Home | History | Annotate | Download | only in resolv
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *  * Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  *  * Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in
     12  *    the documentation and/or other materials provided with the
     13  *    distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
     22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 #include "resolv_cache.h"
     30 #include <resolv.h>
     31 #include <stdlib.h>
     32 #include <string.h>
     33 #include <time.h>
     34 #include "pthread.h"
     35 
     36 #include <errno.h>
     37 #include "arpa_nameser.h"
     38 #include <sys/system_properties.h>
     39 #include <net/if.h>
     40 #include <netdb.h>
     41 #include <linux/if.h>
     42 
     43 #include <arpa/inet.h>
     44 #include "resolv_private.h"
     45 #include "resolv_iface.h"
     46 
     47 /* This code implements a small and *simple* DNS resolver cache.
     48  *
     49  * It is only used to cache DNS answers for a time defined by the smallest TTL
     50  * among the answer records in order to reduce DNS traffic. It is not supposed
     51  * to be a full DNS cache, since we plan to implement that in the future in a
     52  * dedicated process running on the system.
     53  *
     54  * Note that its design is kept simple very intentionally, i.e.:
     55  *
     56  *  - it takes raw DNS query packet data as input, and returns raw DNS
     57  *    answer packet data as output
     58  *
     59  *    (this means that two similar queries that encode the DNS name
     60  *     differently will be treated distinctly).
     61  *
     62  *    the smallest TTL value among the answer records are used as the time
     63  *    to keep an answer in the cache.
     64  *
     65  *    this is bad, but we absolutely want to avoid parsing the answer packets
     66  *    (and should be solved by the later full DNS cache process).
     67  *
     68  *  - the implementation is just a (query-data) => (answer-data) hash table
     69  *    with a trivial least-recently-used expiration policy.
     70  *
     71  * Doing this keeps the code simple and avoids to deal with a lot of things
     72  * that a full DNS cache is expected to do.
     73  *
     74  * The API is also very simple:
     75  *
     76  *   - the client calls _resolv_cache_get() to obtain a handle to the cache.
     77  *     this will initialize the cache on first usage. the result can be NULL
     78  *     if the cache is disabled.
     79  *
     80  *   - the client calls _resolv_cache_lookup() before performing a query
     81  *
     82  *     if the function returns RESOLV_CACHE_FOUND, a copy of the answer data
     83  *     has been copied into the client-provided answer buffer.
     84  *
     85  *     if the function returns RESOLV_CACHE_NOTFOUND, the client should perform
     86  *     a request normally, *then* call _resolv_cache_add() to add the received
     87  *     answer to the cache.
     88  *
     89  *     if the function returns RESOLV_CACHE_UNSUPPORTED, the client should
     90  *     perform a request normally, and *not* call _resolv_cache_add()
     91  *
     92  *     note that RESOLV_CACHE_UNSUPPORTED is also returned if the answer buffer
     93  *     is too short to accomodate the cached result.
     94  *
     95  *  - when network settings change, the cache must be flushed since the list
     96  *    of DNS servers probably changed. this is done by calling
     97  *    _resolv_cache_reset()
     98  *
     99  *    the parameter to this function must be an ever-increasing generation
    100  *    number corresponding to the current network settings state.
    101  *
    102  *    This is done because several threads could detect the same network
    103  *    settings change (but at different times) and will all end up calling the
    104  *    same function. Comparing with the last used generation number ensures
    105  *    that the cache is only flushed once per network change.
    106  */
    107 
    108 /* the name of an environment variable that will be checked the first time
    109  * this code is called if its value is "0", then the resolver cache is
    110  * disabled.
    111  */
    112 #define  CONFIG_ENV  "BIONIC_DNSCACHE"
    113 
    114 /* entries older than CONFIG_SECONDS seconds are always discarded.
    115  */
    116 #define  CONFIG_SECONDS    (60*10)    /* 10 minutes */
    117 
    118 /* default number of entries kept in the cache. This value has been
    119  * determined by browsing through various sites and counting the number
    120  * of corresponding requests. Keep in mind that our framework is currently
    121  * performing two requests per name lookup (one for IPv4, the other for IPv6)
    122  *
    123  *    www.google.com      4
    124  *    www.ysearch.com     6
    125  *    www.amazon.com      8
    126  *    www.nytimes.com     22
    127  *    www.espn.com        28
    128  *    www.msn.com         28
    129  *    www.lemonde.fr      35
    130  *
    131  * (determined in 2009-2-17 from Paris, France, results may vary depending
    132  *  on location)
    133  *
    134  * most high-level websites use lots of media/ad servers with different names
    135  * but these are generally reused when browsing through the site.
    136  *
    137  * As such, a value of 64 should be relatively comfortable at the moment.
    138  *
    139  * The system property ro.net.dns_cache_size can be used to override the default
    140  * value with a custom value
    141  *
    142  *
    143  * ******************************************
    144  * * NOTE - this has changed.
    145  * * 1) we've added IPv6 support so each dns query results in 2 responses
    146  * * 2) we've made this a system-wide cache, so the cost is less (it's not
    147  * *    duplicated in each process) and the need is greater (more processes
    148  * *    making different requests).
    149  * * Upping by 2x for IPv6
    150  * * Upping by another 5x for the centralized nature
    151  * *****************************************
    152  */
    153 #define  CONFIG_MAX_ENTRIES    64 * 2 * 5
    154 /* name of the system property that can be used to set the cache size */
    155 #define  DNS_CACHE_SIZE_PROP_NAME   "ro.net.dns_cache_size"
    156 
    157 /****************************************************************************/
    158 /****************************************************************************/
    159 /*****                                                                  *****/
    160 /*****                                                                  *****/
    161 /*****                                                                  *****/
    162 /****************************************************************************/
    163 /****************************************************************************/
    164 
    165 /* set to 1 to debug cache operations */
    166 #define  DEBUG       0
    167 
    168 /* set to 1 to debug query data */
    169 #define  DEBUG_DATA  0
    170 
    171 #undef XLOG
    172 #if DEBUG
    173 #  include <logd.h>
    174 #  define  XLOG(...)   \
    175     __libc_android_log_print(ANDROID_LOG_DEBUG,"libc",__VA_ARGS__)
    176 
    177 #include <stdio.h>
    178 #include <stdarg.h>
    179 
    180 /** BOUNDED BUFFER FORMATTING
    181  **/
    182 
    183 /* technical note:
    184  *
    185  *   the following debugging routines are used to append data to a bounded
    186  *   buffer they take two parameters that are:
    187  *
    188  *   - p : a pointer to the current cursor position in the buffer
    189  *         this value is initially set to the buffer's address.
    190  *
    191  *   - end : the address of the buffer's limit, i.e. of the first byte
    192  *           after the buffer. this address should never be touched.
    193  *
    194  *           IMPORTANT: it is assumed that end > buffer_address, i.e.
    195  *                      that the buffer is at least one byte.
    196  *
    197  *   the _bprint_() functions return the new value of 'p' after the data
    198  *   has been appended, and also ensure the following:
    199  *
    200  *   - the returned value will never be strictly greater than 'end'
    201  *
    202  *   - a return value equal to 'end' means that truncation occured
    203  *     (in which case, end[-1] will be set to 0)
    204  *
    205  *   - after returning from a _bprint_() function, the content of the buffer
    206  *     is always 0-terminated, even in the event of truncation.
    207  *
    208  *  these conventions allow you to call _bprint_ functions multiple times and
    209  *  only check for truncation at the end of the sequence, as in:
    210  *
    211  *     char  buff[1000], *p = buff, *end = p + sizeof(buff);
    212  *
    213  *     p = _bprint_c(p, end, '"');
    214  *     p = _bprint_s(p, end, my_string);
    215  *     p = _bprint_c(p, end, '"');
    216  *
    217  *     if (p >= end) {
    218  *        // buffer was too small
    219  *     }
    220  *
    221  *     printf( "%s", buff );
    222  */
    223 
    224 /* add a char to a bounded buffer */
    225 static char*
    226 _bprint_c( char*  p, char*  end, int  c )
    227 {
    228     if (p < end) {
    229         if (p+1 == end)
    230             *p++ = 0;
    231         else {
    232             *p++ = (char) c;
    233             *p   = 0;
    234         }
    235     }
    236     return p;
    237 }
    238 
    239 /* add a sequence of bytes to a bounded buffer */
    240 static char*
    241 _bprint_b( char*  p, char*  end, const char*  buf, int  len )
    242 {
    243     int  avail = end - p;
    244 
    245     if (avail <= 0 || len <= 0)
    246         return p;
    247 
    248     if (avail > len)
    249         avail = len;
    250 
    251     memcpy( p, buf, avail );
    252     p += avail;
    253 
    254     if (p < end)
    255         p[0] = 0;
    256     else
    257         end[-1] = 0;
    258 
    259     return p;
    260 }
    261 
    262 /* add a string to a bounded buffer */
    263 static char*
    264 _bprint_s( char*  p, char*  end, const char*  str )
    265 {
    266     return _bprint_b(p, end, str, strlen(str));
    267 }
    268 
    269 /* add a formatted string to a bounded buffer */
    270 static char*
    271 _bprint( char*  p, char*  end, const char*  format, ... )
    272 {
    273     int      avail, n;
    274     va_list  args;
    275 
    276     avail = end - p;
    277 
    278     if (avail <= 0)
    279         return p;
    280 
    281     va_start(args, format);
    282     n = vsnprintf( p, avail, format, args);
    283     va_end(args);
    284 
    285     /* certain C libraries return -1 in case of truncation */
    286     if (n < 0 || n > avail)
    287         n = avail;
    288 
    289     p += n;
    290     /* certain C libraries do not zero-terminate in case of truncation */
    291     if (p == end)
    292         p[-1] = 0;
    293 
    294     return p;
    295 }
    296 
    297 /* add a hex value to a bounded buffer, up to 8 digits */
    298 static char*
    299 _bprint_hex( char*  p, char*  end, unsigned  value, int  numDigits )
    300 {
    301     char   text[sizeof(unsigned)*2];
    302     int    nn = 0;
    303 
    304     while (numDigits-- > 0) {
    305         text[nn++] = "0123456789abcdef"[(value >> (numDigits*4)) & 15];
    306     }
    307     return _bprint_b(p, end, text, nn);
    308 }
    309 
    310 /* add the hexadecimal dump of some memory area to a bounded buffer */
    311 static char*
    312 _bprint_hexdump( char*  p, char*  end, const uint8_t*  data, int  datalen )
    313 {
    314     int   lineSize = 16;
    315 
    316     while (datalen > 0) {
    317         int  avail = datalen;
    318         int  nn;
    319 
    320         if (avail > lineSize)
    321             avail = lineSize;
    322 
    323         for (nn = 0; nn < avail; nn++) {
    324             if (nn > 0)
    325                 p = _bprint_c(p, end, ' ');
    326             p = _bprint_hex(p, end, data[nn], 2);
    327         }
    328         for ( ; nn < lineSize; nn++ ) {
    329             p = _bprint_s(p, end, "   ");
    330         }
    331         p = _bprint_s(p, end, "  ");
    332 
    333         for (nn = 0; nn < avail; nn++) {
    334             int  c = data[nn];
    335 
    336             if (c < 32 || c > 127)
    337                 c = '.';
    338 
    339             p = _bprint_c(p, end, c);
    340         }
    341         p = _bprint_c(p, end, '\n');
    342 
    343         data    += avail;
    344         datalen -= avail;
    345     }
    346     return p;
    347 }
    348 
    349 /* dump the content of a query of packet to the log */
    350 static void
    351 XLOG_BYTES( const void*  base, int  len )
    352 {
    353     char  buff[1024];
    354     char*  p = buff, *end = p + sizeof(buff);
    355 
    356     p = _bprint_hexdump(p, end, base, len);
    357     XLOG("%s",buff);
    358 }
    359 
    360 #else /* !DEBUG */
    361 #  define  XLOG(...)        ((void)0)
    362 #  define  XLOG_BYTES(a,b)  ((void)0)
    363 #endif
    364 
    365 static time_t
    366 _time_now( void )
    367 {
    368     struct timeval  tv;
    369 
    370     gettimeofday( &tv, NULL );
    371     return tv.tv_sec;
    372 }
    373 
    374 /* reminder: the general format of a DNS packet is the following:
    375  *
    376  *    HEADER  (12 bytes)
    377  *    QUESTION  (variable)
    378  *    ANSWER (variable)
    379  *    AUTHORITY (variable)
    380  *    ADDITIONNAL (variable)
    381  *
    382  * the HEADER is made of:
    383  *
    384  *   ID     : 16 : 16-bit unique query identification field
    385  *
    386  *   QR     :  1 : set to 0 for queries, and 1 for responses
    387  *   Opcode :  4 : set to 0 for queries
    388  *   AA     :  1 : set to 0 for queries
    389  *   TC     :  1 : truncation flag, will be set to 0 in queries
    390  *   RD     :  1 : recursion desired
    391  *
    392  *   RA     :  1 : recursion available (0 in queries)
    393  *   Z      :  3 : three reserved zero bits
    394  *   RCODE  :  4 : response code (always 0=NOERROR in queries)
    395  *
    396  *   QDCount: 16 : question count
    397  *   ANCount: 16 : Answer count (0 in queries)
    398  *   NSCount: 16: Authority Record count (0 in queries)
    399  *   ARCount: 16: Additionnal Record count (0 in queries)
    400  *
    401  * the QUESTION is made of QDCount Question Record (QRs)
    402  * the ANSWER is made of ANCount RRs
    403  * the AUTHORITY is made of NSCount RRs
    404  * the ADDITIONNAL is made of ARCount RRs
    405  *
    406  * Each Question Record (QR) is made of:
    407  *
    408  *   QNAME   : variable : Query DNS NAME
    409  *   TYPE    : 16       : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
    410  *   CLASS   : 16       : class of query (IN=1)
    411  *
    412  * Each Resource Record (RR) is made of:
    413  *
    414  *   NAME    : variable : DNS NAME
    415  *   TYPE    : 16       : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
    416  *   CLASS   : 16       : class of query (IN=1)
    417  *   TTL     : 32       : seconds to cache this RR (0=none)
    418  *   RDLENGTH: 16       : size of RDDATA in bytes
    419  *   RDDATA  : variable : RR data (depends on TYPE)
    420  *
    421  * Each QNAME contains a domain name encoded as a sequence of 'labels'
    422  * terminated by a zero. Each label has the following format:
    423  *
    424  *    LEN  : 8     : lenght of label (MUST be < 64)
    425  *    NAME : 8*LEN : label length (must exclude dots)
    426  *
    427  * A value of 0 in the encoding is interpreted as the 'root' domain and
    428  * terminates the encoding. So 'www.android.com' will be encoded as:
    429  *
    430  *   <3>www<7>android<3>com<0>
    431  *
    432  * Where <n> represents the byte with value 'n'
    433  *
    434  * Each NAME reflects the QNAME of the question, but has a slightly more
    435  * complex encoding in order to provide message compression. This is achieved
    436  * by using a 2-byte pointer, with format:
    437  *
    438  *    TYPE   : 2  : 0b11 to indicate a pointer, 0b01 and 0b10 are reserved
    439  *    OFFSET : 14 : offset to another part of the DNS packet
    440  *
    441  * The offset is relative to the start of the DNS packet and must point
    442  * A pointer terminates the encoding.
    443  *
    444  * The NAME can be encoded in one of the following formats:
    445  *
    446  *   - a sequence of simple labels terminated by 0 (like QNAMEs)
    447  *   - a single pointer
    448  *   - a sequence of simple labels terminated by a pointer
    449  *
    450  * A pointer shall always point to either a pointer of a sequence of
    451  * labels (which can themselves be terminated by either a 0 or a pointer)
    452  *
    453  * The expanded length of a given domain name should not exceed 255 bytes.
    454  *
    455  * NOTE: we don't parse the answer packets, so don't need to deal with NAME
    456  *       records, only QNAMEs.
    457  */
    458 
    459 #define  DNS_HEADER_SIZE  12
    460 
    461 #define  DNS_TYPE_A   "\00\01"   /* big-endian decimal 1 */
    462 #define  DNS_TYPE_PTR "\00\014"  /* big-endian decimal 12 */
    463 #define  DNS_TYPE_MX  "\00\017"  /* big-endian decimal 15 */
    464 #define  DNS_TYPE_AAAA "\00\034" /* big-endian decimal 28 */
    465 #define  DNS_TYPE_ALL "\00\0377" /* big-endian decimal 255 */
    466 
    467 #define  DNS_CLASS_IN "\00\01"   /* big-endian decimal 1 */
    468 
    469 typedef struct {
    470     const uint8_t*  base;
    471     const uint8_t*  end;
    472     const uint8_t*  cursor;
    473 } DnsPacket;
    474 
    475 static void
    476 _dnsPacket_init( DnsPacket*  packet, const uint8_t*  buff, int  bufflen )
    477 {
    478     packet->base   = buff;
    479     packet->end    = buff + bufflen;
    480     packet->cursor = buff;
    481 }
    482 
    483 static void
    484 _dnsPacket_rewind( DnsPacket*  packet )
    485 {
    486     packet->cursor = packet->base;
    487 }
    488 
    489 static void
    490 _dnsPacket_skip( DnsPacket*  packet, int  count )
    491 {
    492     const uint8_t*  p = packet->cursor + count;
    493 
    494     if (p > packet->end)
    495         p = packet->end;
    496 
    497     packet->cursor = p;
    498 }
    499 
    500 static int
    501 _dnsPacket_readInt16( DnsPacket*  packet )
    502 {
    503     const uint8_t*  p = packet->cursor;
    504 
    505     if (p+2 > packet->end)
    506         return -1;
    507 
    508     packet->cursor = p+2;
    509     return (p[0]<< 8) | p[1];
    510 }
    511 
    512 /** QUERY CHECKING
    513  **/
    514 
    515 /* check bytes in a dns packet. returns 1 on success, 0 on failure.
    516  * the cursor is only advanced in the case of success
    517  */
    518 static int
    519 _dnsPacket_checkBytes( DnsPacket*  packet, int  numBytes, const void*  bytes )
    520 {
    521     const uint8_t*  p = packet->cursor;
    522 
    523     if (p + numBytes > packet->end)
    524         return 0;
    525 
    526     if (memcmp(p, bytes, numBytes) != 0)
    527         return 0;
    528 
    529     packet->cursor = p + numBytes;
    530     return 1;
    531 }
    532 
    533 /* parse and skip a given QNAME stored in a query packet,
    534  * from the current cursor position. returns 1 on success,
    535  * or 0 for malformed data.
    536  */
    537 static int
    538 _dnsPacket_checkQName( DnsPacket*  packet )
    539 {
    540     const uint8_t*  p   = packet->cursor;
    541     const uint8_t*  end = packet->end;
    542 
    543     for (;;) {
    544         int  c;
    545 
    546         if (p >= end)
    547             break;
    548 
    549         c = *p++;
    550 
    551         if (c == 0) {
    552             packet->cursor = p;
    553             return 1;
    554         }
    555 
    556         /* we don't expect label compression in QNAMEs */
    557         if (c >= 64)
    558             break;
    559 
    560         p += c;
    561         /* we rely on the bound check at the start
    562          * of the loop here */
    563     }
    564     /* malformed data */
    565     XLOG("malformed QNAME");
    566     return 0;
    567 }
    568 
    569 /* parse and skip a given QR stored in a packet.
    570  * returns 1 on success, and 0 on failure
    571  */
    572 static int
    573 _dnsPacket_checkQR( DnsPacket*  packet )
    574 {
    575     int  len;
    576 
    577     if (!_dnsPacket_checkQName(packet))
    578         return 0;
    579 
    580     /* TYPE must be one of the things we support */
    581     if (!_dnsPacket_checkBytes(packet, 2, DNS_TYPE_A) &&
    582         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_PTR) &&
    583         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_MX) &&
    584         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_AAAA) &&
    585         !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_ALL))
    586     {
    587         XLOG("unsupported TYPE");
    588         return 0;
    589     }
    590     /* CLASS must be IN */
    591     if (!_dnsPacket_checkBytes(packet, 2, DNS_CLASS_IN)) {
    592         XLOG("unsupported CLASS");
    593         return 0;
    594     }
    595 
    596     return 1;
    597 }
    598 
    599 /* check the header of a DNS Query packet, return 1 if it is one
    600  * type of query we can cache, or 0 otherwise
    601  */
    602 static int
    603 _dnsPacket_checkQuery( DnsPacket*  packet )
    604 {
    605     const uint8_t*  p = packet->base;
    606     int             qdCount, anCount, dnCount, arCount;
    607 
    608     if (p + DNS_HEADER_SIZE > packet->end) {
    609         XLOG("query packet too small");
    610         return 0;
    611     }
    612 
    613     /* QR must be set to 0, opcode must be 0 and AA must be 0 */
    614     /* RA, Z, and RCODE must be 0 */
    615     if ((p[2] & 0xFC) != 0 || p[3] != 0) {
    616         XLOG("query packet flags unsupported");
    617         return 0;
    618     }
    619 
    620     /* Note that we ignore the TC and RD bits here for the
    621      * following reasons:
    622      *
    623      * - there is no point for a query packet sent to a server
    624      *   to have the TC bit set, but the implementation might
    625      *   set the bit in the query buffer for its own needs
    626      *   between a _resolv_cache_lookup and a
    627      *   _resolv_cache_add. We should not freak out if this
    628      *   is the case.
    629      *
    630      * - we consider that the result from a RD=0 or a RD=1
    631      *   query might be different, hence that the RD bit
    632      *   should be used to differentiate cached result.
    633      *
    634      *   this implies that RD is checked when hashing or
    635      *   comparing query packets, but not TC
    636      */
    637 
    638     /* ANCOUNT, DNCOUNT and ARCOUNT must be 0 */
    639     qdCount = (p[4] << 8) | p[5];
    640     anCount = (p[6] << 8) | p[7];
    641     dnCount = (p[8] << 8) | p[9];
    642     arCount = (p[10]<< 8) | p[11];
    643 
    644     if (anCount != 0 || dnCount != 0 || arCount != 0) {
    645         XLOG("query packet contains non-query records");
    646         return 0;
    647     }
    648 
    649     if (qdCount == 0) {
    650         XLOG("query packet doesn't contain query record");
    651         return 0;
    652     }
    653 
    654     /* Check QDCOUNT QRs */
    655     packet->cursor = p + DNS_HEADER_SIZE;
    656 
    657     for (;qdCount > 0; qdCount--)
    658         if (!_dnsPacket_checkQR(packet))
    659             return 0;
    660 
    661     return 1;
    662 }
    663 
    664 /** QUERY DEBUGGING
    665  **/
    666 #if DEBUG
    667 static char*
    668 _dnsPacket_bprintQName(DnsPacket*  packet, char*  bp, char*  bend)
    669 {
    670     const uint8_t*  p   = packet->cursor;
    671     const uint8_t*  end = packet->end;
    672     int             first = 1;
    673 
    674     for (;;) {
    675         int  c;
    676 
    677         if (p >= end)
    678             break;
    679 
    680         c = *p++;
    681 
    682         if (c == 0) {
    683             packet->cursor = p;
    684             return bp;
    685         }
    686 
    687         /* we don't expect label compression in QNAMEs */
    688         if (c >= 64)
    689             break;
    690 
    691         if (first)
    692             first = 0;
    693         else
    694             bp = _bprint_c(bp, bend, '.');
    695 
    696         bp = _bprint_b(bp, bend, (const char*)p, c);
    697 
    698         p += c;
    699         /* we rely on the bound check at the start
    700          * of the loop here */
    701     }
    702     /* malformed data */
    703     bp = _bprint_s(bp, bend, "<MALFORMED>");
    704     return bp;
    705 }
    706 
    707 static char*
    708 _dnsPacket_bprintQR(DnsPacket*  packet, char*  p, char*  end)
    709 {
    710 #define  QQ(x)   { DNS_TYPE_##x, #x }
    711     static const struct {
    712         const char*  typeBytes;
    713         const char*  typeString;
    714     } qTypes[] =
    715     {
    716         QQ(A), QQ(PTR), QQ(MX), QQ(AAAA), QQ(ALL),
    717         { NULL, NULL }
    718     };
    719     int          nn;
    720     const char*  typeString = NULL;
    721 
    722     /* dump QNAME */
    723     p = _dnsPacket_bprintQName(packet, p, end);
    724 
    725     /* dump TYPE */
    726     p = _bprint_s(p, end, " (");
    727 
    728     for (nn = 0; qTypes[nn].typeBytes != NULL; nn++) {
    729         if (_dnsPacket_checkBytes(packet, 2, qTypes[nn].typeBytes)) {
    730             typeString = qTypes[nn].typeString;
    731             break;
    732         }
    733     }
    734 
    735     if (typeString != NULL)
    736         p = _bprint_s(p, end, typeString);
    737     else {
    738         int  typeCode = _dnsPacket_readInt16(packet);
    739         p = _bprint(p, end, "UNKNOWN-%d", typeCode);
    740     }
    741 
    742     p = _bprint_c(p, end, ')');
    743 
    744     /* skip CLASS */
    745     _dnsPacket_skip(packet, 2);
    746     return p;
    747 }
    748 
    749 /* this function assumes the packet has already been checked */
    750 static char*
    751 _dnsPacket_bprintQuery( DnsPacket*  packet, char*  p, char*  end )
    752 {
    753     int   qdCount;
    754 
    755     if (packet->base[2] & 0x1) {
    756         p = _bprint_s(p, end, "RECURSIVE ");
    757     }
    758 
    759     _dnsPacket_skip(packet, 4);
    760     qdCount = _dnsPacket_readInt16(packet);
    761     _dnsPacket_skip(packet, 6);
    762 
    763     for ( ; qdCount > 0; qdCount-- ) {
    764         p = _dnsPacket_bprintQR(packet, p, end);
    765     }
    766     return p;
    767 }
    768 #endif
    769 
    770 
    771 /** QUERY HASHING SUPPORT
    772  **
    773  ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKET HAS ALREADY
    774  ** BEEN SUCCESFULLY CHECKED.
    775  **/
    776 
    777 /* use 32-bit FNV hash function */
    778 #define  FNV_MULT   16777619U
    779 #define  FNV_BASIS  2166136261U
    780 
    781 static unsigned
    782 _dnsPacket_hashBytes( DnsPacket*  packet, int  numBytes, unsigned  hash )
    783 {
    784     const uint8_t*  p   = packet->cursor;
    785     const uint8_t*  end = packet->end;
    786 
    787     while (numBytes > 0 && p < end) {
    788         hash = hash*FNV_MULT ^ *p++;
    789     }
    790     packet->cursor = p;
    791     return hash;
    792 }
    793 
    794 
    795 static unsigned
    796 _dnsPacket_hashQName( DnsPacket*  packet, unsigned  hash )
    797 {
    798     const uint8_t*  p   = packet->cursor;
    799     const uint8_t*  end = packet->end;
    800 
    801     for (;;) {
    802         int  c;
    803 
    804         if (p >= end) {  /* should not happen */
    805             XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__);
    806             break;
    807         }
    808 
    809         c = *p++;
    810 
    811         if (c == 0)
    812             break;
    813 
    814         if (c >= 64) {
    815             XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__);
    816             break;
    817         }
    818         if (p + c >= end) {
    819             XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n",
    820                     __FUNCTION__);
    821             break;
    822         }
    823         while (c > 0) {
    824             hash = hash*FNV_MULT ^ *p++;
    825             c   -= 1;
    826         }
    827     }
    828     packet->cursor = p;
    829     return hash;
    830 }
    831 
    832 static unsigned
    833 _dnsPacket_hashQR( DnsPacket*  packet, unsigned  hash )
    834 {
    835     int   len;
    836 
    837     hash = _dnsPacket_hashQName(packet, hash);
    838     hash = _dnsPacket_hashBytes(packet, 4, hash); /* TYPE and CLASS */
    839     return hash;
    840 }
    841 
    842 static unsigned
    843 _dnsPacket_hashQuery( DnsPacket*  packet )
    844 {
    845     unsigned  hash = FNV_BASIS;
    846     int       count;
    847     _dnsPacket_rewind(packet);
    848 
    849     /* we ignore the TC bit for reasons explained in
    850      * _dnsPacket_checkQuery().
    851      *
    852      * however we hash the RD bit to differentiate
    853      * between answers for recursive and non-recursive
    854      * queries.
    855      */
    856     hash = hash*FNV_MULT ^ (packet->base[2] & 1);
    857 
    858     /* assume: other flags are 0 */
    859     _dnsPacket_skip(packet, 4);
    860 
    861     /* read QDCOUNT */
    862     count = _dnsPacket_readInt16(packet);
    863 
    864     /* assume: ANcount, NScount, ARcount are 0 */
    865     _dnsPacket_skip(packet, 6);
    866 
    867     /* hash QDCOUNT QRs */
    868     for ( ; count > 0; count-- )
    869         hash = _dnsPacket_hashQR(packet, hash);
    870 
    871     return hash;
    872 }
    873 
    874 
    875 /** QUERY COMPARISON
    876  **
    877  ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKETS HAVE ALREADY
    878  ** BEEN SUCCESFULLY CHECKED.
    879  **/
    880 
    881 static int
    882 _dnsPacket_isEqualDomainName( DnsPacket*  pack1, DnsPacket*  pack2 )
    883 {
    884     const uint8_t*  p1   = pack1->cursor;
    885     const uint8_t*  end1 = pack1->end;
    886     const uint8_t*  p2   = pack2->cursor;
    887     const uint8_t*  end2 = pack2->end;
    888 
    889     for (;;) {
    890         int  c1, c2;
    891 
    892         if (p1 >= end1 || p2 >= end2) {
    893             XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__);
    894             break;
    895         }
    896         c1 = *p1++;
    897         c2 = *p2++;
    898         if (c1 != c2)
    899             break;
    900 
    901         if (c1 == 0) {
    902             pack1->cursor = p1;
    903             pack2->cursor = p2;
    904             return 1;
    905         }
    906         if (c1 >= 64) {
    907             XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__);
    908             break;
    909         }
    910         if ((p1+c1 > end1) || (p2+c1 > end2)) {
    911             XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n",
    912                     __FUNCTION__);
    913             break;
    914         }
    915         if (memcmp(p1, p2, c1) != 0)
    916             break;
    917         p1 += c1;
    918         p2 += c1;
    919         /* we rely on the bound checks at the start of the loop */
    920     }
    921     /* not the same, or one is malformed */
    922     XLOG("different DN");
    923     return 0;
    924 }
    925 
    926 static int
    927 _dnsPacket_isEqualBytes( DnsPacket*  pack1, DnsPacket*  pack2, int  numBytes )
    928 {
    929     const uint8_t*  p1 = pack1->cursor;
    930     const uint8_t*  p2 = pack2->cursor;
    931 
    932     if ( p1 + numBytes > pack1->end || p2 + numBytes > pack2->end )
    933         return 0;
    934 
    935     if ( memcmp(p1, p2, numBytes) != 0 )
    936         return 0;
    937 
    938     pack1->cursor += numBytes;
    939     pack2->cursor += numBytes;
    940     return 1;
    941 }
    942 
    943 static int
    944 _dnsPacket_isEqualQR( DnsPacket*  pack1, DnsPacket*  pack2 )
    945 {
    946     /* compare domain name encoding + TYPE + CLASS */
    947     if ( !_dnsPacket_isEqualDomainName(pack1, pack2) ||
    948          !_dnsPacket_isEqualBytes(pack1, pack2, 2+2) )
    949         return 0;
    950 
    951     return 1;
    952 }
    953 
    954 static int
    955 _dnsPacket_isEqualQuery( DnsPacket*  pack1, DnsPacket*  pack2 )
    956 {
    957     int  count1, count2;
    958 
    959     /* compare the headers, ignore most fields */
    960     _dnsPacket_rewind(pack1);
    961     _dnsPacket_rewind(pack2);
    962 
    963     /* compare RD, ignore TC, see comment in _dnsPacket_checkQuery */
    964     if ((pack1->base[2] & 1) != (pack2->base[2] & 1)) {
    965         XLOG("different RD");
    966         return 0;
    967     }
    968 
    969     /* assume: other flags are all 0 */
    970     _dnsPacket_skip(pack1, 4);
    971     _dnsPacket_skip(pack2, 4);
    972 
    973     /* compare QDCOUNT */
    974     count1 = _dnsPacket_readInt16(pack1);
    975     count2 = _dnsPacket_readInt16(pack2);
    976     if (count1 != count2 || count1 < 0) {
    977         XLOG("different QDCOUNT");
    978         return 0;
    979     }
    980 
    981     /* assume: ANcount, NScount and ARcount are all 0 */
    982     _dnsPacket_skip(pack1, 6);
    983     _dnsPacket_skip(pack2, 6);
    984 
    985     /* compare the QDCOUNT QRs */
    986     for ( ; count1 > 0; count1-- ) {
    987         if (!_dnsPacket_isEqualQR(pack1, pack2)) {
    988             XLOG("different QR");
    989             return 0;
    990         }
    991     }
    992     return 1;
    993 }
    994 
    995 /****************************************************************************/
    996 /****************************************************************************/
    997 /*****                                                                  *****/
    998 /*****                                                                  *****/
    999 /*****                                                                  *****/
   1000 /****************************************************************************/
   1001 /****************************************************************************/
   1002 
   1003 /* cache entry. for simplicity, 'hash' and 'hlink' are inlined in this
   1004  * structure though they are conceptually part of the hash table.
   1005  *
   1006  * similarly, mru_next and mru_prev are part of the global MRU list
   1007  */
   1008 typedef struct Entry {
   1009     unsigned int     hash;   /* hash value */
   1010     struct Entry*    hlink;  /* next in collision chain */
   1011     struct Entry*    mru_prev;
   1012     struct Entry*    mru_next;
   1013 
   1014     const uint8_t*   query;
   1015     int              querylen;
   1016     const uint8_t*   answer;
   1017     int              answerlen;
   1018     time_t           expires;   /* time_t when the entry isn't valid any more */
   1019     int              id;        /* for debugging purpose */
   1020 } Entry;
   1021 
   1022 /**
   1023  * Parse the answer records and find the smallest
   1024  * TTL among the answer records.
   1025  *
   1026  * The returned TTL is the number of seconds to
   1027  * keep the answer in the cache.
   1028  *
   1029  * In case of parse error zero (0) is returned which
   1030  * indicates that the answer shall not be cached.
   1031  */
   1032 static u_long
   1033 answer_getTTL(const void* answer, int answerlen)
   1034 {
   1035     ns_msg handle;
   1036     int ancount, n;
   1037     u_long result, ttl;
   1038     ns_rr rr;
   1039 
   1040     result = 0;
   1041     if (ns_initparse(answer, answerlen, &handle) >= 0) {
   1042         // get number of answer records
   1043         ancount = ns_msg_count(handle, ns_s_an);
   1044         for (n = 0; n < ancount; n++) {
   1045             if (ns_parserr(&handle, ns_s_an, n, &rr) == 0) {
   1046                 ttl = ns_rr_ttl(rr);
   1047                 if (n == 0 || ttl < result) {
   1048                     result = ttl;
   1049                 }
   1050             } else {
   1051                 XLOG("ns_parserr failed ancount no = %d. errno = %s\n", n, strerror(errno));
   1052             }
   1053         }
   1054     } else {
   1055         XLOG("ns_parserr failed. %s\n", strerror(errno));
   1056     }
   1057 
   1058     XLOG("TTL = %d\n", result);
   1059 
   1060     return result;
   1061 }
   1062 
   1063 static void
   1064 entry_free( Entry*  e )
   1065 {
   1066     /* everything is allocated in a single memory block */
   1067     if (e) {
   1068         free(e);
   1069     }
   1070 }
   1071 
   1072 static __inline__ void
   1073 entry_mru_remove( Entry*  e )
   1074 {
   1075     e->mru_prev->mru_next = e->mru_next;
   1076     e->mru_next->mru_prev = e->mru_prev;
   1077 }
   1078 
   1079 static __inline__ void
   1080 entry_mru_add( Entry*  e, Entry*  list )
   1081 {
   1082     Entry*  first = list->mru_next;
   1083 
   1084     e->mru_next = first;
   1085     e->mru_prev = list;
   1086 
   1087     list->mru_next  = e;
   1088     first->mru_prev = e;
   1089 }
   1090 
   1091 /* compute the hash of a given entry, this is a hash of most
   1092  * data in the query (key) */
   1093 static unsigned
   1094 entry_hash( const Entry*  e )
   1095 {
   1096     DnsPacket  pack[1];
   1097 
   1098     _dnsPacket_init(pack, e->query, e->querylen);
   1099     return _dnsPacket_hashQuery(pack);
   1100 }
   1101 
   1102 /* initialize an Entry as a search key, this also checks the input query packet
   1103  * returns 1 on success, or 0 in case of unsupported/malformed data */
   1104 static int
   1105 entry_init_key( Entry*  e, const void*  query, int  querylen )
   1106 {
   1107     DnsPacket  pack[1];
   1108 
   1109     memset(e, 0, sizeof(*e));
   1110 
   1111     e->query    = query;
   1112     e->querylen = querylen;
   1113     e->hash     = entry_hash(e);
   1114 
   1115     _dnsPacket_init(pack, query, querylen);
   1116 
   1117     return _dnsPacket_checkQuery(pack);
   1118 }
   1119 
   1120 /* allocate a new entry as a cache node */
   1121 static Entry*
   1122 entry_alloc( const Entry*  init, const void*  answer, int  answerlen )
   1123 {
   1124     Entry*  e;
   1125     int     size;
   1126 
   1127     size = sizeof(*e) + init->querylen + answerlen;
   1128     e    = calloc(size, 1);
   1129     if (e == NULL)
   1130         return e;
   1131 
   1132     e->hash     = init->hash;
   1133     e->query    = (const uint8_t*)(e+1);
   1134     e->querylen = init->querylen;
   1135 
   1136     memcpy( (char*)e->query, init->query, e->querylen );
   1137 
   1138     e->answer    = e->query + e->querylen;
   1139     e->answerlen = answerlen;
   1140 
   1141     memcpy( (char*)e->answer, answer, e->answerlen );
   1142 
   1143     return e;
   1144 }
   1145 
   1146 static int
   1147 entry_equals( const Entry*  e1, const Entry*  e2 )
   1148 {
   1149     DnsPacket  pack1[1], pack2[1];
   1150 
   1151     if (e1->querylen != e2->querylen) {
   1152         return 0;
   1153     }
   1154     _dnsPacket_init(pack1, e1->query, e1->querylen);
   1155     _dnsPacket_init(pack2, e2->query, e2->querylen);
   1156 
   1157     return _dnsPacket_isEqualQuery(pack1, pack2);
   1158 }
   1159 
   1160 /****************************************************************************/
   1161 /****************************************************************************/
   1162 /*****                                                                  *****/
   1163 /*****                                                                  *****/
   1164 /*****                                                                  *****/
   1165 /****************************************************************************/
   1166 /****************************************************************************/
   1167 
   1168 /* We use a simple hash table with external collision lists
   1169  * for simplicity, the hash-table fields 'hash' and 'hlink' are
   1170  * inlined in the Entry structure.
   1171  */
   1172 
   1173 typedef struct resolv_cache {
   1174     int              max_entries;
   1175     int              num_entries;
   1176     Entry            mru_list;
   1177     pthread_mutex_t  lock;
   1178     unsigned         generation;
   1179     int              last_id;
   1180     Entry*           entries;
   1181 } Cache;
   1182 
   1183 typedef struct resolv_cache_info {
   1184     char                        ifname[IF_NAMESIZE + 1];
   1185     struct in_addr              ifaddr;
   1186     Cache*                      cache;
   1187     struct resolv_cache_info*   next;
   1188     char*                       nameservers[MAXNS +1];
   1189     struct addrinfo*            nsaddrinfo[MAXNS + 1];
   1190 } CacheInfo;
   1191 
   1192 #define  HTABLE_VALID(x)  ((x) != NULL && (x) != HTABLE_DELETED)
   1193 
   1194 static void
   1195 _cache_flush_locked( Cache*  cache )
   1196 {
   1197     int     nn;
   1198     time_t  now = _time_now();
   1199 
   1200     for (nn = 0; nn < cache->max_entries; nn++)
   1201     {
   1202         Entry**  pnode = (Entry**) &cache->entries[nn];
   1203 
   1204         while (*pnode != NULL) {
   1205             Entry*  node = *pnode;
   1206             *pnode = node->hlink;
   1207             entry_free(node);
   1208         }
   1209     }
   1210 
   1211     cache->mru_list.mru_next = cache->mru_list.mru_prev = &cache->mru_list;
   1212     cache->num_entries       = 0;
   1213     cache->last_id           = 0;
   1214 
   1215     XLOG("*************************\n"
   1216          "*** DNS CACHE FLUSHED ***\n"
   1217          "*************************");
   1218 }
   1219 
   1220 /* Return max number of entries allowed in the cache,
   1221  * i.e. cache size. The cache size is either defined
   1222  * by system property ro.net.dns_cache_size or by
   1223  * CONFIG_MAX_ENTRIES if system property not set
   1224  * or set to invalid value. */
   1225 static int
   1226 _res_cache_get_max_entries( void )
   1227 {
   1228     int result = -1;
   1229     char cache_size[PROP_VALUE_MAX];
   1230 
   1231     const char* cache_mode = getenv("ANDROID_DNS_MODE");
   1232 
   1233     if (cache_mode == NULL || strcmp(cache_mode, "local") != 0) {
   1234         // Don't use the cache in local mode.  This is used by the
   1235         // proxy itself.
   1236         // TODO - change this to 0 when all dns stuff uses proxy (5918973)
   1237         XLOG("setup cache for non-cache process. size=1");
   1238         return 1;
   1239     }
   1240 
   1241     if (__system_property_get(DNS_CACHE_SIZE_PROP_NAME, cache_size) > 0) {
   1242         result = atoi(cache_size);
   1243     }
   1244 
   1245     // ro.net.dns_cache_size not set or set to negative value
   1246     if (result <= 0) {
   1247         result = CONFIG_MAX_ENTRIES;
   1248     }
   1249 
   1250     XLOG("cache size: %d", result);
   1251     return result;
   1252 }
   1253 
   1254 static struct resolv_cache*
   1255 _resolv_cache_create( void )
   1256 {
   1257     struct resolv_cache*  cache;
   1258 
   1259     cache = calloc(sizeof(*cache), 1);
   1260     if (cache) {
   1261         cache->max_entries = _res_cache_get_max_entries();
   1262         cache->entries = calloc(sizeof(*cache->entries), cache->max_entries);
   1263         if (cache->entries) {
   1264             cache->generation = ~0U;
   1265             pthread_mutex_init( &cache->lock, NULL );
   1266             cache->mru_list.mru_prev = cache->mru_list.mru_next = &cache->mru_list;
   1267             XLOG("%s: cache created\n", __FUNCTION__);
   1268         } else {
   1269             free(cache);
   1270             cache = NULL;
   1271         }
   1272     }
   1273     return cache;
   1274 }
   1275 
   1276 
   1277 #if DEBUG
   1278 static void
   1279 _dump_query( const uint8_t*  query, int  querylen )
   1280 {
   1281     char       temp[256], *p=temp, *end=p+sizeof(temp);
   1282     DnsPacket  pack[1];
   1283 
   1284     _dnsPacket_init(pack, query, querylen);
   1285     p = _dnsPacket_bprintQuery(pack, p, end);
   1286     XLOG("QUERY: %s", temp);
   1287 }
   1288 
   1289 static void
   1290 _cache_dump_mru( Cache*  cache )
   1291 {
   1292     char    temp[512], *p=temp, *end=p+sizeof(temp);
   1293     Entry*  e;
   1294 
   1295     p = _bprint(temp, end, "MRU LIST (%2d): ", cache->num_entries);
   1296     for (e = cache->mru_list.mru_next; e != &cache->mru_list; e = e->mru_next)
   1297         p = _bprint(p, end, " %d", e->id);
   1298 
   1299     XLOG("%s", temp);
   1300 }
   1301 
   1302 static void
   1303 _dump_answer(const void* answer, int answerlen)
   1304 {
   1305     res_state statep;
   1306     FILE* fp;
   1307     char* buf;
   1308     int fileLen;
   1309 
   1310     fp = fopen("/data/reslog.txt", "w+");
   1311     if (fp != NULL) {
   1312         statep = __res_get_state();
   1313 
   1314         res_pquery(statep, answer, answerlen, fp);
   1315 
   1316         //Get file length
   1317         fseek(fp, 0, SEEK_END);
   1318         fileLen=ftell(fp);
   1319         fseek(fp, 0, SEEK_SET);
   1320         buf = (char *)malloc(fileLen+1);
   1321         if (buf != NULL) {
   1322             //Read file contents into buffer
   1323             fread(buf, fileLen, 1, fp);
   1324             XLOG("%s\n", buf);
   1325             free(buf);
   1326         }
   1327         fclose(fp);
   1328         remove("/data/reslog.txt");
   1329     }
   1330     else {
   1331         XLOG("_dump_answer: can't open file\n");
   1332     }
   1333 }
   1334 #endif
   1335 
   1336 #if DEBUG
   1337 #  define  XLOG_QUERY(q,len)   _dump_query((q), (len))
   1338 #  define  XLOG_ANSWER(a, len) _dump_answer((a), (len))
   1339 #else
   1340 #  define  XLOG_QUERY(q,len)   ((void)0)
   1341 #  define  XLOG_ANSWER(a,len)  ((void)0)
   1342 #endif
   1343 
   1344 /* This function tries to find a key within the hash table
   1345  * In case of success, it will return a *pointer* to the hashed key.
   1346  * In case of failure, it will return a *pointer* to NULL
   1347  *
   1348  * So, the caller must check '*result' to check for success/failure.
   1349  *
   1350  * The main idea is that the result can later be used directly in
   1351  * calls to _resolv_cache_add or _resolv_cache_remove as the 'lookup'
   1352  * parameter. This makes the code simpler and avoids re-searching
   1353  * for the key position in the htable.
   1354  *
   1355  * The result of a lookup_p is only valid until you alter the hash
   1356  * table.
   1357  */
   1358 static Entry**
   1359 _cache_lookup_p( Cache*   cache,
   1360                  Entry*   key )
   1361 {
   1362     int      index = key->hash % cache->max_entries;
   1363     Entry**  pnode = (Entry**) &cache->entries[ index ];
   1364 
   1365     while (*pnode != NULL) {
   1366         Entry*  node = *pnode;
   1367 
   1368         if (node == NULL)
   1369             break;
   1370 
   1371         if (node->hash == key->hash && entry_equals(node, key))
   1372             break;
   1373 
   1374         pnode = &node->hlink;
   1375     }
   1376     return pnode;
   1377 }
   1378 
   1379 /* Add a new entry to the hash table. 'lookup' must be the
   1380  * result of an immediate previous failed _lookup_p() call
   1381  * (i.e. with *lookup == NULL), and 'e' is the pointer to the
   1382  * newly created entry
   1383  */
   1384 static void
   1385 _cache_add_p( Cache*   cache,
   1386               Entry**  lookup,
   1387               Entry*   e )
   1388 {
   1389     *lookup = e;
   1390     e->id = ++cache->last_id;
   1391     entry_mru_add(e, &cache->mru_list);
   1392     cache->num_entries += 1;
   1393 
   1394     XLOG("%s: entry %d added (count=%d)", __FUNCTION__,
   1395          e->id, cache->num_entries);
   1396 }
   1397 
   1398 /* Remove an existing entry from the hash table,
   1399  * 'lookup' must be the result of an immediate previous
   1400  * and succesful _lookup_p() call.
   1401  */
   1402 static void
   1403 _cache_remove_p( Cache*   cache,
   1404                  Entry**  lookup )
   1405 {
   1406     Entry*  e  = *lookup;
   1407 
   1408     XLOG("%s: entry %d removed (count=%d)", __FUNCTION__,
   1409          e->id, cache->num_entries-1);
   1410 
   1411     entry_mru_remove(e);
   1412     *lookup = e->hlink;
   1413     entry_free(e);
   1414     cache->num_entries -= 1;
   1415 }
   1416 
   1417 /* Remove the oldest entry from the hash table.
   1418  */
   1419 static void
   1420 _cache_remove_oldest( Cache*  cache )
   1421 {
   1422     Entry*   oldest = cache->mru_list.mru_prev;
   1423     Entry**  lookup = _cache_lookup_p(cache, oldest);
   1424 
   1425     if (*lookup == NULL) { /* should not happen */
   1426         XLOG("%s: OLDEST NOT IN HTABLE ?", __FUNCTION__);
   1427         return;
   1428     }
   1429     if (DEBUG) {
   1430         XLOG("Cache full - removing oldest");
   1431         XLOG_QUERY(oldest->query, oldest->querylen);
   1432     }
   1433     _cache_remove_p(cache, lookup);
   1434 }
   1435 
   1436 
   1437 ResolvCacheStatus
   1438 _resolv_cache_lookup( struct resolv_cache*  cache,
   1439                       const void*           query,
   1440                       int                   querylen,
   1441                       void*                 answer,
   1442                       int                   answersize,
   1443                       int                  *answerlen )
   1444 {
   1445     DnsPacket  pack[1];
   1446     Entry      key[1];
   1447     int        index;
   1448     Entry**    lookup;
   1449     Entry*     e;
   1450     time_t     now;
   1451 
   1452     ResolvCacheStatus  result = RESOLV_CACHE_NOTFOUND;
   1453 
   1454     XLOG("%s: lookup", __FUNCTION__);
   1455     XLOG_QUERY(query, querylen);
   1456 
   1457     /* we don't cache malformed queries */
   1458     if (!entry_init_key(key, query, querylen)) {
   1459         XLOG("%s: unsupported query", __FUNCTION__);
   1460         return RESOLV_CACHE_UNSUPPORTED;
   1461     }
   1462     /* lookup cache */
   1463     pthread_mutex_lock( &cache->lock );
   1464 
   1465     /* see the description of _lookup_p to understand this.
   1466      * the function always return a non-NULL pointer.
   1467      */
   1468     lookup = _cache_lookup_p(cache, key);
   1469     e      = *lookup;
   1470 
   1471     if (e == NULL) {
   1472         XLOG( "NOT IN CACHE");
   1473         goto Exit;
   1474     }
   1475 
   1476     now = _time_now();
   1477 
   1478     /* remove stale entries here */
   1479     if (now >= e->expires) {
   1480         XLOG( " NOT IN CACHE (STALE ENTRY %p DISCARDED)", *lookup );
   1481         XLOG_QUERY(e->query, e->querylen);
   1482         _cache_remove_p(cache, lookup);
   1483         goto Exit;
   1484     }
   1485 
   1486     *answerlen = e->answerlen;
   1487     if (e->answerlen > answersize) {
   1488         /* NOTE: we return UNSUPPORTED if the answer buffer is too short */
   1489         result = RESOLV_CACHE_UNSUPPORTED;
   1490         XLOG(" ANSWER TOO LONG");
   1491         goto Exit;
   1492     }
   1493 
   1494     memcpy( answer, e->answer, e->answerlen );
   1495 
   1496     /* bump up this entry to the top of the MRU list */
   1497     if (e != cache->mru_list.mru_next) {
   1498         entry_mru_remove( e );
   1499         entry_mru_add( e, &cache->mru_list );
   1500     }
   1501 
   1502     XLOG( "FOUND IN CACHE entry=%p", e );
   1503     result = RESOLV_CACHE_FOUND;
   1504 
   1505 Exit:
   1506     pthread_mutex_unlock( &cache->lock );
   1507     return result;
   1508 }
   1509 
   1510 
   1511 void
   1512 _resolv_cache_add( struct resolv_cache*  cache,
   1513                    const void*           query,
   1514                    int                   querylen,
   1515                    const void*           answer,
   1516                    int                   answerlen )
   1517 {
   1518     Entry    key[1];
   1519     Entry*   e;
   1520     Entry**  lookup;
   1521     u_long   ttl;
   1522 
   1523     /* don't assume that the query has already been cached
   1524      */
   1525     if (!entry_init_key( key, query, querylen )) {
   1526         XLOG( "%s: passed invalid query ?", __FUNCTION__);
   1527         return;
   1528     }
   1529 
   1530     pthread_mutex_lock( &cache->lock );
   1531 
   1532     XLOG( "%s: query:", __FUNCTION__ );
   1533     XLOG_QUERY(query,querylen);
   1534     XLOG_ANSWER(answer, answerlen);
   1535 #if DEBUG_DATA
   1536     XLOG( "answer:");
   1537     XLOG_BYTES(answer,answerlen);
   1538 #endif
   1539 
   1540     lookup = _cache_lookup_p(cache, key);
   1541     e      = *lookup;
   1542 
   1543     if (e != NULL) { /* should not happen */
   1544         XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD",
   1545              __FUNCTION__, e);
   1546         goto Exit;
   1547     }
   1548 
   1549     if (cache->num_entries >= cache->max_entries) {
   1550         _cache_remove_oldest(cache);
   1551         /* need to lookup again */
   1552         lookup = _cache_lookup_p(cache, key);
   1553         e      = *lookup;
   1554         if (e != NULL) {
   1555             XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD",
   1556                 __FUNCTION__, e);
   1557             goto Exit;
   1558         }
   1559     }
   1560 
   1561     ttl = answer_getTTL(answer, answerlen);
   1562     if (ttl > 0) {
   1563         e = entry_alloc(key, answer, answerlen);
   1564         if (e != NULL) {
   1565             e->expires = ttl + _time_now();
   1566             _cache_add_p(cache, lookup, e);
   1567         }
   1568     }
   1569 #if DEBUG
   1570     _cache_dump_mru(cache);
   1571 #endif
   1572 Exit:
   1573     pthread_mutex_unlock( &cache->lock );
   1574 }
   1575 
   1576 /****************************************************************************/
   1577 /****************************************************************************/
   1578 /*****                                                                  *****/
   1579 /*****                                                                  *****/
   1580 /*****                                                                  *****/
   1581 /****************************************************************************/
   1582 /****************************************************************************/
   1583 
   1584 static pthread_once_t        _res_cache_once;
   1585 
   1586 // Head of the list of caches.  Protected by _res_cache_list_lock.
   1587 static struct resolv_cache_info _res_cache_list;
   1588 
   1589 // name of the current default inteface
   1590 static char            _res_default_ifname[IF_NAMESIZE + 1];
   1591 
   1592 // lock protecting everything in the _resolve_cache_info structs (next ptr, etc)
   1593 static pthread_mutex_t _res_cache_list_lock;
   1594 
   1595 
   1596 /* lookup the default interface name */
   1597 static char *_get_default_iface_locked();
   1598 /* insert resolv_cache_info into the list of resolv_cache_infos */
   1599 static void _insert_cache_info_locked(struct resolv_cache_info* cache_info);
   1600 /* creates a resolv_cache_info */
   1601 static struct resolv_cache_info* _create_cache_info( void );
   1602 /* gets cache associated with an interface name, or NULL if none exists */
   1603 static struct resolv_cache* _find_named_cache_locked(const char* ifname);
   1604 /* gets a resolv_cache_info associated with an interface name, or NULL if not found */
   1605 static struct resolv_cache_info* _find_cache_info_locked(const char* ifname);
   1606 /* free dns name server list of a resolv_cache_info structure */
   1607 static void _free_nameservers(struct resolv_cache_info* cache_info);
   1608 /* look up the named cache, and creates one if needed */
   1609 static struct resolv_cache* _get_res_cache_for_iface_locked(const char* ifname);
   1610 /* empty the named cache */
   1611 static void _flush_cache_for_iface_locked(const char* ifname);
   1612 /* empty the nameservers set for the named cache */
   1613 static void _free_nameservers_locked(struct resolv_cache_info* cache_info);
   1614 /* lookup the namserver for the name interface */
   1615 static int _get_nameserver_locked(const char* ifname, int n, char* addr, int addrLen);
   1616 /* lookup the addr of the nameserver for the named interface */
   1617 static struct addrinfo* _get_nameserver_addr_locked(const char* ifname, int n);
   1618 /* lookup the inteface's address */
   1619 static struct in_addr* _get_addr_locked(const char * ifname);
   1620 
   1621 
   1622 
   1623 static void
   1624 _res_cache_init(void)
   1625 {
   1626     const char*  env = getenv(CONFIG_ENV);
   1627 
   1628     if (env && atoi(env) == 0) {
   1629         /* the cache is disabled */
   1630         return;
   1631     }
   1632 
   1633     memset(&_res_default_ifname, 0, sizeof(_res_default_ifname));
   1634     memset(&_res_cache_list, 0, sizeof(_res_cache_list));
   1635     pthread_mutex_init(&_res_cache_list_lock, NULL);
   1636 }
   1637 
   1638 struct resolv_cache*
   1639 __get_res_cache(void)
   1640 {
   1641     struct resolv_cache *cache;
   1642 
   1643     pthread_once(&_res_cache_once, _res_cache_init);
   1644 
   1645     pthread_mutex_lock(&_res_cache_list_lock);
   1646 
   1647     char* ifname = _get_default_iface_locked();
   1648 
   1649     // if default interface not set then use the first cache
   1650     // associated with an interface as the default one.
   1651     if (ifname[0] == '\0') {
   1652         struct resolv_cache_info* cache_info = _res_cache_list.next;
   1653         while (cache_info) {
   1654             if (cache_info->ifname[0] != '\0') {
   1655                 ifname = cache_info->ifname;
   1656                 break;
   1657             }
   1658 
   1659             cache_info = cache_info->next;
   1660         }
   1661     }
   1662     cache = _get_res_cache_for_iface_locked(ifname);
   1663 
   1664     pthread_mutex_unlock(&_res_cache_list_lock);
   1665     XLOG("_get_res_cache. default_ifname = %s\n", ifname);
   1666     return cache;
   1667 }
   1668 
   1669 static struct resolv_cache*
   1670 _get_res_cache_for_iface_locked(const char* ifname)
   1671 {
   1672     if (ifname == NULL)
   1673         return NULL;
   1674 
   1675     struct resolv_cache* cache = _find_named_cache_locked(ifname);
   1676     if (!cache) {
   1677         struct resolv_cache_info* cache_info = _create_cache_info();
   1678         if (cache_info) {
   1679             cache = _resolv_cache_create();
   1680             if (cache) {
   1681                 int len = sizeof(cache_info->ifname);
   1682                 cache_info->cache = cache;
   1683                 strncpy(cache_info->ifname, ifname, len - 1);
   1684                 cache_info->ifname[len - 1] = '\0';
   1685 
   1686                 _insert_cache_info_locked(cache_info);
   1687             } else {
   1688                 free(cache_info);
   1689             }
   1690         }
   1691     }
   1692     return cache;
   1693 }
   1694 
   1695 void
   1696 _resolv_cache_reset(unsigned  generation)
   1697 {
   1698     XLOG("%s: generation=%d", __FUNCTION__, generation);
   1699 
   1700     pthread_once(&_res_cache_once, _res_cache_init);
   1701     pthread_mutex_lock(&_res_cache_list_lock);
   1702 
   1703     char* ifname = _get_default_iface_locked();
   1704     // if default interface not set then use the first cache
   1705     // associated with an interface as the default one.
   1706     // Note: Copied the code from __get_res_cache since this
   1707     // method will be deleted/obsolete when cache per interface
   1708     // implemented all over
   1709     if (ifname[0] == '\0') {
   1710         struct resolv_cache_info* cache_info = _res_cache_list.next;
   1711         while (cache_info) {
   1712             if (cache_info->ifname[0] != '\0') {
   1713                 ifname = cache_info->ifname;
   1714                 break;
   1715             }
   1716 
   1717             cache_info = cache_info->next;
   1718         }
   1719     }
   1720     struct resolv_cache* cache = _get_res_cache_for_iface_locked(ifname);
   1721 
   1722     if (cache != NULL) {
   1723         pthread_mutex_lock( &cache->lock );
   1724         if (cache->generation != generation) {
   1725             _cache_flush_locked(cache);
   1726             cache->generation = generation;
   1727         }
   1728         pthread_mutex_unlock( &cache->lock );
   1729     }
   1730 
   1731     pthread_mutex_unlock(&_res_cache_list_lock);
   1732 }
   1733 
   1734 void
   1735 _resolv_flush_cache_for_default_iface(void)
   1736 {
   1737     char* ifname;
   1738 
   1739     pthread_once(&_res_cache_once, _res_cache_init);
   1740     pthread_mutex_lock(&_res_cache_list_lock);
   1741 
   1742     ifname = _get_default_iface_locked();
   1743     _flush_cache_for_iface_locked(ifname);
   1744 
   1745     pthread_mutex_unlock(&_res_cache_list_lock);
   1746 }
   1747 
   1748 void
   1749 _resolv_flush_cache_for_iface(const char* ifname)
   1750 {
   1751     pthread_once(&_res_cache_once, _res_cache_init);
   1752     pthread_mutex_lock(&_res_cache_list_lock);
   1753 
   1754     _flush_cache_for_iface_locked(ifname);
   1755 
   1756     pthread_mutex_unlock(&_res_cache_list_lock);
   1757 }
   1758 
   1759 static void
   1760 _flush_cache_for_iface_locked(const char* ifname)
   1761 {
   1762     struct resolv_cache* cache = _find_named_cache_locked(ifname);
   1763     if (cache) {
   1764         pthread_mutex_lock(&cache->lock);
   1765         _cache_flush_locked(cache);
   1766         pthread_mutex_unlock(&cache->lock);
   1767     }
   1768 }
   1769 
   1770 static struct resolv_cache_info*
   1771 _create_cache_info(void)
   1772 {
   1773     struct resolv_cache_info*  cache_info;
   1774 
   1775     cache_info = calloc(sizeof(*cache_info), 1);
   1776     return cache_info;
   1777 }
   1778 
   1779 static void
   1780 _insert_cache_info_locked(struct resolv_cache_info* cache_info)
   1781 {
   1782     struct resolv_cache_info* last;
   1783 
   1784     for (last = &_res_cache_list; last->next; last = last->next);
   1785 
   1786     last->next = cache_info;
   1787 
   1788 }
   1789 
   1790 static struct resolv_cache*
   1791 _find_named_cache_locked(const char* ifname) {
   1792 
   1793     struct resolv_cache_info* info = _find_cache_info_locked(ifname);
   1794 
   1795     if (info != NULL) return info->cache;
   1796 
   1797     return NULL;
   1798 }
   1799 
   1800 static struct resolv_cache_info*
   1801 _find_cache_info_locked(const char* ifname)
   1802 {
   1803     if (ifname == NULL)
   1804         return NULL;
   1805 
   1806     struct resolv_cache_info* cache_info = _res_cache_list.next;
   1807 
   1808     while (cache_info) {
   1809         if (strcmp(cache_info->ifname, ifname) == 0) {
   1810             break;
   1811         }
   1812 
   1813         cache_info = cache_info->next;
   1814     }
   1815     return cache_info;
   1816 }
   1817 
   1818 static char*
   1819 _get_default_iface_locked(void)
   1820 {
   1821     char* iface = _res_default_ifname;
   1822 
   1823     return iface;
   1824 }
   1825 
   1826 void
   1827 _resolv_set_default_iface(const char* ifname)
   1828 {
   1829     XLOG("_resolv_set_default_if ifname %s\n",ifname);
   1830 
   1831     pthread_once(&_res_cache_once, _res_cache_init);
   1832     pthread_mutex_lock(&_res_cache_list_lock);
   1833 
   1834     int size = sizeof(_res_default_ifname);
   1835     memset(_res_default_ifname, 0, size);
   1836     strncpy(_res_default_ifname, ifname, size - 1);
   1837     _res_default_ifname[size - 1] = '\0';
   1838 
   1839     pthread_mutex_unlock(&_res_cache_list_lock);
   1840 }
   1841 
   1842 void
   1843 _resolv_set_nameservers_for_iface(const char* ifname, char** servers, int numservers)
   1844 {
   1845     int i, rt, index;
   1846     struct addrinfo hints;
   1847     char sbuf[NI_MAXSERV];
   1848 
   1849     pthread_once(&_res_cache_once, _res_cache_init);
   1850 
   1851     pthread_mutex_lock(&_res_cache_list_lock);
   1852     // creates the cache if not created
   1853     _get_res_cache_for_iface_locked(ifname);
   1854 
   1855     struct resolv_cache_info* cache_info = _find_cache_info_locked(ifname);
   1856 
   1857     if (cache_info != NULL) {
   1858         // free current before adding new
   1859         _free_nameservers_locked(cache_info);
   1860 
   1861         memset(&hints, 0, sizeof(hints));
   1862         hints.ai_family = PF_UNSPEC;
   1863         hints.ai_socktype = SOCK_DGRAM; /*dummy*/
   1864         hints.ai_flags = AI_NUMERICHOST;
   1865         sprintf(sbuf, "%u", NAMESERVER_PORT);
   1866 
   1867         index = 0;
   1868         for (i = 0; i < numservers && i < MAXNS; i++) {
   1869             rt = getaddrinfo(servers[i], sbuf, &hints, &cache_info->nsaddrinfo[index]);
   1870             if (rt == 0) {
   1871                 cache_info->nameservers[index] = strdup(servers[i]);
   1872                 index++;
   1873             } else {
   1874                 cache_info->nsaddrinfo[index] = NULL;
   1875             }
   1876         }
   1877     }
   1878     pthread_mutex_unlock(&_res_cache_list_lock);
   1879 }
   1880 
   1881 static void
   1882 _free_nameservers_locked(struct resolv_cache_info* cache_info)
   1883 {
   1884     int i;
   1885     for (i = 0; i <= MAXNS; i++) {
   1886         free(cache_info->nameservers[i]);
   1887         cache_info->nameservers[i] = NULL;
   1888         if (cache_info->nsaddrinfo[i] != NULL) {
   1889             freeaddrinfo(cache_info->nsaddrinfo[i]);
   1890             cache_info->nsaddrinfo[i] = NULL;
   1891         }
   1892     }
   1893 }
   1894 
   1895 int
   1896 _resolv_cache_get_nameserver(int n, char* addr, int addrLen)
   1897 {
   1898     char *ifname;
   1899     int result = 0;
   1900 
   1901     pthread_once(&_res_cache_once, _res_cache_init);
   1902     pthread_mutex_lock(&_res_cache_list_lock);
   1903 
   1904     ifname = _get_default_iface_locked();
   1905     result = _get_nameserver_locked(ifname, n, addr, addrLen);
   1906 
   1907     pthread_mutex_unlock(&_res_cache_list_lock);
   1908     return result;
   1909 }
   1910 
   1911 static int
   1912 _get_nameserver_locked(const char* ifname, int n, char* addr, int addrLen)
   1913 {
   1914     int len = 0;
   1915     char* ns;
   1916     struct resolv_cache_info* cache_info;
   1917 
   1918     if (n < 1 || n > MAXNS || !addr)
   1919         return 0;
   1920 
   1921     cache_info = _find_cache_info_locked(ifname);
   1922     if (cache_info) {
   1923         ns = cache_info->nameservers[n - 1];
   1924         if (ns) {
   1925             len = strlen(ns);
   1926             if (len < addrLen) {
   1927                 strncpy(addr, ns, len);
   1928                 addr[len] = '\0';
   1929             } else {
   1930                 len = 0;
   1931             }
   1932         }
   1933     }
   1934 
   1935     return len;
   1936 }
   1937 
   1938 struct addrinfo*
   1939 _cache_get_nameserver_addr(int n)
   1940 {
   1941     struct addrinfo *result;
   1942     char* ifname;
   1943 
   1944     pthread_once(&_res_cache_once, _res_cache_init);
   1945     pthread_mutex_lock(&_res_cache_list_lock);
   1946 
   1947     ifname = _get_default_iface_locked();
   1948 
   1949     result = _get_nameserver_addr_locked(ifname, n);
   1950     pthread_mutex_unlock(&_res_cache_list_lock);
   1951     return result;
   1952 }
   1953 
   1954 static struct addrinfo*
   1955 _get_nameserver_addr_locked(const char* ifname, int n)
   1956 {
   1957     struct addrinfo* ai = NULL;
   1958     struct resolv_cache_info* cache_info;
   1959 
   1960     if (n < 1 || n > MAXNS)
   1961         return NULL;
   1962 
   1963     cache_info = _find_cache_info_locked(ifname);
   1964     if (cache_info) {
   1965         ai = cache_info->nsaddrinfo[n - 1];
   1966     }
   1967     return ai;
   1968 }
   1969 
   1970 void
   1971 _resolv_set_addr_of_iface(const char* ifname, struct in_addr* addr)
   1972 {
   1973     pthread_once(&_res_cache_once, _res_cache_init);
   1974     pthread_mutex_lock(&_res_cache_list_lock);
   1975     struct resolv_cache_info* cache_info = _find_cache_info_locked(ifname);
   1976     if (cache_info) {
   1977         memcpy(&cache_info->ifaddr, addr, sizeof(*addr));
   1978 
   1979         if (DEBUG) {
   1980             char* addr_s = inet_ntoa(cache_info->ifaddr);
   1981             XLOG("address of interface %s is %s\n", ifname, addr_s);
   1982         }
   1983     }
   1984     pthread_mutex_unlock(&_res_cache_list_lock);
   1985 }
   1986 
   1987 struct in_addr*
   1988 _resolv_get_addr_of_default_iface(void)
   1989 {
   1990     struct in_addr* ai = NULL;
   1991     char* ifname;
   1992 
   1993     pthread_once(&_res_cache_once, _res_cache_init);
   1994     pthread_mutex_lock(&_res_cache_list_lock);
   1995     ifname = _get_default_iface_locked();
   1996     ai = _get_addr_locked(ifname);
   1997     pthread_mutex_unlock(&_res_cache_list_lock);
   1998 
   1999     return ai;
   2000 }
   2001 
   2002 struct in_addr*
   2003 _resolv_get_addr_of_iface(const char* ifname)
   2004 {
   2005     struct in_addr* ai = NULL;
   2006 
   2007     pthread_once(&_res_cache_once, _res_cache_init);
   2008     pthread_mutex_lock(&_res_cache_list_lock);
   2009     ai =_get_addr_locked(ifname);
   2010     pthread_mutex_unlock(&_res_cache_list_lock);
   2011     return ai;
   2012 }
   2013 
   2014 static struct in_addr*
   2015 _get_addr_locked(const char * ifname)
   2016 {
   2017     struct resolv_cache_info* cache_info = _find_cache_info_locked(ifname);
   2018     if (cache_info) {
   2019         return &cache_info->ifaddr;
   2020     }
   2021     return NULL;
   2022 }
   2023