Home | History | Annotate | Download | only in core
      1 
      2 /*
      3  * Copyright 2006 The Android Open Source Project
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #ifndef SkTypes_DEFINED
     11 #define SkTypes_DEFINED
     12 
     13 #include "SkPreConfig.h"
     14 #include "SkUserConfig.h"
     15 #include "SkPostConfig.h"
     16 
     17 #ifndef SK_IGNORE_STDINT_DOT_H
     18     #include <stdint.h>
     19 #endif
     20 
     21 #include <stdio.h>
     22 
     23 /** \file SkTypes.h
     24 */
     25 
     26 /** See SkGraphics::GetVersion() to retrieve these at runtime
     27  */
     28 #define SKIA_VERSION_MAJOR  1
     29 #define SKIA_VERSION_MINOR  0
     30 #define SKIA_VERSION_PATCH  0
     31 
     32 /*
     33     memory wrappers to be implemented by the porting layer (platform)
     34 */
     35 
     36 /** Called internally if we run out of memory. The platform implementation must
     37     not return, but should either throw an exception or otherwise exit.
     38 */
     39 SK_API extern void sk_out_of_memory(void);
     40 /** Called internally if we hit an unrecoverable error.
     41     The platform implementation must not return, but should either throw
     42     an exception or otherwise exit.
     43 */
     44 SK_API extern void sk_throw(void);
     45 
     46 enum {
     47     SK_MALLOC_TEMP  = 0x01, //!< hint to sk_malloc that the requested memory will be freed in the scope of the stack frame
     48     SK_MALLOC_THROW = 0x02  //!< instructs sk_malloc to call sk_throw if the memory cannot be allocated.
     49 };
     50 /** Return a block of memory (at least 4-byte aligned) of at least the
     51     specified size. If the requested memory cannot be returned, either
     52     return null (if SK_MALLOC_TEMP bit is clear) or call sk_throw()
     53     (if SK_MALLOC_TEMP bit is set). To free the memory, call sk_free().
     54 */
     55 SK_API extern void* sk_malloc_flags(size_t size, unsigned flags);
     56 /** Same as sk_malloc(), but hard coded to pass SK_MALLOC_THROW as the flag
     57 */
     58 SK_API extern void* sk_malloc_throw(size_t size);
     59 /** Same as standard realloc(), but this one never returns null on failure. It will throw
     60     an exception if it fails.
     61 */
     62 SK_API extern void* sk_realloc_throw(void* buffer, size_t size);
     63 /** Free memory returned by sk_malloc(). It is safe to pass null.
     64 */
     65 SK_API extern void sk_free(void*);
     66 
     67 // bzero is safer than memset, but we can't rely on it, so... sk_bzero()
     68 static inline void sk_bzero(void* buffer, size_t size) {
     69     memset(buffer, 0, size);
     70 }
     71 
     72 ///////////////////////////////////////////////////////////////////////////////
     73 
     74 #ifdef SK_OVERRIDE_GLOBAL_NEW
     75 #include <new>
     76 
     77 inline void* operator new(size_t size) {
     78     return sk_malloc_throw(size);
     79 }
     80 
     81 inline void operator delete(void* p) {
     82     sk_free(p);
     83 }
     84 #endif
     85 
     86 ///////////////////////////////////////////////////////////////////////////////
     87 
     88 #define SK_INIT_TO_AVOID_WARNING    = 0
     89 
     90 #ifndef SkDebugf
     91     void SkDebugf(const char format[], ...);
     92 #endif
     93 
     94 #ifdef SK_DEBUG
     95     #define SkASSERT(cond)              SK_DEBUGBREAK(cond)
     96     #define SkDEBUGFAIL(message)        SkASSERT(false && message)
     97     #define SkDEBUGCODE(code)           code
     98     #define SkDECLAREPARAM(type, var)   , type var
     99     #define SkPARAM(var)                , var
    100 //  #define SkDEBUGF(args       )       SkDebugf##args
    101     #define SkDEBUGF(args       )       SkDebugf args
    102     #define SkAssertResult(cond)        SkASSERT(cond)
    103 #else
    104     #define SkASSERT(cond)
    105     #define SkDEBUGFAIL(message)
    106     #define SkDEBUGCODE(code)
    107     #define SkDEBUGF(args)
    108     #define SkDECLAREPARAM(type, var)
    109     #define SkPARAM(var)
    110 
    111     // unlike SkASSERT, this guy executes its condition in the non-debug build
    112     #define SkAssertResult(cond)        cond
    113 #endif
    114 
    115 namespace {
    116 
    117 template <bool>
    118 struct SkCompileAssert {
    119 };
    120 
    121 }  // namespace
    122 
    123 #define SK_COMPILE_ASSERT(expr, msg) \
    124     typedef SkCompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1]
    125 
    126 ///////////////////////////////////////////////////////////////////////
    127 
    128 /**
    129  *  Fast type for signed 8 bits. Use for parameter passing and local variables,
    130  *  not for storage.
    131  */
    132 typedef int S8CPU;
    133 
    134 /**
    135  *  Fast type for unsigned 8 bits. Use for parameter passing and local
    136  *  variables, not for storage
    137  */
    138 typedef unsigned U8CPU;
    139 
    140 /**
    141  *  Fast type for signed 16 bits. Use for parameter passing and local variables,
    142  *  not for storage
    143  */
    144 typedef int S16CPU;
    145 
    146 /**
    147  *  Fast type for unsigned 16 bits. Use for parameter passing and local
    148  *  variables, not for storage
    149  */
    150 typedef unsigned U16CPU;
    151 
    152 /**
    153  *  Meant to be faster than bool (doesn't promise to be 0 or 1,
    154  *  just 0 or non-zero
    155  */
    156 typedef int SkBool;
    157 
    158 /**
    159  *  Meant to be a small version of bool, for storage purposes. Will be 0 or 1
    160  */
    161 typedef uint8_t SkBool8;
    162 
    163 #ifdef SK_DEBUG
    164     SK_API int8_t      SkToS8(long);
    165     SK_API uint8_t     SkToU8(size_t);
    166     SK_API int16_t     SkToS16(long);
    167     SK_API uint16_t    SkToU16(size_t);
    168     SK_API int32_t     SkToS32(long);
    169     SK_API uint32_t    SkToU32(size_t);
    170 #else
    171     #define SkToS8(x)   ((int8_t)(x))
    172     #define SkToU8(x)   ((uint8_t)(x))
    173     #define SkToS16(x)  ((int16_t)(x))
    174     #define SkToU16(x)  ((uint16_t)(x))
    175     #define SkToS32(x)  ((int32_t)(x))
    176     #define SkToU32(x)  ((uint32_t)(x))
    177 #endif
    178 
    179 /** Returns 0 or 1 based on the condition
    180 */
    181 #define SkToBool(cond)  ((cond) != 0)
    182 
    183 #define SK_MaxS16   32767
    184 #define SK_MinS16   -32767
    185 #define SK_MaxU16   0xFFFF
    186 #define SK_MinU16   0
    187 #define SK_MaxS32   0x7FFFFFFF
    188 #define SK_MinS32   0x80000001
    189 #define SK_MaxU32   0xFFFFFFFF
    190 #define SK_MinU32   0
    191 #define SK_NaN32    0x80000000
    192 
    193 /** Returns true if the value can be represented with signed 16bits
    194  */
    195 static inline bool SkIsS16(long x) {
    196     return (int16_t)x == x;
    197 }
    198 
    199 /** Returns true if the value can be represented with unsigned 16bits
    200  */
    201 static inline bool SkIsU16(long x) {
    202     return (uint16_t)x == x;
    203 }
    204 
    205 //////////////////////////////////////////////////////////////////////////////
    206 #ifndef SK_OFFSETOF
    207     #define SK_OFFSETOF(type, field)    ((char*)&(((type*)1)->field) - (char*)1)
    208 #endif
    209 
    210 /** Returns the number of entries in an array (not a pointer)
    211 */
    212 #define SK_ARRAY_COUNT(array)       (sizeof(array) / sizeof(array[0]))
    213 
    214 /** Returns x rounded up to a multiple of 2
    215 */
    216 #define SkAlign2(x)     (((x) + 1) >> 1 << 1)
    217 /** Returns x rounded up to a multiple of 4
    218 */
    219 #define SkAlign4(x)     (((x) + 3) >> 2 << 2)
    220 
    221 #define SkIsAlign4(x) (((x) & 3) == 0)
    222 
    223 typedef uint32_t SkFourByteTag;
    224 #define SkSetFourByteTag(a, b, c, d)    (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
    225 
    226 /** 32 bit integer to hold a unicode value
    227 */
    228 typedef int32_t SkUnichar;
    229 /** 32 bit value to hold a millisecond count
    230 */
    231 typedef uint32_t SkMSec;
    232 /** 1 second measured in milliseconds
    233 */
    234 #define SK_MSec1 1000
    235 /** maximum representable milliseconds
    236 */
    237 #define SK_MSecMax 0x7FFFFFFF
    238 /** Returns a < b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
    239 */
    240 #define SkMSec_LT(a, b)     ((int32_t)(a) - (int32_t)(b) < 0)
    241 /** Returns a <= b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
    242 */
    243 #define SkMSec_LE(a, b)     ((int32_t)(a) - (int32_t)(b) <= 0)
    244 
    245 /****************************************************************************
    246     The rest of these only build with C++
    247 */
    248 #ifdef __cplusplus
    249 
    250 /** Faster than SkToBool for integral conditions. Returns 0 or 1
    251 */
    252 static inline int Sk32ToBool(uint32_t n) {
    253     return (n | (0-n)) >> 31;
    254 }
    255 
    256 template <typename T> inline void SkTSwap(T& a, T& b) {
    257     T c(a);
    258     a = b;
    259     b = c;
    260 }
    261 
    262 static inline int32_t SkAbs32(int32_t value) {
    263 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR
    264     if (value < 0)
    265         value = -value;
    266     return value;
    267 #else
    268     int32_t mask = value >> 31;
    269     return (value ^ mask) - mask;
    270 #endif
    271 }
    272 
    273 static inline int32_t SkMax32(int32_t a, int32_t b) {
    274     if (a < b)
    275         a = b;
    276     return a;
    277 }
    278 
    279 static inline int32_t SkMin32(int32_t a, int32_t b) {
    280     if (a > b)
    281         a = b;
    282     return a;
    283 }
    284 
    285 static inline int32_t SkSign32(int32_t a) {
    286     return (a >> 31) | ((unsigned) -a >> 31);
    287 }
    288 
    289 static inline int32_t SkFastMin32(int32_t value, int32_t max) {
    290 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR
    291     if (value > max)
    292         value = max;
    293     return value;
    294 #else
    295     int diff = max - value;
    296     // clear diff if it is negative (clear if value > max)
    297     diff &= (diff >> 31);
    298     return value + diff;
    299 #endif
    300 }
    301 
    302 /** Returns signed 32 bit value pinned between min and max, inclusively
    303 */
    304 static inline int32_t SkPin32(int32_t value, int32_t min, int32_t max) {
    305 #ifdef SK_CPU_HAS_CONDITIONAL_INSTR
    306     if (value < min)
    307         value = min;
    308     if (value > max)
    309         value = max;
    310 #else
    311     if (value < min)
    312         value = min;
    313     else if (value > max)
    314         value = max;
    315 #endif
    316     return value;
    317 }
    318 
    319 static inline uint32_t SkSetClearShift(uint32_t bits, bool cond,
    320                                        unsigned shift) {
    321     SkASSERT((int)cond == 0 || (int)cond == 1);
    322     return (bits & ~(1 << shift)) | ((int)cond << shift);
    323 }
    324 
    325 static inline uint32_t SkSetClearMask(uint32_t bits, bool cond,
    326                                       uint32_t mask) {
    327     return cond ? bits | mask : bits & ~mask;
    328 }
    329 
    330 ///////////////////////////////////////////////////////////////////////////////
    331 
    332 /** Use to combine multiple bits in a bitmask in a type safe way.
    333  */
    334 template <typename T>
    335 T SkTBitOr(T a, T b) {
    336     return (T)(a | b);
    337 }
    338 
    339 /**
    340  *  Use to cast a pointer to a different type, and maintaining strict-aliasing
    341  */
    342 template <typename Dst> Dst SkTCast(const void* ptr) {
    343     union {
    344         const void* src;
    345         Dst dst;
    346     } data;
    347     data.src = ptr;
    348     return data.dst;
    349 }
    350 
    351 //////////////////////////////////////////////////////////////////////////////
    352 
    353 /** \class SkNoncopyable
    354 
    355 SkNoncopyable is the base class for objects that may do not want to
    356 be copied. It hides its copy-constructor and its assignment-operator.
    357 */
    358 class SK_API SkNoncopyable {
    359 public:
    360     SkNoncopyable() {}
    361 
    362 private:
    363     SkNoncopyable(const SkNoncopyable&);
    364     SkNoncopyable& operator=(const SkNoncopyable&);
    365 };
    366 
    367 class SkAutoFree : SkNoncopyable {
    368 public:
    369     SkAutoFree() : fPtr(NULL) {}
    370     explicit SkAutoFree(void* ptr) : fPtr(ptr) {}
    371     ~SkAutoFree() { sk_free(fPtr); }
    372 
    373     /** Return the currently allocate buffer, or null
    374     */
    375     void* get() const { return fPtr; }
    376 
    377     /** Assign a new ptr allocated with sk_malloc (or null), and return the
    378         previous ptr. Note it is the caller's responsibility to sk_free the
    379         returned ptr.
    380     */
    381     void* set(void* ptr) {
    382         void* prev = fPtr;
    383         fPtr = ptr;
    384         return prev;
    385     }
    386 
    387     /** Transfer ownership of the current ptr to the caller, setting the
    388         internal reference to null. Note the caller is reponsible for calling
    389         sk_free on the returned address.
    390     */
    391     void* detach() { return this->set(NULL); }
    392 
    393     /** Free the current buffer, and set the internal reference to NULL. Same
    394         as calling sk_free(detach())
    395     */
    396     void free() {
    397         sk_free(fPtr);
    398         fPtr = NULL;
    399     }
    400 
    401 private:
    402     void* fPtr;
    403     // illegal
    404     SkAutoFree(const SkAutoFree&);
    405     SkAutoFree& operator=(const SkAutoFree&);
    406 };
    407 
    408 /**
    409  *  Manage an allocated block of heap memory. This object is the sole manager of
    410  *  the lifetime of the block, so the caller must not call sk_free() or delete
    411  *  on the block, unless detach() was called.
    412  */
    413 class SkAutoMalloc : public SkNoncopyable {
    414 public:
    415     explicit SkAutoMalloc(size_t size = 0) {
    416         fPtr = size ? sk_malloc_throw(size) : NULL;
    417         fSize = size;
    418     }
    419 
    420     ~SkAutoMalloc() {
    421         sk_free(fPtr);
    422     }
    423 
    424     /**
    425      *  Passed to reset to specify what happens if the requested size is smaller
    426      *  than the current size (and the current block was dynamically allocated).
    427      */
    428     enum OnShrink {
    429         /**
    430          *  If the requested size is smaller than the current size, and the
    431          *  current block is dynamically allocated, free the old block and
    432          *  malloc a new block of the smaller size.
    433          */
    434         kAlloc_OnShrink,
    435 
    436         /**
    437          *  If the requested size is smaller than the current size, and the
    438          *  current block is dynamically allocated, just return the old
    439          *  block.
    440          */
    441         kReuse_OnShrink,
    442     };
    443 
    444     /**
    445      *  Reallocates the block to a new size. The ptr may or may not change.
    446      */
    447     void* reset(size_t size, OnShrink shrink = kAlloc_OnShrink) {
    448         if (size == fSize || (kReuse_OnShrink == shrink && size < fSize)) {
    449             return fPtr;
    450         }
    451 
    452         sk_free(fPtr);
    453         fPtr = size ? sk_malloc_throw(size) : NULL;
    454         fSize = size;
    455 
    456         return fPtr;
    457     }
    458 
    459     /**
    460      *  Releases the block back to the heap
    461      */
    462     void free() {
    463         this->reset(0);
    464     }
    465 
    466     /**
    467      *  Return the allocated block.
    468      */
    469     void* get() { return fPtr; }
    470     const void* get() const { return fPtr; }
    471 
    472    /** Transfer ownership of the current ptr to the caller, setting the
    473        internal reference to null. Note the caller is reponsible for calling
    474        sk_free on the returned address.
    475     */
    476     void* detach() {
    477         void* ptr = fPtr;
    478         fPtr = NULL;
    479         fSize = 0;
    480         return ptr;
    481     }
    482 
    483 private:
    484     void*   fPtr;
    485     size_t  fSize;  // can be larger than the requested size (see kReuse)
    486 };
    487 
    488 /**
    489  *  Manage an allocated block of memory. If the requested size is <= kSize, then
    490  *  the allocation will come from the stack rather than the heap. This object
    491  *  is the sole manager of the lifetime of the block, so the caller must not
    492  *  call sk_free() or delete on the block.
    493  */
    494 template <size_t kSize> class SkAutoSMalloc : SkNoncopyable {
    495 public:
    496     /**
    497      *  Creates initially empty storage. get() returns a ptr, but it is to
    498      *  a zero-byte allocation. Must call reset(size) to return an allocated
    499      *  block.
    500      */
    501     SkAutoSMalloc() {
    502         fPtr = fStorage;
    503         fSize = 0;
    504     }
    505 
    506     /**
    507      *  Allocate a block of the specified size. If size <= kSize, then the
    508      *  allocation will come from the stack, otherwise it will be dynamically
    509      *  allocated.
    510      */
    511     explicit SkAutoSMalloc(size_t size) {
    512         fPtr = fStorage;
    513         fSize = 0;
    514         this->reset(size);
    515     }
    516 
    517     /**
    518      *  Free the allocated block (if any). If the block was small enought to
    519      *  have been allocated on the stack (size <= kSize) then this does nothing.
    520      */
    521     ~SkAutoSMalloc() {
    522         if (fPtr != (void*)fStorage) {
    523             sk_free(fPtr);
    524         }
    525     }
    526 
    527     /**
    528      *  Return the allocated block. May return non-null even if the block is
    529      *  of zero size. Since this may be on the stack or dynamically allocated,
    530      *  the caller must not call sk_free() on it, but must rely on SkAutoSMalloc
    531      *  to manage it.
    532      */
    533     void* get() const { return fPtr; }
    534 
    535     /**
    536      *  Return a new block of the requested size, freeing (as necessary) any
    537      *  previously allocated block. As with the constructor, if size <= kSize
    538      *  then the return block may be allocated locally, rather than from the
    539      *  heap.
    540      */
    541     void* reset(size_t size,
    542                 SkAutoMalloc::OnShrink shrink = SkAutoMalloc::kAlloc_OnShrink) {
    543         if (size == fSize || (SkAutoMalloc::kReuse_OnShrink == shrink &&
    544                               size < fSize)) {
    545             return fPtr;
    546         }
    547 
    548         if (fPtr != (void*)fStorage) {
    549             sk_free(fPtr);
    550         }
    551 
    552         if (size <= kSize) {
    553             fPtr = fStorage;
    554         } else {
    555             fPtr = sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP);
    556         }
    557         return fPtr;
    558     }
    559 
    560 private:
    561     void*       fPtr;
    562     size_t      fSize;  // can be larger than the requested size (see kReuse)
    563     uint32_t    fStorage[(kSize + 3) >> 2];
    564 };
    565 
    566 #endif /* C++ */
    567 
    568 #endif
    569