    353   if (const CallInst *CI = dyn_cast<CallInst>(this))
    354     return !CI->doesNotThrow();
    355   return isa<ResumeInst>(this);
    356 }
    357 
    358 /// isAssociative - Return true if the instruction is associative:
    359 ///
    360 ///   Associative operators satisfy:  x op (y op z) === (x op y) op z
    361 ///
    362 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
    363 ///
    364 bool Instruction::isAssociative(unsigned Opcode) {
    365   return Opcode == And || Opcode == Or || Opcode == Xor ||
    366          Opcode == Add || Opcode == Mul;
    367 }
    368 
    369 /// isCommutative - Return true if the instruction is commutative:
    370 ///
    371 ///   Commutative operators satisfy: (x op y) === (y op x)
    372 ///
    373 /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
    374 /// applied to any type.
    375 ///
    376 bool Instruction::isCommutative(unsigned op) {
    377   switch (op) {
    378   case Add:
    379   case FAdd:
    380   case Mul:
    381   case FMul:
    382   case And:
    383   case Or:
    384   case Xor:
    385     return true;
    386   default:
    387     return false;
    388   }
    389 }
    390 
    391 Instruction *Instruction::clone() const {
    392   Instruction *New = clone_impl();
    393   New->SubclassOptionalData = SubclassOptionalData;
    394   if (!hasMetadata())
    395     return New;
    396 
    397   // Otherwise, enumerate and copy over metadata from the old instruction to the
    398   // new one.
    399   SmallVector<std::pair<unsigned, MDNode*>, 4> TheMDs;
    400   getAllMetadataOtherThanDebugLoc(TheMDs);
    401   for (unsigned i = 0, e = TheMDs.size(); i != e; ++i)
    402     New->setMetadata(TheMDs[i].first, TheMDs[i].second);
    403 
    404   New->setDebugLoc(getDebugLoc());
    405   return New;
    406 }
    407