Home | History | Annotate | Download | only in Checkers
      1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This defines CStringChecker, which is an assortment of checks on calls
     11 // to functions in <string.h>.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "ClangSACheckers.h"
     16 #include "InterCheckerAPI.h"
     17 #include "clang/StaticAnalyzer/Core/Checker.h"
     18 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
     19 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
     20 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
     21 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
     22 #include "llvm/ADT/SmallString.h"
     23 #include "llvm/ADT/STLExtras.h"
     24 #include "llvm/ADT/StringSwitch.h"
     25 
     26 using namespace clang;
     27 using namespace ento;
     28 
     29 namespace {
     30 class CStringChecker : public Checker< eval::Call,
     31                                          check::PreStmt<DeclStmt>,
     32                                          check::LiveSymbols,
     33                                          check::DeadSymbols,
     34                                          check::RegionChanges
     35                                          > {
     36   mutable OwningPtr<BugType> BT_Null,
     37                              BT_Bounds,
     38                              BT_Overlap,
     39                              BT_NotCString,
     40                              BT_AdditionOverflow;
     41 
     42   mutable const char *CurrentFunctionDescription;
     43 
     44 public:
     45   /// The filter is used to filter out the diagnostics which are not enabled by
     46   /// the user.
     47   struct CStringChecksFilter {
     48     DefaultBool CheckCStringNullArg;
     49     DefaultBool CheckCStringOutOfBounds;
     50     DefaultBool CheckCStringBufferOverlap;
     51     DefaultBool CheckCStringNotNullTerm;
     52   };
     53 
     54   CStringChecksFilter Filter;
     55 
     56   static void *getTag() { static int tag; return &tag; }
     57 
     58   bool evalCall(const CallExpr *CE, CheckerContext &C) const;
     59   void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
     60   void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
     61   void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
     62   bool wantsRegionChangeUpdate(ProgramStateRef state) const;
     63 
     64   ProgramStateRef
     65     checkRegionChanges(ProgramStateRef state,
     66                        const StoreManager::InvalidatedSymbols *,
     67                        ArrayRef<const MemRegion *> ExplicitRegions,
     68                        ArrayRef<const MemRegion *> Regions,
     69                        const CallOrObjCMessage *Call) const;
     70 
     71   typedef void (CStringChecker::*FnCheck)(CheckerContext &,
     72                                           const CallExpr *) const;
     73 
     74   void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
     75   void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
     76   void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
     77   void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
     78   void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
     79                       ProgramStateRef state,
     80                       const Expr *Size,
     81                       const Expr *Source,
     82                       const Expr *Dest,
     83                       bool Restricted = false,
     84                       bool IsMempcpy = false) const;
     85 
     86   void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
     87 
     88   void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
     89   void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
     90   void evalstrLengthCommon(CheckerContext &C,
     91                            const CallExpr *CE,
     92                            bool IsStrnlen = false) const;
     93 
     94   void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
     95   void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
     96   void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
     97   void evalStrcpyCommon(CheckerContext &C,
     98                         const CallExpr *CE,
     99                         bool returnEnd,
    100                         bool isBounded,
    101                         bool isAppending) const;
    102 
    103   void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
    104   void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
    105 
    106   void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
    107   void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
    108   void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
    109   void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
    110   void evalStrcmpCommon(CheckerContext &C,
    111                         const CallExpr *CE,
    112                         bool isBounded = false,
    113                         bool ignoreCase = false) const;
    114 
    115   // Utility methods
    116   std::pair<ProgramStateRef , ProgramStateRef >
    117   static assumeZero(CheckerContext &C,
    118                     ProgramStateRef state, SVal V, QualType Ty);
    119 
    120   static ProgramStateRef setCStringLength(ProgramStateRef state,
    121                                               const MemRegion *MR,
    122                                               SVal strLength);
    123   static SVal getCStringLengthForRegion(CheckerContext &C,
    124                                         ProgramStateRef &state,
    125                                         const Expr *Ex,
    126                                         const MemRegion *MR,
    127                                         bool hypothetical);
    128   SVal getCStringLength(CheckerContext &C,
    129                         ProgramStateRef &state,
    130                         const Expr *Ex,
    131                         SVal Buf,
    132                         bool hypothetical = false) const;
    133 
    134   const StringLiteral *getCStringLiteral(CheckerContext &C,
    135                                          ProgramStateRef &state,
    136                                          const Expr *expr,
    137                                          SVal val) const;
    138 
    139   static ProgramStateRef InvalidateBuffer(CheckerContext &C,
    140                                               ProgramStateRef state,
    141                                               const Expr *Ex, SVal V);
    142 
    143   static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
    144                               const MemRegion *MR);
    145 
    146   // Re-usable checks
    147   ProgramStateRef checkNonNull(CheckerContext &C,
    148                                    ProgramStateRef state,
    149                                    const Expr *S,
    150                                    SVal l) const;
    151   ProgramStateRef CheckLocation(CheckerContext &C,
    152                                     ProgramStateRef state,
    153                                     const Expr *S,
    154                                     SVal l,
    155                                     const char *message = NULL) const;
    156   ProgramStateRef CheckBufferAccess(CheckerContext &C,
    157                                         ProgramStateRef state,
    158                                         const Expr *Size,
    159                                         const Expr *FirstBuf,
    160                                         const Expr *SecondBuf,
    161                                         const char *firstMessage = NULL,
    162                                         const char *secondMessage = NULL,
    163                                         bool WarnAboutSize = false) const;
    164 
    165   ProgramStateRef CheckBufferAccess(CheckerContext &C,
    166                                         ProgramStateRef state,
    167                                         const Expr *Size,
    168                                         const Expr *Buf,
    169                                         const char *message = NULL,
    170                                         bool WarnAboutSize = false) const {
    171     // This is a convenience override.
    172     return CheckBufferAccess(C, state, Size, Buf, NULL, message, NULL,
    173                              WarnAboutSize);
    174   }
    175   ProgramStateRef CheckOverlap(CheckerContext &C,
    176                                    ProgramStateRef state,
    177                                    const Expr *Size,
    178                                    const Expr *First,
    179                                    const Expr *Second) const;
    180   void emitOverlapBug(CheckerContext &C,
    181                       ProgramStateRef state,
    182                       const Stmt *First,
    183                       const Stmt *Second) const;
    184 
    185   ProgramStateRef checkAdditionOverflow(CheckerContext &C,
    186                                             ProgramStateRef state,
    187                                             NonLoc left,
    188                                             NonLoc right) const;
    189 };
    190 
    191 class CStringLength {
    192 public:
    193   typedef llvm::ImmutableMap<const MemRegion *, SVal> EntryMap;
    194 };
    195 } //end anonymous namespace
    196 
    197 namespace clang {
    198 namespace ento {
    199   template <>
    200   struct ProgramStateTrait<CStringLength>
    201     : public ProgramStatePartialTrait<CStringLength::EntryMap> {
    202     static void *GDMIndex() { return CStringChecker::getTag(); }
    203   };
    204 }
    205 }
    206 
    207 //===----------------------------------------------------------------------===//
    208 // Individual checks and utility methods.
    209 //===----------------------------------------------------------------------===//
    210 
    211 std::pair<ProgramStateRef , ProgramStateRef >
    212 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
    213                            QualType Ty) {
    214   DefinedSVal *val = dyn_cast<DefinedSVal>(&V);
    215   if (!val)
    216     return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
    217 
    218   SValBuilder &svalBuilder = C.getSValBuilder();
    219   DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
    220   return state->assume(svalBuilder.evalEQ(state, *val, zero));
    221 }
    222 
    223 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
    224                                             ProgramStateRef state,
    225                                             const Expr *S, SVal l) const {
    226   // If a previous check has failed, propagate the failure.
    227   if (!state)
    228     return NULL;
    229 
    230   ProgramStateRef stateNull, stateNonNull;
    231   llvm::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType());
    232 
    233   if (stateNull && !stateNonNull) {
    234     if (!Filter.CheckCStringNullArg)
    235       return NULL;
    236 
    237     ExplodedNode *N = C.generateSink(stateNull);
    238     if (!N)
    239       return NULL;
    240 
    241     if (!BT_Null)
    242       BT_Null.reset(new BuiltinBug("Unix API",
    243         "Null pointer argument in call to byte string function"));
    244 
    245     SmallString<80> buf;
    246     llvm::raw_svector_ostream os(buf);
    247     assert(CurrentFunctionDescription);
    248     os << "Null pointer argument in call to " << CurrentFunctionDescription;
    249 
    250     // Generate a report for this bug.
    251     BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null.get());
    252     BugReport *report = new BugReport(*BT, os.str(), N);
    253 
    254     report->addRange(S->getSourceRange());
    255     report->addVisitor(bugreporter::getTrackNullOrUndefValueVisitor(N, S,
    256                                                                     report));
    257     C.EmitReport(report);
    258     return NULL;
    259   }
    260 
    261   // From here on, assume that the value is non-null.
    262   assert(stateNonNull);
    263   return stateNonNull;
    264 }
    265 
    266 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
    267 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
    268                                              ProgramStateRef state,
    269                                              const Expr *S, SVal l,
    270                                              const char *warningMsg) const {
    271   // If a previous check has failed, propagate the failure.
    272   if (!state)
    273     return NULL;
    274 
    275   // Check for out of bound array element access.
    276   const MemRegion *R = l.getAsRegion();
    277   if (!R)
    278     return state;
    279 
    280   const ElementRegion *ER = dyn_cast<ElementRegion>(R);
    281   if (!ER)
    282     return state;
    283 
    284   assert(ER->getValueType() == C.getASTContext().CharTy &&
    285     "CheckLocation should only be called with char* ElementRegions");
    286 
    287   // Get the size of the array.
    288   const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
    289   SValBuilder &svalBuilder = C.getSValBuilder();
    290   SVal Extent =
    291     svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
    292   DefinedOrUnknownSVal Size = cast<DefinedOrUnknownSVal>(Extent);
    293 
    294   // Get the index of the accessed element.
    295   DefinedOrUnknownSVal Idx = cast<DefinedOrUnknownSVal>(ER->getIndex());
    296 
    297   ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
    298   ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
    299   if (StOutBound && !StInBound) {
    300     ExplodedNode *N = C.generateSink(StOutBound);
    301     if (!N)
    302       return NULL;
    303 
    304     if (!BT_Bounds) {
    305       BT_Bounds.reset(new BuiltinBug("Out-of-bound array access",
    306         "Byte string function accesses out-of-bound array element"));
    307     }
    308     BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds.get());
    309 
    310     // Generate a report for this bug.
    311     BugReport *report;
    312     if (warningMsg) {
    313       report = new BugReport(*BT, warningMsg, N);
    314     } else {
    315       assert(CurrentFunctionDescription);
    316       assert(CurrentFunctionDescription[0] != '\0');
    317 
    318       SmallString<80> buf;
    319       llvm::raw_svector_ostream os(buf);
    320       os << (char)toupper(CurrentFunctionDescription[0])
    321          << &CurrentFunctionDescription[1]
    322          << " accesses out-of-bound array element";
    323       report = new BugReport(*BT, os.str(), N);
    324     }
    325 
    326     // FIXME: It would be nice to eventually make this diagnostic more clear,
    327     // e.g., by referencing the original declaration or by saying *why* this
    328     // reference is outside the range.
    329 
    330     report->addRange(S->getSourceRange());
    331     C.EmitReport(report);
    332     return NULL;
    333   }
    334 
    335   // Array bound check succeeded.  From this point forward the array bound
    336   // should always succeed.
    337   return StInBound;
    338 }
    339 
    340 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
    341                                                  ProgramStateRef state,
    342                                                  const Expr *Size,
    343                                                  const Expr *FirstBuf,
    344                                                  const Expr *SecondBuf,
    345                                                  const char *firstMessage,
    346                                                  const char *secondMessage,
    347                                                  bool WarnAboutSize) const {
    348   // If a previous check has failed, propagate the failure.
    349   if (!state)
    350     return NULL;
    351 
    352   SValBuilder &svalBuilder = C.getSValBuilder();
    353   ASTContext &Ctx = svalBuilder.getContext();
    354   const LocationContext *LCtx = C.getLocationContext();
    355 
    356   QualType sizeTy = Size->getType();
    357   QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
    358 
    359   // Check that the first buffer is non-null.
    360   SVal BufVal = state->getSVal(FirstBuf, LCtx);
    361   state = checkNonNull(C, state, FirstBuf, BufVal);
    362   if (!state)
    363     return NULL;
    364 
    365   // If out-of-bounds checking is turned off, skip the rest.
    366   if (!Filter.CheckCStringOutOfBounds)
    367     return state;
    368 
    369   // Get the access length and make sure it is known.
    370   // FIXME: This assumes the caller has already checked that the access length
    371   // is positive. And that it's unsigned.
    372   SVal LengthVal = state->getSVal(Size, LCtx);
    373   NonLoc *Length = dyn_cast<NonLoc>(&LengthVal);
    374   if (!Length)
    375     return state;
    376 
    377   // Compute the offset of the last element to be accessed: size-1.
    378   NonLoc One = cast<NonLoc>(svalBuilder.makeIntVal(1, sizeTy));
    379   NonLoc LastOffset = cast<NonLoc>(svalBuilder.evalBinOpNN(state, BO_Sub,
    380                                                     *Length, One, sizeTy));
    381 
    382   // Check that the first buffer is sufficiently long.
    383   SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
    384   if (Loc *BufLoc = dyn_cast<Loc>(&BufStart)) {
    385     const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf);
    386 
    387     SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
    388                                           LastOffset, PtrTy);
    389     state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage);
    390 
    391     // If the buffer isn't large enough, abort.
    392     if (!state)
    393       return NULL;
    394   }
    395 
    396   // If there's a second buffer, check it as well.
    397   if (SecondBuf) {
    398     BufVal = state->getSVal(SecondBuf, LCtx);
    399     state = checkNonNull(C, state, SecondBuf, BufVal);
    400     if (!state)
    401       return NULL;
    402 
    403     BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType());
    404     if (Loc *BufLoc = dyn_cast<Loc>(&BufStart)) {
    405       const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf);
    406 
    407       SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
    408                                             LastOffset, PtrTy);
    409       state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage);
    410     }
    411   }
    412 
    413   // Large enough or not, return this state!
    414   return state;
    415 }
    416 
    417 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
    418                                             ProgramStateRef state,
    419                                             const Expr *Size,
    420                                             const Expr *First,
    421                                             const Expr *Second) const {
    422   if (!Filter.CheckCStringBufferOverlap)
    423     return state;
    424 
    425   // Do a simple check for overlap: if the two arguments are from the same
    426   // buffer, see if the end of the first is greater than the start of the second
    427   // or vice versa.
    428 
    429   // If a previous check has failed, propagate the failure.
    430   if (!state)
    431     return NULL;
    432 
    433   ProgramStateRef stateTrue, stateFalse;
    434 
    435   // Get the buffer values and make sure they're known locations.
    436   const LocationContext *LCtx = C.getLocationContext();
    437   SVal firstVal = state->getSVal(First, LCtx);
    438   SVal secondVal = state->getSVal(Second, LCtx);
    439 
    440   Loc *firstLoc = dyn_cast<Loc>(&firstVal);
    441   if (!firstLoc)
    442     return state;
    443 
    444   Loc *secondLoc = dyn_cast<Loc>(&secondVal);
    445   if (!secondLoc)
    446     return state;
    447 
    448   // Are the two values the same?
    449   SValBuilder &svalBuilder = C.getSValBuilder();
    450   llvm::tie(stateTrue, stateFalse) =
    451     state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
    452 
    453   if (stateTrue && !stateFalse) {
    454     // If the values are known to be equal, that's automatically an overlap.
    455     emitOverlapBug(C, stateTrue, First, Second);
    456     return NULL;
    457   }
    458 
    459   // assume the two expressions are not equal.
    460   assert(stateFalse);
    461   state = stateFalse;
    462 
    463   // Which value comes first?
    464   QualType cmpTy = svalBuilder.getConditionType();
    465   SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT,
    466                                          *firstLoc, *secondLoc, cmpTy);
    467   DefinedOrUnknownSVal *reverseTest = dyn_cast<DefinedOrUnknownSVal>(&reverse);
    468   if (!reverseTest)
    469     return state;
    470 
    471   llvm::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
    472   if (stateTrue) {
    473     if (stateFalse) {
    474       // If we don't know which one comes first, we can't perform this test.
    475       return state;
    476     } else {
    477       // Switch the values so that firstVal is before secondVal.
    478       Loc *tmpLoc = firstLoc;
    479       firstLoc = secondLoc;
    480       secondLoc = tmpLoc;
    481 
    482       // Switch the Exprs as well, so that they still correspond.
    483       const Expr *tmpExpr = First;
    484       First = Second;
    485       Second = tmpExpr;
    486     }
    487   }
    488 
    489   // Get the length, and make sure it too is known.
    490   SVal LengthVal = state->getSVal(Size, LCtx);
    491   NonLoc *Length = dyn_cast<NonLoc>(&LengthVal);
    492   if (!Length)
    493     return state;
    494 
    495   // Convert the first buffer's start address to char*.
    496   // Bail out if the cast fails.
    497   ASTContext &Ctx = svalBuilder.getContext();
    498   QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
    499   SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy,
    500                                          First->getType());
    501   Loc *FirstStartLoc = dyn_cast<Loc>(&FirstStart);
    502   if (!FirstStartLoc)
    503     return state;
    504 
    505   // Compute the end of the first buffer. Bail out if THAT fails.
    506   SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add,
    507                                  *FirstStartLoc, *Length, CharPtrTy);
    508   Loc *FirstEndLoc = dyn_cast<Loc>(&FirstEnd);
    509   if (!FirstEndLoc)
    510     return state;
    511 
    512   // Is the end of the first buffer past the start of the second buffer?
    513   SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT,
    514                                 *FirstEndLoc, *secondLoc, cmpTy);
    515   DefinedOrUnknownSVal *OverlapTest = dyn_cast<DefinedOrUnknownSVal>(&Overlap);
    516   if (!OverlapTest)
    517     return state;
    518 
    519   llvm::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
    520 
    521   if (stateTrue && !stateFalse) {
    522     // Overlap!
    523     emitOverlapBug(C, stateTrue, First, Second);
    524     return NULL;
    525   }
    526 
    527   // assume the two expressions don't overlap.
    528   assert(stateFalse);
    529   return stateFalse;
    530 }
    531 
    532 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
    533                                   const Stmt *First, const Stmt *Second) const {
    534   ExplodedNode *N = C.generateSink(state);
    535   if (!N)
    536     return;
    537 
    538   if (!BT_Overlap)
    539     BT_Overlap.reset(new BugType("Unix API", "Improper arguments"));
    540 
    541   // Generate a report for this bug.
    542   BugReport *report =
    543     new BugReport(*BT_Overlap,
    544       "Arguments must not be overlapping buffers", N);
    545   report->addRange(First->getSourceRange());
    546   report->addRange(Second->getSourceRange());
    547 
    548   C.EmitReport(report);
    549 }
    550 
    551 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
    552                                                      ProgramStateRef state,
    553                                                      NonLoc left,
    554                                                      NonLoc right) const {
    555   // If out-of-bounds checking is turned off, skip the rest.
    556   if (!Filter.CheckCStringOutOfBounds)
    557     return state;
    558 
    559   // If a previous check has failed, propagate the failure.
    560   if (!state)
    561     return NULL;
    562 
    563   SValBuilder &svalBuilder = C.getSValBuilder();
    564   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
    565 
    566   QualType sizeTy = svalBuilder.getContext().getSizeType();
    567   const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
    568   NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
    569 
    570   SVal maxMinusRight;
    571   if (isa<nonloc::ConcreteInt>(right)) {
    572     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
    573                                                  sizeTy);
    574   } else {
    575     // Try switching the operands. (The order of these two assignments is
    576     // important!)
    577     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
    578                                             sizeTy);
    579     left = right;
    580   }
    581 
    582   if (NonLoc *maxMinusRightNL = dyn_cast<NonLoc>(&maxMinusRight)) {
    583     QualType cmpTy = svalBuilder.getConditionType();
    584     // If left > max - right, we have an overflow.
    585     SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
    586                                                 *maxMinusRightNL, cmpTy);
    587 
    588     ProgramStateRef stateOverflow, stateOkay;
    589     llvm::tie(stateOverflow, stateOkay) =
    590       state->assume(cast<DefinedOrUnknownSVal>(willOverflow));
    591 
    592     if (stateOverflow && !stateOkay) {
    593       // We have an overflow. Emit a bug report.
    594       ExplodedNode *N = C.generateSink(stateOverflow);
    595       if (!N)
    596         return NULL;
    597 
    598       if (!BT_AdditionOverflow)
    599         BT_AdditionOverflow.reset(new BuiltinBug("API",
    600           "Sum of expressions causes overflow"));
    601 
    602       // This isn't a great error message, but this should never occur in real
    603       // code anyway -- you'd have to create a buffer longer than a size_t can
    604       // represent, which is sort of a contradiction.
    605       const char *warning =
    606         "This expression will create a string whose length is too big to "
    607         "be represented as a size_t";
    608 
    609       // Generate a report for this bug.
    610       BugReport *report = new BugReport(*BT_AdditionOverflow, warning, N);
    611       C.EmitReport(report);
    612 
    613       return NULL;
    614     }
    615 
    616     // From now on, assume an overflow didn't occur.
    617     assert(stateOkay);
    618     state = stateOkay;
    619   }
    620 
    621   return state;
    622 }
    623 
    624 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
    625                                                 const MemRegion *MR,
    626                                                 SVal strLength) {
    627   assert(!strLength.isUndef() && "Attempt to set an undefined string length");
    628 
    629   MR = MR->StripCasts();
    630 
    631   switch (MR->getKind()) {
    632   case MemRegion::StringRegionKind:
    633     // FIXME: This can happen if we strcpy() into a string region. This is
    634     // undefined [C99 6.4.5p6], but we should still warn about it.
    635     return state;
    636 
    637   case MemRegion::SymbolicRegionKind:
    638   case MemRegion::AllocaRegionKind:
    639   case MemRegion::VarRegionKind:
    640   case MemRegion::FieldRegionKind:
    641   case MemRegion::ObjCIvarRegionKind:
    642     // These are the types we can currently track string lengths for.
    643     break;
    644 
    645   case MemRegion::ElementRegionKind:
    646     // FIXME: Handle element regions by upper-bounding the parent region's
    647     // string length.
    648     return state;
    649 
    650   default:
    651     // Other regions (mostly non-data) can't have a reliable C string length.
    652     // For now, just ignore the change.
    653     // FIXME: These are rare but not impossible. We should output some kind of
    654     // warning for things like strcpy((char[]){'a', 0}, "b");
    655     return state;
    656   }
    657 
    658   if (strLength.isUnknown())
    659     return state->remove<CStringLength>(MR);
    660 
    661   return state->set<CStringLength>(MR, strLength);
    662 }
    663 
    664 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
    665                                                ProgramStateRef &state,
    666                                                const Expr *Ex,
    667                                                const MemRegion *MR,
    668                                                bool hypothetical) {
    669   if (!hypothetical) {
    670     // If there's a recorded length, go ahead and return it.
    671     const SVal *Recorded = state->get<CStringLength>(MR);
    672     if (Recorded)
    673       return *Recorded;
    674   }
    675 
    676   // Otherwise, get a new symbol and update the state.
    677   unsigned Count = C.getCurrentBlockCount();
    678   SValBuilder &svalBuilder = C.getSValBuilder();
    679   QualType sizeTy = svalBuilder.getContext().getSizeType();
    680   SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
    681                                                     MR, Ex, sizeTy, Count);
    682 
    683   if (!hypothetical)
    684     state = state->set<CStringLength>(MR, strLength);
    685 
    686   return strLength;
    687 }
    688 
    689 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
    690                                       const Expr *Ex, SVal Buf,
    691                                       bool hypothetical) const {
    692   const MemRegion *MR = Buf.getAsRegion();
    693   if (!MR) {
    694     // If we can't get a region, see if it's something we /know/ isn't a
    695     // C string. In the context of locations, the only time we can issue such
    696     // a warning is for labels.
    697     if (loc::GotoLabel *Label = dyn_cast<loc::GotoLabel>(&Buf)) {
    698       if (!Filter.CheckCStringNotNullTerm)
    699         return UndefinedVal();
    700 
    701       if (ExplodedNode *N = C.addTransition(state)) {
    702         if (!BT_NotCString)
    703           BT_NotCString.reset(new BuiltinBug("Unix API",
    704             "Argument is not a null-terminated string."));
    705 
    706         SmallString<120> buf;
    707         llvm::raw_svector_ostream os(buf);
    708         assert(CurrentFunctionDescription);
    709         os << "Argument to " << CurrentFunctionDescription
    710            << " is the address of the label '" << Label->getLabel()->getName()
    711            << "', which is not a null-terminated string";
    712 
    713         // Generate a report for this bug.
    714         BugReport *report = new BugReport(*BT_NotCString,
    715                                                           os.str(), N);
    716 
    717         report->addRange(Ex->getSourceRange());
    718         C.EmitReport(report);
    719       }
    720       return UndefinedVal();
    721 
    722     }
    723 
    724     // If it's not a region and not a label, give up.
    725     return UnknownVal();
    726   }
    727 
    728   // If we have a region, strip casts from it and see if we can figure out
    729   // its length. For anything we can't figure out, just return UnknownVal.
    730   MR = MR->StripCasts();
    731 
    732   switch (MR->getKind()) {
    733   case MemRegion::StringRegionKind: {
    734     // Modifying the contents of string regions is undefined [C99 6.4.5p6],
    735     // so we can assume that the byte length is the correct C string length.
    736     SValBuilder &svalBuilder = C.getSValBuilder();
    737     QualType sizeTy = svalBuilder.getContext().getSizeType();
    738     const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
    739     return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
    740   }
    741   case MemRegion::SymbolicRegionKind:
    742   case MemRegion::AllocaRegionKind:
    743   case MemRegion::VarRegionKind:
    744   case MemRegion::FieldRegionKind:
    745   case MemRegion::ObjCIvarRegionKind:
    746     return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
    747   case MemRegion::CompoundLiteralRegionKind:
    748     // FIXME: Can we track this? Is it necessary?
    749     return UnknownVal();
    750   case MemRegion::ElementRegionKind:
    751     // FIXME: How can we handle this? It's not good enough to subtract the
    752     // offset from the base string length; consider "123\x00567" and &a[5].
    753     return UnknownVal();
    754   default:
    755     // Other regions (mostly non-data) can't have a reliable C string length.
    756     // In this case, an error is emitted and UndefinedVal is returned.
    757     // The caller should always be prepared to handle this case.
    758     if (!Filter.CheckCStringNotNullTerm)
    759       return UndefinedVal();
    760 
    761     if (ExplodedNode *N = C.addTransition(state)) {
    762       if (!BT_NotCString)
    763         BT_NotCString.reset(new BuiltinBug("Unix API",
    764           "Argument is not a null-terminated string."));
    765 
    766       SmallString<120> buf;
    767       llvm::raw_svector_ostream os(buf);
    768 
    769       assert(CurrentFunctionDescription);
    770       os << "Argument to " << CurrentFunctionDescription << " is ";
    771 
    772       if (SummarizeRegion(os, C.getASTContext(), MR))
    773         os << ", which is not a null-terminated string";
    774       else
    775         os << "not a null-terminated string";
    776 
    777       // Generate a report for this bug.
    778       BugReport *report = new BugReport(*BT_NotCString,
    779                                                         os.str(), N);
    780 
    781       report->addRange(Ex->getSourceRange());
    782       C.EmitReport(report);
    783     }
    784 
    785     return UndefinedVal();
    786   }
    787 }
    788 
    789 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
    790   ProgramStateRef &state, const Expr *expr, SVal val) const {
    791 
    792   // Get the memory region pointed to by the val.
    793   const MemRegion *bufRegion = val.getAsRegion();
    794   if (!bufRegion)
    795     return NULL;
    796 
    797   // Strip casts off the memory region.
    798   bufRegion = bufRegion->StripCasts();
    799 
    800   // Cast the memory region to a string region.
    801   const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
    802   if (!strRegion)
    803     return NULL;
    804 
    805   // Return the actual string in the string region.
    806   return strRegion->getStringLiteral();
    807 }
    808 
    809 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
    810                                                 ProgramStateRef state,
    811                                                 const Expr *E, SVal V) {
    812   Loc *L = dyn_cast<Loc>(&V);
    813   if (!L)
    814     return state;
    815 
    816   // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
    817   // some assumptions about the value that CFRefCount can't. Even so, it should
    818   // probably be refactored.
    819   if (loc::MemRegionVal* MR = dyn_cast<loc::MemRegionVal>(L)) {
    820     const MemRegion *R = MR->getRegion()->StripCasts();
    821 
    822     // Are we dealing with an ElementRegion?  If so, we should be invalidating
    823     // the super-region.
    824     if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
    825       R = ER->getSuperRegion();
    826       // FIXME: What about layers of ElementRegions?
    827     }
    828 
    829     // Invalidate this region.
    830     unsigned Count = C.getCurrentBlockCount();
    831     const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
    832     return state->invalidateRegions(R, E, Count, LCtx);
    833   }
    834 
    835   // If we have a non-region value by chance, just remove the binding.
    836   // FIXME: is this necessary or correct? This handles the non-Region
    837   //  cases.  Is it ever valid to store to these?
    838   return state->unbindLoc(*L);
    839 }
    840 
    841 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
    842                                      const MemRegion *MR) {
    843   const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
    844 
    845   switch (MR->getKind()) {
    846   case MemRegion::FunctionTextRegionKind: {
    847     const FunctionDecl *FD = cast<FunctionTextRegion>(MR)->getDecl();
    848     if (FD)
    849       os << "the address of the function '" << *FD << '\'';
    850     else
    851       os << "the address of a function";
    852     return true;
    853   }
    854   case MemRegion::BlockTextRegionKind:
    855     os << "block text";
    856     return true;
    857   case MemRegion::BlockDataRegionKind:
    858     os << "a block";
    859     return true;
    860   case MemRegion::CXXThisRegionKind:
    861   case MemRegion::CXXTempObjectRegionKind:
    862     os << "a C++ temp object of type " << TVR->getValueType().getAsString();
    863     return true;
    864   case MemRegion::VarRegionKind:
    865     os << "a variable of type" << TVR->getValueType().getAsString();
    866     return true;
    867   case MemRegion::FieldRegionKind:
    868     os << "a field of type " << TVR->getValueType().getAsString();
    869     return true;
    870   case MemRegion::ObjCIvarRegionKind:
    871     os << "an instance variable of type " << TVR->getValueType().getAsString();
    872     return true;
    873   default:
    874     return false;
    875   }
    876 }
    877 
    878 //===----------------------------------------------------------------------===//
    879 // evaluation of individual function calls.
    880 //===----------------------------------------------------------------------===//
    881 
    882 void CStringChecker::evalCopyCommon(CheckerContext &C,
    883                                     const CallExpr *CE,
    884                                     ProgramStateRef state,
    885                                     const Expr *Size, const Expr *Dest,
    886                                     const Expr *Source, bool Restricted,
    887                                     bool IsMempcpy) const {
    888   CurrentFunctionDescription = "memory copy function";
    889 
    890   // See if the size argument is zero.
    891   const LocationContext *LCtx = C.getLocationContext();
    892   SVal sizeVal = state->getSVal(Size, LCtx);
    893   QualType sizeTy = Size->getType();
    894 
    895   ProgramStateRef stateZeroSize, stateNonZeroSize;
    896   llvm::tie(stateZeroSize, stateNonZeroSize) =
    897     assumeZero(C, state, sizeVal, sizeTy);
    898 
    899   // Get the value of the Dest.
    900   SVal destVal = state->getSVal(Dest, LCtx);
    901 
    902   // If the size is zero, there won't be any actual memory access, so
    903   // just bind the return value to the destination buffer and return.
    904   if (stateZeroSize) {
    905     stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
    906     C.addTransition(stateZeroSize);
    907   }
    908 
    909   // If the size can be nonzero, we have to check the other arguments.
    910   if (stateNonZeroSize) {
    911     state = stateNonZeroSize;
    912 
    913     // Ensure the destination is not null. If it is NULL there will be a
    914     // NULL pointer dereference.
    915     state = checkNonNull(C, state, Dest, destVal);
    916     if (!state)
    917       return;
    918 
    919     // Get the value of the Src.
    920     SVal srcVal = state->getSVal(Source, LCtx);
    921 
    922     // Ensure the source is not null. If it is NULL there will be a
    923     // NULL pointer dereference.
    924     state = checkNonNull(C, state, Source, srcVal);
    925     if (!state)
    926       return;
    927 
    928     // Ensure the accesses are valid and that the buffers do not overlap.
    929     const char * const writeWarning =
    930       "Memory copy function overflows destination buffer";
    931     state = CheckBufferAccess(C, state, Size, Dest, Source,
    932                               writeWarning, /* sourceWarning = */ NULL);
    933     if (Restricted)
    934       state = CheckOverlap(C, state, Size, Dest, Source);
    935 
    936     if (!state)
    937       return;
    938 
    939     // If this is mempcpy, get the byte after the last byte copied and
    940     // bind the expr.
    941     if (IsMempcpy) {
    942       loc::MemRegionVal *destRegVal = dyn_cast<loc::MemRegionVal>(&destVal);
    943       assert(destRegVal && "Destination should be a known MemRegionVal here");
    944 
    945       // Get the length to copy.
    946       NonLoc *lenValNonLoc = dyn_cast<NonLoc>(&sizeVal);
    947 
    948       if (lenValNonLoc) {
    949         // Get the byte after the last byte copied.
    950         SVal lastElement = C.getSValBuilder().evalBinOpLN(state, BO_Add,
    951                                                           *destRegVal,
    952                                                           *lenValNonLoc,
    953                                                           Dest->getType());
    954 
    955         // The byte after the last byte copied is the return value.
    956         state = state->BindExpr(CE, LCtx, lastElement);
    957       } else {
    958         // If we don't know how much we copied, we can at least
    959         // conjure a return value for later.
    960         unsigned Count = C.getCurrentBlockCount();
    961         SVal result =
    962           C.getSValBuilder().getConjuredSymbolVal(NULL, CE, LCtx, Count);
    963         state = state->BindExpr(CE, LCtx, result);
    964       }
    965 
    966     } else {
    967       // All other copies return the destination buffer.
    968       // (Well, bcopy() has a void return type, but this won't hurt.)
    969       state = state->BindExpr(CE, LCtx, destVal);
    970     }
    971 
    972     // Invalidate the destination.
    973     // FIXME: Even if we can't perfectly model the copy, we should see if we
    974     // can use LazyCompoundVals to copy the source values into the destination.
    975     // This would probably remove any existing bindings past the end of the
    976     // copied region, but that's still an improvement over blank invalidation.
    977     state = InvalidateBuffer(C, state, Dest,
    978                              state->getSVal(Dest, C.getLocationContext()));
    979     C.addTransition(state);
    980   }
    981 }
    982 
    983 
    984 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
    985   if (CE->getNumArgs() < 3)
    986     return;
    987 
    988   // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
    989   // The return value is the address of the destination buffer.
    990   const Expr *Dest = CE->getArg(0);
    991   ProgramStateRef state = C.getState();
    992 
    993   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true);
    994 }
    995 
    996 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
    997   if (CE->getNumArgs() < 3)
    998     return;
    999 
   1000   // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
   1001   // The return value is a pointer to the byte following the last written byte.
   1002   const Expr *Dest = CE->getArg(0);
   1003   ProgramStateRef state = C.getState();
   1004 
   1005   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true);
   1006 }
   1007 
   1008 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
   1009   if (CE->getNumArgs() < 3)
   1010     return;
   1011 
   1012   // void *memmove(void *dst, const void *src, size_t n);
   1013   // The return value is the address of the destination buffer.
   1014   const Expr *Dest = CE->getArg(0);
   1015   ProgramStateRef state = C.getState();
   1016 
   1017   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1));
   1018 }
   1019 
   1020 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
   1021   if (CE->getNumArgs() < 3)
   1022     return;
   1023 
   1024   // void bcopy(const void *src, void *dst, size_t n);
   1025   evalCopyCommon(C, CE, C.getState(),
   1026                  CE->getArg(2), CE->getArg(1), CE->getArg(0));
   1027 }
   1028 
   1029 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
   1030   if (CE->getNumArgs() < 3)
   1031     return;
   1032 
   1033   // int memcmp(const void *s1, const void *s2, size_t n);
   1034   CurrentFunctionDescription = "memory comparison function";
   1035 
   1036   const Expr *Left = CE->getArg(0);
   1037   const Expr *Right = CE->getArg(1);
   1038   const Expr *Size = CE->getArg(2);
   1039 
   1040   ProgramStateRef state = C.getState();
   1041   SValBuilder &svalBuilder = C.getSValBuilder();
   1042 
   1043   // See if the size argument is zero.
   1044   const LocationContext *LCtx = C.getLocationContext();
   1045   SVal sizeVal = state->getSVal(Size, LCtx);
   1046   QualType sizeTy = Size->getType();
   1047 
   1048   ProgramStateRef stateZeroSize, stateNonZeroSize;
   1049   llvm::tie(stateZeroSize, stateNonZeroSize) =
   1050     assumeZero(C, state, sizeVal, sizeTy);
   1051 
   1052   // If the size can be zero, the result will be 0 in that case, and we don't
   1053   // have to check either of the buffers.
   1054   if (stateZeroSize) {
   1055     state = stateZeroSize;
   1056     state = state->BindExpr(CE, LCtx,
   1057                             svalBuilder.makeZeroVal(CE->getType()));
   1058     C.addTransition(state);
   1059   }
   1060 
   1061   // If the size can be nonzero, we have to check the other arguments.
   1062   if (stateNonZeroSize) {
   1063     state = stateNonZeroSize;
   1064     // If we know the two buffers are the same, we know the result is 0.
   1065     // First, get the two buffers' addresses. Another checker will have already
   1066     // made sure they're not undefined.
   1067     DefinedOrUnknownSVal LV =
   1068       cast<DefinedOrUnknownSVal>(state->getSVal(Left, LCtx));
   1069     DefinedOrUnknownSVal RV =
   1070       cast<DefinedOrUnknownSVal>(state->getSVal(Right, LCtx));
   1071 
   1072     // See if they are the same.
   1073     DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
   1074     ProgramStateRef StSameBuf, StNotSameBuf;
   1075     llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
   1076 
   1077     // If the two arguments might be the same buffer, we know the result is 0,
   1078     // and we only need to check one size.
   1079     if (StSameBuf) {
   1080       state = StSameBuf;
   1081       state = CheckBufferAccess(C, state, Size, Left);
   1082       if (state) {
   1083         state = StSameBuf->BindExpr(CE, LCtx,
   1084                                     svalBuilder.makeZeroVal(CE->getType()));
   1085         C.addTransition(state);
   1086       }
   1087     }
   1088 
   1089     // If the two arguments might be different buffers, we have to check the
   1090     // size of both of them.
   1091     if (StNotSameBuf) {
   1092       state = StNotSameBuf;
   1093       state = CheckBufferAccess(C, state, Size, Left, Right);
   1094       if (state) {
   1095         // The return value is the comparison result, which we don't know.
   1096         unsigned Count = C.getCurrentBlockCount();
   1097         SVal CmpV = svalBuilder.getConjuredSymbolVal(NULL, CE, LCtx, Count);
   1098         state = state->BindExpr(CE, LCtx, CmpV);
   1099         C.addTransition(state);
   1100       }
   1101     }
   1102   }
   1103 }
   1104 
   1105 void CStringChecker::evalstrLength(CheckerContext &C,
   1106                                    const CallExpr *CE) const {
   1107   if (CE->getNumArgs() < 1)
   1108     return;
   1109 
   1110   // size_t strlen(const char *s);
   1111   evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
   1112 }
   1113 
   1114 void CStringChecker::evalstrnLength(CheckerContext &C,
   1115                                     const CallExpr *CE) const {
   1116   if (CE->getNumArgs() < 2)
   1117     return;
   1118 
   1119   // size_t strnlen(const char *s, size_t maxlen);
   1120   evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
   1121 }
   1122 
   1123 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
   1124                                          bool IsStrnlen) const {
   1125   CurrentFunctionDescription = "string length function";
   1126   ProgramStateRef state = C.getState();
   1127   const LocationContext *LCtx = C.getLocationContext();
   1128 
   1129   if (IsStrnlen) {
   1130     const Expr *maxlenExpr = CE->getArg(1);
   1131     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
   1132 
   1133     ProgramStateRef stateZeroSize, stateNonZeroSize;
   1134     llvm::tie(stateZeroSize, stateNonZeroSize) =
   1135       assumeZero(C, state, maxlenVal, maxlenExpr->getType());
   1136 
   1137     // If the size can be zero, the result will be 0 in that case, and we don't
   1138     // have to check the string itself.
   1139     if (stateZeroSize) {
   1140       SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
   1141       stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
   1142       C.addTransition(stateZeroSize);
   1143     }
   1144 
   1145     // If the size is GUARANTEED to be zero, we're done!
   1146     if (!stateNonZeroSize)
   1147       return;
   1148 
   1149     // Otherwise, record the assumption that the size is nonzero.
   1150     state = stateNonZeroSize;
   1151   }
   1152 
   1153   // Check that the string argument is non-null.
   1154   const Expr *Arg = CE->getArg(0);
   1155   SVal ArgVal = state->getSVal(Arg, LCtx);
   1156 
   1157   state = checkNonNull(C, state, Arg, ArgVal);
   1158 
   1159   if (!state)
   1160     return;
   1161 
   1162   SVal strLength = getCStringLength(C, state, Arg, ArgVal);
   1163 
   1164   // If the argument isn't a valid C string, there's no valid state to
   1165   // transition to.
   1166   if (strLength.isUndef())
   1167     return;
   1168 
   1169   DefinedOrUnknownSVal result = UnknownVal();
   1170 
   1171   // If the check is for strnlen() then bind the return value to no more than
   1172   // the maxlen value.
   1173   if (IsStrnlen) {
   1174     QualType cmpTy = C.getSValBuilder().getConditionType();
   1175 
   1176     // It's a little unfortunate to be getting this again,
   1177     // but it's not that expensive...
   1178     const Expr *maxlenExpr = CE->getArg(1);
   1179     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
   1180 
   1181     NonLoc *strLengthNL = dyn_cast<NonLoc>(&strLength);
   1182     NonLoc *maxlenValNL = dyn_cast<NonLoc>(&maxlenVal);
   1183 
   1184     if (strLengthNL && maxlenValNL) {
   1185       ProgramStateRef stateStringTooLong, stateStringNotTooLong;
   1186 
   1187       // Check if the strLength is greater than the maxlen.
   1188       llvm::tie(stateStringTooLong, stateStringNotTooLong) =
   1189         state->assume(cast<DefinedOrUnknownSVal>
   1190                       (C.getSValBuilder().evalBinOpNN(state, BO_GT,
   1191                                                       *strLengthNL,
   1192                                                       *maxlenValNL,
   1193                                                       cmpTy)));
   1194 
   1195       if (stateStringTooLong && !stateStringNotTooLong) {
   1196         // If the string is longer than maxlen, return maxlen.
   1197         result = *maxlenValNL;
   1198       } else if (stateStringNotTooLong && !stateStringTooLong) {
   1199         // If the string is shorter than maxlen, return its length.
   1200         result = *strLengthNL;
   1201       }
   1202     }
   1203 
   1204     if (result.isUnknown()) {
   1205       // If we don't have enough information for a comparison, there's
   1206       // no guarantee the full string length will actually be returned.
   1207       // All we know is the return value is the min of the string length
   1208       // and the limit. This is better than nothing.
   1209       unsigned Count = C.getCurrentBlockCount();
   1210       result = C.getSValBuilder().getConjuredSymbolVal(NULL, CE, LCtx, Count);
   1211       NonLoc *resultNL = cast<NonLoc>(&result);
   1212 
   1213       if (strLengthNL) {
   1214         state = state->assume(cast<DefinedOrUnknownSVal>
   1215                               (C.getSValBuilder().evalBinOpNN(state, BO_LE,
   1216                                                               *resultNL,
   1217                                                               *strLengthNL,
   1218                                                               cmpTy)), true);
   1219       }
   1220 
   1221       if (maxlenValNL) {
   1222         state = state->assume(cast<DefinedOrUnknownSVal>
   1223                               (C.getSValBuilder().evalBinOpNN(state, BO_LE,
   1224                                                               *resultNL,
   1225                                                               *maxlenValNL,
   1226                                                               cmpTy)), true);
   1227       }
   1228     }
   1229 
   1230   } else {
   1231     // This is a plain strlen(), not strnlen().
   1232     result = cast<DefinedOrUnknownSVal>(strLength);
   1233 
   1234     // If we don't know the length of the string, conjure a return
   1235     // value, so it can be used in constraints, at least.
   1236     if (result.isUnknown()) {
   1237       unsigned Count = C.getCurrentBlockCount();
   1238       result = C.getSValBuilder().getConjuredSymbolVal(NULL, CE, LCtx, Count);
   1239     }
   1240   }
   1241 
   1242   // Bind the return value.
   1243   assert(!result.isUnknown() && "Should have conjured a value by now");
   1244   state = state->BindExpr(CE, LCtx, result);
   1245   C.addTransition(state);
   1246 }
   1247 
   1248 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
   1249   if (CE->getNumArgs() < 2)
   1250     return;
   1251 
   1252   // char *strcpy(char *restrict dst, const char *restrict src);
   1253   evalStrcpyCommon(C, CE,
   1254                    /* returnEnd = */ false,
   1255                    /* isBounded = */ false,
   1256                    /* isAppending = */ false);
   1257 }
   1258 
   1259 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
   1260   if (CE->getNumArgs() < 3)
   1261     return;
   1262 
   1263   // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
   1264   evalStrcpyCommon(C, CE,
   1265                    /* returnEnd = */ false,
   1266                    /* isBounded = */ true,
   1267                    /* isAppending = */ false);
   1268 }
   1269 
   1270 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
   1271   if (CE->getNumArgs() < 2)
   1272     return;
   1273 
   1274   // char *stpcpy(char *restrict dst, const char *restrict src);
   1275   evalStrcpyCommon(C, CE,
   1276                    /* returnEnd = */ true,
   1277                    /* isBounded = */ false,
   1278                    /* isAppending = */ false);
   1279 }
   1280 
   1281 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
   1282   if (CE->getNumArgs() < 2)
   1283     return;
   1284 
   1285   //char *strcat(char *restrict s1, const char *restrict s2);
   1286   evalStrcpyCommon(C, CE,
   1287                    /* returnEnd = */ false,
   1288                    /* isBounded = */ false,
   1289                    /* isAppending = */ true);
   1290 }
   1291 
   1292 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
   1293   if (CE->getNumArgs() < 3)
   1294     return;
   1295 
   1296   //char *strncat(char *restrict s1, const char *restrict s2, size_t n);
   1297   evalStrcpyCommon(C, CE,
   1298                    /* returnEnd = */ false,
   1299                    /* isBounded = */ true,
   1300                    /* isAppending = */ true);
   1301 }
   1302 
   1303 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
   1304                                       bool returnEnd, bool isBounded,
   1305                                       bool isAppending) const {
   1306   CurrentFunctionDescription = "string copy function";
   1307   ProgramStateRef state = C.getState();
   1308   const LocationContext *LCtx = C.getLocationContext();
   1309 
   1310   // Check that the destination is non-null.
   1311   const Expr *Dst = CE->getArg(0);
   1312   SVal DstVal = state->getSVal(Dst, LCtx);
   1313 
   1314   state = checkNonNull(C, state, Dst, DstVal);
   1315   if (!state)
   1316     return;
   1317 
   1318   // Check that the source is non-null.
   1319   const Expr *srcExpr = CE->getArg(1);
   1320   SVal srcVal = state->getSVal(srcExpr, LCtx);
   1321   state = checkNonNull(C, state, srcExpr, srcVal);
   1322   if (!state)
   1323     return;
   1324 
   1325   // Get the string length of the source.
   1326   SVal strLength = getCStringLength(C, state, srcExpr, srcVal);
   1327 
   1328   // If the source isn't a valid C string, give up.
   1329   if (strLength.isUndef())
   1330     return;
   1331 
   1332   SValBuilder &svalBuilder = C.getSValBuilder();
   1333   QualType cmpTy = svalBuilder.getConditionType();
   1334   QualType sizeTy = svalBuilder.getContext().getSizeType();
   1335 
   1336   // These two values allow checking two kinds of errors:
   1337   // - actual overflows caused by a source that doesn't fit in the destination
   1338   // - potential overflows caused by a bound that could exceed the destination
   1339   SVal amountCopied = UnknownVal();
   1340   SVal maxLastElementIndex = UnknownVal();
   1341   const char *boundWarning = NULL;
   1342 
   1343   // If the function is strncpy, strncat, etc... it is bounded.
   1344   if (isBounded) {
   1345     // Get the max number of characters to copy.
   1346     const Expr *lenExpr = CE->getArg(2);
   1347     SVal lenVal = state->getSVal(lenExpr, LCtx);
   1348 
   1349     // Protect against misdeclared strncpy().
   1350     lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType());
   1351 
   1352     NonLoc *strLengthNL = dyn_cast<NonLoc>(&strLength);
   1353     NonLoc *lenValNL = dyn_cast<NonLoc>(&lenVal);
   1354 
   1355     // If we know both values, we might be able to figure out how much
   1356     // we're copying.
   1357     if (strLengthNL && lenValNL) {
   1358       ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
   1359 
   1360       // Check if the max number to copy is less than the length of the src.
   1361       // If the bound is equal to the source length, strncpy won't null-
   1362       // terminate the result!
   1363       llvm::tie(stateSourceTooLong, stateSourceNotTooLong) =
   1364         state->assume(cast<DefinedOrUnknownSVal>
   1365                       (svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL,
   1366                                                *lenValNL, cmpTy)));
   1367 
   1368       if (stateSourceTooLong && !stateSourceNotTooLong) {
   1369         // Max number to copy is less than the length of the src, so the actual
   1370         // strLength copied is the max number arg.
   1371         state = stateSourceTooLong;
   1372         amountCopied = lenVal;
   1373 
   1374       } else if (!stateSourceTooLong && stateSourceNotTooLong) {
   1375         // The source buffer entirely fits in the bound.
   1376         state = stateSourceNotTooLong;
   1377         amountCopied = strLength;
   1378       }
   1379     }
   1380 
   1381     // We still want to know if the bound is known to be too large.
   1382     if (lenValNL) {
   1383       if (isAppending) {
   1384         // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
   1385 
   1386         // Get the string length of the destination. If the destination is
   1387         // memory that can't have a string length, we shouldn't be copying
   1388         // into it anyway.
   1389         SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
   1390         if (dstStrLength.isUndef())
   1391           return;
   1392 
   1393         if (NonLoc *dstStrLengthNL = dyn_cast<NonLoc>(&dstStrLength)) {
   1394           maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add,
   1395                                                         *lenValNL,
   1396                                                         *dstStrLengthNL,
   1397                                                         sizeTy);
   1398           boundWarning = "Size argument is greater than the free space in the "
   1399                          "destination buffer";
   1400         }
   1401 
   1402       } else {
   1403         // For strncpy, this is just checking that lenVal <= sizeof(dst)
   1404         // (Yes, strncpy and strncat differ in how they treat termination.
   1405         // strncat ALWAYS terminates, but strncpy doesn't.)
   1406         NonLoc one = cast<NonLoc>(svalBuilder.makeIntVal(1, sizeTy));
   1407         maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
   1408                                                       one, sizeTy);
   1409         boundWarning = "Size argument is greater than the length of the "
   1410                        "destination buffer";
   1411       }
   1412     }
   1413 
   1414     // If we couldn't pin down the copy length, at least bound it.
   1415     // FIXME: We should actually run this code path for append as well, but
   1416     // right now it creates problems with constraints (since we can end up
   1417     // trying to pass constraints from symbol to symbol).
   1418     if (amountCopied.isUnknown() && !isAppending) {
   1419       // Try to get a "hypothetical" string length symbol, which we can later
   1420       // set as a real value if that turns out to be the case.
   1421       amountCopied = getCStringLength(C, state, lenExpr, srcVal, true);
   1422       assert(!amountCopied.isUndef());
   1423 
   1424       if (NonLoc *amountCopiedNL = dyn_cast<NonLoc>(&amountCopied)) {
   1425         if (lenValNL) {
   1426           // amountCopied <= lenVal
   1427           SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE,
   1428                                                              *amountCopiedNL,
   1429                                                              *lenValNL,
   1430                                                              cmpTy);
   1431           state = state->assume(cast<DefinedOrUnknownSVal>(copiedLessThanBound),
   1432                                 true);
   1433           if (!state)
   1434             return;
   1435         }
   1436 
   1437         if (strLengthNL) {
   1438           // amountCopied <= strlen(source)
   1439           SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE,
   1440                                                            *amountCopiedNL,
   1441                                                            *strLengthNL,
   1442                                                            cmpTy);
   1443           state = state->assume(cast<DefinedOrUnknownSVal>(copiedLessThanSrc),
   1444                                 true);
   1445           if (!state)
   1446             return;
   1447         }
   1448       }
   1449     }
   1450 
   1451   } else {
   1452     // The function isn't bounded. The amount copied should match the length
   1453     // of the source buffer.
   1454     amountCopied = strLength;
   1455   }
   1456 
   1457   assert(state);
   1458 
   1459   // This represents the number of characters copied into the destination
   1460   // buffer. (It may not actually be the strlen if the destination buffer
   1461   // is not terminated.)
   1462   SVal finalStrLength = UnknownVal();
   1463 
   1464   // If this is an appending function (strcat, strncat...) then set the
   1465   // string length to strlen(src) + strlen(dst) since the buffer will
   1466   // ultimately contain both.
   1467   if (isAppending) {
   1468     // Get the string length of the destination. If the destination is memory
   1469     // that can't have a string length, we shouldn't be copying into it anyway.
   1470     SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
   1471     if (dstStrLength.isUndef())
   1472       return;
   1473 
   1474     NonLoc *srcStrLengthNL = dyn_cast<NonLoc>(&amountCopied);
   1475     NonLoc *dstStrLengthNL = dyn_cast<NonLoc>(&dstStrLength);
   1476 
   1477     // If we know both string lengths, we might know the final string length.
   1478     if (srcStrLengthNL && dstStrLengthNL) {
   1479       // Make sure the two lengths together don't overflow a size_t.
   1480       state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL);
   1481       if (!state)
   1482         return;
   1483 
   1484       finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL,
   1485                                                *dstStrLengthNL, sizeTy);
   1486     }
   1487 
   1488     // If we couldn't get a single value for the final string length,
   1489     // we can at least bound it by the individual lengths.
   1490     if (finalStrLength.isUnknown()) {
   1491       // Try to get a "hypothetical" string length symbol, which we can later
   1492       // set as a real value if that turns out to be the case.
   1493       finalStrLength = getCStringLength(C, state, CE, DstVal, true);
   1494       assert(!finalStrLength.isUndef());
   1495 
   1496       if (NonLoc *finalStrLengthNL = dyn_cast<NonLoc>(&finalStrLength)) {
   1497         if (srcStrLengthNL) {
   1498           // finalStrLength >= srcStrLength
   1499           SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE,
   1500                                                         *finalStrLengthNL,
   1501                                                         *srcStrLengthNL,
   1502                                                         cmpTy);
   1503           state = state->assume(cast<DefinedOrUnknownSVal>(sourceInResult),
   1504                                 true);
   1505           if (!state)
   1506             return;
   1507         }
   1508 
   1509         if (dstStrLengthNL) {
   1510           // finalStrLength >= dstStrLength
   1511           SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
   1512                                                       *finalStrLengthNL,
   1513                                                       *dstStrLengthNL,
   1514                                                       cmpTy);
   1515           state = state->assume(cast<DefinedOrUnknownSVal>(destInResult),
   1516                                 true);
   1517           if (!state)
   1518             return;
   1519         }
   1520       }
   1521     }
   1522 
   1523   } else {
   1524     // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
   1525     // the final string length will match the input string length.
   1526     finalStrLength = amountCopied;
   1527   }
   1528 
   1529   // The final result of the function will either be a pointer past the last
   1530   // copied element, or a pointer to the start of the destination buffer.
   1531   SVal Result = (returnEnd ? UnknownVal() : DstVal);
   1532 
   1533   assert(state);
   1534 
   1535   // If the destination is a MemRegion, try to check for a buffer overflow and
   1536   // record the new string length.
   1537   if (loc::MemRegionVal *dstRegVal = dyn_cast<loc::MemRegionVal>(&DstVal)) {
   1538     QualType ptrTy = Dst->getType();
   1539 
   1540     // If we have an exact value on a bounded copy, use that to check for
   1541     // overflows, rather than our estimate about how much is actually copied.
   1542     if (boundWarning) {
   1543       if (NonLoc *maxLastNL = dyn_cast<NonLoc>(&maxLastElementIndex)) {
   1544         SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
   1545                                                       *maxLastNL, ptrTy);
   1546         state = CheckLocation(C, state, CE->getArg(2), maxLastElement,
   1547                               boundWarning);
   1548         if (!state)
   1549           return;
   1550       }
   1551     }
   1552 
   1553     // Then, if the final length is known...
   1554     if (NonLoc *knownStrLength = dyn_cast<NonLoc>(&finalStrLength)) {
   1555       SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
   1556                                                  *knownStrLength, ptrTy);
   1557 
   1558       // ...and we haven't checked the bound, we'll check the actual copy.
   1559       if (!boundWarning) {
   1560         const char * const warningMsg =
   1561           "String copy function overflows destination buffer";
   1562         state = CheckLocation(C, state, Dst, lastElement, warningMsg);
   1563         if (!state)
   1564           return;
   1565       }
   1566 
   1567       // If this is a stpcpy-style copy, the last element is the return value.
   1568       if (returnEnd)
   1569         Result = lastElement;
   1570     }
   1571 
   1572     // Invalidate the destination. This must happen before we set the C string
   1573     // length because invalidation will clear the length.
   1574     // FIXME: Even if we can't perfectly model the copy, we should see if we
   1575     // can use LazyCompoundVals to copy the source values into the destination.
   1576     // This would probably remove any existing bindings past the end of the
   1577     // string, but that's still an improvement over blank invalidation.
   1578     state = InvalidateBuffer(C, state, Dst, *dstRegVal);
   1579 
   1580     // Set the C string length of the destination, if we know it.
   1581     if (isBounded && !isAppending) {
   1582       // strncpy is annoying in that it doesn't guarantee to null-terminate
   1583       // the result string. If the original string didn't fit entirely inside
   1584       // the bound (including the null-terminator), we don't know how long the
   1585       // result is.
   1586       if (amountCopied != strLength)
   1587         finalStrLength = UnknownVal();
   1588     }
   1589     state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
   1590   }
   1591 
   1592   assert(state);
   1593 
   1594   // If this is a stpcpy-style copy, but we were unable to check for a buffer
   1595   // overflow, we still need a result. Conjure a return value.
   1596   if (returnEnd && Result.isUnknown()) {
   1597     unsigned Count = C.getCurrentBlockCount();
   1598     Result = svalBuilder.getConjuredSymbolVal(NULL, CE, LCtx, Count);
   1599   }
   1600 
   1601   // Set the return value.
   1602   state = state->BindExpr(CE, LCtx, Result);
   1603   C.addTransition(state);
   1604 }
   1605 
   1606 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
   1607   if (CE->getNumArgs() < 2)
   1608     return;
   1609 
   1610   //int strcmp(const char *s1, const char *s2);
   1611   evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false);
   1612 }
   1613 
   1614 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
   1615   if (CE->getNumArgs() < 3)
   1616     return;
   1617 
   1618   //int strncmp(const char *s1, const char *s2, size_t n);
   1619   evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false);
   1620 }
   1621 
   1622 void CStringChecker::evalStrcasecmp(CheckerContext &C,
   1623                                     const CallExpr *CE) const {
   1624   if (CE->getNumArgs() < 2)
   1625     return;
   1626 
   1627   //int strcasecmp(const char *s1, const char *s2);
   1628   evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true);
   1629 }
   1630 
   1631 void CStringChecker::evalStrncasecmp(CheckerContext &C,
   1632                                      const CallExpr *CE) const {
   1633   if (CE->getNumArgs() < 3)
   1634     return;
   1635 
   1636   //int strncasecmp(const char *s1, const char *s2, size_t n);
   1637   evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true);
   1638 }
   1639 
   1640 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
   1641                                       bool isBounded, bool ignoreCase) const {
   1642   CurrentFunctionDescription = "string comparison function";
   1643   ProgramStateRef state = C.getState();
   1644   const LocationContext *LCtx = C.getLocationContext();
   1645 
   1646   // Check that the first string is non-null
   1647   const Expr *s1 = CE->getArg(0);
   1648   SVal s1Val = state->getSVal(s1, LCtx);
   1649   state = checkNonNull(C, state, s1, s1Val);
   1650   if (!state)
   1651     return;
   1652 
   1653   // Check that the second string is non-null.
   1654   const Expr *s2 = CE->getArg(1);
   1655   SVal s2Val = state->getSVal(s2, LCtx);
   1656   state = checkNonNull(C, state, s2, s2Val);
   1657   if (!state)
   1658     return;
   1659 
   1660   // Get the string length of the first string or give up.
   1661   SVal s1Length = getCStringLength(C, state, s1, s1Val);
   1662   if (s1Length.isUndef())
   1663     return;
   1664 
   1665   // Get the string length of the second string or give up.
   1666   SVal s2Length = getCStringLength(C, state, s2, s2Val);
   1667   if (s2Length.isUndef())
   1668     return;
   1669 
   1670   // If we know the two buffers are the same, we know the result is 0.
   1671   // First, get the two buffers' addresses. Another checker will have already
   1672   // made sure they're not undefined.
   1673   DefinedOrUnknownSVal LV = cast<DefinedOrUnknownSVal>(s1Val);
   1674   DefinedOrUnknownSVal RV = cast<DefinedOrUnknownSVal>(s2Val);
   1675 
   1676   // See if they are the same.
   1677   SValBuilder &svalBuilder = C.getSValBuilder();
   1678   DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
   1679   ProgramStateRef StSameBuf, StNotSameBuf;
   1680   llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
   1681 
   1682   // If the two arguments might be the same buffer, we know the result is 0,
   1683   // and we only need to check one size.
   1684   if (StSameBuf) {
   1685     StSameBuf = StSameBuf->BindExpr(CE, LCtx,
   1686                                     svalBuilder.makeZeroVal(CE->getType()));
   1687     C.addTransition(StSameBuf);
   1688 
   1689     // If the two arguments are GUARANTEED to be the same, we're done!
   1690     if (!StNotSameBuf)
   1691       return;
   1692   }
   1693 
   1694   assert(StNotSameBuf);
   1695   state = StNotSameBuf;
   1696 
   1697   // At this point we can go about comparing the two buffers.
   1698   // For now, we only do this if they're both known string literals.
   1699 
   1700   // Attempt to extract string literals from both expressions.
   1701   const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val);
   1702   const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val);
   1703   bool canComputeResult = false;
   1704 
   1705   if (s1StrLiteral && s2StrLiteral) {
   1706     StringRef s1StrRef = s1StrLiteral->getString();
   1707     StringRef s2StrRef = s2StrLiteral->getString();
   1708 
   1709     if (isBounded) {
   1710       // Get the max number of characters to compare.
   1711       const Expr *lenExpr = CE->getArg(2);
   1712       SVal lenVal = state->getSVal(lenExpr, LCtx);
   1713 
   1714       // If the length is known, we can get the right substrings.
   1715       if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
   1716         // Create substrings of each to compare the prefix.
   1717         s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue());
   1718         s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue());
   1719         canComputeResult = true;
   1720       }
   1721     } else {
   1722       // This is a normal, unbounded strcmp.
   1723       canComputeResult = true;
   1724     }
   1725 
   1726     if (canComputeResult) {
   1727       // Real strcmp stops at null characters.
   1728       size_t s1Term = s1StrRef.find('\0');
   1729       if (s1Term != StringRef::npos)
   1730         s1StrRef = s1StrRef.substr(0, s1Term);
   1731 
   1732       size_t s2Term = s2StrRef.find('\0');
   1733       if (s2Term != StringRef::npos)
   1734         s2StrRef = s2StrRef.substr(0, s2Term);
   1735 
   1736       // Use StringRef's comparison methods to compute the actual result.
   1737       int result;
   1738 
   1739       if (ignoreCase) {
   1740         // Compare string 1 to string 2 the same way strcasecmp() does.
   1741         result = s1StrRef.compare_lower(s2StrRef);
   1742       } else {
   1743         // Compare string 1 to string 2 the same way strcmp() does.
   1744         result = s1StrRef.compare(s2StrRef);
   1745       }
   1746 
   1747       // Build the SVal of the comparison and bind the return value.
   1748       SVal resultVal = svalBuilder.makeIntVal(result, CE->getType());
   1749       state = state->BindExpr(CE, LCtx, resultVal);
   1750     }
   1751   }
   1752 
   1753   if (!canComputeResult) {
   1754     // Conjure a symbolic value. It's the best we can do.
   1755     unsigned Count = C.getCurrentBlockCount();
   1756     SVal resultVal = svalBuilder.getConjuredSymbolVal(NULL, CE, LCtx, Count);
   1757     state = state->BindExpr(CE, LCtx, resultVal);
   1758   }
   1759 
   1760   // Record this as a possible path.
   1761   C.addTransition(state);
   1762 }
   1763 
   1764 //===----------------------------------------------------------------------===//
   1765 // The driver method, and other Checker callbacks.
   1766 //===----------------------------------------------------------------------===//
   1767 
   1768 bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const {
   1769   const FunctionDecl *FDecl = C.getCalleeDecl(CE);
   1770 
   1771   if (!FDecl)
   1772     return false;
   1773 
   1774   FnCheck evalFunction = 0;
   1775   if (C.isCLibraryFunction(FDecl, "memcpy"))
   1776     evalFunction =  &CStringChecker::evalMemcpy;
   1777   else if (C.isCLibraryFunction(FDecl, "mempcpy"))
   1778     evalFunction =  &CStringChecker::evalMempcpy;
   1779   else if (C.isCLibraryFunction(FDecl, "memcmp"))
   1780     evalFunction =  &CStringChecker::evalMemcmp;
   1781   else if (C.isCLibraryFunction(FDecl, "memmove"))
   1782     evalFunction =  &CStringChecker::evalMemmove;
   1783   else if (C.isCLibraryFunction(FDecl, "strcpy"))
   1784     evalFunction =  &CStringChecker::evalStrcpy;
   1785   else if (C.isCLibraryFunction(FDecl, "strncpy"))
   1786     evalFunction =  &CStringChecker::evalStrncpy;
   1787   else if (C.isCLibraryFunction(FDecl, "stpcpy"))
   1788     evalFunction =  &CStringChecker::evalStpcpy;
   1789   else if (C.isCLibraryFunction(FDecl, "strcat"))
   1790     evalFunction =  &CStringChecker::evalStrcat;
   1791   else if (C.isCLibraryFunction(FDecl, "strncat"))
   1792     evalFunction =  &CStringChecker::evalStrncat;
   1793   else if (C.isCLibraryFunction(FDecl, "strlen"))
   1794     evalFunction =  &CStringChecker::evalstrLength;
   1795   else if (C.isCLibraryFunction(FDecl, "strnlen"))
   1796     evalFunction =  &CStringChecker::evalstrnLength;
   1797   else if (C.isCLibraryFunction(FDecl, "strcmp"))
   1798     evalFunction =  &CStringChecker::evalStrcmp;
   1799   else if (C.isCLibraryFunction(FDecl, "strncmp"))
   1800     evalFunction =  &CStringChecker::evalStrncmp;
   1801   else if (C.isCLibraryFunction(FDecl, "strcasecmp"))
   1802     evalFunction =  &CStringChecker::evalStrcasecmp;
   1803   else if (C.isCLibraryFunction(FDecl, "strncasecmp"))
   1804     evalFunction =  &CStringChecker::evalStrncasecmp;
   1805   else if (C.isCLibraryFunction(FDecl, "bcopy"))
   1806     evalFunction =  &CStringChecker::evalBcopy;
   1807   else if (C.isCLibraryFunction(FDecl, "bcmp"))
   1808     evalFunction =  &CStringChecker::evalMemcmp;
   1809 
   1810   // If the callee isn't a string function, let another checker handle it.
   1811   if (!evalFunction)
   1812     return false;
   1813 
   1814   // Make sure each function sets its own description.
   1815   // (But don't bother in a release build.)
   1816   assert(!(CurrentFunctionDescription = NULL));
   1817 
   1818   // Check and evaluate the call.
   1819   (this->*evalFunction)(C, CE);
   1820 
   1821   // If the evaluate call resulted in no change, chain to the next eval call
   1822   // handler.
   1823   // Note, the custom CString evaluation calls assume that basic safety
   1824   // properties are held. However, if the user chooses to turn off some of these
   1825   // checks, we ignore the issues and leave the call evaluation to a generic
   1826   // handler.
   1827   if (!C.isDifferent())
   1828     return false;
   1829 
   1830   return true;
   1831 }
   1832 
   1833 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
   1834   // Record string length for char a[] = "abc";
   1835   ProgramStateRef state = C.getState();
   1836 
   1837   for (DeclStmt::const_decl_iterator I = DS->decl_begin(), E = DS->decl_end();
   1838        I != E; ++I) {
   1839     const VarDecl *D = dyn_cast<VarDecl>(*I);
   1840     if (!D)
   1841       continue;
   1842 
   1843     // FIXME: Handle array fields of structs.
   1844     if (!D->getType()->isArrayType())
   1845       continue;
   1846 
   1847     const Expr *Init = D->getInit();
   1848     if (!Init)
   1849       continue;
   1850     if (!isa<StringLiteral>(Init))
   1851       continue;
   1852 
   1853     Loc VarLoc = state->getLValue(D, C.getLocationContext());
   1854     const MemRegion *MR = VarLoc.getAsRegion();
   1855     if (!MR)
   1856       continue;
   1857 
   1858     SVal StrVal = state->getSVal(Init, C.getLocationContext());
   1859     assert(StrVal.isValid() && "Initializer string is unknown or undefined");
   1860     DefinedOrUnknownSVal strLength
   1861       = cast<DefinedOrUnknownSVal>(getCStringLength(C, state, Init, StrVal));
   1862 
   1863     state = state->set<CStringLength>(MR, strLength);
   1864   }
   1865 
   1866   C.addTransition(state);
   1867 }
   1868 
   1869 bool CStringChecker::wantsRegionChangeUpdate(ProgramStateRef state) const {
   1870   CStringLength::EntryMap Entries = state->get<CStringLength>();
   1871   return !Entries.isEmpty();
   1872 }
   1873 
   1874 ProgramStateRef
   1875 CStringChecker::checkRegionChanges(ProgramStateRef state,
   1876                                    const StoreManager::InvalidatedSymbols *,
   1877                                    ArrayRef<const MemRegion *> ExplicitRegions,
   1878                                    ArrayRef<const MemRegion *> Regions,
   1879                                    const CallOrObjCMessage *Call) const {
   1880   CStringLength::EntryMap Entries = state->get<CStringLength>();
   1881   if (Entries.isEmpty())
   1882     return state;
   1883 
   1884   llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
   1885   llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
   1886 
   1887   // First build sets for the changed regions and their super-regions.
   1888   for (ArrayRef<const MemRegion *>::iterator
   1889        I = Regions.begin(), E = Regions.end(); I != E; ++I) {
   1890     const MemRegion *MR = *I;
   1891     Invalidated.insert(MR);
   1892 
   1893     SuperRegions.insert(MR);
   1894     while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
   1895       MR = SR->getSuperRegion();
   1896       SuperRegions.insert(MR);
   1897     }
   1898   }
   1899 
   1900   CStringLength::EntryMap::Factory &F = state->get_context<CStringLength>();
   1901 
   1902   // Then loop over the entries in the current state.
   1903   for (CStringLength::EntryMap::iterator I = Entries.begin(),
   1904        E = Entries.end(); I != E; ++I) {
   1905     const MemRegion *MR = I.getKey();
   1906 
   1907     // Is this entry for a super-region of a changed region?
   1908     if (SuperRegions.count(MR)) {
   1909       Entries = F.remove(Entries, MR);
   1910       continue;
   1911     }
   1912 
   1913     // Is this entry for a sub-region of a changed region?
   1914     const MemRegion *Super = MR;
   1915     while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
   1916       Super = SR->getSuperRegion();
   1917       if (Invalidated.count(Super)) {
   1918         Entries = F.remove(Entries, MR);
   1919         break;
   1920       }
   1921     }
   1922   }
   1923 
   1924   return state->set<CStringLength>(Entries);
   1925 }
   1926 
   1927 void CStringChecker::checkLiveSymbols(ProgramStateRef state,
   1928                                       SymbolReaper &SR) const {
   1929   // Mark all symbols in our string length map as valid.
   1930   CStringLength::EntryMap Entries = state->get<CStringLength>();
   1931 
   1932   for (CStringLength::EntryMap::iterator I = Entries.begin(), E = Entries.end();
   1933        I != E; ++I) {
   1934     SVal Len = I.getData();
   1935 
   1936     for (SymExpr::symbol_iterator si = Len.symbol_begin(),
   1937                                   se = Len.symbol_end(); si != se; ++si)
   1938       SR.markInUse(*si);
   1939   }
   1940 }
   1941 
   1942 void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
   1943                                       CheckerContext &C) const {
   1944   if (!SR.hasDeadSymbols())
   1945     return;
   1946 
   1947   ProgramStateRef state = C.getState();
   1948   CStringLength::EntryMap Entries = state->get<CStringLength>();
   1949   if (Entries.isEmpty())
   1950     return;
   1951 
   1952   CStringLength::EntryMap::Factory &F = state->get_context<CStringLength>();
   1953   for (CStringLength::EntryMap::iterator I = Entries.begin(), E = Entries.end();
   1954        I != E; ++I) {
   1955     SVal Len = I.getData();
   1956     if (SymbolRef Sym = Len.getAsSymbol()) {
   1957       if (SR.isDead(Sym))
   1958         Entries = F.remove(Entries, I.getKey());
   1959     }
   1960   }
   1961 
   1962   state = state->set<CStringLength>(Entries);
   1963   C.addTransition(state);
   1964 }
   1965 
   1966 #define REGISTER_CHECKER(name) \
   1967 void ento::register##name(CheckerManager &mgr) {\
   1968   static CStringChecker *TheChecker = 0; \
   1969   if (TheChecker == 0) \
   1970     TheChecker = mgr.registerChecker<CStringChecker>(); \
   1971   TheChecker->Filter.Check##name = true; \
   1972 }
   1973 
   1974 REGISTER_CHECKER(CStringNullArg)
   1975 REGISTER_CHECKER(CStringOutOfBounds)
   1976 REGISTER_CHECKER(CStringBufferOverlap)
   1977 REGISTER_CHECKER(CStringNotNullTerm)
   1978 
   1979 void ento::registerCStringCheckerBasic(CheckerManager &Mgr) {
   1980   registerCStringNullArg(Mgr);
   1981 }
   1982