1 /* 2 * Copyright (C) 2010 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #define LOG_TAG "InputReader" 18 19 //#define LOG_NDEBUG 0 20 21 // Log debug messages for each raw event received from the EventHub. 22 #define DEBUG_RAW_EVENTS 0 23 24 // Log debug messages about touch screen filtering hacks. 25 #define DEBUG_HACKS 0 26 27 // Log debug messages about virtual key processing. 28 #define DEBUG_VIRTUAL_KEYS 0 29 30 // Log debug messages about pointers. 31 #define DEBUG_POINTERS 0 32 33 // Log debug messages about pointer assignment calculations. 34 #define DEBUG_POINTER_ASSIGNMENT 0 35 36 // Log debug messages about gesture detection. 37 #define DEBUG_GESTURES 0 38 39 // Log debug messages about the vibrator. 40 #define DEBUG_VIBRATOR 0 41 42 #include "InputReader.h" 43 44 #include <cutils/log.h> 45 #include <androidfw/Keyboard.h> 46 #include <androidfw/VirtualKeyMap.h> 47 48 #include <stddef.h> 49 #include <stdlib.h> 50 #include <unistd.h> 51 #include <errno.h> 52 #include <limits.h> 53 #include <math.h> 54 55 #define INDENT " " 56 #define INDENT2 " " 57 #define INDENT3 " " 58 #define INDENT4 " " 59 #define INDENT5 " " 60 61 namespace android { 62 63 // --- Constants --- 64 65 // Maximum number of slots supported when using the slot-based Multitouch Protocol B. 66 static const size_t MAX_SLOTS = 32; 67 68 // --- Static Functions --- 69 70 template<typename T> 71 inline static T abs(const T& value) { 72 return value < 0 ? - value : value; 73 } 74 75 template<typename T> 76 inline static T min(const T& a, const T& b) { 77 return a < b ? a : b; 78 } 79 80 template<typename T> 81 inline static void swap(T& a, T& b) { 82 T temp = a; 83 a = b; 84 b = temp; 85 } 86 87 inline static float avg(float x, float y) { 88 return (x + y) / 2; 89 } 90 91 inline static float distance(float x1, float y1, float x2, float y2) { 92 return hypotf(x1 - x2, y1 - y2); 93 } 94 95 inline static int32_t signExtendNybble(int32_t value) { 96 return value >= 8 ? value - 16 : value; 97 } 98 99 static inline const char* toString(bool value) { 100 return value ? "true" : "false"; 101 } 102 103 static int32_t rotateValueUsingRotationMap(int32_t value, int32_t orientation, 104 const int32_t map[][4], size_t mapSize) { 105 if (orientation != DISPLAY_ORIENTATION_0) { 106 for (size_t i = 0; i < mapSize; i++) { 107 if (value == map[i][0]) { 108 return map[i][orientation]; 109 } 110 } 111 } 112 return value; 113 } 114 115 static const int32_t keyCodeRotationMap[][4] = { 116 // key codes enumerated counter-clockwise with the original (unrotated) key first 117 // no rotation, 90 degree rotation, 180 degree rotation, 270 degree rotation 118 { AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT }, 119 { AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN }, 120 { AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT }, 121 { AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP }, 122 }; 123 static const size_t keyCodeRotationMapSize = 124 sizeof(keyCodeRotationMap) / sizeof(keyCodeRotationMap[0]); 125 126 static int32_t rotateKeyCode(int32_t keyCode, int32_t orientation) { 127 return rotateValueUsingRotationMap(keyCode, orientation, 128 keyCodeRotationMap, keyCodeRotationMapSize); 129 } 130 131 static void rotateDelta(int32_t orientation, float* deltaX, float* deltaY) { 132 float temp; 133 switch (orientation) { 134 case DISPLAY_ORIENTATION_90: 135 temp = *deltaX; 136 *deltaX = *deltaY; 137 *deltaY = -temp; 138 break; 139 140 case DISPLAY_ORIENTATION_180: 141 *deltaX = -*deltaX; 142 *deltaY = -*deltaY; 143 break; 144 145 case DISPLAY_ORIENTATION_270: 146 temp = *deltaX; 147 *deltaX = -*deltaY; 148 *deltaY = temp; 149 break; 150 } 151 } 152 153 static inline bool sourcesMatchMask(uint32_t sources, uint32_t sourceMask) { 154 return (sources & sourceMask & ~ AINPUT_SOURCE_CLASS_MASK) != 0; 155 } 156 157 // Returns true if the pointer should be reported as being down given the specified 158 // button states. This determines whether the event is reported as a touch event. 159 static bool isPointerDown(int32_t buttonState) { 160 return buttonState & 161 (AMOTION_EVENT_BUTTON_PRIMARY | AMOTION_EVENT_BUTTON_SECONDARY 162 | AMOTION_EVENT_BUTTON_TERTIARY); 163 } 164 165 static float calculateCommonVector(float a, float b) { 166 if (a > 0 && b > 0) { 167 return a < b ? a : b; 168 } else if (a < 0 && b < 0) { 169 return a > b ? a : b; 170 } else { 171 return 0; 172 } 173 } 174 175 static void synthesizeButtonKey(InputReaderContext* context, int32_t action, 176 nsecs_t when, int32_t deviceId, uint32_t source, 177 uint32_t policyFlags, int32_t lastButtonState, int32_t currentButtonState, 178 int32_t buttonState, int32_t keyCode) { 179 if ( 180 (action == AKEY_EVENT_ACTION_DOWN 181 && !(lastButtonState & buttonState) 182 && (currentButtonState & buttonState)) 183 || (action == AKEY_EVENT_ACTION_UP 184 && (lastButtonState & buttonState) 185 && !(currentButtonState & buttonState))) { 186 NotifyKeyArgs args(when, deviceId, source, policyFlags, 187 action, 0, keyCode, 0, context->getGlobalMetaState(), when); 188 context->getListener()->notifyKey(&args); 189 } 190 } 191 192 static void synthesizeButtonKeys(InputReaderContext* context, int32_t action, 193 nsecs_t when, int32_t deviceId, uint32_t source, 194 uint32_t policyFlags, int32_t lastButtonState, int32_t currentButtonState) { 195 synthesizeButtonKey(context, action, when, deviceId, source, policyFlags, 196 lastButtonState, currentButtonState, 197 AMOTION_EVENT_BUTTON_BACK, AKEYCODE_BACK); 198 synthesizeButtonKey(context, action, when, deviceId, source, policyFlags, 199 lastButtonState, currentButtonState, 200 AMOTION_EVENT_BUTTON_FORWARD, AKEYCODE_FORWARD); 201 } 202 203 204 // --- InputReaderConfiguration --- 205 206 bool InputReaderConfiguration::getDisplayInfo(int32_t displayId, bool external, 207 int32_t* width, int32_t* height, int32_t* orientation) const { 208 if (displayId == 0) { 209 const DisplayInfo& info = external ? mExternalDisplay : mInternalDisplay; 210 if (info.width > 0 && info.height > 0) { 211 if (width) { 212 *width = info.width; 213 } 214 if (height) { 215 *height = info.height; 216 } 217 if (orientation) { 218 *orientation = info.orientation; 219 } 220 return true; 221 } 222 } 223 return false; 224 } 225 226 void InputReaderConfiguration::setDisplayInfo(int32_t displayId, bool external, 227 int32_t width, int32_t height, int32_t orientation) { 228 if (displayId == 0) { 229 DisplayInfo& info = external ? mExternalDisplay : mInternalDisplay; 230 info.width = width; 231 info.height = height; 232 info.orientation = orientation; 233 } 234 } 235 236 237 // --- InputReader --- 238 239 InputReader::InputReader(const sp<EventHubInterface>& eventHub, 240 const sp<InputReaderPolicyInterface>& policy, 241 const sp<InputListenerInterface>& listener) : 242 mContext(this), mEventHub(eventHub), mPolicy(policy), 243 mGlobalMetaState(0), mGeneration(1), 244 mDisableVirtualKeysTimeout(LLONG_MIN), mNextTimeout(LLONG_MAX), 245 mConfigurationChangesToRefresh(0) { 246 mQueuedListener = new QueuedInputListener(listener); 247 248 { // acquire lock 249 AutoMutex _l(mLock); 250 251 refreshConfigurationLocked(0); 252 updateGlobalMetaStateLocked(); 253 } // release lock 254 } 255 256 InputReader::~InputReader() { 257 for (size_t i = 0; i < mDevices.size(); i++) { 258 delete mDevices.valueAt(i); 259 } 260 } 261 262 void InputReader::loopOnce() { 263 int32_t oldGeneration; 264 int32_t timeoutMillis; 265 bool inputDevicesChanged = false; 266 Vector<InputDeviceInfo> inputDevices; 267 { // acquire lock 268 AutoMutex _l(mLock); 269 270 oldGeneration = mGeneration; 271 timeoutMillis = -1; 272 273 uint32_t changes = mConfigurationChangesToRefresh; 274 if (changes) { 275 mConfigurationChangesToRefresh = 0; 276 timeoutMillis = 0; 277 refreshConfigurationLocked(changes); 278 } else if (mNextTimeout != LLONG_MAX) { 279 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); 280 timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout); 281 } 282 } // release lock 283 284 size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE); 285 286 { // acquire lock 287 AutoMutex _l(mLock); 288 mReaderIsAliveCondition.broadcast(); 289 290 if (count) { 291 processEventsLocked(mEventBuffer, count); 292 } 293 294 if (mNextTimeout != LLONG_MAX) { 295 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); 296 if (now >= mNextTimeout) { 297 #if DEBUG_RAW_EVENTS 298 ALOGD("Timeout expired, latency=%0.3fms", (now - mNextTimeout) * 0.000001f); 299 #endif 300 mNextTimeout = LLONG_MAX; 301 timeoutExpiredLocked(now); 302 } 303 } 304 305 if (oldGeneration != mGeneration) { 306 inputDevicesChanged = true; 307 getInputDevicesLocked(inputDevices); 308 } 309 } // release lock 310 311 // Send out a message that the describes the changed input devices. 312 if (inputDevicesChanged) { 313 mPolicy->notifyInputDevicesChanged(inputDevices); 314 } 315 316 // Flush queued events out to the listener. 317 // This must happen outside of the lock because the listener could potentially call 318 // back into the InputReader's methods, such as getScanCodeState, or become blocked 319 // on another thread similarly waiting to acquire the InputReader lock thereby 320 // resulting in a deadlock. This situation is actually quite plausible because the 321 // listener is actually the input dispatcher, which calls into the window manager, 322 // which occasionally calls into the input reader. 323 mQueuedListener->flush(); 324 } 325 326 void InputReader::processEventsLocked(const RawEvent* rawEvents, size_t count) { 327 for (const RawEvent* rawEvent = rawEvents; count;) { 328 int32_t type = rawEvent->type; 329 size_t batchSize = 1; 330 if (type < EventHubInterface::FIRST_SYNTHETIC_EVENT) { 331 int32_t deviceId = rawEvent->deviceId; 332 while (batchSize < count) { 333 if (rawEvent[batchSize].type >= EventHubInterface::FIRST_SYNTHETIC_EVENT 334 || rawEvent[batchSize].deviceId != deviceId) { 335 break; 336 } 337 batchSize += 1; 338 } 339 #if DEBUG_RAW_EVENTS 340 ALOGD("BatchSize: %d Count: %d", batchSize, count); 341 #endif 342 processEventsForDeviceLocked(deviceId, rawEvent, batchSize); 343 } else { 344 switch (rawEvent->type) { 345 case EventHubInterface::DEVICE_ADDED: 346 addDeviceLocked(rawEvent->when, rawEvent->deviceId); 347 break; 348 case EventHubInterface::DEVICE_REMOVED: 349 removeDeviceLocked(rawEvent->when, rawEvent->deviceId); 350 break; 351 case EventHubInterface::FINISHED_DEVICE_SCAN: 352 handleConfigurationChangedLocked(rawEvent->when); 353 break; 354 default: 355 ALOG_ASSERT(false); // can't happen 356 break; 357 } 358 } 359 count -= batchSize; 360 rawEvent += batchSize; 361 } 362 } 363 364 void InputReader::addDeviceLocked(nsecs_t when, int32_t deviceId) { 365 ssize_t deviceIndex = mDevices.indexOfKey(deviceId); 366 if (deviceIndex >= 0) { 367 ALOGW("Ignoring spurious device added event for deviceId %d.", deviceId); 368 return; 369 } 370 371 InputDeviceIdentifier identifier = mEventHub->getDeviceIdentifier(deviceId); 372 uint32_t classes = mEventHub->getDeviceClasses(deviceId); 373 374 InputDevice* device = createDeviceLocked(deviceId, identifier, classes); 375 device->configure(when, &mConfig, 0); 376 device->reset(when); 377 378 if (device->isIgnored()) { 379 ALOGI("Device added: id=%d, name='%s' (ignored non-input device)", deviceId, 380 identifier.name.string()); 381 } else { 382 ALOGI("Device added: id=%d, name='%s', sources=0x%08x", deviceId, 383 identifier.name.string(), device->getSources()); 384 } 385 386 mDevices.add(deviceId, device); 387 bumpGenerationLocked(); 388 } 389 390 void InputReader::removeDeviceLocked(nsecs_t when, int32_t deviceId) { 391 InputDevice* device = NULL; 392 ssize_t deviceIndex = mDevices.indexOfKey(deviceId); 393 if (deviceIndex < 0) { 394 ALOGW("Ignoring spurious device removed event for deviceId %d.", deviceId); 395 return; 396 } 397 398 device = mDevices.valueAt(deviceIndex); 399 mDevices.removeItemsAt(deviceIndex, 1); 400 bumpGenerationLocked(); 401 402 if (device->isIgnored()) { 403 ALOGI("Device removed: id=%d, name='%s' (ignored non-input device)", 404 device->getId(), device->getName().string()); 405 } else { 406 ALOGI("Device removed: id=%d, name='%s', sources=0x%08x", 407 device->getId(), device->getName().string(), device->getSources()); 408 } 409 410 device->reset(when); 411 delete device; 412 } 413 414 InputDevice* InputReader::createDeviceLocked(int32_t deviceId, 415 const InputDeviceIdentifier& identifier, uint32_t classes) { 416 InputDevice* device = new InputDevice(&mContext, deviceId, bumpGenerationLocked(), 417 identifier, classes); 418 419 // External devices. 420 if (classes & INPUT_DEVICE_CLASS_EXTERNAL) { 421 device->setExternal(true); 422 } 423 424 // Switch-like devices. 425 if (classes & INPUT_DEVICE_CLASS_SWITCH) { 426 device->addMapper(new SwitchInputMapper(device)); 427 } 428 429 // Vibrator-like devices. 430 if (classes & INPUT_DEVICE_CLASS_VIBRATOR) { 431 device->addMapper(new VibratorInputMapper(device)); 432 } 433 434 // Keyboard-like devices. 435 uint32_t keyboardSource = 0; 436 int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC; 437 if (classes & INPUT_DEVICE_CLASS_KEYBOARD) { 438 keyboardSource |= AINPUT_SOURCE_KEYBOARD; 439 } 440 if (classes & INPUT_DEVICE_CLASS_ALPHAKEY) { 441 keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC; 442 } 443 if (classes & INPUT_DEVICE_CLASS_DPAD) { 444 keyboardSource |= AINPUT_SOURCE_DPAD; 445 } 446 if (classes & INPUT_DEVICE_CLASS_GAMEPAD) { 447 keyboardSource |= AINPUT_SOURCE_GAMEPAD; 448 } 449 450 if (keyboardSource != 0) { 451 device->addMapper(new KeyboardInputMapper(device, keyboardSource, keyboardType)); 452 } 453 454 // Cursor-like devices. 455 if (classes & INPUT_DEVICE_CLASS_CURSOR) { 456 device->addMapper(new CursorInputMapper(device)); 457 } 458 459 // Touchscreens and touchpad devices. 460 if (classes & INPUT_DEVICE_CLASS_TOUCH_MT) { 461 device->addMapper(new MultiTouchInputMapper(device)); 462 } else if (classes & INPUT_DEVICE_CLASS_TOUCH) { 463 device->addMapper(new SingleTouchInputMapper(device)); 464 } 465 466 // Joystick-like devices. 467 if (classes & INPUT_DEVICE_CLASS_JOYSTICK) { 468 device->addMapper(new JoystickInputMapper(device)); 469 } 470 471 return device; 472 } 473 474 void InputReader::processEventsForDeviceLocked(int32_t deviceId, 475 const RawEvent* rawEvents, size_t count) { 476 ssize_t deviceIndex = mDevices.indexOfKey(deviceId); 477 if (deviceIndex < 0) { 478 ALOGW("Discarding event for unknown deviceId %d.", deviceId); 479 return; 480 } 481 482 InputDevice* device = mDevices.valueAt(deviceIndex); 483 if (device->isIgnored()) { 484 //ALOGD("Discarding event for ignored deviceId %d.", deviceId); 485 return; 486 } 487 488 device->process(rawEvents, count); 489 } 490 491 void InputReader::timeoutExpiredLocked(nsecs_t when) { 492 for (size_t i = 0; i < mDevices.size(); i++) { 493 InputDevice* device = mDevices.valueAt(i); 494 if (!device->isIgnored()) { 495 device->timeoutExpired(when); 496 } 497 } 498 } 499 500 void InputReader::handleConfigurationChangedLocked(nsecs_t when) { 501 // Reset global meta state because it depends on the list of all configured devices. 502 updateGlobalMetaStateLocked(); 503 504 // Enqueue configuration changed. 505 NotifyConfigurationChangedArgs args(when); 506 mQueuedListener->notifyConfigurationChanged(&args); 507 } 508 509 void InputReader::refreshConfigurationLocked(uint32_t changes) { 510 mPolicy->getReaderConfiguration(&mConfig); 511 mEventHub->setExcludedDevices(mConfig.excludedDeviceNames); 512 513 if (changes) { 514 ALOGI("Reconfiguring input devices. changes=0x%08x", changes); 515 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); 516 517 if (changes & InputReaderConfiguration::CHANGE_MUST_REOPEN) { 518 mEventHub->requestReopenDevices(); 519 } else { 520 for (size_t i = 0; i < mDevices.size(); i++) { 521 InputDevice* device = mDevices.valueAt(i); 522 device->configure(now, &mConfig, changes); 523 } 524 } 525 } 526 } 527 528 void InputReader::updateGlobalMetaStateLocked() { 529 mGlobalMetaState = 0; 530 531 for (size_t i = 0; i < mDevices.size(); i++) { 532 InputDevice* device = mDevices.valueAt(i); 533 mGlobalMetaState |= device->getMetaState(); 534 } 535 } 536 537 int32_t InputReader::getGlobalMetaStateLocked() { 538 return mGlobalMetaState; 539 } 540 541 void InputReader::disableVirtualKeysUntilLocked(nsecs_t time) { 542 mDisableVirtualKeysTimeout = time; 543 } 544 545 bool InputReader::shouldDropVirtualKeyLocked(nsecs_t now, 546 InputDevice* device, int32_t keyCode, int32_t scanCode) { 547 if (now < mDisableVirtualKeysTimeout) { 548 ALOGI("Dropping virtual key from device %s because virtual keys are " 549 "temporarily disabled for the next %0.3fms. keyCode=%d, scanCode=%d", 550 device->getName().string(), 551 (mDisableVirtualKeysTimeout - now) * 0.000001, 552 keyCode, scanCode); 553 return true; 554 } else { 555 return false; 556 } 557 } 558 559 void InputReader::fadePointerLocked() { 560 for (size_t i = 0; i < mDevices.size(); i++) { 561 InputDevice* device = mDevices.valueAt(i); 562 device->fadePointer(); 563 } 564 } 565 566 void InputReader::requestTimeoutAtTimeLocked(nsecs_t when) { 567 if (when < mNextTimeout) { 568 mNextTimeout = when; 569 mEventHub->wake(); 570 } 571 } 572 573 int32_t InputReader::bumpGenerationLocked() { 574 return ++mGeneration; 575 } 576 577 void InputReader::getInputDevices(Vector<InputDeviceInfo>& outInputDevices) { 578 AutoMutex _l(mLock); 579 getInputDevicesLocked(outInputDevices); 580 } 581 582 void InputReader::getInputDevicesLocked(Vector<InputDeviceInfo>& outInputDevices) { 583 outInputDevices.clear(); 584 585 size_t numDevices = mDevices.size(); 586 for (size_t i = 0; i < numDevices; i++) { 587 InputDevice* device = mDevices.valueAt(i); 588 if (!device->isIgnored()) { 589 outInputDevices.push(); 590 device->getDeviceInfo(&outInputDevices.editTop()); 591 } 592 } 593 } 594 595 int32_t InputReader::getKeyCodeState(int32_t deviceId, uint32_t sourceMask, 596 int32_t keyCode) { 597 AutoMutex _l(mLock); 598 599 return getStateLocked(deviceId, sourceMask, keyCode, &InputDevice::getKeyCodeState); 600 } 601 602 int32_t InputReader::getScanCodeState(int32_t deviceId, uint32_t sourceMask, 603 int32_t scanCode) { 604 AutoMutex _l(mLock); 605 606 return getStateLocked(deviceId, sourceMask, scanCode, &InputDevice::getScanCodeState); 607 } 608 609 int32_t InputReader::getSwitchState(int32_t deviceId, uint32_t sourceMask, int32_t switchCode) { 610 AutoMutex _l(mLock); 611 612 return getStateLocked(deviceId, sourceMask, switchCode, &InputDevice::getSwitchState); 613 } 614 615 int32_t InputReader::getStateLocked(int32_t deviceId, uint32_t sourceMask, int32_t code, 616 GetStateFunc getStateFunc) { 617 int32_t result = AKEY_STATE_UNKNOWN; 618 if (deviceId >= 0) { 619 ssize_t deviceIndex = mDevices.indexOfKey(deviceId); 620 if (deviceIndex >= 0) { 621 InputDevice* device = mDevices.valueAt(deviceIndex); 622 if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { 623 result = (device->*getStateFunc)(sourceMask, code); 624 } 625 } 626 } else { 627 size_t numDevices = mDevices.size(); 628 for (size_t i = 0; i < numDevices; i++) { 629 InputDevice* device = mDevices.valueAt(i); 630 if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { 631 // If any device reports AKEY_STATE_DOWN or AKEY_STATE_VIRTUAL, return that 632 // value. Otherwise, return AKEY_STATE_UP as long as one device reports it. 633 int32_t currentResult = (device->*getStateFunc)(sourceMask, code); 634 if (currentResult >= AKEY_STATE_DOWN) { 635 return currentResult; 636 } else if (currentResult == AKEY_STATE_UP) { 637 result = currentResult; 638 } 639 } 640 } 641 } 642 return result; 643 } 644 645 bool InputReader::hasKeys(int32_t deviceId, uint32_t sourceMask, 646 size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { 647 AutoMutex _l(mLock); 648 649 memset(outFlags, 0, numCodes); 650 return markSupportedKeyCodesLocked(deviceId, sourceMask, numCodes, keyCodes, outFlags); 651 } 652 653 bool InputReader::markSupportedKeyCodesLocked(int32_t deviceId, uint32_t sourceMask, 654 size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { 655 bool result = false; 656 if (deviceId >= 0) { 657 ssize_t deviceIndex = mDevices.indexOfKey(deviceId); 658 if (deviceIndex >= 0) { 659 InputDevice* device = mDevices.valueAt(deviceIndex); 660 if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { 661 result = device->markSupportedKeyCodes(sourceMask, 662 numCodes, keyCodes, outFlags); 663 } 664 } 665 } else { 666 size_t numDevices = mDevices.size(); 667 for (size_t i = 0; i < numDevices; i++) { 668 InputDevice* device = mDevices.valueAt(i); 669 if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { 670 result |= device->markSupportedKeyCodes(sourceMask, 671 numCodes, keyCodes, outFlags); 672 } 673 } 674 } 675 return result; 676 } 677 678 void InputReader::requestRefreshConfiguration(uint32_t changes) { 679 AutoMutex _l(mLock); 680 681 if (changes) { 682 bool needWake = !mConfigurationChangesToRefresh; 683 mConfigurationChangesToRefresh |= changes; 684 685 if (needWake) { 686 mEventHub->wake(); 687 } 688 } 689 } 690 691 void InputReader::vibrate(int32_t deviceId, const nsecs_t* pattern, size_t patternSize, 692 ssize_t repeat, int32_t token) { 693 AutoMutex _l(mLock); 694 695 ssize_t deviceIndex = mDevices.indexOfKey(deviceId); 696 if (deviceIndex >= 0) { 697 InputDevice* device = mDevices.valueAt(deviceIndex); 698 device->vibrate(pattern, patternSize, repeat, token); 699 } 700 } 701 702 void InputReader::cancelVibrate(int32_t deviceId, int32_t token) { 703 AutoMutex _l(mLock); 704 705 ssize_t deviceIndex = mDevices.indexOfKey(deviceId); 706 if (deviceIndex >= 0) { 707 InputDevice* device = mDevices.valueAt(deviceIndex); 708 device->cancelVibrate(token); 709 } 710 } 711 712 void InputReader::dump(String8& dump) { 713 AutoMutex _l(mLock); 714 715 mEventHub->dump(dump); 716 dump.append("\n"); 717 718 dump.append("Input Reader State:\n"); 719 720 for (size_t i = 0; i < mDevices.size(); i++) { 721 mDevices.valueAt(i)->dump(dump); 722 } 723 724 dump.append(INDENT "Configuration:\n"); 725 dump.append(INDENT2 "ExcludedDeviceNames: ["); 726 for (size_t i = 0; i < mConfig.excludedDeviceNames.size(); i++) { 727 if (i != 0) { 728 dump.append(", "); 729 } 730 dump.append(mConfig.excludedDeviceNames.itemAt(i).string()); 731 } 732 dump.append("]\n"); 733 dump.appendFormat(INDENT2 "VirtualKeyQuietTime: %0.1fms\n", 734 mConfig.virtualKeyQuietTime * 0.000001f); 735 736 dump.appendFormat(INDENT2 "PointerVelocityControlParameters: " 737 "scale=%0.3f, lowThreshold=%0.3f, highThreshold=%0.3f, acceleration=%0.3f\n", 738 mConfig.pointerVelocityControlParameters.scale, 739 mConfig.pointerVelocityControlParameters.lowThreshold, 740 mConfig.pointerVelocityControlParameters.highThreshold, 741 mConfig.pointerVelocityControlParameters.acceleration); 742 743 dump.appendFormat(INDENT2 "WheelVelocityControlParameters: " 744 "scale=%0.3f, lowThreshold=%0.3f, highThreshold=%0.3f, acceleration=%0.3f\n", 745 mConfig.wheelVelocityControlParameters.scale, 746 mConfig.wheelVelocityControlParameters.lowThreshold, 747 mConfig.wheelVelocityControlParameters.highThreshold, 748 mConfig.wheelVelocityControlParameters.acceleration); 749 750 dump.appendFormat(INDENT2 "PointerGesture:\n"); 751 dump.appendFormat(INDENT3 "Enabled: %s\n", 752 toString(mConfig.pointerGesturesEnabled)); 753 dump.appendFormat(INDENT3 "QuietInterval: %0.1fms\n", 754 mConfig.pointerGestureQuietInterval * 0.000001f); 755 dump.appendFormat(INDENT3 "DragMinSwitchSpeed: %0.1fpx/s\n", 756 mConfig.pointerGestureDragMinSwitchSpeed); 757 dump.appendFormat(INDENT3 "TapInterval: %0.1fms\n", 758 mConfig.pointerGestureTapInterval * 0.000001f); 759 dump.appendFormat(INDENT3 "TapDragInterval: %0.1fms\n", 760 mConfig.pointerGestureTapDragInterval * 0.000001f); 761 dump.appendFormat(INDENT3 "TapSlop: %0.1fpx\n", 762 mConfig.pointerGestureTapSlop); 763 dump.appendFormat(INDENT3 "MultitouchSettleInterval: %0.1fms\n", 764 mConfig.pointerGestureMultitouchSettleInterval * 0.000001f); 765 dump.appendFormat(INDENT3 "MultitouchMinDistance: %0.1fpx\n", 766 mConfig.pointerGestureMultitouchMinDistance); 767 dump.appendFormat(INDENT3 "SwipeTransitionAngleCosine: %0.1f\n", 768 mConfig.pointerGestureSwipeTransitionAngleCosine); 769 dump.appendFormat(INDENT3 "SwipeMaxWidthRatio: %0.1f\n", 770 mConfig.pointerGestureSwipeMaxWidthRatio); 771 dump.appendFormat(INDENT3 "MovementSpeedRatio: %0.1f\n", 772 mConfig.pointerGestureMovementSpeedRatio); 773 dump.appendFormat(INDENT3 "ZoomSpeedRatio: %0.1f\n", 774 mConfig.pointerGestureZoomSpeedRatio); 775 } 776 777 void InputReader::monitor() { 778 // Acquire and release the lock to ensure that the reader has not deadlocked. 779 mLock.lock(); 780 mEventHub->wake(); 781 mReaderIsAliveCondition.wait(mLock); 782 mLock.unlock(); 783 784 // Check the EventHub 785 mEventHub->monitor(); 786 } 787 788 789 // --- InputReader::ContextImpl --- 790 791 InputReader::ContextImpl::ContextImpl(InputReader* reader) : 792 mReader(reader) { 793 } 794 795 void InputReader::ContextImpl::updateGlobalMetaState() { 796 // lock is already held by the input loop 797 mReader->updateGlobalMetaStateLocked(); 798 } 799 800 int32_t InputReader::ContextImpl::getGlobalMetaState() { 801 // lock is already held by the input loop 802 return mReader->getGlobalMetaStateLocked(); 803 } 804 805 void InputReader::ContextImpl::disableVirtualKeysUntil(nsecs_t time) { 806 // lock is already held by the input loop 807 mReader->disableVirtualKeysUntilLocked(time); 808 } 809 810 bool InputReader::ContextImpl::shouldDropVirtualKey(nsecs_t now, 811 InputDevice* device, int32_t keyCode, int32_t scanCode) { 812 // lock is already held by the input loop 813 return mReader->shouldDropVirtualKeyLocked(now, device, keyCode, scanCode); 814 } 815 816 void InputReader::ContextImpl::fadePointer() { 817 // lock is already held by the input loop 818 mReader->fadePointerLocked(); 819 } 820 821 void InputReader::ContextImpl::requestTimeoutAtTime(nsecs_t when) { 822 // lock is already held by the input loop 823 mReader->requestTimeoutAtTimeLocked(when); 824 } 825 826 int32_t InputReader::ContextImpl::bumpGeneration() { 827 // lock is already held by the input loop 828 return mReader->bumpGenerationLocked(); 829 } 830 831 InputReaderPolicyInterface* InputReader::ContextImpl::getPolicy() { 832 return mReader->mPolicy.get(); 833 } 834 835 InputListenerInterface* InputReader::ContextImpl::getListener() { 836 return mReader->mQueuedListener.get(); 837 } 838 839 EventHubInterface* InputReader::ContextImpl::getEventHub() { 840 return mReader->mEventHub.get(); 841 } 842 843 844 // --- InputReaderThread --- 845 846 InputReaderThread::InputReaderThread(const sp<InputReaderInterface>& reader) : 847 Thread(/*canCallJava*/ true), mReader(reader) { 848 } 849 850 InputReaderThread::~InputReaderThread() { 851 } 852 853 bool InputReaderThread::threadLoop() { 854 mReader->loopOnce(); 855 return true; 856 } 857 858 859 // --- InputDevice --- 860 861 InputDevice::InputDevice(InputReaderContext* context, int32_t id, int32_t generation, 862 const InputDeviceIdentifier& identifier, uint32_t classes) : 863 mContext(context), mId(id), mGeneration(generation), 864 mIdentifier(identifier), mClasses(classes), 865 mSources(0), mIsExternal(false), mDropUntilNextSync(false) { 866 } 867 868 InputDevice::~InputDevice() { 869 size_t numMappers = mMappers.size(); 870 for (size_t i = 0; i < numMappers; i++) { 871 delete mMappers[i]; 872 } 873 mMappers.clear(); 874 } 875 876 void InputDevice::dump(String8& dump) { 877 InputDeviceInfo deviceInfo; 878 getDeviceInfo(& deviceInfo); 879 880 dump.appendFormat(INDENT "Device %d: %s\n", deviceInfo.getId(), 881 deviceInfo.getDisplayName().string()); 882 dump.appendFormat(INDENT2 "Generation: %d\n", mGeneration); 883 dump.appendFormat(INDENT2 "IsExternal: %s\n", toString(mIsExternal)); 884 dump.appendFormat(INDENT2 "Sources: 0x%08x\n", deviceInfo.getSources()); 885 dump.appendFormat(INDENT2 "KeyboardType: %d\n", deviceInfo.getKeyboardType()); 886 887 const Vector<InputDeviceInfo::MotionRange>& ranges = deviceInfo.getMotionRanges(); 888 if (!ranges.isEmpty()) { 889 dump.append(INDENT2 "Motion Ranges:\n"); 890 for (size_t i = 0; i < ranges.size(); i++) { 891 const InputDeviceInfo::MotionRange& range = ranges.itemAt(i); 892 const char* label = getAxisLabel(range.axis); 893 char name[32]; 894 if (label) { 895 strncpy(name, label, sizeof(name)); 896 name[sizeof(name) - 1] = '\0'; 897 } else { 898 snprintf(name, sizeof(name), "%d", range.axis); 899 } 900 dump.appendFormat(INDENT3 "%s: source=0x%08x, " 901 "min=%0.3f, max=%0.3f, flat=%0.3f, fuzz=%0.3f\n", 902 name, range.source, range.min, range.max, range.flat, range.fuzz); 903 } 904 } 905 906 size_t numMappers = mMappers.size(); 907 for (size_t i = 0; i < numMappers; i++) { 908 InputMapper* mapper = mMappers[i]; 909 mapper->dump(dump); 910 } 911 } 912 913 void InputDevice::addMapper(InputMapper* mapper) { 914 mMappers.add(mapper); 915 } 916 917 void InputDevice::configure(nsecs_t when, const InputReaderConfiguration* config, uint32_t changes) { 918 mSources = 0; 919 920 if (!isIgnored()) { 921 if (!changes) { // first time only 922 mContext->getEventHub()->getConfiguration(mId, &mConfiguration); 923 } 924 925 if (!changes || (changes & InputReaderConfiguration::CHANGE_KEYBOARD_LAYOUTS)) { 926 if (!(mClasses & INPUT_DEVICE_CLASS_VIRTUAL)) { 927 sp<KeyCharacterMap> keyboardLayout = 928 mContext->getPolicy()->getKeyboardLayoutOverlay(mIdentifier.descriptor); 929 if (mContext->getEventHub()->setKeyboardLayoutOverlay(mId, keyboardLayout)) { 930 bumpGeneration(); 931 } 932 } 933 } 934 935 if (!changes || (changes & InputReaderConfiguration::CHANGE_DEVICE_ALIAS)) { 936 if (!(mClasses & INPUT_DEVICE_CLASS_VIRTUAL)) { 937 String8 alias = mContext->getPolicy()->getDeviceAlias(mIdentifier); 938 if (mAlias != alias) { 939 mAlias = alias; 940 bumpGeneration(); 941 } 942 } 943 } 944 945 size_t numMappers = mMappers.size(); 946 for (size_t i = 0; i < numMappers; i++) { 947 InputMapper* mapper = mMappers[i]; 948 mapper->configure(when, config, changes); 949 mSources |= mapper->getSources(); 950 } 951 } 952 } 953 954 void InputDevice::reset(nsecs_t when) { 955 size_t numMappers = mMappers.size(); 956 for (size_t i = 0; i < numMappers; i++) { 957 InputMapper* mapper = mMappers[i]; 958 mapper->reset(when); 959 } 960 961 mContext->updateGlobalMetaState(); 962 963 notifyReset(when); 964 } 965 966 void InputDevice::process(const RawEvent* rawEvents, size_t count) { 967 // Process all of the events in order for each mapper. 968 // We cannot simply ask each mapper to process them in bulk because mappers may 969 // have side-effects that must be interleaved. For example, joystick movement events and 970 // gamepad button presses are handled by different mappers but they should be dispatched 971 // in the order received. 972 size_t numMappers = mMappers.size(); 973 for (const RawEvent* rawEvent = rawEvents; count--; rawEvent++) { 974 #if DEBUG_RAW_EVENTS 975 ALOGD("Input event: device=%d type=0x%04x code=0x%04x value=0x%08x", 976 rawEvent->deviceId, rawEvent->type, rawEvent->code, rawEvent->value); 977 #endif 978 979 if (mDropUntilNextSync) { 980 if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { 981 mDropUntilNextSync = false; 982 #if DEBUG_RAW_EVENTS 983 ALOGD("Recovered from input event buffer overrun."); 984 #endif 985 } else { 986 #if DEBUG_RAW_EVENTS 987 ALOGD("Dropped input event while waiting for next input sync."); 988 #endif 989 } 990 } else if (rawEvent->type == EV_SYN && rawEvent->code == SYN_DROPPED) { 991 ALOGI("Detected input event buffer overrun for device %s.", getName().string()); 992 mDropUntilNextSync = true; 993 reset(rawEvent->when); 994 } else { 995 for (size_t i = 0; i < numMappers; i++) { 996 InputMapper* mapper = mMappers[i]; 997 mapper->process(rawEvent); 998 } 999 } 1000 } 1001 } 1002 1003 void InputDevice::timeoutExpired(nsecs_t when) { 1004 size_t numMappers = mMappers.size(); 1005 for (size_t i = 0; i < numMappers; i++) { 1006 InputMapper* mapper = mMappers[i]; 1007 mapper->timeoutExpired(when); 1008 } 1009 } 1010 1011 void InputDevice::getDeviceInfo(InputDeviceInfo* outDeviceInfo) { 1012 outDeviceInfo->initialize(mId, mGeneration, mIdentifier, mAlias, mIsExternal); 1013 1014 size_t numMappers = mMappers.size(); 1015 for (size_t i = 0; i < numMappers; i++) { 1016 InputMapper* mapper = mMappers[i]; 1017 mapper->populateDeviceInfo(outDeviceInfo); 1018 } 1019 } 1020 1021 int32_t InputDevice::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { 1022 return getState(sourceMask, keyCode, & InputMapper::getKeyCodeState); 1023 } 1024 1025 int32_t InputDevice::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { 1026 return getState(sourceMask, scanCode, & InputMapper::getScanCodeState); 1027 } 1028 1029 int32_t InputDevice::getSwitchState(uint32_t sourceMask, int32_t switchCode) { 1030 return getState(sourceMask, switchCode, & InputMapper::getSwitchState); 1031 } 1032 1033 int32_t InputDevice::getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) { 1034 int32_t result = AKEY_STATE_UNKNOWN; 1035 size_t numMappers = mMappers.size(); 1036 for (size_t i = 0; i < numMappers; i++) { 1037 InputMapper* mapper = mMappers[i]; 1038 if (sourcesMatchMask(mapper->getSources(), sourceMask)) { 1039 // If any mapper reports AKEY_STATE_DOWN or AKEY_STATE_VIRTUAL, return that 1040 // value. Otherwise, return AKEY_STATE_UP as long as one mapper reports it. 1041 int32_t currentResult = (mapper->*getStateFunc)(sourceMask, code); 1042 if (currentResult >= AKEY_STATE_DOWN) { 1043 return currentResult; 1044 } else if (currentResult == AKEY_STATE_UP) { 1045 result = currentResult; 1046 } 1047 } 1048 } 1049 return result; 1050 } 1051 1052 bool InputDevice::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, 1053 const int32_t* keyCodes, uint8_t* outFlags) { 1054 bool result = false; 1055 size_t numMappers = mMappers.size(); 1056 for (size_t i = 0; i < numMappers; i++) { 1057 InputMapper* mapper = mMappers[i]; 1058 if (sourcesMatchMask(mapper->getSources(), sourceMask)) { 1059 result |= mapper->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags); 1060 } 1061 } 1062 return result; 1063 } 1064 1065 void InputDevice::vibrate(const nsecs_t* pattern, size_t patternSize, ssize_t repeat, 1066 int32_t token) { 1067 size_t numMappers = mMappers.size(); 1068 for (size_t i = 0; i < numMappers; i++) { 1069 InputMapper* mapper = mMappers[i]; 1070 mapper->vibrate(pattern, patternSize, repeat, token); 1071 } 1072 } 1073 1074 void InputDevice::cancelVibrate(int32_t token) { 1075 size_t numMappers = mMappers.size(); 1076 for (size_t i = 0; i < numMappers; i++) { 1077 InputMapper* mapper = mMappers[i]; 1078 mapper->cancelVibrate(token); 1079 } 1080 } 1081 1082 int32_t InputDevice::getMetaState() { 1083 int32_t result = 0; 1084 size_t numMappers = mMappers.size(); 1085 for (size_t i = 0; i < numMappers; i++) { 1086 InputMapper* mapper = mMappers[i]; 1087 result |= mapper->getMetaState(); 1088 } 1089 return result; 1090 } 1091 1092 void InputDevice::fadePointer() { 1093 size_t numMappers = mMappers.size(); 1094 for (size_t i = 0; i < numMappers; i++) { 1095 InputMapper* mapper = mMappers[i]; 1096 mapper->fadePointer(); 1097 } 1098 } 1099 1100 void InputDevice::bumpGeneration() { 1101 mGeneration = mContext->bumpGeneration(); 1102 } 1103 1104 void InputDevice::notifyReset(nsecs_t when) { 1105 NotifyDeviceResetArgs args(when, mId); 1106 mContext->getListener()->notifyDeviceReset(&args); 1107 } 1108 1109 1110 // --- CursorButtonAccumulator --- 1111 1112 CursorButtonAccumulator::CursorButtonAccumulator() { 1113 clearButtons(); 1114 } 1115 1116 void CursorButtonAccumulator::reset(InputDevice* device) { 1117 mBtnLeft = device->isKeyPressed(BTN_LEFT); 1118 mBtnRight = device->isKeyPressed(BTN_RIGHT); 1119 mBtnMiddle = device->isKeyPressed(BTN_MIDDLE); 1120 mBtnBack = device->isKeyPressed(BTN_BACK); 1121 mBtnSide = device->isKeyPressed(BTN_SIDE); 1122 mBtnForward = device->isKeyPressed(BTN_FORWARD); 1123 mBtnExtra = device->isKeyPressed(BTN_EXTRA); 1124 mBtnTask = device->isKeyPressed(BTN_TASK); 1125 } 1126 1127 void CursorButtonAccumulator::clearButtons() { 1128 mBtnLeft = 0; 1129 mBtnRight = 0; 1130 mBtnMiddle = 0; 1131 mBtnBack = 0; 1132 mBtnSide = 0; 1133 mBtnForward = 0; 1134 mBtnExtra = 0; 1135 mBtnTask = 0; 1136 } 1137 1138 void CursorButtonAccumulator::process(const RawEvent* rawEvent) { 1139 if (rawEvent->type == EV_KEY) { 1140 switch (rawEvent->code) { 1141 case BTN_LEFT: 1142 mBtnLeft = rawEvent->value; 1143 break; 1144 case BTN_RIGHT: 1145 mBtnRight = rawEvent->value; 1146 break; 1147 case BTN_MIDDLE: 1148 mBtnMiddle = rawEvent->value; 1149 break; 1150 case BTN_BACK: 1151 mBtnBack = rawEvent->value; 1152 break; 1153 case BTN_SIDE: 1154 mBtnSide = rawEvent->value; 1155 break; 1156 case BTN_FORWARD: 1157 mBtnForward = rawEvent->value; 1158 break; 1159 case BTN_EXTRA: 1160 mBtnExtra = rawEvent->value; 1161 break; 1162 case BTN_TASK: 1163 mBtnTask = rawEvent->value; 1164 break; 1165 } 1166 } 1167 } 1168 1169 uint32_t CursorButtonAccumulator::getButtonState() const { 1170 uint32_t result = 0; 1171 if (mBtnLeft) { 1172 result |= AMOTION_EVENT_BUTTON_PRIMARY; 1173 } 1174 if (mBtnRight) { 1175 result |= AMOTION_EVENT_BUTTON_SECONDARY; 1176 } 1177 if (mBtnMiddle) { 1178 result |= AMOTION_EVENT_BUTTON_TERTIARY; 1179 } 1180 if (mBtnBack || mBtnSide) { 1181 result |= AMOTION_EVENT_BUTTON_BACK; 1182 } 1183 if (mBtnForward || mBtnExtra) { 1184 result |= AMOTION_EVENT_BUTTON_FORWARD; 1185 } 1186 return result; 1187 } 1188 1189 1190 // --- CursorMotionAccumulator --- 1191 1192 CursorMotionAccumulator::CursorMotionAccumulator() { 1193 clearRelativeAxes(); 1194 } 1195 1196 void CursorMotionAccumulator::reset(InputDevice* device) { 1197 clearRelativeAxes(); 1198 } 1199 1200 void CursorMotionAccumulator::clearRelativeAxes() { 1201 mRelX = 0; 1202 mRelY = 0; 1203 } 1204 1205 void CursorMotionAccumulator::process(const RawEvent* rawEvent) { 1206 if (rawEvent->type == EV_REL) { 1207 switch (rawEvent->code) { 1208 case REL_X: 1209 mRelX = rawEvent->value; 1210 break; 1211 case REL_Y: 1212 mRelY = rawEvent->value; 1213 break; 1214 } 1215 } 1216 } 1217 1218 void CursorMotionAccumulator::finishSync() { 1219 clearRelativeAxes(); 1220 } 1221 1222 1223 // --- CursorScrollAccumulator --- 1224 1225 CursorScrollAccumulator::CursorScrollAccumulator() : 1226 mHaveRelWheel(false), mHaveRelHWheel(false) { 1227 clearRelativeAxes(); 1228 } 1229 1230 void CursorScrollAccumulator::configure(InputDevice* device) { 1231 mHaveRelWheel = device->getEventHub()->hasRelativeAxis(device->getId(), REL_WHEEL); 1232 mHaveRelHWheel = device->getEventHub()->hasRelativeAxis(device->getId(), REL_HWHEEL); 1233 } 1234 1235 void CursorScrollAccumulator::reset(InputDevice* device) { 1236 clearRelativeAxes(); 1237 } 1238 1239 void CursorScrollAccumulator::clearRelativeAxes() { 1240 mRelWheel = 0; 1241 mRelHWheel = 0; 1242 } 1243 1244 void CursorScrollAccumulator::process(const RawEvent* rawEvent) { 1245 if (rawEvent->type == EV_REL) { 1246 switch (rawEvent->code) { 1247 case REL_WHEEL: 1248 mRelWheel = rawEvent->value; 1249 break; 1250 case REL_HWHEEL: 1251 mRelHWheel = rawEvent->value; 1252 break; 1253 } 1254 } 1255 } 1256 1257 void CursorScrollAccumulator::finishSync() { 1258 clearRelativeAxes(); 1259 } 1260 1261 1262 // --- TouchButtonAccumulator --- 1263 1264 TouchButtonAccumulator::TouchButtonAccumulator() : 1265 mHaveBtnTouch(false), mHaveStylus(false) { 1266 clearButtons(); 1267 } 1268 1269 void TouchButtonAccumulator::configure(InputDevice* device) { 1270 mHaveBtnTouch = device->hasKey(BTN_TOUCH); 1271 mHaveStylus = device->hasKey(BTN_TOOL_PEN) 1272 || device->hasKey(BTN_TOOL_RUBBER) 1273 || device->hasKey(BTN_TOOL_BRUSH) 1274 || device->hasKey(BTN_TOOL_PENCIL) 1275 || device->hasKey(BTN_TOOL_AIRBRUSH); 1276 } 1277 1278 void TouchButtonAccumulator::reset(InputDevice* device) { 1279 mBtnTouch = device->isKeyPressed(BTN_TOUCH); 1280 mBtnStylus = device->isKeyPressed(BTN_STYLUS); 1281 mBtnStylus2 = device->isKeyPressed(BTN_STYLUS); 1282 mBtnToolFinger = device->isKeyPressed(BTN_TOOL_FINGER); 1283 mBtnToolPen = device->isKeyPressed(BTN_TOOL_PEN); 1284 mBtnToolRubber = device->isKeyPressed(BTN_TOOL_RUBBER); 1285 mBtnToolBrush = device->isKeyPressed(BTN_TOOL_BRUSH); 1286 mBtnToolPencil = device->isKeyPressed(BTN_TOOL_PENCIL); 1287 mBtnToolAirbrush = device->isKeyPressed(BTN_TOOL_AIRBRUSH); 1288 mBtnToolMouse = device->isKeyPressed(BTN_TOOL_MOUSE); 1289 mBtnToolLens = device->isKeyPressed(BTN_TOOL_LENS); 1290 mBtnToolDoubleTap = device->isKeyPressed(BTN_TOOL_DOUBLETAP); 1291 mBtnToolTripleTap = device->isKeyPressed(BTN_TOOL_TRIPLETAP); 1292 mBtnToolQuadTap = device->isKeyPressed(BTN_TOOL_QUADTAP); 1293 } 1294 1295 void TouchButtonAccumulator::clearButtons() { 1296 mBtnTouch = 0; 1297 mBtnStylus = 0; 1298 mBtnStylus2 = 0; 1299 mBtnToolFinger = 0; 1300 mBtnToolPen = 0; 1301 mBtnToolRubber = 0; 1302 mBtnToolBrush = 0; 1303 mBtnToolPencil = 0; 1304 mBtnToolAirbrush = 0; 1305 mBtnToolMouse = 0; 1306 mBtnToolLens = 0; 1307 mBtnToolDoubleTap = 0; 1308 mBtnToolTripleTap = 0; 1309 mBtnToolQuadTap = 0; 1310 } 1311 1312 void TouchButtonAccumulator::process(const RawEvent* rawEvent) { 1313 if (rawEvent->type == EV_KEY) { 1314 switch (rawEvent->code) { 1315 case BTN_TOUCH: 1316 mBtnTouch = rawEvent->value; 1317 break; 1318 case BTN_STYLUS: 1319 mBtnStylus = rawEvent->value; 1320 break; 1321 case BTN_STYLUS2: 1322 mBtnStylus2 = rawEvent->value; 1323 break; 1324 case BTN_TOOL_FINGER: 1325 mBtnToolFinger = rawEvent->value; 1326 break; 1327 case BTN_TOOL_PEN: 1328 mBtnToolPen = rawEvent->value; 1329 break; 1330 case BTN_TOOL_RUBBER: 1331 mBtnToolRubber = rawEvent->value; 1332 break; 1333 case BTN_TOOL_BRUSH: 1334 mBtnToolBrush = rawEvent->value; 1335 break; 1336 case BTN_TOOL_PENCIL: 1337 mBtnToolPencil = rawEvent->value; 1338 break; 1339 case BTN_TOOL_AIRBRUSH: 1340 mBtnToolAirbrush = rawEvent->value; 1341 break; 1342 case BTN_TOOL_MOUSE: 1343 mBtnToolMouse = rawEvent->value; 1344 break; 1345 case BTN_TOOL_LENS: 1346 mBtnToolLens = rawEvent->value; 1347 break; 1348 case BTN_TOOL_DOUBLETAP: 1349 mBtnToolDoubleTap = rawEvent->value; 1350 break; 1351 case BTN_TOOL_TRIPLETAP: 1352 mBtnToolTripleTap = rawEvent->value; 1353 break; 1354 case BTN_TOOL_QUADTAP: 1355 mBtnToolQuadTap = rawEvent->value; 1356 break; 1357 } 1358 } 1359 } 1360 1361 uint32_t TouchButtonAccumulator::getButtonState() const { 1362 uint32_t result = 0; 1363 if (mBtnStylus) { 1364 result |= AMOTION_EVENT_BUTTON_SECONDARY; 1365 } 1366 if (mBtnStylus2) { 1367 result |= AMOTION_EVENT_BUTTON_TERTIARY; 1368 } 1369 return result; 1370 } 1371 1372 int32_t TouchButtonAccumulator::getToolType() const { 1373 if (mBtnToolMouse || mBtnToolLens) { 1374 return AMOTION_EVENT_TOOL_TYPE_MOUSE; 1375 } 1376 if (mBtnToolRubber) { 1377 return AMOTION_EVENT_TOOL_TYPE_ERASER; 1378 } 1379 if (mBtnToolPen || mBtnToolBrush || mBtnToolPencil || mBtnToolAirbrush) { 1380 return AMOTION_EVENT_TOOL_TYPE_STYLUS; 1381 } 1382 if (mBtnToolFinger || mBtnToolDoubleTap || mBtnToolTripleTap || mBtnToolQuadTap) { 1383 return AMOTION_EVENT_TOOL_TYPE_FINGER; 1384 } 1385 return AMOTION_EVENT_TOOL_TYPE_UNKNOWN; 1386 } 1387 1388 bool TouchButtonAccumulator::isToolActive() const { 1389 return mBtnTouch || mBtnToolFinger || mBtnToolPen || mBtnToolRubber 1390 || mBtnToolBrush || mBtnToolPencil || mBtnToolAirbrush 1391 || mBtnToolMouse || mBtnToolLens 1392 || mBtnToolDoubleTap || mBtnToolTripleTap || mBtnToolQuadTap; 1393 } 1394 1395 bool TouchButtonAccumulator::isHovering() const { 1396 return mHaveBtnTouch && !mBtnTouch; 1397 } 1398 1399 bool TouchButtonAccumulator::hasStylus() const { 1400 return mHaveStylus; 1401 } 1402 1403 1404 // --- RawPointerAxes --- 1405 1406 RawPointerAxes::RawPointerAxes() { 1407 clear(); 1408 } 1409 1410 void RawPointerAxes::clear() { 1411 x.clear(); 1412 y.clear(); 1413 pressure.clear(); 1414 touchMajor.clear(); 1415 touchMinor.clear(); 1416 toolMajor.clear(); 1417 toolMinor.clear(); 1418 orientation.clear(); 1419 distance.clear(); 1420 tiltX.clear(); 1421 tiltY.clear(); 1422 trackingId.clear(); 1423 slot.clear(); 1424 } 1425 1426 1427 // --- RawPointerData --- 1428 1429 RawPointerData::RawPointerData() { 1430 clear(); 1431 } 1432 1433 void RawPointerData::clear() { 1434 pointerCount = 0; 1435 clearIdBits(); 1436 } 1437 1438 void RawPointerData::copyFrom(const RawPointerData& other) { 1439 pointerCount = other.pointerCount; 1440 hoveringIdBits = other.hoveringIdBits; 1441 touchingIdBits = other.touchingIdBits; 1442 1443 for (uint32_t i = 0; i < pointerCount; i++) { 1444 pointers[i] = other.pointers[i]; 1445 1446 int id = pointers[i].id; 1447 idToIndex[id] = other.idToIndex[id]; 1448 } 1449 } 1450 1451 void RawPointerData::getCentroidOfTouchingPointers(float* outX, float* outY) const { 1452 float x = 0, y = 0; 1453 uint32_t count = touchingIdBits.count(); 1454 if (count) { 1455 for (BitSet32 idBits(touchingIdBits); !idBits.isEmpty(); ) { 1456 uint32_t id = idBits.clearFirstMarkedBit(); 1457 const Pointer& pointer = pointerForId(id); 1458 x += pointer.x; 1459 y += pointer.y; 1460 } 1461 x /= count; 1462 y /= count; 1463 } 1464 *outX = x; 1465 *outY = y; 1466 } 1467 1468 1469 // --- CookedPointerData --- 1470 1471 CookedPointerData::CookedPointerData() { 1472 clear(); 1473 } 1474 1475 void CookedPointerData::clear() { 1476 pointerCount = 0; 1477 hoveringIdBits.clear(); 1478 touchingIdBits.clear(); 1479 } 1480 1481 void CookedPointerData::copyFrom(const CookedPointerData& other) { 1482 pointerCount = other.pointerCount; 1483 hoveringIdBits = other.hoveringIdBits; 1484 touchingIdBits = other.touchingIdBits; 1485 1486 for (uint32_t i = 0; i < pointerCount; i++) { 1487 pointerProperties[i].copyFrom(other.pointerProperties[i]); 1488 pointerCoords[i].copyFrom(other.pointerCoords[i]); 1489 1490 int id = pointerProperties[i].id; 1491 idToIndex[id] = other.idToIndex[id]; 1492 } 1493 } 1494 1495 1496 // --- SingleTouchMotionAccumulator --- 1497 1498 SingleTouchMotionAccumulator::SingleTouchMotionAccumulator() { 1499 clearAbsoluteAxes(); 1500 } 1501 1502 void SingleTouchMotionAccumulator::reset(InputDevice* device) { 1503 mAbsX = device->getAbsoluteAxisValue(ABS_X); 1504 mAbsY = device->getAbsoluteAxisValue(ABS_Y); 1505 mAbsPressure = device->getAbsoluteAxisValue(ABS_PRESSURE); 1506 mAbsToolWidth = device->getAbsoluteAxisValue(ABS_TOOL_WIDTH); 1507 mAbsDistance = device->getAbsoluteAxisValue(ABS_DISTANCE); 1508 mAbsTiltX = device->getAbsoluteAxisValue(ABS_TILT_X); 1509 mAbsTiltY = device->getAbsoluteAxisValue(ABS_TILT_Y); 1510 } 1511 1512 void SingleTouchMotionAccumulator::clearAbsoluteAxes() { 1513 mAbsX = 0; 1514 mAbsY = 0; 1515 mAbsPressure = 0; 1516 mAbsToolWidth = 0; 1517 mAbsDistance = 0; 1518 mAbsTiltX = 0; 1519 mAbsTiltY = 0; 1520 } 1521 1522 void SingleTouchMotionAccumulator::process(const RawEvent* rawEvent) { 1523 if (rawEvent->type == EV_ABS) { 1524 switch (rawEvent->code) { 1525 case ABS_X: 1526 mAbsX = rawEvent->value; 1527 break; 1528 case ABS_Y: 1529 mAbsY = rawEvent->value; 1530 break; 1531 case ABS_PRESSURE: 1532 mAbsPressure = rawEvent->value; 1533 break; 1534 case ABS_TOOL_WIDTH: 1535 mAbsToolWidth = rawEvent->value; 1536 break; 1537 case ABS_DISTANCE: 1538 mAbsDistance = rawEvent->value; 1539 break; 1540 case ABS_TILT_X: 1541 mAbsTiltX = rawEvent->value; 1542 break; 1543 case ABS_TILT_Y: 1544 mAbsTiltY = rawEvent->value; 1545 break; 1546 } 1547 } 1548 } 1549 1550 1551 // --- MultiTouchMotionAccumulator --- 1552 1553 MultiTouchMotionAccumulator::MultiTouchMotionAccumulator() : 1554 mCurrentSlot(-1), mSlots(NULL), mSlotCount(0), mUsingSlotsProtocol(false), 1555 mHaveStylus(false) { 1556 } 1557 1558 MultiTouchMotionAccumulator::~MultiTouchMotionAccumulator() { 1559 delete[] mSlots; 1560 } 1561 1562 void MultiTouchMotionAccumulator::configure(InputDevice* device, 1563 size_t slotCount, bool usingSlotsProtocol) { 1564 mSlotCount = slotCount; 1565 mUsingSlotsProtocol = usingSlotsProtocol; 1566 mHaveStylus = device->hasAbsoluteAxis(ABS_MT_TOOL_TYPE); 1567 1568 delete[] mSlots; 1569 mSlots = new Slot[slotCount]; 1570 } 1571 1572 void MultiTouchMotionAccumulator::reset(InputDevice* device) { 1573 // Unfortunately there is no way to read the initial contents of the slots. 1574 // So when we reset the accumulator, we must assume they are all zeroes. 1575 if (mUsingSlotsProtocol) { 1576 // Query the driver for the current slot index and use it as the initial slot 1577 // before we start reading events from the device. It is possible that the 1578 // current slot index will not be the same as it was when the first event was 1579 // written into the evdev buffer, which means the input mapper could start 1580 // out of sync with the initial state of the events in the evdev buffer. 1581 // In the extremely unlikely case that this happens, the data from 1582 // two slots will be confused until the next ABS_MT_SLOT event is received. 1583 // This can cause the touch point to "jump", but at least there will be 1584 // no stuck touches. 1585 int32_t initialSlot; 1586 status_t status = device->getEventHub()->getAbsoluteAxisValue(device->getId(), 1587 ABS_MT_SLOT, &initialSlot); 1588 if (status) { 1589 ALOGD("Could not retrieve current multitouch slot index. status=%d", status); 1590 initialSlot = -1; 1591 } 1592 clearSlots(initialSlot); 1593 } else { 1594 clearSlots(-1); 1595 } 1596 } 1597 1598 void MultiTouchMotionAccumulator::clearSlots(int32_t initialSlot) { 1599 if (mSlots) { 1600 for (size_t i = 0; i < mSlotCount; i++) { 1601 mSlots[i].clear(); 1602 } 1603 } 1604 mCurrentSlot = initialSlot; 1605 } 1606 1607 void MultiTouchMotionAccumulator::process(const RawEvent* rawEvent) { 1608 if (rawEvent->type == EV_ABS) { 1609 bool newSlot = false; 1610 if (mUsingSlotsProtocol) { 1611 if (rawEvent->code == ABS_MT_SLOT) { 1612 mCurrentSlot = rawEvent->value; 1613 newSlot = true; 1614 } 1615 } else if (mCurrentSlot < 0) { 1616 mCurrentSlot = 0; 1617 } 1618 1619 if (mCurrentSlot < 0 || size_t(mCurrentSlot) >= mSlotCount) { 1620 #if DEBUG_POINTERS 1621 if (newSlot) { 1622 ALOGW("MultiTouch device emitted invalid slot index %d but it " 1623 "should be between 0 and %d; ignoring this slot.", 1624 mCurrentSlot, mSlotCount - 1); 1625 } 1626 #endif 1627 } else { 1628 Slot* slot = &mSlots[mCurrentSlot]; 1629 1630 switch (rawEvent->code) { 1631 case ABS_MT_POSITION_X: 1632 slot->mInUse = true; 1633 slot->mAbsMTPositionX = rawEvent->value; 1634 break; 1635 case ABS_MT_POSITION_Y: 1636 slot->mInUse = true; 1637 slot->mAbsMTPositionY = rawEvent->value; 1638 break; 1639 case ABS_MT_TOUCH_MAJOR: 1640 slot->mInUse = true; 1641 slot->mAbsMTTouchMajor = rawEvent->value; 1642 break; 1643 case ABS_MT_TOUCH_MINOR: 1644 slot->mInUse = true; 1645 slot->mAbsMTTouchMinor = rawEvent->value; 1646 slot->mHaveAbsMTTouchMinor = true; 1647 break; 1648 case ABS_MT_WIDTH_MAJOR: 1649 slot->mInUse = true; 1650 slot->mAbsMTWidthMajor = rawEvent->value; 1651 break; 1652 case ABS_MT_WIDTH_MINOR: 1653 slot->mInUse = true; 1654 slot->mAbsMTWidthMinor = rawEvent->value; 1655 slot->mHaveAbsMTWidthMinor = true; 1656 break; 1657 case ABS_MT_ORIENTATION: 1658 slot->mInUse = true; 1659 slot->mAbsMTOrientation = rawEvent->value; 1660 break; 1661 case ABS_MT_TRACKING_ID: 1662 if (mUsingSlotsProtocol && rawEvent->value < 0) { 1663 // The slot is no longer in use but it retains its previous contents, 1664 // which may be reused for subsequent touches. 1665 slot->mInUse = false; 1666 } else { 1667 slot->mInUse = true; 1668 slot->mAbsMTTrackingId = rawEvent->value; 1669 } 1670 break; 1671 case ABS_MT_PRESSURE: 1672 slot->mInUse = true; 1673 slot->mAbsMTPressure = rawEvent->value; 1674 break; 1675 case ABS_MT_DISTANCE: 1676 slot->mInUse = true; 1677 slot->mAbsMTDistance = rawEvent->value; 1678 break; 1679 case ABS_MT_TOOL_TYPE: 1680 slot->mInUse = true; 1681 slot->mAbsMTToolType = rawEvent->value; 1682 slot->mHaveAbsMTToolType = true; 1683 break; 1684 } 1685 } 1686 } else if (rawEvent->type == EV_SYN && rawEvent->code == SYN_MT_REPORT) { 1687 // MultiTouch Sync: The driver has returned all data for *one* of the pointers. 1688 mCurrentSlot += 1; 1689 } 1690 } 1691 1692 void MultiTouchMotionAccumulator::finishSync() { 1693 if (!mUsingSlotsProtocol) { 1694 clearSlots(-1); 1695 } 1696 } 1697 1698 bool MultiTouchMotionAccumulator::hasStylus() const { 1699 return mHaveStylus; 1700 } 1701 1702 1703 // --- MultiTouchMotionAccumulator::Slot --- 1704 1705 MultiTouchMotionAccumulator::Slot::Slot() { 1706 clear(); 1707 } 1708 1709 void MultiTouchMotionAccumulator::Slot::clear() { 1710 mInUse = false; 1711 mHaveAbsMTTouchMinor = false; 1712 mHaveAbsMTWidthMinor = false; 1713 mHaveAbsMTToolType = false; 1714 mAbsMTPositionX = 0; 1715 mAbsMTPositionY = 0; 1716 mAbsMTTouchMajor = 0; 1717 mAbsMTTouchMinor = 0; 1718 mAbsMTWidthMajor = 0; 1719 mAbsMTWidthMinor = 0; 1720 mAbsMTOrientation = 0; 1721 mAbsMTTrackingId = -1; 1722 mAbsMTPressure = 0; 1723 mAbsMTDistance = 0; 1724 mAbsMTToolType = 0; 1725 } 1726 1727 int32_t MultiTouchMotionAccumulator::Slot::getToolType() const { 1728 if (mHaveAbsMTToolType) { 1729 switch (mAbsMTToolType) { 1730 case MT_TOOL_FINGER: 1731 return AMOTION_EVENT_TOOL_TYPE_FINGER; 1732 case MT_TOOL_PEN: 1733 return AMOTION_EVENT_TOOL_TYPE_STYLUS; 1734 } 1735 } 1736 return AMOTION_EVENT_TOOL_TYPE_UNKNOWN; 1737 } 1738 1739 1740 // --- InputMapper --- 1741 1742 InputMapper::InputMapper(InputDevice* device) : 1743 mDevice(device), mContext(device->getContext()) { 1744 } 1745 1746 InputMapper::~InputMapper() { 1747 } 1748 1749 void InputMapper::populateDeviceInfo(InputDeviceInfo* info) { 1750 info->addSource(getSources()); 1751 } 1752 1753 void InputMapper::dump(String8& dump) { 1754 } 1755 1756 void InputMapper::configure(nsecs_t when, 1757 const InputReaderConfiguration* config, uint32_t changes) { 1758 } 1759 1760 void InputMapper::reset(nsecs_t when) { 1761 } 1762 1763 void InputMapper::timeoutExpired(nsecs_t when) { 1764 } 1765 1766 int32_t InputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { 1767 return AKEY_STATE_UNKNOWN; 1768 } 1769 1770 int32_t InputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { 1771 return AKEY_STATE_UNKNOWN; 1772 } 1773 1774 int32_t InputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) { 1775 return AKEY_STATE_UNKNOWN; 1776 } 1777 1778 bool InputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, 1779 const int32_t* keyCodes, uint8_t* outFlags) { 1780 return false; 1781 } 1782 1783 void InputMapper::vibrate(const nsecs_t* pattern, size_t patternSize, ssize_t repeat, 1784 int32_t token) { 1785 } 1786 1787 void InputMapper::cancelVibrate(int32_t token) { 1788 } 1789 1790 int32_t InputMapper::getMetaState() { 1791 return 0; 1792 } 1793 1794 void InputMapper::fadePointer() { 1795 } 1796 1797 status_t InputMapper::getAbsoluteAxisInfo(int32_t axis, RawAbsoluteAxisInfo* axisInfo) { 1798 return getEventHub()->getAbsoluteAxisInfo(getDeviceId(), axis, axisInfo); 1799 } 1800 1801 void InputMapper::bumpGeneration() { 1802 mDevice->bumpGeneration(); 1803 } 1804 1805 void InputMapper::dumpRawAbsoluteAxisInfo(String8& dump, 1806 const RawAbsoluteAxisInfo& axis, const char* name) { 1807 if (axis.valid) { 1808 dump.appendFormat(INDENT4 "%s: min=%d, max=%d, flat=%d, fuzz=%d, resolution=%d\n", 1809 name, axis.minValue, axis.maxValue, axis.flat, axis.fuzz, axis.resolution); 1810 } else { 1811 dump.appendFormat(INDENT4 "%s: unknown range\n", name); 1812 } 1813 } 1814 1815 1816 // --- SwitchInputMapper --- 1817 1818 SwitchInputMapper::SwitchInputMapper(InputDevice* device) : 1819 InputMapper(device) { 1820 } 1821 1822 SwitchInputMapper::~SwitchInputMapper() { 1823 } 1824 1825 uint32_t SwitchInputMapper::getSources() { 1826 return AINPUT_SOURCE_SWITCH; 1827 } 1828 1829 void SwitchInputMapper::process(const RawEvent* rawEvent) { 1830 switch (rawEvent->type) { 1831 case EV_SW: 1832 processSwitch(rawEvent->when, rawEvent->code, rawEvent->value); 1833 break; 1834 } 1835 } 1836 1837 void SwitchInputMapper::processSwitch(nsecs_t when, int32_t switchCode, int32_t switchValue) { 1838 NotifySwitchArgs args(when, 0, switchCode, switchValue); 1839 getListener()->notifySwitch(&args); 1840 } 1841 1842 int32_t SwitchInputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) { 1843 return getEventHub()->getSwitchState(getDeviceId(), switchCode); 1844 } 1845 1846 1847 // --- VibratorInputMapper --- 1848 1849 VibratorInputMapper::VibratorInputMapper(InputDevice* device) : 1850 InputMapper(device), mVibrating(false) { 1851 } 1852 1853 VibratorInputMapper::~VibratorInputMapper() { 1854 } 1855 1856 uint32_t VibratorInputMapper::getSources() { 1857 return 0; 1858 } 1859 1860 void VibratorInputMapper::populateDeviceInfo(InputDeviceInfo* info) { 1861 InputMapper::populateDeviceInfo(info); 1862 1863 info->setVibrator(true); 1864 } 1865 1866 void VibratorInputMapper::process(const RawEvent* rawEvent) { 1867 // TODO: Handle FF_STATUS, although it does not seem to be widely supported. 1868 } 1869 1870 void VibratorInputMapper::vibrate(const nsecs_t* pattern, size_t patternSize, ssize_t repeat, 1871 int32_t token) { 1872 #if DEBUG_VIBRATOR 1873 String8 patternStr; 1874 for (size_t i = 0; i < patternSize; i++) { 1875 if (i != 0) { 1876 patternStr.append(", "); 1877 } 1878 patternStr.appendFormat("%lld", pattern[i]); 1879 } 1880 ALOGD("vibrate: deviceId=%d, pattern=[%s], repeat=%ld, token=%d", 1881 getDeviceId(), patternStr.string(), repeat, token); 1882 #endif 1883 1884 mVibrating = true; 1885 memcpy(mPattern, pattern, patternSize * sizeof(nsecs_t)); 1886 mPatternSize = patternSize; 1887 mRepeat = repeat; 1888 mToken = token; 1889 mIndex = -1; 1890 1891 nextStep(); 1892 } 1893 1894 void VibratorInputMapper::cancelVibrate(int32_t token) { 1895 #if DEBUG_VIBRATOR 1896 ALOGD("cancelVibrate: deviceId=%d, token=%d", getDeviceId(), token); 1897 #endif 1898 1899 if (mVibrating && mToken == token) { 1900 stopVibrating(); 1901 } 1902 } 1903 1904 void VibratorInputMapper::timeoutExpired(nsecs_t when) { 1905 if (mVibrating) { 1906 if (when >= mNextStepTime) { 1907 nextStep(); 1908 } else { 1909 getContext()->requestTimeoutAtTime(mNextStepTime); 1910 } 1911 } 1912 } 1913 1914 void VibratorInputMapper::nextStep() { 1915 mIndex += 1; 1916 if (size_t(mIndex) >= mPatternSize) { 1917 if (mRepeat < 0) { 1918 // We are done. 1919 stopVibrating(); 1920 return; 1921 } 1922 mIndex = mRepeat; 1923 } 1924 1925 bool vibratorOn = mIndex & 1; 1926 nsecs_t duration = mPattern[mIndex]; 1927 if (vibratorOn) { 1928 #if DEBUG_VIBRATOR 1929 ALOGD("nextStep: sending vibrate deviceId=%d, duration=%lld", 1930 getDeviceId(), duration); 1931 #endif 1932 getEventHub()->vibrate(getDeviceId(), duration); 1933 } else { 1934 #if DEBUG_VIBRATOR 1935 ALOGD("nextStep: sending cancel vibrate deviceId=%d", getDeviceId()); 1936 #endif 1937 getEventHub()->cancelVibrate(getDeviceId()); 1938 } 1939 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); 1940 mNextStepTime = now + duration; 1941 getContext()->requestTimeoutAtTime(mNextStepTime); 1942 #if DEBUG_VIBRATOR 1943 ALOGD("nextStep: scheduled timeout in %0.3fms", duration * 0.000001f); 1944 #endif 1945 } 1946 1947 void VibratorInputMapper::stopVibrating() { 1948 mVibrating = false; 1949 #if DEBUG_VIBRATOR 1950 ALOGD("stopVibrating: sending cancel vibrate deviceId=%d", getDeviceId()); 1951 #endif 1952 getEventHub()->cancelVibrate(getDeviceId()); 1953 } 1954 1955 void VibratorInputMapper::dump(String8& dump) { 1956 dump.append(INDENT2 "Vibrator Input Mapper:\n"); 1957 dump.appendFormat(INDENT3 "Vibrating: %s\n", toString(mVibrating)); 1958 } 1959 1960 1961 // --- KeyboardInputMapper --- 1962 1963 KeyboardInputMapper::KeyboardInputMapper(InputDevice* device, 1964 uint32_t source, int32_t keyboardType) : 1965 InputMapper(device), mSource(source), 1966 mKeyboardType(keyboardType) { 1967 } 1968 1969 KeyboardInputMapper::~KeyboardInputMapper() { 1970 } 1971 1972 uint32_t KeyboardInputMapper::getSources() { 1973 return mSource; 1974 } 1975 1976 void KeyboardInputMapper::populateDeviceInfo(InputDeviceInfo* info) { 1977 InputMapper::populateDeviceInfo(info); 1978 1979 info->setKeyboardType(mKeyboardType); 1980 info->setKeyCharacterMap(getEventHub()->getKeyCharacterMap(getDeviceId())); 1981 } 1982 1983 void KeyboardInputMapper::dump(String8& dump) { 1984 dump.append(INDENT2 "Keyboard Input Mapper:\n"); 1985 dumpParameters(dump); 1986 dump.appendFormat(INDENT3 "KeyboardType: %d\n", mKeyboardType); 1987 dump.appendFormat(INDENT3 "Orientation: %d\n", mOrientation); 1988 dump.appendFormat(INDENT3 "KeyDowns: %d keys currently down\n", mKeyDowns.size()); 1989 dump.appendFormat(INDENT3 "MetaState: 0x%0x\n", mMetaState); 1990 dump.appendFormat(INDENT3 "DownTime: %lld\n", mDownTime); 1991 } 1992 1993 1994 void KeyboardInputMapper::configure(nsecs_t when, 1995 const InputReaderConfiguration* config, uint32_t changes) { 1996 InputMapper::configure(when, config, changes); 1997 1998 if (!changes) { // first time only 1999 // Configure basic parameters. 2000 configureParameters(); 2001 } 2002 2003 if (!changes || (changes & InputReaderConfiguration::CHANGE_DISPLAY_INFO)) { 2004 if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0) { 2005 if (!config->getDisplayInfo(mParameters.associatedDisplayId, 2006 false /*external*/, NULL, NULL, &mOrientation)) { 2007 mOrientation = DISPLAY_ORIENTATION_0; 2008 } 2009 } else { 2010 mOrientation = DISPLAY_ORIENTATION_0; 2011 } 2012 } 2013 } 2014 2015 void KeyboardInputMapper::configureParameters() { 2016 mParameters.orientationAware = false; 2017 getDevice()->getConfiguration().tryGetProperty(String8("keyboard.orientationAware"), 2018 mParameters.orientationAware); 2019 2020 mParameters.associatedDisplayId = -1; 2021 if (mParameters.orientationAware) { 2022 mParameters.associatedDisplayId = 0; 2023 } 2024 } 2025 2026 void KeyboardInputMapper::dumpParameters(String8& dump) { 2027 dump.append(INDENT3 "Parameters:\n"); 2028 dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n", 2029 mParameters.associatedDisplayId); 2030 dump.appendFormat(INDENT4 "OrientationAware: %s\n", 2031 toString(mParameters.orientationAware)); 2032 } 2033 2034 void KeyboardInputMapper::reset(nsecs_t when) { 2035 mMetaState = AMETA_NONE; 2036 mDownTime = 0; 2037 mKeyDowns.clear(); 2038 mCurrentHidUsage = 0; 2039 2040 resetLedState(); 2041 2042 InputMapper::reset(when); 2043 } 2044 2045 void KeyboardInputMapper::process(const RawEvent* rawEvent) { 2046 switch (rawEvent->type) { 2047 case EV_KEY: { 2048 int32_t scanCode = rawEvent->code; 2049 int32_t usageCode = mCurrentHidUsage; 2050 mCurrentHidUsage = 0; 2051 2052 if (isKeyboardOrGamepadKey(scanCode)) { 2053 int32_t keyCode; 2054 uint32_t flags; 2055 if (getEventHub()->mapKey(getDeviceId(), scanCode, usageCode, &keyCode, &flags)) { 2056 keyCode = AKEYCODE_UNKNOWN; 2057 flags = 0; 2058 } 2059 processKey(rawEvent->when, rawEvent->value != 0, keyCode, scanCode, flags); 2060 } 2061 break; 2062 } 2063 case EV_MSC: { 2064 if (rawEvent->code == MSC_SCAN) { 2065 mCurrentHidUsage = rawEvent->value; 2066 } 2067 break; 2068 } 2069 case EV_SYN: { 2070 if (rawEvent->code == SYN_REPORT) { 2071 mCurrentHidUsage = 0; 2072 } 2073 } 2074 } 2075 } 2076 2077 bool KeyboardInputMapper::isKeyboardOrGamepadKey(int32_t scanCode) { 2078 return scanCode < BTN_MOUSE 2079 || scanCode >= KEY_OK 2080 || (scanCode >= BTN_MISC && scanCode < BTN_MOUSE) 2081 || (scanCode >= BTN_JOYSTICK && scanCode < BTN_DIGI); 2082 } 2083 2084 void KeyboardInputMapper::processKey(nsecs_t when, bool down, int32_t keyCode, 2085 int32_t scanCode, uint32_t policyFlags) { 2086 2087 if (down) { 2088 // Rotate key codes according to orientation if needed. 2089 if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0) { 2090 keyCode = rotateKeyCode(keyCode, mOrientation); 2091 } 2092 2093 // Add key down. 2094 ssize_t keyDownIndex = findKeyDown(scanCode); 2095 if (keyDownIndex >= 0) { 2096 // key repeat, be sure to use same keycode as before in case of rotation 2097 keyCode = mKeyDowns.itemAt(keyDownIndex).keyCode; 2098 } else { 2099 // key down 2100 if ((policyFlags & POLICY_FLAG_VIRTUAL) 2101 && mContext->shouldDropVirtualKey(when, 2102 getDevice(), keyCode, scanCode)) { 2103 return; 2104 } 2105 2106 mKeyDowns.push(); 2107 KeyDown& keyDown = mKeyDowns.editTop(); 2108 keyDown.keyCode = keyCode; 2109 keyDown.scanCode = scanCode; 2110 } 2111 2112 mDownTime = when; 2113 } else { 2114 // Remove key down. 2115 ssize_t keyDownIndex = findKeyDown(scanCode); 2116 if (keyDownIndex >= 0) { 2117 // key up, be sure to use same keycode as before in case of rotation 2118 keyCode = mKeyDowns.itemAt(keyDownIndex).keyCode; 2119 mKeyDowns.removeAt(size_t(keyDownIndex)); 2120 } else { 2121 // key was not actually down 2122 ALOGI("Dropping key up from device %s because the key was not down. " 2123 "keyCode=%d, scanCode=%d", 2124 getDeviceName().string(), keyCode, scanCode); 2125 return; 2126 } 2127 } 2128 2129 bool metaStateChanged = false; 2130 int32_t oldMetaState = mMetaState; 2131 int32_t newMetaState = updateMetaState(keyCode, down, oldMetaState); 2132 if (oldMetaState != newMetaState) { 2133 mMetaState = newMetaState; 2134 metaStateChanged = true; 2135 updateLedState(false); 2136 } 2137 2138 nsecs_t downTime = mDownTime; 2139 2140 // Key down on external an keyboard should wake the device. 2141 // We don't do this for internal keyboards to prevent them from waking up in your pocket. 2142 // For internal keyboards, the key layout file should specify the policy flags for 2143 // each wake key individually. 2144 // TODO: Use the input device configuration to control this behavior more finely. 2145 if (down && getDevice()->isExternal() 2146 && !(policyFlags & (POLICY_FLAG_WAKE | POLICY_FLAG_WAKE_DROPPED))) { 2147 policyFlags |= POLICY_FLAG_WAKE_DROPPED; 2148 } 2149 2150 if (metaStateChanged) { 2151 getContext()->updateGlobalMetaState(); 2152 } 2153 2154 if (down && !isMetaKey(keyCode)) { 2155 getContext()->fadePointer(); 2156 } 2157 2158 NotifyKeyArgs args(when, getDeviceId(), mSource, policyFlags, 2159 down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP, 2160 AKEY_EVENT_FLAG_FROM_SYSTEM, keyCode, scanCode, newMetaState, downTime); 2161 getListener()->notifyKey(&args); 2162 } 2163 2164 ssize_t KeyboardInputMapper::findKeyDown(int32_t scanCode) { 2165 size_t n = mKeyDowns.size(); 2166 for (size_t i = 0; i < n; i++) { 2167 if (mKeyDowns[i].scanCode == scanCode) { 2168 return i; 2169 } 2170 } 2171 return -1; 2172 } 2173 2174 int32_t KeyboardInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { 2175 return getEventHub()->getKeyCodeState(getDeviceId(), keyCode); 2176 } 2177 2178 int32_t KeyboardInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { 2179 return getEventHub()->getScanCodeState(getDeviceId(), scanCode); 2180 } 2181 2182 bool KeyboardInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, 2183 const int32_t* keyCodes, uint8_t* outFlags) { 2184 return getEventHub()->markSupportedKeyCodes(getDeviceId(), numCodes, keyCodes, outFlags); 2185 } 2186 2187 int32_t KeyboardInputMapper::getMetaState() { 2188 return mMetaState; 2189 } 2190 2191 void KeyboardInputMapper::resetLedState() { 2192 initializeLedState(mCapsLockLedState, LED_CAPSL); 2193 initializeLedState(mNumLockLedState, LED_NUML); 2194 initializeLedState(mScrollLockLedState, LED_SCROLLL); 2195 2196 updateLedState(true); 2197 } 2198 2199 void KeyboardInputMapper::initializeLedState(LedState& ledState, int32_t led) { 2200 ledState.avail = getEventHub()->hasLed(getDeviceId(), led); 2201 ledState.on = false; 2202 } 2203 2204 void KeyboardInputMapper::updateLedState(bool reset) { 2205 updateLedStateForModifier(mCapsLockLedState, LED_CAPSL, 2206 AMETA_CAPS_LOCK_ON, reset); 2207 updateLedStateForModifier(mNumLockLedState, LED_NUML, 2208 AMETA_NUM_LOCK_ON, reset); 2209 updateLedStateForModifier(mScrollLockLedState, LED_SCROLLL, 2210 AMETA_SCROLL_LOCK_ON, reset); 2211 } 2212 2213 void KeyboardInputMapper::updateLedStateForModifier(LedState& ledState, 2214 int32_t led, int32_t modifier, bool reset) { 2215 if (ledState.avail) { 2216 bool desiredState = (mMetaState & modifier) != 0; 2217 if (reset || ledState.on != desiredState) { 2218 getEventHub()->setLedState(getDeviceId(), led, desiredState); 2219 ledState.on = desiredState; 2220 } 2221 } 2222 } 2223 2224 2225 // --- CursorInputMapper --- 2226 2227 CursorInputMapper::CursorInputMapper(InputDevice* device) : 2228 InputMapper(device) { 2229 } 2230 2231 CursorInputMapper::~CursorInputMapper() { 2232 } 2233 2234 uint32_t CursorInputMapper::getSources() { 2235 return mSource; 2236 } 2237 2238 void CursorInputMapper::populateDeviceInfo(InputDeviceInfo* info) { 2239 InputMapper::populateDeviceInfo(info); 2240 2241 if (mParameters.mode == Parameters::MODE_POINTER) { 2242 float minX, minY, maxX, maxY; 2243 if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) { 2244 info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, minX, maxX, 0.0f, 0.0f); 2245 info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, minY, maxY, 0.0f, 0.0f); 2246 } 2247 } else { 2248 info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, -1.0f, 1.0f, 0.0f, mXScale); 2249 info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, -1.0f, 1.0f, 0.0f, mYScale); 2250 } 2251 info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, mSource, 0.0f, 1.0f, 0.0f, 0.0f); 2252 2253 if (mCursorScrollAccumulator.haveRelativeVWheel()) { 2254 info->addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f); 2255 } 2256 if (mCursorScrollAccumulator.haveRelativeHWheel()) { 2257 info->addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f); 2258 } 2259 } 2260 2261 void CursorInputMapper::dump(String8& dump) { 2262 dump.append(INDENT2 "Cursor Input Mapper:\n"); 2263 dumpParameters(dump); 2264 dump.appendFormat(INDENT3 "XScale: %0.3f\n", mXScale); 2265 dump.appendFormat(INDENT3 "YScale: %0.3f\n", mYScale); 2266 dump.appendFormat(INDENT3 "XPrecision: %0.3f\n", mXPrecision); 2267 dump.appendFormat(INDENT3 "YPrecision: %0.3f\n", mYPrecision); 2268 dump.appendFormat(INDENT3 "HaveVWheel: %s\n", 2269 toString(mCursorScrollAccumulator.haveRelativeVWheel())); 2270 dump.appendFormat(INDENT3 "HaveHWheel: %s\n", 2271 toString(mCursorScrollAccumulator.haveRelativeHWheel())); 2272 dump.appendFormat(INDENT3 "VWheelScale: %0.3f\n", mVWheelScale); 2273 dump.appendFormat(INDENT3 "HWheelScale: %0.3f\n", mHWheelScale); 2274 dump.appendFormat(INDENT3 "Orientation: %d\n", mOrientation); 2275 dump.appendFormat(INDENT3 "ButtonState: 0x%08x\n", mButtonState); 2276 dump.appendFormat(INDENT3 "Down: %s\n", toString(isPointerDown(mButtonState))); 2277 dump.appendFormat(INDENT3 "DownTime: %lld\n", mDownTime); 2278 } 2279 2280 void CursorInputMapper::configure(nsecs_t when, 2281 const InputReaderConfiguration* config, uint32_t changes) { 2282 InputMapper::configure(when, config, changes); 2283 2284 if (!changes) { // first time only 2285 mCursorScrollAccumulator.configure(getDevice()); 2286 2287 // Configure basic parameters. 2288 configureParameters(); 2289 2290 // Configure device mode. 2291 switch (mParameters.mode) { 2292 case Parameters::MODE_POINTER: 2293 mSource = AINPUT_SOURCE_MOUSE; 2294 mXPrecision = 1.0f; 2295 mYPrecision = 1.0f; 2296 mXScale = 1.0f; 2297 mYScale = 1.0f; 2298 mPointerController = getPolicy()->obtainPointerController(getDeviceId()); 2299 break; 2300 case Parameters::MODE_NAVIGATION: 2301 mSource = AINPUT_SOURCE_TRACKBALL; 2302 mXPrecision = TRACKBALL_MOVEMENT_THRESHOLD; 2303 mYPrecision = TRACKBALL_MOVEMENT_THRESHOLD; 2304 mXScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD; 2305 mYScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD; 2306 break; 2307 } 2308 2309 mVWheelScale = 1.0f; 2310 mHWheelScale = 1.0f; 2311 } 2312 2313 if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_SPEED)) { 2314 mPointerVelocityControl.setParameters(config->pointerVelocityControlParameters); 2315 mWheelXVelocityControl.setParameters(config->wheelVelocityControlParameters); 2316 mWheelYVelocityControl.setParameters(config->wheelVelocityControlParameters); 2317 } 2318 2319 if (!changes || (changes & InputReaderConfiguration::CHANGE_DISPLAY_INFO)) { 2320 if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0) { 2321 if (!config->getDisplayInfo(mParameters.associatedDisplayId, 2322 false /*external*/, NULL, NULL, &mOrientation)) { 2323 mOrientation = DISPLAY_ORIENTATION_0; 2324 } 2325 } else { 2326 mOrientation = DISPLAY_ORIENTATION_0; 2327 } 2328 bumpGeneration(); 2329 } 2330 } 2331 2332 void CursorInputMapper::configureParameters() { 2333 mParameters.mode = Parameters::MODE_POINTER; 2334 String8 cursorModeString; 2335 if (getDevice()->getConfiguration().tryGetProperty(String8("cursor.mode"), cursorModeString)) { 2336 if (cursorModeString == "navigation") { 2337 mParameters.mode = Parameters::MODE_NAVIGATION; 2338 } else if (cursorModeString != "pointer" && cursorModeString != "default") { 2339 ALOGW("Invalid value for cursor.mode: '%s'", cursorModeString.string()); 2340 } 2341 } 2342 2343 mParameters.orientationAware = false; 2344 getDevice()->getConfiguration().tryGetProperty(String8("cursor.orientationAware"), 2345 mParameters.orientationAware); 2346 2347 mParameters.associatedDisplayId = -1; 2348 if (mParameters.mode == Parameters::MODE_POINTER || mParameters.orientationAware) { 2349 mParameters.associatedDisplayId = 0; 2350 } 2351 } 2352 2353 void CursorInputMapper::dumpParameters(String8& dump) { 2354 dump.append(INDENT3 "Parameters:\n"); 2355 dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n", 2356 mParameters.associatedDisplayId); 2357 2358 switch (mParameters.mode) { 2359 case Parameters::MODE_POINTER: 2360 dump.append(INDENT4 "Mode: pointer\n"); 2361 break; 2362 case Parameters::MODE_NAVIGATION: 2363 dump.append(INDENT4 "Mode: navigation\n"); 2364 break; 2365 default: 2366 ALOG_ASSERT(false); 2367 } 2368 2369 dump.appendFormat(INDENT4 "OrientationAware: %s\n", 2370 toString(mParameters.orientationAware)); 2371 } 2372 2373 void CursorInputMapper::reset(nsecs_t when) { 2374 mButtonState = 0; 2375 mDownTime = 0; 2376 2377 mPointerVelocityControl.reset(); 2378 mWheelXVelocityControl.reset(); 2379 mWheelYVelocityControl.reset(); 2380 2381 mCursorButtonAccumulator.reset(getDevice()); 2382 mCursorMotionAccumulator.reset(getDevice()); 2383 mCursorScrollAccumulator.reset(getDevice()); 2384 2385 InputMapper::reset(when); 2386 } 2387 2388 void CursorInputMapper::process(const RawEvent* rawEvent) { 2389 mCursorButtonAccumulator.process(rawEvent); 2390 mCursorMotionAccumulator.process(rawEvent); 2391 mCursorScrollAccumulator.process(rawEvent); 2392 2393 if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { 2394 sync(rawEvent->when); 2395 } 2396 } 2397 2398 void CursorInputMapper::sync(nsecs_t when) { 2399 int32_t lastButtonState = mButtonState; 2400 int32_t currentButtonState = mCursorButtonAccumulator.getButtonState(); 2401 mButtonState = currentButtonState; 2402 2403 bool wasDown = isPointerDown(lastButtonState); 2404 bool down = isPointerDown(currentButtonState); 2405 bool downChanged; 2406 if (!wasDown && down) { 2407 mDownTime = when; 2408 downChanged = true; 2409 } else if (wasDown && !down) { 2410 downChanged = true; 2411 } else { 2412 downChanged = false; 2413 } 2414 nsecs_t downTime = mDownTime; 2415 bool buttonsChanged = currentButtonState != lastButtonState; 2416 bool buttonsPressed = currentButtonState & ~lastButtonState; 2417 2418 float deltaX = mCursorMotionAccumulator.getRelativeX() * mXScale; 2419 float deltaY = mCursorMotionAccumulator.getRelativeY() * mYScale; 2420 bool moved = deltaX != 0 || deltaY != 0; 2421 2422 // Rotate delta according to orientation if needed. 2423 if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0 2424 && (deltaX != 0.0f || deltaY != 0.0f)) { 2425 rotateDelta(mOrientation, &deltaX, &deltaY); 2426 } 2427 2428 // Move the pointer. 2429 PointerProperties pointerProperties; 2430 pointerProperties.clear(); 2431 pointerProperties.id = 0; 2432 pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_MOUSE; 2433 2434 PointerCoords pointerCoords; 2435 pointerCoords.clear(); 2436 2437 float vscroll = mCursorScrollAccumulator.getRelativeVWheel(); 2438 float hscroll = mCursorScrollAccumulator.getRelativeHWheel(); 2439 bool scrolled = vscroll != 0 || hscroll != 0; 2440 2441 mWheelYVelocityControl.move(when, NULL, &vscroll); 2442 mWheelXVelocityControl.move(when, &hscroll, NULL); 2443 2444 mPointerVelocityControl.move(when, &deltaX, &deltaY); 2445 2446 if (mPointerController != NULL) { 2447 if (moved || scrolled || buttonsChanged) { 2448 mPointerController->setPresentation( 2449 PointerControllerInterface::PRESENTATION_POINTER); 2450 2451 if (moved) { 2452 mPointerController->move(deltaX, deltaY); 2453 } 2454 2455 if (buttonsChanged) { 2456 mPointerController->setButtonState(currentButtonState); 2457 } 2458 2459 mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE); 2460 } 2461 2462 float x, y; 2463 mPointerController->getPosition(&x, &y); 2464 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); 2465 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); 2466 } else { 2467 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, deltaX); 2468 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, deltaY); 2469 } 2470 2471 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, down ? 1.0f : 0.0f); 2472 2473 // Moving an external trackball or mouse should wake the device. 2474 // We don't do this for internal cursor devices to prevent them from waking up 2475 // the device in your pocket. 2476 // TODO: Use the input device configuration to control this behavior more finely. 2477 uint32_t policyFlags = 0; 2478 if ((buttonsPressed || moved || scrolled) && getDevice()->isExternal()) { 2479 policyFlags |= POLICY_FLAG_WAKE_DROPPED; 2480 } 2481 2482 // Synthesize key down from buttons if needed. 2483 synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, getDeviceId(), mSource, 2484 policyFlags, lastButtonState, currentButtonState); 2485 2486 // Send motion event. 2487 if (downChanged || moved || scrolled || buttonsChanged) { 2488 int32_t metaState = mContext->getGlobalMetaState(); 2489 int32_t motionEventAction; 2490 if (downChanged) { 2491 motionEventAction = down ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP; 2492 } else if (down || mPointerController == NULL) { 2493 motionEventAction = AMOTION_EVENT_ACTION_MOVE; 2494 } else { 2495 motionEventAction = AMOTION_EVENT_ACTION_HOVER_MOVE; 2496 } 2497 2498 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, 2499 motionEventAction, 0, metaState, currentButtonState, 0, 2500 1, &pointerProperties, &pointerCoords, mXPrecision, mYPrecision, downTime); 2501 getListener()->notifyMotion(&args); 2502 2503 // Send hover move after UP to tell the application that the mouse is hovering now. 2504 if (motionEventAction == AMOTION_EVENT_ACTION_UP 2505 && mPointerController != NULL) { 2506 NotifyMotionArgs hoverArgs(when, getDeviceId(), mSource, policyFlags, 2507 AMOTION_EVENT_ACTION_HOVER_MOVE, 0, 2508 metaState, currentButtonState, AMOTION_EVENT_EDGE_FLAG_NONE, 2509 1, &pointerProperties, &pointerCoords, mXPrecision, mYPrecision, downTime); 2510 getListener()->notifyMotion(&hoverArgs); 2511 } 2512 2513 // Send scroll events. 2514 if (scrolled) { 2515 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll); 2516 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll); 2517 2518 NotifyMotionArgs scrollArgs(when, getDeviceId(), mSource, policyFlags, 2519 AMOTION_EVENT_ACTION_SCROLL, 0, metaState, currentButtonState, 2520 AMOTION_EVENT_EDGE_FLAG_NONE, 2521 1, &pointerProperties, &pointerCoords, mXPrecision, mYPrecision, downTime); 2522 getListener()->notifyMotion(&scrollArgs); 2523 } 2524 } 2525 2526 // Synthesize key up from buttons if needed. 2527 synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, getDeviceId(), mSource, 2528 policyFlags, lastButtonState, currentButtonState); 2529 2530 mCursorMotionAccumulator.finishSync(); 2531 mCursorScrollAccumulator.finishSync(); 2532 } 2533 2534 int32_t CursorInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { 2535 if (scanCode >= BTN_MOUSE && scanCode < BTN_JOYSTICK) { 2536 return getEventHub()->getScanCodeState(getDeviceId(), scanCode); 2537 } else { 2538 return AKEY_STATE_UNKNOWN; 2539 } 2540 } 2541 2542 void CursorInputMapper::fadePointer() { 2543 if (mPointerController != NULL) { 2544 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); 2545 } 2546 } 2547 2548 2549 // --- TouchInputMapper --- 2550 2551 TouchInputMapper::TouchInputMapper(InputDevice* device) : 2552 InputMapper(device), 2553 mSource(0), mDeviceMode(DEVICE_MODE_DISABLED), 2554 mSurfaceOrientation(-1), mSurfaceWidth(-1), mSurfaceHeight(-1) { 2555 } 2556 2557 TouchInputMapper::~TouchInputMapper() { 2558 } 2559 2560 uint32_t TouchInputMapper::getSources() { 2561 return mSource; 2562 } 2563 2564 void TouchInputMapper::populateDeviceInfo(InputDeviceInfo* info) { 2565 InputMapper::populateDeviceInfo(info); 2566 2567 if (mDeviceMode != DEVICE_MODE_DISABLED) { 2568 info->addMotionRange(mOrientedRanges.x); 2569 info->addMotionRange(mOrientedRanges.y); 2570 info->addMotionRange(mOrientedRanges.pressure); 2571 2572 if (mOrientedRanges.haveSize) { 2573 info->addMotionRange(mOrientedRanges.size); 2574 } 2575 2576 if (mOrientedRanges.haveTouchSize) { 2577 info->addMotionRange(mOrientedRanges.touchMajor); 2578 info->addMotionRange(mOrientedRanges.touchMinor); 2579 } 2580 2581 if (mOrientedRanges.haveToolSize) { 2582 info->addMotionRange(mOrientedRanges.toolMajor); 2583 info->addMotionRange(mOrientedRanges.toolMinor); 2584 } 2585 2586 if (mOrientedRanges.haveOrientation) { 2587 info->addMotionRange(mOrientedRanges.orientation); 2588 } 2589 2590 if (mOrientedRanges.haveDistance) { 2591 info->addMotionRange(mOrientedRanges.distance); 2592 } 2593 2594 if (mOrientedRanges.haveTilt) { 2595 info->addMotionRange(mOrientedRanges.tilt); 2596 } 2597 2598 if (mCursorScrollAccumulator.haveRelativeVWheel()) { 2599 info->addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f); 2600 } 2601 if (mCursorScrollAccumulator.haveRelativeHWheel()) { 2602 info->addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f); 2603 } 2604 } 2605 } 2606 2607 void TouchInputMapper::dump(String8& dump) { 2608 dump.append(INDENT2 "Touch Input Mapper:\n"); 2609 dumpParameters(dump); 2610 dumpVirtualKeys(dump); 2611 dumpRawPointerAxes(dump); 2612 dumpCalibration(dump); 2613 dumpSurface(dump); 2614 2615 dump.appendFormat(INDENT3 "Translation and Scaling Factors:\n"); 2616 dump.appendFormat(INDENT4 "XScale: %0.3f\n", mXScale); 2617 dump.appendFormat(INDENT4 "YScale: %0.3f\n", mYScale); 2618 dump.appendFormat(INDENT4 "XPrecision: %0.3f\n", mXPrecision); 2619 dump.appendFormat(INDENT4 "YPrecision: %0.3f\n", mYPrecision); 2620 dump.appendFormat(INDENT4 "GeometricScale: %0.3f\n", mGeometricScale); 2621 dump.appendFormat(INDENT4 "PressureScale: %0.3f\n", mPressureScale); 2622 dump.appendFormat(INDENT4 "SizeScale: %0.3f\n", mSizeScale); 2623 dump.appendFormat(INDENT4 "OrientationCenter: %0.3f\n", mOrientationCenter); 2624 dump.appendFormat(INDENT4 "OrientationScale: %0.3f\n", mOrientationScale); 2625 dump.appendFormat(INDENT4 "DistanceScale: %0.3f\n", mDistanceScale); 2626 dump.appendFormat(INDENT4 "HaveTilt: %s\n", toString(mHaveTilt)); 2627 dump.appendFormat(INDENT4 "TiltXCenter: %0.3f\n", mTiltXCenter); 2628 dump.appendFormat(INDENT4 "TiltXScale: %0.3f\n", mTiltXScale); 2629 dump.appendFormat(INDENT4 "TiltYCenter: %0.3f\n", mTiltYCenter); 2630 dump.appendFormat(INDENT4 "TiltYScale: %0.3f\n", mTiltYScale); 2631 2632 dump.appendFormat(INDENT3 "Last Button State: 0x%08x\n", mLastButtonState); 2633 2634 dump.appendFormat(INDENT3 "Last Raw Touch: pointerCount=%d\n", 2635 mLastRawPointerData.pointerCount); 2636 for (uint32_t i = 0; i < mLastRawPointerData.pointerCount; i++) { 2637 const RawPointerData::Pointer& pointer = mLastRawPointerData.pointers[i]; 2638 dump.appendFormat(INDENT4 "[%d]: id=%d, x=%d, y=%d, pressure=%d, " 2639 "touchMajor=%d, touchMinor=%d, toolMajor=%d, toolMinor=%d, " 2640 "orientation=%d, tiltX=%d, tiltY=%d, distance=%d, " 2641 "toolType=%d, isHovering=%s\n", i, 2642 pointer.id, pointer.x, pointer.y, pointer.pressure, 2643 pointer.touchMajor, pointer.touchMinor, 2644 pointer.toolMajor, pointer.toolMinor, 2645 pointer.orientation, pointer.tiltX, pointer.tiltY, pointer.distance, 2646 pointer.toolType, toString(pointer.isHovering)); 2647 } 2648 2649 dump.appendFormat(INDENT3 "Last Cooked Touch: pointerCount=%d\n", 2650 mLastCookedPointerData.pointerCount); 2651 for (uint32_t i = 0; i < mLastCookedPointerData.pointerCount; i++) { 2652 const PointerProperties& pointerProperties = mLastCookedPointerData.pointerProperties[i]; 2653 const PointerCoords& pointerCoords = mLastCookedPointerData.pointerCoords[i]; 2654 dump.appendFormat(INDENT4 "[%d]: id=%d, x=%0.3f, y=%0.3f, pressure=%0.3f, " 2655 "touchMajor=%0.3f, touchMinor=%0.3f, toolMajor=%0.3f, toolMinor=%0.3f, " 2656 "orientation=%0.3f, tilt=%0.3f, distance=%0.3f, " 2657 "toolType=%d, isHovering=%s\n", i, 2658 pointerProperties.id, 2659 pointerCoords.getX(), 2660 pointerCoords.getY(), 2661 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE), 2662 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR), 2663 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR), 2664 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR), 2665 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR), 2666 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION), 2667 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TILT), 2668 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_DISTANCE), 2669 pointerProperties.toolType, 2670 toString(mLastCookedPointerData.isHovering(i))); 2671 } 2672 2673 if (mDeviceMode == DEVICE_MODE_POINTER) { 2674 dump.appendFormat(INDENT3 "Pointer Gesture Detector:\n"); 2675 dump.appendFormat(INDENT4 "XMovementScale: %0.3f\n", 2676 mPointerXMovementScale); 2677 dump.appendFormat(INDENT4 "YMovementScale: %0.3f\n", 2678 mPointerYMovementScale); 2679 dump.appendFormat(INDENT4 "XZoomScale: %0.3f\n", 2680 mPointerXZoomScale); 2681 dump.appendFormat(INDENT4 "YZoomScale: %0.3f\n", 2682 mPointerYZoomScale); 2683 dump.appendFormat(INDENT4 "MaxSwipeWidth: %f\n", 2684 mPointerGestureMaxSwipeWidth); 2685 } 2686 } 2687 2688 void TouchInputMapper::configure(nsecs_t when, 2689 const InputReaderConfiguration* config, uint32_t changes) { 2690 InputMapper::configure(when, config, changes); 2691 2692 mConfig = *config; 2693 2694 if (!changes) { // first time only 2695 // Configure basic parameters. 2696 configureParameters(); 2697 2698 // Configure common accumulators. 2699 mCursorScrollAccumulator.configure(getDevice()); 2700 mTouchButtonAccumulator.configure(getDevice()); 2701 2702 // Configure absolute axis information. 2703 configureRawPointerAxes(); 2704 2705 // Prepare input device calibration. 2706 parseCalibration(); 2707 resolveCalibration(); 2708 } 2709 2710 if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_SPEED)) { 2711 // Update pointer speed. 2712 mPointerVelocityControl.setParameters(mConfig.pointerVelocityControlParameters); 2713 mWheelXVelocityControl.setParameters(mConfig.wheelVelocityControlParameters); 2714 mWheelYVelocityControl.setParameters(mConfig.wheelVelocityControlParameters); 2715 } 2716 2717 bool resetNeeded = false; 2718 if (!changes || (changes & (InputReaderConfiguration::CHANGE_DISPLAY_INFO 2719 | InputReaderConfiguration::CHANGE_POINTER_GESTURE_ENABLEMENT 2720 | InputReaderConfiguration::CHANGE_SHOW_TOUCHES))) { 2721 // Configure device sources, surface dimensions, orientation and 2722 // scaling factors. 2723 configureSurface(when, &resetNeeded); 2724 } 2725 2726 if (changes && resetNeeded) { 2727 // Send reset, unless this is the first time the device has been configured, 2728 // in which case the reader will call reset itself after all mappers are ready. 2729 getDevice()->notifyReset(when); 2730 } 2731 } 2732 2733 void TouchInputMapper::configureParameters() { 2734 // Use the pointer presentation mode for devices that do not support distinct 2735 // multitouch. The spot-based presentation relies on being able to accurately 2736 // locate two or more fingers on the touch pad. 2737 mParameters.gestureMode = getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_SEMI_MT) 2738 ? Parameters::GESTURE_MODE_POINTER : Parameters::GESTURE_MODE_SPOTS; 2739 2740 String8 gestureModeString; 2741 if (getDevice()->getConfiguration().tryGetProperty(String8("touch.gestureMode"), 2742 gestureModeString)) { 2743 if (gestureModeString == "pointer") { 2744 mParameters.gestureMode = Parameters::GESTURE_MODE_POINTER; 2745 } else if (gestureModeString == "spots") { 2746 mParameters.gestureMode = Parameters::GESTURE_MODE_SPOTS; 2747 } else if (gestureModeString != "default") { 2748 ALOGW("Invalid value for touch.gestureMode: '%s'", gestureModeString.string()); 2749 } 2750 } 2751 2752 if (getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_DIRECT)) { 2753 // The device is a touch screen. 2754 mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN; 2755 } else if (getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_POINTER)) { 2756 // The device is a pointing device like a track pad. 2757 mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER; 2758 } else if (getEventHub()->hasRelativeAxis(getDeviceId(), REL_X) 2759 || getEventHub()->hasRelativeAxis(getDeviceId(), REL_Y)) { 2760 // The device is a cursor device with a touch pad attached. 2761 // By default don't use the touch pad to move the pointer. 2762 mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD; 2763 } else { 2764 // The device is a touch pad of unknown purpose. 2765 mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER; 2766 } 2767 2768 String8 deviceTypeString; 2769 if (getDevice()->getConfiguration().tryGetProperty(String8("touch.deviceType"), 2770 deviceTypeString)) { 2771 if (deviceTypeString == "touchScreen") { 2772 mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN; 2773 } else if (deviceTypeString == "touchPad") { 2774 mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD; 2775 } else if (deviceTypeString == "pointer") { 2776 mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER; 2777 } else if (deviceTypeString != "default") { 2778 ALOGW("Invalid value for touch.deviceType: '%s'", deviceTypeString.string()); 2779 } 2780 } 2781 2782 mParameters.orientationAware = mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN; 2783 getDevice()->getConfiguration().tryGetProperty(String8("touch.orientationAware"), 2784 mParameters.orientationAware); 2785 2786 mParameters.associatedDisplayId = -1; 2787 mParameters.associatedDisplayIsExternal = false; 2788 if (mParameters.orientationAware 2789 || mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN 2790 || mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) { 2791 mParameters.associatedDisplayIsExternal = 2792 mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN 2793 && getDevice()->isExternal(); 2794 mParameters.associatedDisplayId = 0; 2795 } 2796 } 2797 2798 void TouchInputMapper::dumpParameters(String8& dump) { 2799 dump.append(INDENT3 "Parameters:\n"); 2800 2801 switch (mParameters.gestureMode) { 2802 case Parameters::GESTURE_MODE_POINTER: 2803 dump.append(INDENT4 "GestureMode: pointer\n"); 2804 break; 2805 case Parameters::GESTURE_MODE_SPOTS: 2806 dump.append(INDENT4 "GestureMode: spots\n"); 2807 break; 2808 default: 2809 assert(false); 2810 } 2811 2812 switch (mParameters.deviceType) { 2813 case Parameters::DEVICE_TYPE_TOUCH_SCREEN: 2814 dump.append(INDENT4 "DeviceType: touchScreen\n"); 2815 break; 2816 case Parameters::DEVICE_TYPE_TOUCH_PAD: 2817 dump.append(INDENT4 "DeviceType: touchPad\n"); 2818 break; 2819 case Parameters::DEVICE_TYPE_POINTER: 2820 dump.append(INDENT4 "DeviceType: pointer\n"); 2821 break; 2822 default: 2823 ALOG_ASSERT(false); 2824 } 2825 2826 dump.appendFormat(INDENT4 "AssociatedDisplay: id=%d, isExternal=%s\n", 2827 mParameters.associatedDisplayId, toString(mParameters.associatedDisplayIsExternal)); 2828 dump.appendFormat(INDENT4 "OrientationAware: %s\n", 2829 toString(mParameters.orientationAware)); 2830 } 2831 2832 void TouchInputMapper::configureRawPointerAxes() { 2833 mRawPointerAxes.clear(); 2834 } 2835 2836 void TouchInputMapper::dumpRawPointerAxes(String8& dump) { 2837 dump.append(INDENT3 "Raw Touch Axes:\n"); 2838 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.x, "X"); 2839 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.y, "Y"); 2840 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.pressure, "Pressure"); 2841 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.touchMajor, "TouchMajor"); 2842 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.touchMinor, "TouchMinor"); 2843 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.toolMajor, "ToolMajor"); 2844 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.toolMinor, "ToolMinor"); 2845 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.orientation, "Orientation"); 2846 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.distance, "Distance"); 2847 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.tiltX, "TiltX"); 2848 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.tiltY, "TiltY"); 2849 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.trackingId, "TrackingId"); 2850 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.slot, "Slot"); 2851 } 2852 2853 void TouchInputMapper::configureSurface(nsecs_t when, bool* outResetNeeded) { 2854 int32_t oldDeviceMode = mDeviceMode; 2855 2856 // Determine device mode. 2857 if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER 2858 && mConfig.pointerGesturesEnabled) { 2859 mSource = AINPUT_SOURCE_MOUSE; 2860 mDeviceMode = DEVICE_MODE_POINTER; 2861 if (hasStylus()) { 2862 mSource |= AINPUT_SOURCE_STYLUS; 2863 } 2864 } else if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN 2865 && mParameters.associatedDisplayId >= 0) { 2866 mSource = AINPUT_SOURCE_TOUCHSCREEN; 2867 mDeviceMode = DEVICE_MODE_DIRECT; 2868 if (hasStylus()) { 2869 mSource |= AINPUT_SOURCE_STYLUS; 2870 } 2871 } else { 2872 mSource = AINPUT_SOURCE_TOUCHPAD; 2873 mDeviceMode = DEVICE_MODE_UNSCALED; 2874 } 2875 2876 // Ensure we have valid X and Y axes. 2877 if (!mRawPointerAxes.x.valid || !mRawPointerAxes.y.valid) { 2878 ALOGW(INDENT "Touch device '%s' did not report support for X or Y axis! " 2879 "The device will be inoperable.", getDeviceName().string()); 2880 mDeviceMode = DEVICE_MODE_DISABLED; 2881 return; 2882 } 2883 2884 // Get associated display dimensions. 2885 if (mParameters.associatedDisplayId >= 0) { 2886 if (!mConfig.getDisplayInfo(mParameters.associatedDisplayId, 2887 mParameters.associatedDisplayIsExternal, 2888 &mAssociatedDisplayWidth, &mAssociatedDisplayHeight, 2889 &mAssociatedDisplayOrientation)) { 2890 ALOGI(INDENT "Touch device '%s' could not query the properties of its associated " 2891 "display %d. The device will be inoperable until the display size " 2892 "becomes available.", 2893 getDeviceName().string(), mParameters.associatedDisplayId); 2894 mDeviceMode = DEVICE_MODE_DISABLED; 2895 return; 2896 } 2897 } 2898 2899 // Configure dimensions. 2900 int32_t width, height, orientation; 2901 if (mDeviceMode == DEVICE_MODE_DIRECT || mDeviceMode == DEVICE_MODE_POINTER) { 2902 width = mAssociatedDisplayWidth; 2903 height = mAssociatedDisplayHeight; 2904 orientation = mParameters.orientationAware ? 2905 mAssociatedDisplayOrientation : DISPLAY_ORIENTATION_0; 2906 } else { 2907 width = mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue + 1; 2908 height = mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue + 1; 2909 orientation = DISPLAY_ORIENTATION_0; 2910 } 2911 2912 // If moving between pointer modes, need to reset some state. 2913 bool deviceModeChanged; 2914 if (mDeviceMode != oldDeviceMode) { 2915 deviceModeChanged = true; 2916 mOrientedRanges.clear(); 2917 } 2918 2919 // Create pointer controller if needed. 2920 if (mDeviceMode == DEVICE_MODE_POINTER || 2921 (mDeviceMode == DEVICE_MODE_DIRECT && mConfig.showTouches)) { 2922 if (mPointerController == NULL) { 2923 mPointerController = getPolicy()->obtainPointerController(getDeviceId()); 2924 } 2925 } else { 2926 mPointerController.clear(); 2927 } 2928 2929 bool orientationChanged = mSurfaceOrientation != orientation; 2930 if (orientationChanged) { 2931 mSurfaceOrientation = orientation; 2932 } 2933 2934 bool sizeChanged = mSurfaceWidth != width || mSurfaceHeight != height; 2935 if (sizeChanged || deviceModeChanged) { 2936 ALOGI("Device reconfigured: id=%d, name='%s', surface size is now %dx%d, mode is %d", 2937 getDeviceId(), getDeviceName().string(), width, height, mDeviceMode); 2938 2939 mSurfaceWidth = width; 2940 mSurfaceHeight = height; 2941 2942 // Configure X and Y factors. 2943 mXScale = float(width) / (mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue + 1); 2944 mYScale = float(height) / (mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue + 1); 2945 mXPrecision = 1.0f / mXScale; 2946 mYPrecision = 1.0f / mYScale; 2947 2948 mOrientedRanges.x.axis = AMOTION_EVENT_AXIS_X; 2949 mOrientedRanges.x.source = mSource; 2950 mOrientedRanges.y.axis = AMOTION_EVENT_AXIS_Y; 2951 mOrientedRanges.y.source = mSource; 2952 2953 configureVirtualKeys(); 2954 2955 // Scale factor for terms that are not oriented in a particular axis. 2956 // If the pixels are square then xScale == yScale otherwise we fake it 2957 // by choosing an average. 2958 mGeometricScale = avg(mXScale, mYScale); 2959 2960 // Size of diagonal axis. 2961 float diagonalSize = hypotf(width, height); 2962 2963 // Size factors. 2964 if (mCalibration.sizeCalibration != Calibration::SIZE_CALIBRATION_NONE) { 2965 if (mRawPointerAxes.touchMajor.valid 2966 && mRawPointerAxes.touchMajor.maxValue != 0) { 2967 mSizeScale = 1.0f / mRawPointerAxes.touchMajor.maxValue; 2968 } else if (mRawPointerAxes.toolMajor.valid 2969 && mRawPointerAxes.toolMajor.maxValue != 0) { 2970 mSizeScale = 1.0f / mRawPointerAxes.toolMajor.maxValue; 2971 } else { 2972 mSizeScale = 0.0f; 2973 } 2974 2975 mOrientedRanges.haveTouchSize = true; 2976 mOrientedRanges.haveToolSize = true; 2977 mOrientedRanges.haveSize = true; 2978 2979 mOrientedRanges.touchMajor.axis = AMOTION_EVENT_AXIS_TOUCH_MAJOR; 2980 mOrientedRanges.touchMajor.source = mSource; 2981 mOrientedRanges.touchMajor.min = 0; 2982 mOrientedRanges.touchMajor.max = diagonalSize; 2983 mOrientedRanges.touchMajor.flat = 0; 2984 mOrientedRanges.touchMajor.fuzz = 0; 2985 2986 mOrientedRanges.touchMinor = mOrientedRanges.touchMajor; 2987 mOrientedRanges.touchMinor.axis = AMOTION_EVENT_AXIS_TOUCH_MINOR; 2988 2989 mOrientedRanges.toolMajor.axis = AMOTION_EVENT_AXIS_TOOL_MAJOR; 2990 mOrientedRanges.toolMajor.source = mSource; 2991 mOrientedRanges.toolMajor.min = 0; 2992 mOrientedRanges.toolMajor.max = diagonalSize; 2993 mOrientedRanges.toolMajor.flat = 0; 2994 mOrientedRanges.toolMajor.fuzz = 0; 2995 2996 mOrientedRanges.toolMinor = mOrientedRanges.toolMajor; 2997 mOrientedRanges.toolMinor.axis = AMOTION_EVENT_AXIS_TOOL_MINOR; 2998 2999 mOrientedRanges.size.axis = AMOTION_EVENT_AXIS_SIZE; 3000 mOrientedRanges.size.source = mSource; 3001 mOrientedRanges.size.min = 0; 3002 mOrientedRanges.size.max = 1.0; 3003 mOrientedRanges.size.flat = 0; 3004 mOrientedRanges.size.fuzz = 0; 3005 } else { 3006 mSizeScale = 0.0f; 3007 } 3008 3009 // Pressure factors. 3010 mPressureScale = 0; 3011 if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_PHYSICAL 3012 || mCalibration.pressureCalibration 3013 == Calibration::PRESSURE_CALIBRATION_AMPLITUDE) { 3014 if (mCalibration.havePressureScale) { 3015 mPressureScale = mCalibration.pressureScale; 3016 } else if (mRawPointerAxes.pressure.valid 3017 && mRawPointerAxes.pressure.maxValue != 0) { 3018 mPressureScale = 1.0f / mRawPointerAxes.pressure.maxValue; 3019 } 3020 } 3021 3022 mOrientedRanges.pressure.axis = AMOTION_EVENT_AXIS_PRESSURE; 3023 mOrientedRanges.pressure.source = mSource; 3024 mOrientedRanges.pressure.min = 0; 3025 mOrientedRanges.pressure.max = 1.0; 3026 mOrientedRanges.pressure.flat = 0; 3027 mOrientedRanges.pressure.fuzz = 0; 3028 3029 // Tilt 3030 mTiltXCenter = 0; 3031 mTiltXScale = 0; 3032 mTiltYCenter = 0; 3033 mTiltYScale = 0; 3034 mHaveTilt = mRawPointerAxes.tiltX.valid && mRawPointerAxes.tiltY.valid; 3035 if (mHaveTilt) { 3036 mTiltXCenter = avg(mRawPointerAxes.tiltX.minValue, 3037 mRawPointerAxes.tiltX.maxValue); 3038 mTiltYCenter = avg(mRawPointerAxes.tiltY.minValue, 3039 mRawPointerAxes.tiltY.maxValue); 3040 mTiltXScale = M_PI / 180; 3041 mTiltYScale = M_PI / 180; 3042 3043 mOrientedRanges.haveTilt = true; 3044 3045 mOrientedRanges.tilt.axis = AMOTION_EVENT_AXIS_TILT; 3046 mOrientedRanges.tilt.source = mSource; 3047 mOrientedRanges.tilt.min = 0; 3048 mOrientedRanges.tilt.max = M_PI_2; 3049 mOrientedRanges.tilt.flat = 0; 3050 mOrientedRanges.tilt.fuzz = 0; 3051 } 3052 3053 // Orientation 3054 mOrientationCenter = 0; 3055 mOrientationScale = 0; 3056 if (mHaveTilt) { 3057 mOrientedRanges.haveOrientation = true; 3058 3059 mOrientedRanges.orientation.axis = AMOTION_EVENT_AXIS_ORIENTATION; 3060 mOrientedRanges.orientation.source = mSource; 3061 mOrientedRanges.orientation.min = -M_PI; 3062 mOrientedRanges.orientation.max = M_PI; 3063 mOrientedRanges.orientation.flat = 0; 3064 mOrientedRanges.orientation.fuzz = 0; 3065 } else if (mCalibration.orientationCalibration != 3066 Calibration::ORIENTATION_CALIBRATION_NONE) { 3067 if (mCalibration.orientationCalibration 3068 == Calibration::ORIENTATION_CALIBRATION_INTERPOLATED) { 3069 if (mRawPointerAxes.orientation.valid) { 3070 mOrientationCenter = avg(mRawPointerAxes.orientation.minValue, 3071 mRawPointerAxes.orientation.maxValue); 3072 mOrientationScale = M_PI / (mRawPointerAxes.orientation.maxValue - 3073 mRawPointerAxes.orientation.minValue); 3074 } 3075 } 3076 3077 mOrientedRanges.haveOrientation = true; 3078 3079 mOrientedRanges.orientation.axis = AMOTION_EVENT_AXIS_ORIENTATION; 3080 mOrientedRanges.orientation.source = mSource; 3081 mOrientedRanges.orientation.min = -M_PI_2; 3082 mOrientedRanges.orientation.max = M_PI_2; 3083 mOrientedRanges.orientation.flat = 0; 3084 mOrientedRanges.orientation.fuzz = 0; 3085 } 3086 3087 // Distance 3088 mDistanceScale = 0; 3089 if (mCalibration.distanceCalibration != Calibration::DISTANCE_CALIBRATION_NONE) { 3090 if (mCalibration.distanceCalibration 3091 == Calibration::DISTANCE_CALIBRATION_SCALED) { 3092 if (mCalibration.haveDistanceScale) { 3093 mDistanceScale = mCalibration.distanceScale; 3094 } else { 3095 mDistanceScale = 1.0f; 3096 } 3097 } 3098 3099 mOrientedRanges.haveDistance = true; 3100 3101 mOrientedRanges.distance.axis = AMOTION_EVENT_AXIS_DISTANCE; 3102 mOrientedRanges.distance.source = mSource; 3103 mOrientedRanges.distance.min = 3104 mRawPointerAxes.distance.minValue * mDistanceScale; 3105 mOrientedRanges.distance.max = 3106 mRawPointerAxes.distance.maxValue * mDistanceScale; 3107 mOrientedRanges.distance.flat = 0; 3108 mOrientedRanges.distance.fuzz = 3109 mRawPointerAxes.distance.fuzz * mDistanceScale; 3110 } 3111 } 3112 3113 if (orientationChanged || sizeChanged || deviceModeChanged) { 3114 // Compute oriented surface dimensions, precision, scales and ranges. 3115 // Note that the maximum value reported is an inclusive maximum value so it is one 3116 // unit less than the total width or height of surface. 3117 switch (mSurfaceOrientation) { 3118 case DISPLAY_ORIENTATION_90: 3119 case DISPLAY_ORIENTATION_270: 3120 mOrientedSurfaceWidth = mSurfaceHeight; 3121 mOrientedSurfaceHeight = mSurfaceWidth; 3122 3123 mOrientedXPrecision = mYPrecision; 3124 mOrientedYPrecision = mXPrecision; 3125 3126 mOrientedRanges.x.min = 0; 3127 mOrientedRanges.x.max = (mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue) 3128 * mYScale; 3129 mOrientedRanges.x.flat = 0; 3130 mOrientedRanges.x.fuzz = mYScale; 3131 3132 mOrientedRanges.y.min = 0; 3133 mOrientedRanges.y.max = (mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue) 3134 * mXScale; 3135 mOrientedRanges.y.flat = 0; 3136 mOrientedRanges.y.fuzz = mXScale; 3137 break; 3138 3139 default: 3140 mOrientedSurfaceWidth = mSurfaceWidth; 3141 mOrientedSurfaceHeight = mSurfaceHeight; 3142 3143 mOrientedXPrecision = mXPrecision; 3144 mOrientedYPrecision = mYPrecision; 3145 3146 mOrientedRanges.x.min = 0; 3147 mOrientedRanges.x.max = (mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue) 3148 * mXScale; 3149 mOrientedRanges.x.flat = 0; 3150 mOrientedRanges.x.fuzz = mXScale; 3151 3152 mOrientedRanges.y.min = 0; 3153 mOrientedRanges.y.max = (mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue) 3154 * mYScale; 3155 mOrientedRanges.y.flat = 0; 3156 mOrientedRanges.y.fuzz = mYScale; 3157 break; 3158 } 3159 3160 // Compute pointer gesture detection parameters. 3161 if (mDeviceMode == DEVICE_MODE_POINTER) { 3162 int32_t rawWidth = mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue + 1; 3163 int32_t rawHeight = mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue + 1; 3164 float rawDiagonal = hypotf(rawWidth, rawHeight); 3165 float displayDiagonal = hypotf(mAssociatedDisplayWidth, 3166 mAssociatedDisplayHeight); 3167 3168 // Scale movements such that one whole swipe of the touch pad covers a 3169 // given area relative to the diagonal size of the display when no acceleration 3170 // is applied. 3171 // Assume that the touch pad has a square aspect ratio such that movements in 3172 // X and Y of the same number of raw units cover the same physical distance. 3173 mPointerXMovementScale = mConfig.pointerGestureMovementSpeedRatio 3174 * displayDiagonal / rawDiagonal; 3175 mPointerYMovementScale = mPointerXMovementScale; 3176 3177 // Scale zooms to cover a smaller range of the display than movements do. 3178 // This value determines the area around the pointer that is affected by freeform 3179 // pointer gestures. 3180 mPointerXZoomScale = mConfig.pointerGestureZoomSpeedRatio 3181 * displayDiagonal / rawDiagonal; 3182 mPointerYZoomScale = mPointerXZoomScale; 3183 3184 // Max width between pointers to detect a swipe gesture is more than some fraction 3185 // of the diagonal axis of the touch pad. Touches that are wider than this are 3186 // translated into freeform gestures. 3187 mPointerGestureMaxSwipeWidth = 3188 mConfig.pointerGestureSwipeMaxWidthRatio * rawDiagonal; 3189 } 3190 3191 // Abort current pointer usages because the state has changed. 3192 abortPointerUsage(when, 0 /*policyFlags*/); 3193 3194 // Inform the dispatcher about the changes. 3195 *outResetNeeded = true; 3196 bumpGeneration(); 3197 } 3198 } 3199 3200 void TouchInputMapper::dumpSurface(String8& dump) { 3201 dump.appendFormat(INDENT3 "SurfaceWidth: %dpx\n", mSurfaceWidth); 3202 dump.appendFormat(INDENT3 "SurfaceHeight: %dpx\n", mSurfaceHeight); 3203 dump.appendFormat(INDENT3 "SurfaceOrientation: %d\n", mSurfaceOrientation); 3204 } 3205 3206 void TouchInputMapper::configureVirtualKeys() { 3207 Vector<VirtualKeyDefinition> virtualKeyDefinitions; 3208 getEventHub()->getVirtualKeyDefinitions(getDeviceId(), virtualKeyDefinitions); 3209 3210 mVirtualKeys.clear(); 3211 3212 if (virtualKeyDefinitions.size() == 0) { 3213 return; 3214 } 3215 3216 mVirtualKeys.setCapacity(virtualKeyDefinitions.size()); 3217 3218 int32_t touchScreenLeft = mRawPointerAxes.x.minValue; 3219 int32_t touchScreenTop = mRawPointerAxes.y.minValue; 3220 int32_t touchScreenWidth = mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue + 1; 3221 int32_t touchScreenHeight = mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue + 1; 3222 3223 for (size_t i = 0; i < virtualKeyDefinitions.size(); i++) { 3224 const VirtualKeyDefinition& virtualKeyDefinition = 3225 virtualKeyDefinitions[i]; 3226 3227 mVirtualKeys.add(); 3228 VirtualKey& virtualKey = mVirtualKeys.editTop(); 3229 3230 virtualKey.scanCode = virtualKeyDefinition.scanCode; 3231 int32_t keyCode; 3232 uint32_t flags; 3233 if (getEventHub()->mapKey(getDeviceId(), virtualKey.scanCode, 0, &keyCode, &flags)) { 3234 ALOGW(INDENT "VirtualKey %d: could not obtain key code, ignoring", 3235 virtualKey.scanCode); 3236 mVirtualKeys.pop(); // drop the key 3237 continue; 3238 } 3239 3240 virtualKey.keyCode = keyCode; 3241 virtualKey.flags = flags; 3242 3243 // convert the key definition's display coordinates into touch coordinates for a hit box 3244 int32_t halfWidth = virtualKeyDefinition.width / 2; 3245 int32_t halfHeight = virtualKeyDefinition.height / 2; 3246 3247 virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth) 3248 * touchScreenWidth / mSurfaceWidth + touchScreenLeft; 3249 virtualKey.hitRight= (virtualKeyDefinition.centerX + halfWidth) 3250 * touchScreenWidth / mSurfaceWidth + touchScreenLeft; 3251 virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight) 3252 * touchScreenHeight / mSurfaceHeight + touchScreenTop; 3253 virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight) 3254 * touchScreenHeight / mSurfaceHeight + touchScreenTop; 3255 } 3256 } 3257 3258 void TouchInputMapper::dumpVirtualKeys(String8& dump) { 3259 if (!mVirtualKeys.isEmpty()) { 3260 dump.append(INDENT3 "Virtual Keys:\n"); 3261 3262 for (size_t i = 0; i < mVirtualKeys.size(); i++) { 3263 const VirtualKey& virtualKey = mVirtualKeys.itemAt(i); 3264 dump.appendFormat(INDENT4 "%d: scanCode=%d, keyCode=%d, " 3265 "hitLeft=%d, hitRight=%d, hitTop=%d, hitBottom=%d\n", 3266 i, virtualKey.scanCode, virtualKey.keyCode, 3267 virtualKey.hitLeft, virtualKey.hitRight, 3268 virtualKey.hitTop, virtualKey.hitBottom); 3269 } 3270 } 3271 } 3272 3273 void TouchInputMapper::parseCalibration() { 3274 const PropertyMap& in = getDevice()->getConfiguration(); 3275 Calibration& out = mCalibration; 3276 3277 // Size 3278 out.sizeCalibration = Calibration::SIZE_CALIBRATION_DEFAULT; 3279 String8 sizeCalibrationString; 3280 if (in.tryGetProperty(String8("touch.size.calibration"), sizeCalibrationString)) { 3281 if (sizeCalibrationString == "none") { 3282 out.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE; 3283 } else if (sizeCalibrationString == "geometric") { 3284 out.sizeCalibration = Calibration::SIZE_CALIBRATION_GEOMETRIC; 3285 } else if (sizeCalibrationString == "diameter") { 3286 out.sizeCalibration = Calibration::SIZE_CALIBRATION_DIAMETER; 3287 } else if (sizeCalibrationString == "area") { 3288 out.sizeCalibration = Calibration::SIZE_CALIBRATION_AREA; 3289 } else if (sizeCalibrationString != "default") { 3290 ALOGW("Invalid value for touch.size.calibration: '%s'", 3291 sizeCalibrationString.string()); 3292 } 3293 } 3294 3295 out.haveSizeScale = in.tryGetProperty(String8("touch.size.scale"), 3296 out.sizeScale); 3297 out.haveSizeBias = in.tryGetProperty(String8("touch.size.bias"), 3298 out.sizeBias); 3299 out.haveSizeIsSummed = in.tryGetProperty(String8("touch.size.isSummed"), 3300 out.sizeIsSummed); 3301 3302 // Pressure 3303 out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_DEFAULT; 3304 String8 pressureCalibrationString; 3305 if (in.tryGetProperty(String8("touch.pressure.calibration"), pressureCalibrationString)) { 3306 if (pressureCalibrationString == "none") { 3307 out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE; 3308 } else if (pressureCalibrationString == "physical") { 3309 out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL; 3310 } else if (pressureCalibrationString == "amplitude") { 3311 out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE; 3312 } else if (pressureCalibrationString != "default") { 3313 ALOGW("Invalid value for touch.pressure.calibration: '%s'", 3314 pressureCalibrationString.string()); 3315 } 3316 } 3317 3318 out.havePressureScale = in.tryGetProperty(String8("touch.pressure.scale"), 3319 out.pressureScale); 3320 3321 // Orientation 3322 out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_DEFAULT; 3323 String8 orientationCalibrationString; 3324 if (in.tryGetProperty(String8("touch.orientation.calibration"), orientationCalibrationString)) { 3325 if (orientationCalibrationString == "none") { 3326 out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE; 3327 } else if (orientationCalibrationString == "interpolated") { 3328 out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED; 3329 } else if (orientationCalibrationString == "vector") { 3330 out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_VECTOR; 3331 } else if (orientationCalibrationString != "default") { 3332 ALOGW("Invalid value for touch.orientation.calibration: '%s'", 3333 orientationCalibrationString.string()); 3334 } 3335 } 3336 3337 // Distance 3338 out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_DEFAULT; 3339 String8 distanceCalibrationString; 3340 if (in.tryGetProperty(String8("touch.distance.calibration"), distanceCalibrationString)) { 3341 if (distanceCalibrationString == "none") { 3342 out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_NONE; 3343 } else if (distanceCalibrationString == "scaled") { 3344 out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_SCALED; 3345 } else if (distanceCalibrationString != "default") { 3346 ALOGW("Invalid value for touch.distance.calibration: '%s'", 3347 distanceCalibrationString.string()); 3348 } 3349 } 3350 3351 out.haveDistanceScale = in.tryGetProperty(String8("touch.distance.scale"), 3352 out.distanceScale); 3353 } 3354 3355 void TouchInputMapper::resolveCalibration() { 3356 // Size 3357 if (mRawPointerAxes.touchMajor.valid || mRawPointerAxes.toolMajor.valid) { 3358 if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_DEFAULT) { 3359 mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_GEOMETRIC; 3360 } 3361 } else { 3362 mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE; 3363 } 3364 3365 // Pressure 3366 if (mRawPointerAxes.pressure.valid) { 3367 if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_DEFAULT) { 3368 mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL; 3369 } 3370 } else { 3371 mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE; 3372 } 3373 3374 // Orientation 3375 if (mRawPointerAxes.orientation.valid) { 3376 if (mCalibration.orientationCalibration == Calibration::ORIENTATION_CALIBRATION_DEFAULT) { 3377 mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED; 3378 } 3379 } else { 3380 mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE; 3381 } 3382 3383 // Distance 3384 if (mRawPointerAxes.distance.valid) { 3385 if (mCalibration.distanceCalibration == Calibration::DISTANCE_CALIBRATION_DEFAULT) { 3386 mCalibration.distanceCalibration = Calibration::DISTANCE_CALIBRATION_SCALED; 3387 } 3388 } else { 3389 mCalibration.distanceCalibration = Calibration::DISTANCE_CALIBRATION_NONE; 3390 } 3391 } 3392 3393 void TouchInputMapper::dumpCalibration(String8& dump) { 3394 dump.append(INDENT3 "Calibration:\n"); 3395 3396 // Size 3397 switch (mCalibration.sizeCalibration) { 3398 case Calibration::SIZE_CALIBRATION_NONE: 3399 dump.append(INDENT4 "touch.size.calibration: none\n"); 3400 break; 3401 case Calibration::SIZE_CALIBRATION_GEOMETRIC: 3402 dump.append(INDENT4 "touch.size.calibration: geometric\n"); 3403 break; 3404 case Calibration::SIZE_CALIBRATION_DIAMETER: 3405 dump.append(INDENT4 "touch.size.calibration: diameter\n"); 3406 break; 3407 case Calibration::SIZE_CALIBRATION_AREA: 3408 dump.append(INDENT4 "touch.size.calibration: area\n"); 3409 break; 3410 default: 3411 ALOG_ASSERT(false); 3412 } 3413 3414 if (mCalibration.haveSizeScale) { 3415 dump.appendFormat(INDENT4 "touch.size.scale: %0.3f\n", 3416 mCalibration.sizeScale); 3417 } 3418 3419 if (mCalibration.haveSizeBias) { 3420 dump.appendFormat(INDENT4 "touch.size.bias: %0.3f\n", 3421 mCalibration.sizeBias); 3422 } 3423 3424 if (mCalibration.haveSizeIsSummed) { 3425 dump.appendFormat(INDENT4 "touch.size.isSummed: %s\n", 3426 toString(mCalibration.sizeIsSummed)); 3427 } 3428 3429 // Pressure 3430 switch (mCalibration.pressureCalibration) { 3431 case Calibration::PRESSURE_CALIBRATION_NONE: 3432 dump.append(INDENT4 "touch.pressure.calibration: none\n"); 3433 break; 3434 case Calibration::PRESSURE_CALIBRATION_PHYSICAL: 3435 dump.append(INDENT4 "touch.pressure.calibration: physical\n"); 3436 break; 3437 case Calibration::PRESSURE_CALIBRATION_AMPLITUDE: 3438 dump.append(INDENT4 "touch.pressure.calibration: amplitude\n"); 3439 break; 3440 default: 3441 ALOG_ASSERT(false); 3442 } 3443 3444 if (mCalibration.havePressureScale) { 3445 dump.appendFormat(INDENT4 "touch.pressure.scale: %0.3f\n", 3446 mCalibration.pressureScale); 3447 } 3448 3449 // Orientation 3450 switch (mCalibration.orientationCalibration) { 3451 case Calibration::ORIENTATION_CALIBRATION_NONE: 3452 dump.append(INDENT4 "touch.orientation.calibration: none\n"); 3453 break; 3454 case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED: 3455 dump.append(INDENT4 "touch.orientation.calibration: interpolated\n"); 3456 break; 3457 case Calibration::ORIENTATION_CALIBRATION_VECTOR: 3458 dump.append(INDENT4 "touch.orientation.calibration: vector\n"); 3459 break; 3460 default: 3461 ALOG_ASSERT(false); 3462 } 3463 3464 // Distance 3465 switch (mCalibration.distanceCalibration) { 3466 case Calibration::DISTANCE_CALIBRATION_NONE: 3467 dump.append(INDENT4 "touch.distance.calibration: none\n"); 3468 break; 3469 case Calibration::DISTANCE_CALIBRATION_SCALED: 3470 dump.append(INDENT4 "touch.distance.calibration: scaled\n"); 3471 break; 3472 default: 3473 ALOG_ASSERT(false); 3474 } 3475 3476 if (mCalibration.haveDistanceScale) { 3477 dump.appendFormat(INDENT4 "touch.distance.scale: %0.3f\n", 3478 mCalibration.distanceScale); 3479 } 3480 } 3481 3482 void TouchInputMapper::reset(nsecs_t when) { 3483 mCursorButtonAccumulator.reset(getDevice()); 3484 mCursorScrollAccumulator.reset(getDevice()); 3485 mTouchButtonAccumulator.reset(getDevice()); 3486 3487 mPointerVelocityControl.reset(); 3488 mWheelXVelocityControl.reset(); 3489 mWheelYVelocityControl.reset(); 3490 3491 mCurrentRawPointerData.clear(); 3492 mLastRawPointerData.clear(); 3493 mCurrentCookedPointerData.clear(); 3494 mLastCookedPointerData.clear(); 3495 mCurrentButtonState = 0; 3496 mLastButtonState = 0; 3497 mCurrentRawVScroll = 0; 3498 mCurrentRawHScroll = 0; 3499 mCurrentFingerIdBits.clear(); 3500 mLastFingerIdBits.clear(); 3501 mCurrentStylusIdBits.clear(); 3502 mLastStylusIdBits.clear(); 3503 mCurrentMouseIdBits.clear(); 3504 mLastMouseIdBits.clear(); 3505 mPointerUsage = POINTER_USAGE_NONE; 3506 mSentHoverEnter = false; 3507 mDownTime = 0; 3508 3509 mCurrentVirtualKey.down = false; 3510 3511 mPointerGesture.reset(); 3512 mPointerSimple.reset(); 3513 3514 if (mPointerController != NULL) { 3515 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); 3516 mPointerController->clearSpots(); 3517 } 3518 3519 InputMapper::reset(when); 3520 } 3521 3522 void TouchInputMapper::process(const RawEvent* rawEvent) { 3523 mCursorButtonAccumulator.process(rawEvent); 3524 mCursorScrollAccumulator.process(rawEvent); 3525 mTouchButtonAccumulator.process(rawEvent); 3526 3527 if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { 3528 sync(rawEvent->when); 3529 } 3530 } 3531 3532 void TouchInputMapper::sync(nsecs_t when) { 3533 // Sync button state. 3534 mCurrentButtonState = mTouchButtonAccumulator.getButtonState() 3535 | mCursorButtonAccumulator.getButtonState(); 3536 3537 // Sync scroll state. 3538 mCurrentRawVScroll = mCursorScrollAccumulator.getRelativeVWheel(); 3539 mCurrentRawHScroll = mCursorScrollAccumulator.getRelativeHWheel(); 3540 mCursorScrollAccumulator.finishSync(); 3541 3542 // Sync touch state. 3543 bool havePointerIds = true; 3544 mCurrentRawPointerData.clear(); 3545 syncTouch(when, &havePointerIds); 3546 3547 #if DEBUG_RAW_EVENTS 3548 if (!havePointerIds) { 3549 ALOGD("syncTouch: pointerCount %d -> %d, no pointer ids", 3550 mLastRawPointerData.pointerCount, 3551 mCurrentRawPointerData.pointerCount); 3552 } else { 3553 ALOGD("syncTouch: pointerCount %d -> %d, touching ids 0x%08x -> 0x%08x, " 3554 "hovering ids 0x%08x -> 0x%08x", 3555 mLastRawPointerData.pointerCount, 3556 mCurrentRawPointerData.pointerCount, 3557 mLastRawPointerData.touchingIdBits.value, 3558 mCurrentRawPointerData.touchingIdBits.value, 3559 mLastRawPointerData.hoveringIdBits.value, 3560 mCurrentRawPointerData.hoveringIdBits.value); 3561 } 3562 #endif 3563 3564 // Reset state that we will compute below. 3565 mCurrentFingerIdBits.clear(); 3566 mCurrentStylusIdBits.clear(); 3567 mCurrentMouseIdBits.clear(); 3568 mCurrentCookedPointerData.clear(); 3569 3570 if (mDeviceMode == DEVICE_MODE_DISABLED) { 3571 // Drop all input if the device is disabled. 3572 mCurrentRawPointerData.clear(); 3573 mCurrentButtonState = 0; 3574 } else { 3575 // Preprocess pointer data. 3576 if (!havePointerIds) { 3577 assignPointerIds(); 3578 } 3579 3580 // Handle policy on initial down or hover events. 3581 uint32_t policyFlags = 0; 3582 bool initialDown = mLastRawPointerData.pointerCount == 0 3583 && mCurrentRawPointerData.pointerCount != 0; 3584 bool buttonsPressed = mCurrentButtonState & ~mLastButtonState; 3585 if (initialDown || buttonsPressed) { 3586 // If this is a touch screen, hide the pointer on an initial down. 3587 if (mDeviceMode == DEVICE_MODE_DIRECT) { 3588 getContext()->fadePointer(); 3589 } 3590 3591 // Initial downs on external touch devices should wake the device. 3592 // We don't do this for internal touch screens to prevent them from waking 3593 // up in your pocket. 3594 // TODO: Use the input device configuration to control this behavior more finely. 3595 if (getDevice()->isExternal()) { 3596 policyFlags |= POLICY_FLAG_WAKE_DROPPED; 3597 } 3598 } 3599 3600 // Synthesize key down from raw buttons if needed. 3601 synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, getDeviceId(), mSource, 3602 policyFlags, mLastButtonState, mCurrentButtonState); 3603 3604 // Consume raw off-screen touches before cooking pointer data. 3605 // If touches are consumed, subsequent code will not receive any pointer data. 3606 if (consumeRawTouches(when, policyFlags)) { 3607 mCurrentRawPointerData.clear(); 3608 } 3609 3610 // Cook pointer data. This call populates the mCurrentCookedPointerData structure 3611 // with cooked pointer data that has the same ids and indices as the raw data. 3612 // The following code can use either the raw or cooked data, as needed. 3613 cookPointerData(); 3614 3615 // Dispatch the touches either directly or by translation through a pointer on screen. 3616 if (mDeviceMode == DEVICE_MODE_POINTER) { 3617 for (BitSet32 idBits(mCurrentRawPointerData.touchingIdBits); !idBits.isEmpty(); ) { 3618 uint32_t id = idBits.clearFirstMarkedBit(); 3619 const RawPointerData::Pointer& pointer = mCurrentRawPointerData.pointerForId(id); 3620 if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_STYLUS 3621 || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_ERASER) { 3622 mCurrentStylusIdBits.markBit(id); 3623 } else if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_FINGER 3624 || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { 3625 mCurrentFingerIdBits.markBit(id); 3626 } else if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_MOUSE) { 3627 mCurrentMouseIdBits.markBit(id); 3628 } 3629 } 3630 for (BitSet32 idBits(mCurrentRawPointerData.hoveringIdBits); !idBits.isEmpty(); ) { 3631 uint32_t id = idBits.clearFirstMarkedBit(); 3632 const RawPointerData::Pointer& pointer = mCurrentRawPointerData.pointerForId(id); 3633 if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_STYLUS 3634 || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_ERASER) { 3635 mCurrentStylusIdBits.markBit(id); 3636 } 3637 } 3638 3639 // Stylus takes precedence over all tools, then mouse, then finger. 3640 PointerUsage pointerUsage = mPointerUsage; 3641 if (!mCurrentStylusIdBits.isEmpty()) { 3642 mCurrentMouseIdBits.clear(); 3643 mCurrentFingerIdBits.clear(); 3644 pointerUsage = POINTER_USAGE_STYLUS; 3645 } else if (!mCurrentMouseIdBits.isEmpty()) { 3646 mCurrentFingerIdBits.clear(); 3647 pointerUsage = POINTER_USAGE_MOUSE; 3648 } else if (!mCurrentFingerIdBits.isEmpty() || isPointerDown(mCurrentButtonState)) { 3649 pointerUsage = POINTER_USAGE_GESTURES; 3650 } 3651 3652 dispatchPointerUsage(when, policyFlags, pointerUsage); 3653 } else { 3654 if (mDeviceMode == DEVICE_MODE_DIRECT 3655 && mConfig.showTouches && mPointerController != NULL) { 3656 mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_SPOT); 3657 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); 3658 3659 mPointerController->setButtonState(mCurrentButtonState); 3660 mPointerController->setSpots(mCurrentCookedPointerData.pointerCoords, 3661 mCurrentCookedPointerData.idToIndex, 3662 mCurrentCookedPointerData.touchingIdBits); 3663 } 3664 3665 dispatchHoverExit(when, policyFlags); 3666 dispatchTouches(when, policyFlags); 3667 dispatchHoverEnterAndMove(when, policyFlags); 3668 } 3669 3670 // Synthesize key up from raw buttons if needed. 3671 synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, getDeviceId(), mSource, 3672 policyFlags, mLastButtonState, mCurrentButtonState); 3673 } 3674 3675 // Copy current touch to last touch in preparation for the next cycle. 3676 mLastRawPointerData.copyFrom(mCurrentRawPointerData); 3677 mLastCookedPointerData.copyFrom(mCurrentCookedPointerData); 3678 mLastButtonState = mCurrentButtonState; 3679 mLastFingerIdBits = mCurrentFingerIdBits; 3680 mLastStylusIdBits = mCurrentStylusIdBits; 3681 mLastMouseIdBits = mCurrentMouseIdBits; 3682 3683 // Clear some transient state. 3684 mCurrentRawVScroll = 0; 3685 mCurrentRawHScroll = 0; 3686 } 3687 3688 void TouchInputMapper::timeoutExpired(nsecs_t when) { 3689 if (mDeviceMode == DEVICE_MODE_POINTER) { 3690 if (mPointerUsage == POINTER_USAGE_GESTURES) { 3691 dispatchPointerGestures(when, 0 /*policyFlags*/, true /*isTimeout*/); 3692 } 3693 } 3694 } 3695 3696 bool TouchInputMapper::consumeRawTouches(nsecs_t when, uint32_t policyFlags) { 3697 // Check for release of a virtual key. 3698 if (mCurrentVirtualKey.down) { 3699 if (mCurrentRawPointerData.touchingIdBits.isEmpty()) { 3700 // Pointer went up while virtual key was down. 3701 mCurrentVirtualKey.down = false; 3702 if (!mCurrentVirtualKey.ignored) { 3703 #if DEBUG_VIRTUAL_KEYS 3704 ALOGD("VirtualKeys: Generating key up: keyCode=%d, scanCode=%d", 3705 mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); 3706 #endif 3707 dispatchVirtualKey(when, policyFlags, 3708 AKEY_EVENT_ACTION_UP, 3709 AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY); 3710 } 3711 return true; 3712 } 3713 3714 if (mCurrentRawPointerData.touchingIdBits.count() == 1) { 3715 uint32_t id = mCurrentRawPointerData.touchingIdBits.firstMarkedBit(); 3716 const RawPointerData::Pointer& pointer = mCurrentRawPointerData.pointerForId(id); 3717 const VirtualKey* virtualKey = findVirtualKeyHit(pointer.x, pointer.y); 3718 if (virtualKey && virtualKey->keyCode == mCurrentVirtualKey.keyCode) { 3719 // Pointer is still within the space of the virtual key. 3720 return true; 3721 } 3722 } 3723 3724 // Pointer left virtual key area or another pointer also went down. 3725 // Send key cancellation but do not consume the touch yet. 3726 // This is useful when the user swipes through from the virtual key area 3727 // into the main display surface. 3728 mCurrentVirtualKey.down = false; 3729 if (!mCurrentVirtualKey.ignored) { 3730 #if DEBUG_VIRTUAL_KEYS 3731 ALOGD("VirtualKeys: Canceling key: keyCode=%d, scanCode=%d", 3732 mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); 3733 #endif 3734 dispatchVirtualKey(when, policyFlags, 3735 AKEY_EVENT_ACTION_UP, 3736 AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY 3737 | AKEY_EVENT_FLAG_CANCELED); 3738 } 3739 } 3740 3741 if (mLastRawPointerData.touchingIdBits.isEmpty() 3742 && !mCurrentRawPointerData.touchingIdBits.isEmpty()) { 3743 // Pointer just went down. Check for virtual key press or off-screen touches. 3744 uint32_t id = mCurrentRawPointerData.touchingIdBits.firstMarkedBit(); 3745 const RawPointerData::Pointer& pointer = mCurrentRawPointerData.pointerForId(id); 3746 if (!isPointInsideSurface(pointer.x, pointer.y)) { 3747 // If exactly one pointer went down, check for virtual key hit. 3748 // Otherwise we will drop the entire stroke. 3749 if (mCurrentRawPointerData.touchingIdBits.count() == 1) { 3750 const VirtualKey* virtualKey = findVirtualKeyHit(pointer.x, pointer.y); 3751 if (virtualKey) { 3752 mCurrentVirtualKey.down = true; 3753 mCurrentVirtualKey.downTime = when; 3754 mCurrentVirtualKey.keyCode = virtualKey->keyCode; 3755 mCurrentVirtualKey.scanCode = virtualKey->scanCode; 3756 mCurrentVirtualKey.ignored = mContext->shouldDropVirtualKey( 3757 when, getDevice(), virtualKey->keyCode, virtualKey->scanCode); 3758 3759 if (!mCurrentVirtualKey.ignored) { 3760 #if DEBUG_VIRTUAL_KEYS 3761 ALOGD("VirtualKeys: Generating key down: keyCode=%d, scanCode=%d", 3762 mCurrentVirtualKey.keyCode, 3763 mCurrentVirtualKey.scanCode); 3764 #endif 3765 dispatchVirtualKey(when, policyFlags, 3766 AKEY_EVENT_ACTION_DOWN, 3767 AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY); 3768 } 3769 } 3770 } 3771 return true; 3772 } 3773 } 3774 3775 // Disable all virtual key touches that happen within a short time interval of the 3776 // most recent touch within the screen area. The idea is to filter out stray 3777 // virtual key presses when interacting with the touch screen. 3778 // 3779 // Problems we're trying to solve: 3780 // 3781 // 1. While scrolling a list or dragging the window shade, the user swipes down into a 3782 // virtual key area that is implemented by a separate touch panel and accidentally 3783 // triggers a virtual key. 3784 // 3785 // 2. While typing in the on screen keyboard, the user taps slightly outside the screen 3786 // area and accidentally triggers a virtual key. This often happens when virtual keys 3787 // are layed out below the screen near to where the on screen keyboard's space bar 3788 // is displayed. 3789 if (mConfig.virtualKeyQuietTime > 0 && !mCurrentRawPointerData.touchingIdBits.isEmpty()) { 3790 mContext->disableVirtualKeysUntil(when + mConfig.virtualKeyQuietTime); 3791 } 3792 return false; 3793 } 3794 3795 void TouchInputMapper::dispatchVirtualKey(nsecs_t when, uint32_t policyFlags, 3796 int32_t keyEventAction, int32_t keyEventFlags) { 3797 int32_t keyCode = mCurrentVirtualKey.keyCode; 3798 int32_t scanCode = mCurrentVirtualKey.scanCode; 3799 nsecs_t downTime = mCurrentVirtualKey.downTime; 3800 int32_t metaState = mContext->getGlobalMetaState(); 3801 policyFlags |= POLICY_FLAG_VIRTUAL; 3802 3803 NotifyKeyArgs args(when, getDeviceId(), AINPUT_SOURCE_KEYBOARD, policyFlags, 3804 keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime); 3805 getListener()->notifyKey(&args); 3806 } 3807 3808 void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) { 3809 BitSet32 currentIdBits = mCurrentCookedPointerData.touchingIdBits; 3810 BitSet32 lastIdBits = mLastCookedPointerData.touchingIdBits; 3811 int32_t metaState = getContext()->getGlobalMetaState(); 3812 int32_t buttonState = mCurrentButtonState; 3813 3814 if (currentIdBits == lastIdBits) { 3815 if (!currentIdBits.isEmpty()) { 3816 // No pointer id changes so this is a move event. 3817 // The listener takes care of batching moves so we don't have to deal with that here. 3818 dispatchMotion(when, policyFlags, mSource, 3819 AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, 3820 AMOTION_EVENT_EDGE_FLAG_NONE, 3821 mCurrentCookedPointerData.pointerProperties, 3822 mCurrentCookedPointerData.pointerCoords, 3823 mCurrentCookedPointerData.idToIndex, 3824 currentIdBits, -1, 3825 mOrientedXPrecision, mOrientedYPrecision, mDownTime); 3826 } 3827 } else { 3828 // There may be pointers going up and pointers going down and pointers moving 3829 // all at the same time. 3830 BitSet32 upIdBits(lastIdBits.value & ~currentIdBits.value); 3831 BitSet32 downIdBits(currentIdBits.value & ~lastIdBits.value); 3832 BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value); 3833 BitSet32 dispatchedIdBits(lastIdBits.value); 3834 3835 // Update last coordinates of pointers that have moved so that we observe the new 3836 // pointer positions at the same time as other pointers that have just gone up. 3837 bool moveNeeded = updateMovedPointers( 3838 mCurrentCookedPointerData.pointerProperties, 3839 mCurrentCookedPointerData.pointerCoords, 3840 mCurrentCookedPointerData.idToIndex, 3841 mLastCookedPointerData.pointerProperties, 3842 mLastCookedPointerData.pointerCoords, 3843 mLastCookedPointerData.idToIndex, 3844 moveIdBits); 3845 if (buttonState != mLastButtonState) { 3846 moveNeeded = true; 3847 } 3848 3849 // Dispatch pointer up events. 3850 while (!upIdBits.isEmpty()) { 3851 uint32_t upId = upIdBits.clearFirstMarkedBit(); 3852 3853 dispatchMotion(when, policyFlags, mSource, 3854 AMOTION_EVENT_ACTION_POINTER_UP, 0, metaState, buttonState, 0, 3855 mLastCookedPointerData.pointerProperties, 3856 mLastCookedPointerData.pointerCoords, 3857 mLastCookedPointerData.idToIndex, 3858 dispatchedIdBits, upId, 3859 mOrientedXPrecision, mOrientedYPrecision, mDownTime); 3860 dispatchedIdBits.clearBit(upId); 3861 } 3862 3863 // Dispatch move events if any of the remaining pointers moved from their old locations. 3864 // Although applications receive new locations as part of individual pointer up 3865 // events, they do not generally handle them except when presented in a move event. 3866 if (moveNeeded) { 3867 ALOG_ASSERT(moveIdBits.value == dispatchedIdBits.value); 3868 dispatchMotion(when, policyFlags, mSource, 3869 AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, 0, 3870 mCurrentCookedPointerData.pointerProperties, 3871 mCurrentCookedPointerData.pointerCoords, 3872 mCurrentCookedPointerData.idToIndex, 3873 dispatchedIdBits, -1, 3874 mOrientedXPrecision, mOrientedYPrecision, mDownTime); 3875 } 3876 3877 // Dispatch pointer down events using the new pointer locations. 3878 while (!downIdBits.isEmpty()) { 3879 uint32_t downId = downIdBits.clearFirstMarkedBit(); 3880 dispatchedIdBits.markBit(downId); 3881 3882 if (dispatchedIdBits.count() == 1) { 3883 // First pointer is going down. Set down time. 3884 mDownTime = when; 3885 } 3886 3887 dispatchMotion(when, policyFlags, mSource, 3888 AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, buttonState, 0, 3889 mCurrentCookedPointerData.pointerProperties, 3890 mCurrentCookedPointerData.pointerCoords, 3891 mCurrentCookedPointerData.idToIndex, 3892 dispatchedIdBits, downId, 3893 mOrientedXPrecision, mOrientedYPrecision, mDownTime); 3894 } 3895 } 3896 } 3897 3898 void TouchInputMapper::dispatchHoverExit(nsecs_t when, uint32_t policyFlags) { 3899 if (mSentHoverEnter && 3900 (mCurrentCookedPointerData.hoveringIdBits.isEmpty() 3901 || !mCurrentCookedPointerData.touchingIdBits.isEmpty())) { 3902 int32_t metaState = getContext()->getGlobalMetaState(); 3903 dispatchMotion(when, policyFlags, mSource, 3904 AMOTION_EVENT_ACTION_HOVER_EXIT, 0, metaState, mLastButtonState, 0, 3905 mLastCookedPointerData.pointerProperties, 3906 mLastCookedPointerData.pointerCoords, 3907 mLastCookedPointerData.idToIndex, 3908 mLastCookedPointerData.hoveringIdBits, -1, 3909 mOrientedXPrecision, mOrientedYPrecision, mDownTime); 3910 mSentHoverEnter = false; 3911 } 3912 } 3913 3914 void TouchInputMapper::dispatchHoverEnterAndMove(nsecs_t when, uint32_t policyFlags) { 3915 if (mCurrentCookedPointerData.touchingIdBits.isEmpty() 3916 && !mCurrentCookedPointerData.hoveringIdBits.isEmpty()) { 3917 int32_t metaState = getContext()->getGlobalMetaState(); 3918 if (!mSentHoverEnter) { 3919 dispatchMotion(when, policyFlags, mSource, 3920 AMOTION_EVENT_ACTION_HOVER_ENTER, 0, metaState, mCurrentButtonState, 0, 3921 mCurrentCookedPointerData.pointerProperties, 3922 mCurrentCookedPointerData.pointerCoords, 3923 mCurrentCookedPointerData.idToIndex, 3924 mCurrentCookedPointerData.hoveringIdBits, -1, 3925 mOrientedXPrecision, mOrientedYPrecision, mDownTime); 3926 mSentHoverEnter = true; 3927 } 3928 3929 dispatchMotion(when, policyFlags, mSource, 3930 AMOTION_EVENT_ACTION_HOVER_MOVE, 0, metaState, mCurrentButtonState, 0, 3931 mCurrentCookedPointerData.pointerProperties, 3932 mCurrentCookedPointerData.pointerCoords, 3933 mCurrentCookedPointerData.idToIndex, 3934 mCurrentCookedPointerData.hoveringIdBits, -1, 3935 mOrientedXPrecision, mOrientedYPrecision, mDownTime); 3936 } 3937 } 3938 3939 void TouchInputMapper::cookPointerData() { 3940 uint32_t currentPointerCount = mCurrentRawPointerData.pointerCount; 3941 3942 mCurrentCookedPointerData.clear(); 3943 mCurrentCookedPointerData.pointerCount = currentPointerCount; 3944 mCurrentCookedPointerData.hoveringIdBits = mCurrentRawPointerData.hoveringIdBits; 3945 mCurrentCookedPointerData.touchingIdBits = mCurrentRawPointerData.touchingIdBits; 3946 3947 // Walk through the the active pointers and map device coordinates onto 3948 // surface coordinates and adjust for display orientation. 3949 for (uint32_t i = 0; i < currentPointerCount; i++) { 3950 const RawPointerData::Pointer& in = mCurrentRawPointerData.pointers[i]; 3951 3952 // Size 3953 float touchMajor, touchMinor, toolMajor, toolMinor, size; 3954 switch (mCalibration.sizeCalibration) { 3955 case Calibration::SIZE_CALIBRATION_GEOMETRIC: 3956 case Calibration::SIZE_CALIBRATION_DIAMETER: 3957 case Calibration::SIZE_CALIBRATION_AREA: 3958 if (mRawPointerAxes.touchMajor.valid && mRawPointerAxes.toolMajor.valid) { 3959 touchMajor = in.touchMajor; 3960 touchMinor = mRawPointerAxes.touchMinor.valid ? in.touchMinor : in.touchMajor; 3961 toolMajor = in.toolMajor; 3962 toolMinor = mRawPointerAxes.toolMinor.valid ? in.toolMinor : in.toolMajor; 3963 size = mRawPointerAxes.touchMinor.valid 3964 ? avg(in.touchMajor, in.touchMinor) : in.touchMajor; 3965 } else if (mRawPointerAxes.touchMajor.valid) { 3966 toolMajor = touchMajor = in.touchMajor; 3967 toolMinor = touchMinor = mRawPointerAxes.touchMinor.valid 3968 ? in.touchMinor : in.touchMajor; 3969 size = mRawPointerAxes.touchMinor.valid 3970 ? avg(in.touchMajor, in.touchMinor) : in.touchMajor; 3971 } else if (mRawPointerAxes.toolMajor.valid) { 3972 touchMajor = toolMajor = in.toolMajor; 3973 touchMinor = toolMinor = mRawPointerAxes.toolMinor.valid 3974 ? in.toolMinor : in.toolMajor; 3975 size = mRawPointerAxes.toolMinor.valid 3976 ? avg(in.toolMajor, in.toolMinor) : in.toolMajor; 3977 } else { 3978 ALOG_ASSERT(false, "No touch or tool axes. " 3979 "Size calibration should have been resolved to NONE."); 3980 touchMajor = 0; 3981 touchMinor = 0; 3982 toolMajor = 0; 3983 toolMinor = 0; 3984 size = 0; 3985 } 3986 3987 if (mCalibration.haveSizeIsSummed && mCalibration.sizeIsSummed) { 3988 uint32_t touchingCount = mCurrentRawPointerData.touchingIdBits.count(); 3989 if (touchingCount > 1) { 3990 touchMajor /= touchingCount; 3991 touchMinor /= touchingCount; 3992 toolMajor /= touchingCount; 3993 toolMinor /= touchingCount; 3994 size /= touchingCount; 3995 } 3996 } 3997 3998 if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_GEOMETRIC) { 3999 touchMajor *= mGeometricScale; 4000 touchMinor *= mGeometricScale; 4001 toolMajor *= mGeometricScale; 4002 toolMinor *= mGeometricScale; 4003 } else if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_AREA) { 4004 touchMajor = touchMajor > 0 ? sqrtf(touchMajor) : 0; 4005 touchMinor = touchMajor; 4006 toolMajor = toolMajor > 0 ? sqrtf(toolMajor) : 0; 4007 toolMinor = toolMajor; 4008 } else if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_DIAMETER) { 4009 touchMinor = touchMajor; 4010 toolMinor = toolMajor; 4011 } 4012 4013 mCalibration.applySizeScaleAndBias(&touchMajor); 4014 mCalibration.applySizeScaleAndBias(&touchMinor); 4015 mCalibration.applySizeScaleAndBias(&toolMajor); 4016 mCalibration.applySizeScaleAndBias(&toolMinor); 4017 size *= mSizeScale; 4018 break; 4019 default: 4020 touchMajor = 0; 4021 touchMinor = 0; 4022 toolMajor = 0; 4023 toolMinor = 0; 4024 size = 0; 4025 break; 4026 } 4027 4028 // Pressure 4029 float pressure; 4030 switch (mCalibration.pressureCalibration) { 4031 case Calibration::PRESSURE_CALIBRATION_PHYSICAL: 4032 case Calibration::PRESSURE_CALIBRATION_AMPLITUDE: 4033 pressure = in.pressure * mPressureScale; 4034 break; 4035 default: 4036 pressure = in.isHovering ? 0 : 1; 4037 break; 4038 } 4039 4040 // Tilt and Orientation 4041 float tilt; 4042 float orientation; 4043 if (mHaveTilt) { 4044 float tiltXAngle = (in.tiltX - mTiltXCenter) * mTiltXScale; 4045 float tiltYAngle = (in.tiltY - mTiltYCenter) * mTiltYScale; 4046 orientation = atan2f(-sinf(tiltXAngle), sinf(tiltYAngle)); 4047 tilt = acosf(cosf(tiltXAngle) * cosf(tiltYAngle)); 4048 } else { 4049 tilt = 0; 4050 4051 switch (mCalibration.orientationCalibration) { 4052 case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED: 4053 orientation = (in.orientation - mOrientationCenter) * mOrientationScale; 4054 break; 4055 case Calibration::ORIENTATION_CALIBRATION_VECTOR: { 4056 int32_t c1 = signExtendNybble((in.orientation & 0xf0) >> 4); 4057 int32_t c2 = signExtendNybble(in.orientation & 0x0f); 4058 if (c1 != 0 || c2 != 0) { 4059 orientation = atan2f(c1, c2) * 0.5f; 4060 float confidence = hypotf(c1, c2); 4061 float scale = 1.0f + confidence / 16.0f; 4062 touchMajor *= scale; 4063 touchMinor /= scale; 4064 toolMajor *= scale; 4065 toolMinor /= scale; 4066 } else { 4067 orientation = 0; 4068 } 4069 break; 4070 } 4071 default: 4072 orientation = 0; 4073 } 4074 } 4075 4076 // Distance 4077 float distance; 4078 switch (mCalibration.distanceCalibration) { 4079 case Calibration::DISTANCE_CALIBRATION_SCALED: 4080 distance = in.distance * mDistanceScale; 4081 break; 4082 default: 4083 distance = 0; 4084 } 4085 4086 // X and Y 4087 // Adjust coords for surface orientation. 4088 float x, y; 4089 switch (mSurfaceOrientation) { 4090 case DISPLAY_ORIENTATION_90: 4091 x = float(in.y - mRawPointerAxes.y.minValue) * mYScale; 4092 y = float(mRawPointerAxes.x.maxValue - in.x) * mXScale; 4093 orientation -= M_PI_2; 4094 if (orientation < - M_PI_2) { 4095 orientation += M_PI; 4096 } 4097 break; 4098 case DISPLAY_ORIENTATION_180: 4099 x = float(mRawPointerAxes.x.maxValue - in.x) * mXScale; 4100 y = float(mRawPointerAxes.y.maxValue - in.y) * mYScale; 4101 break; 4102 case DISPLAY_ORIENTATION_270: 4103 x = float(mRawPointerAxes.y.maxValue - in.y) * mYScale; 4104 y = float(in.x - mRawPointerAxes.x.minValue) * mXScale; 4105 orientation += M_PI_2; 4106 if (orientation > M_PI_2) { 4107 orientation -= M_PI; 4108 } 4109 break; 4110 default: 4111 x = float(in.x - mRawPointerAxes.x.minValue) * mXScale; 4112 y = float(in.y - mRawPointerAxes.y.minValue) * mYScale; 4113 break; 4114 } 4115 4116 // Write output coords. 4117 PointerCoords& out = mCurrentCookedPointerData.pointerCoords[i]; 4118 out.clear(); 4119 out.setAxisValue(AMOTION_EVENT_AXIS_X, x); 4120 out.setAxisValue(AMOTION_EVENT_AXIS_Y, y); 4121 out.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure); 4122 out.setAxisValue(AMOTION_EVENT_AXIS_SIZE, size); 4123 out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, touchMajor); 4124 out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, touchMinor); 4125 out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, toolMajor); 4126 out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, toolMinor); 4127 out.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, orientation); 4128 out.setAxisValue(AMOTION_EVENT_AXIS_TILT, tilt); 4129 out.setAxisValue(AMOTION_EVENT_AXIS_DISTANCE, distance); 4130 4131 // Write output properties. 4132 PointerProperties& properties = mCurrentCookedPointerData.pointerProperties[i]; 4133 uint32_t id = in.id; 4134 properties.clear(); 4135 properties.id = id; 4136 properties.toolType = in.toolType; 4137 4138 // Write id index. 4139 mCurrentCookedPointerData.idToIndex[id] = i; 4140 } 4141 } 4142 4143 void TouchInputMapper::dispatchPointerUsage(nsecs_t when, uint32_t policyFlags, 4144 PointerUsage pointerUsage) { 4145 if (pointerUsage != mPointerUsage) { 4146 abortPointerUsage(when, policyFlags); 4147 mPointerUsage = pointerUsage; 4148 } 4149 4150 switch (mPointerUsage) { 4151 case POINTER_USAGE_GESTURES: 4152 dispatchPointerGestures(when, policyFlags, false /*isTimeout*/); 4153 break; 4154 case POINTER_USAGE_STYLUS: 4155 dispatchPointerStylus(when, policyFlags); 4156 break; 4157 case POINTER_USAGE_MOUSE: 4158 dispatchPointerMouse(when, policyFlags); 4159 break; 4160 default: 4161 break; 4162 } 4163 } 4164 4165 void TouchInputMapper::abortPointerUsage(nsecs_t when, uint32_t policyFlags) { 4166 switch (mPointerUsage) { 4167 case POINTER_USAGE_GESTURES: 4168 abortPointerGestures(when, policyFlags); 4169 break; 4170 case POINTER_USAGE_STYLUS: 4171 abortPointerStylus(when, policyFlags); 4172 break; 4173 case POINTER_USAGE_MOUSE: 4174 abortPointerMouse(when, policyFlags); 4175 break; 4176 default: 4177 break; 4178 } 4179 4180 mPointerUsage = POINTER_USAGE_NONE; 4181 } 4182 4183 void TouchInputMapper::dispatchPointerGestures(nsecs_t when, uint32_t policyFlags, 4184 bool isTimeout) { 4185 // Update current gesture coordinates. 4186 bool cancelPreviousGesture, finishPreviousGesture; 4187 bool sendEvents = preparePointerGestures(when, 4188 &cancelPreviousGesture, &finishPreviousGesture, isTimeout); 4189 if (!sendEvents) { 4190 return; 4191 } 4192 if (finishPreviousGesture) { 4193 cancelPreviousGesture = false; 4194 } 4195 4196 // Update the pointer presentation and spots. 4197 if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) { 4198 mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_SPOT); 4199 if (finishPreviousGesture || cancelPreviousGesture) { 4200 mPointerController->clearSpots(); 4201 } 4202 mPointerController->setSpots(mPointerGesture.currentGestureCoords, 4203 mPointerGesture.currentGestureIdToIndex, 4204 mPointerGesture.currentGestureIdBits); 4205 } else { 4206 mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_POINTER); 4207 } 4208 4209 // Show or hide the pointer if needed. 4210 switch (mPointerGesture.currentGestureMode) { 4211 case PointerGesture::NEUTRAL: 4212 case PointerGesture::QUIET: 4213 if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS 4214 && (mPointerGesture.lastGestureMode == PointerGesture::SWIPE 4215 || mPointerGesture.lastGestureMode == PointerGesture::FREEFORM)) { 4216 // Remind the user of where the pointer is after finishing a gesture with spots. 4217 mPointerController->unfade(PointerControllerInterface::TRANSITION_GRADUAL); 4218 } 4219 break; 4220 case PointerGesture::TAP: 4221 case PointerGesture::TAP_DRAG: 4222 case PointerGesture::BUTTON_CLICK_OR_DRAG: 4223 case PointerGesture::HOVER: 4224 case PointerGesture::PRESS: 4225 // Unfade the pointer when the current gesture manipulates the 4226 // area directly under the pointer. 4227 mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE); 4228 break; 4229 case PointerGesture::SWIPE: 4230 case PointerGesture::FREEFORM: 4231 // Fade the pointer when the current gesture manipulates a different 4232 // area and there are spots to guide the user experience. 4233 if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) { 4234 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); 4235 } else { 4236 mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE); 4237 } 4238 break; 4239 } 4240 4241 // Send events! 4242 int32_t metaState = getContext()->getGlobalMetaState(); 4243 int32_t buttonState = mCurrentButtonState; 4244 4245 // Update last coordinates of pointers that have moved so that we observe the new 4246 // pointer positions at the same time as other pointers that have just gone up. 4247 bool down = mPointerGesture.currentGestureMode == PointerGesture::TAP 4248 || mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG 4249 || mPointerGesture.currentGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG 4250 || mPointerGesture.currentGestureMode == PointerGesture::PRESS 4251 || mPointerGesture.currentGestureMode == PointerGesture::SWIPE 4252 || mPointerGesture.currentGestureMode == PointerGesture::FREEFORM; 4253 bool moveNeeded = false; 4254 if (down && !cancelPreviousGesture && !finishPreviousGesture 4255 && !mPointerGesture.lastGestureIdBits.isEmpty() 4256 && !mPointerGesture.currentGestureIdBits.isEmpty()) { 4257 BitSet32 movedGestureIdBits(mPointerGesture.currentGestureIdBits.value 4258 & mPointerGesture.lastGestureIdBits.value); 4259 moveNeeded = updateMovedPointers(mPointerGesture.currentGestureProperties, 4260 mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, 4261 mPointerGesture.lastGestureProperties, 4262 mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, 4263 movedGestureIdBits); 4264 if (buttonState != mLastButtonState) { 4265 moveNeeded = true; 4266 } 4267 } 4268 4269 // Send motion events for all pointers that went up or were canceled. 4270 BitSet32 dispatchedGestureIdBits(mPointerGesture.lastGestureIdBits); 4271 if (!dispatchedGestureIdBits.isEmpty()) { 4272 if (cancelPreviousGesture) { 4273 dispatchMotion(when, policyFlags, mSource, 4274 AMOTION_EVENT_ACTION_CANCEL, 0, metaState, buttonState, 4275 AMOTION_EVENT_EDGE_FLAG_NONE, 4276 mPointerGesture.lastGestureProperties, 4277 mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, 4278 dispatchedGestureIdBits, -1, 4279 0, 0, mPointerGesture.downTime); 4280 4281 dispatchedGestureIdBits.clear(); 4282 } else { 4283 BitSet32 upGestureIdBits; 4284 if (finishPreviousGesture) { 4285 upGestureIdBits = dispatchedGestureIdBits; 4286 } else { 4287 upGestureIdBits.value = dispatchedGestureIdBits.value 4288 & ~mPointerGesture.currentGestureIdBits.value; 4289 } 4290 while (!upGestureIdBits.isEmpty()) { 4291 uint32_t id = upGestureIdBits.clearFirstMarkedBit(); 4292 4293 dispatchMotion(when, policyFlags, mSource, 4294 AMOTION_EVENT_ACTION_POINTER_UP, 0, 4295 metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, 4296 mPointerGesture.lastGestureProperties, 4297 mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, 4298 dispatchedGestureIdBits, id, 4299 0, 0, mPointerGesture.downTime); 4300 4301 dispatchedGestureIdBits.clearBit(id); 4302 } 4303 } 4304 } 4305 4306 // Send motion events for all pointers that moved. 4307 if (moveNeeded) { 4308 dispatchMotion(when, policyFlags, mSource, 4309 AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, 4310 mPointerGesture.currentGestureProperties, 4311 mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, 4312 dispatchedGestureIdBits, -1, 4313 0, 0, mPointerGesture.downTime); 4314 } 4315 4316 // Send motion events for all pointers that went down. 4317 if (down) { 4318 BitSet32 downGestureIdBits(mPointerGesture.currentGestureIdBits.value 4319 & ~dispatchedGestureIdBits.value); 4320 while (!downGestureIdBits.isEmpty()) { 4321 uint32_t id = downGestureIdBits.clearFirstMarkedBit(); 4322 dispatchedGestureIdBits.markBit(id); 4323 4324 if (dispatchedGestureIdBits.count() == 1) { 4325 mPointerGesture.downTime = when; 4326 } 4327 4328 dispatchMotion(when, policyFlags, mSource, 4329 AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, buttonState, 0, 4330 mPointerGesture.currentGestureProperties, 4331 mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, 4332 dispatchedGestureIdBits, id, 4333 0, 0, mPointerGesture.downTime); 4334 } 4335 } 4336 4337 // Send motion events for hover. 4338 if (mPointerGesture.currentGestureMode == PointerGesture::HOVER) { 4339 dispatchMotion(when, policyFlags, mSource, 4340 AMOTION_EVENT_ACTION_HOVER_MOVE, 0, 4341 metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, 4342 mPointerGesture.currentGestureProperties, 4343 mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, 4344 mPointerGesture.currentGestureIdBits, -1, 4345 0, 0, mPointerGesture.downTime); 4346 } else if (dispatchedGestureIdBits.isEmpty() 4347 && !mPointerGesture.lastGestureIdBits.isEmpty()) { 4348 // Synthesize a hover move event after all pointers go up to indicate that 4349 // the pointer is hovering again even if the user is not currently touching 4350 // the touch pad. This ensures that a view will receive a fresh hover enter 4351 // event after a tap. 4352 float x, y; 4353 mPointerController->getPosition(&x, &y); 4354 4355 PointerProperties pointerProperties; 4356 pointerProperties.clear(); 4357 pointerProperties.id = 0; 4358 pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; 4359 4360 PointerCoords pointerCoords; 4361 pointerCoords.clear(); 4362 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); 4363 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); 4364 4365 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, 4366 AMOTION_EVENT_ACTION_HOVER_MOVE, 0, 4367 metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, 4368 1, &pointerProperties, &pointerCoords, 0, 0, mPointerGesture.downTime); 4369 getListener()->notifyMotion(&args); 4370 } 4371 4372 // Update state. 4373 mPointerGesture.lastGestureMode = mPointerGesture.currentGestureMode; 4374 if (!down) { 4375 mPointerGesture.lastGestureIdBits.clear(); 4376 } else { 4377 mPointerGesture.lastGestureIdBits = mPointerGesture.currentGestureIdBits; 4378 for (BitSet32 idBits(mPointerGesture.currentGestureIdBits); !idBits.isEmpty(); ) { 4379 uint32_t id = idBits.clearFirstMarkedBit(); 4380 uint32_t index = mPointerGesture.currentGestureIdToIndex[id]; 4381 mPointerGesture.lastGestureProperties[index].copyFrom( 4382 mPointerGesture.currentGestureProperties[index]); 4383 mPointerGesture.lastGestureCoords[index].copyFrom( 4384 mPointerGesture.currentGestureCoords[index]); 4385 mPointerGesture.lastGestureIdToIndex[id] = index; 4386 } 4387 } 4388 } 4389 4390 void TouchInputMapper::abortPointerGestures(nsecs_t when, uint32_t policyFlags) { 4391 // Cancel previously dispatches pointers. 4392 if (!mPointerGesture.lastGestureIdBits.isEmpty()) { 4393 int32_t metaState = getContext()->getGlobalMetaState(); 4394 int32_t buttonState = mCurrentButtonState; 4395 dispatchMotion(when, policyFlags, mSource, 4396 AMOTION_EVENT_ACTION_CANCEL, 0, metaState, buttonState, 4397 AMOTION_EVENT_EDGE_FLAG_NONE, 4398 mPointerGesture.lastGestureProperties, 4399 mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, 4400 mPointerGesture.lastGestureIdBits, -1, 4401 0, 0, mPointerGesture.downTime); 4402 } 4403 4404 // Reset the current pointer gesture. 4405 mPointerGesture.reset(); 4406 mPointerVelocityControl.reset(); 4407 4408 // Remove any current spots. 4409 if (mPointerController != NULL) { 4410 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); 4411 mPointerController->clearSpots(); 4412 } 4413 } 4414 4415 bool TouchInputMapper::preparePointerGestures(nsecs_t when, 4416 bool* outCancelPreviousGesture, bool* outFinishPreviousGesture, bool isTimeout) { 4417 *outCancelPreviousGesture = false; 4418 *outFinishPreviousGesture = false; 4419 4420 // Handle TAP timeout. 4421 if (isTimeout) { 4422 #if DEBUG_GESTURES 4423 ALOGD("Gestures: Processing timeout"); 4424 #endif 4425 4426 if (mPointerGesture.lastGestureMode == PointerGesture::TAP) { 4427 if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) { 4428 // The tap/drag timeout has not yet expired. 4429 getContext()->requestTimeoutAtTime(mPointerGesture.tapUpTime 4430 + mConfig.pointerGestureTapDragInterval); 4431 } else { 4432 // The tap is finished. 4433 #if DEBUG_GESTURES 4434 ALOGD("Gestures: TAP finished"); 4435 #endif 4436 *outFinishPreviousGesture = true; 4437 4438 mPointerGesture.activeGestureId = -1; 4439 mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL; 4440 mPointerGesture.currentGestureIdBits.clear(); 4441 4442 mPointerVelocityControl.reset(); 4443 return true; 4444 } 4445 } 4446 4447 // We did not handle this timeout. 4448 return false; 4449 } 4450 4451 const uint32_t currentFingerCount = mCurrentFingerIdBits.count(); 4452 const uint32_t lastFingerCount = mLastFingerIdBits.count(); 4453 4454 // Update the velocity tracker. 4455 { 4456 VelocityTracker::Position positions[MAX_POINTERS]; 4457 uint32_t count = 0; 4458 for (BitSet32 idBits(mCurrentFingerIdBits); !idBits.isEmpty(); count++) { 4459 uint32_t id = idBits.clearFirstMarkedBit(); 4460 const RawPointerData::Pointer& pointer = mCurrentRawPointerData.pointerForId(id); 4461 positions[count].x = pointer.x * mPointerXMovementScale; 4462 positions[count].y = pointer.y * mPointerYMovementScale; 4463 } 4464 mPointerGesture.velocityTracker.addMovement(when, 4465 mCurrentFingerIdBits, positions); 4466 } 4467 4468 // Pick a new active touch id if needed. 4469 // Choose an arbitrary pointer that just went down, if there is one. 4470 // Otherwise choose an arbitrary remaining pointer. 4471 // This guarantees we always have an active touch id when there is at least one pointer. 4472 // We keep the same active touch id for as long as possible. 4473 bool activeTouchChanged = false; 4474 int32_t lastActiveTouchId = mPointerGesture.activeTouchId; 4475 int32_t activeTouchId = lastActiveTouchId; 4476 if (activeTouchId < 0) { 4477 if (!mCurrentFingerIdBits.isEmpty()) { 4478 activeTouchChanged = true; 4479 activeTouchId = mPointerGesture.activeTouchId = 4480 mCurrentFingerIdBits.firstMarkedBit(); 4481 mPointerGesture.firstTouchTime = when; 4482 } 4483 } else if (!mCurrentFingerIdBits.hasBit(activeTouchId)) { 4484 activeTouchChanged = true; 4485 if (!mCurrentFingerIdBits.isEmpty()) { 4486 activeTouchId = mPointerGesture.activeTouchId = 4487 mCurrentFingerIdBits.firstMarkedBit(); 4488 } else { 4489 activeTouchId = mPointerGesture.activeTouchId = -1; 4490 } 4491 } 4492 4493 // Determine whether we are in quiet time. 4494 bool isQuietTime = false; 4495 if (activeTouchId < 0) { 4496 mPointerGesture.resetQuietTime(); 4497 } else { 4498 isQuietTime = when < mPointerGesture.quietTime + mConfig.pointerGestureQuietInterval; 4499 if (!isQuietTime) { 4500 if ((mPointerGesture.lastGestureMode == PointerGesture::PRESS 4501 || mPointerGesture.lastGestureMode == PointerGesture::SWIPE 4502 || mPointerGesture.lastGestureMode == PointerGesture::FREEFORM) 4503 && currentFingerCount < 2) { 4504 // Enter quiet time when exiting swipe or freeform state. 4505 // This is to prevent accidentally entering the hover state and flinging the 4506 // pointer when finishing a swipe and there is still one pointer left onscreen. 4507 isQuietTime = true; 4508 } else if (mPointerGesture.lastGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG 4509 && currentFingerCount >= 2 4510 && !isPointerDown(mCurrentButtonState)) { 4511 // Enter quiet time when releasing the button and there are still two or more 4512 // fingers down. This may indicate that one finger was used to press the button 4513 // but it has not gone up yet. 4514 isQuietTime = true; 4515 } 4516 if (isQuietTime) { 4517 mPointerGesture.quietTime = when; 4518 } 4519 } 4520 } 4521 4522 // Switch states based on button and pointer state. 4523 if (isQuietTime) { 4524 // Case 1: Quiet time. (QUIET) 4525 #if DEBUG_GESTURES 4526 ALOGD("Gestures: QUIET for next %0.3fms", (mPointerGesture.quietTime 4527 + mConfig.pointerGestureQuietInterval - when) * 0.000001f); 4528 #endif 4529 if (mPointerGesture.lastGestureMode != PointerGesture::QUIET) { 4530 *outFinishPreviousGesture = true; 4531 } 4532 4533 mPointerGesture.activeGestureId = -1; 4534 mPointerGesture.currentGestureMode = PointerGesture::QUIET; 4535 mPointerGesture.currentGestureIdBits.clear(); 4536 4537 mPointerVelocityControl.reset(); 4538 } else if (isPointerDown(mCurrentButtonState)) { 4539 // Case 2: Button is pressed. (BUTTON_CLICK_OR_DRAG) 4540 // The pointer follows the active touch point. 4541 // Emit DOWN, MOVE, UP events at the pointer location. 4542 // 4543 // Only the active touch matters; other fingers are ignored. This policy helps 4544 // to handle the case where the user places a second finger on the touch pad 4545 // to apply the necessary force to depress an integrated button below the surface. 4546 // We don't want the second finger to be delivered to applications. 4547 // 4548 // For this to work well, we need to make sure to track the pointer that is really 4549 // active. If the user first puts one finger down to click then adds another 4550 // finger to drag then the active pointer should switch to the finger that is 4551 // being dragged. 4552 #if DEBUG_GESTURES 4553 ALOGD("Gestures: BUTTON_CLICK_OR_DRAG activeTouchId=%d, " 4554 "currentFingerCount=%d", activeTouchId, currentFingerCount); 4555 #endif 4556 // Reset state when just starting. 4557 if (mPointerGesture.lastGestureMode != PointerGesture::BUTTON_CLICK_OR_DRAG) { 4558 *outFinishPreviousGesture = true; 4559 mPointerGesture.activeGestureId = 0; 4560 } 4561 4562 // Switch pointers if needed. 4563 // Find the fastest pointer and follow it. 4564 if (activeTouchId >= 0 && currentFingerCount > 1) { 4565 int32_t bestId = -1; 4566 float bestSpeed = mConfig.pointerGestureDragMinSwitchSpeed; 4567 for (BitSet32 idBits(mCurrentFingerIdBits); !idBits.isEmpty(); ) { 4568 uint32_t id = idBits.clearFirstMarkedBit(); 4569 float vx, vy; 4570 if (mPointerGesture.velocityTracker.getVelocity(id, &vx, &vy)) { 4571 float speed = hypotf(vx, vy); 4572 if (speed > bestSpeed) { 4573 bestId = id; 4574 bestSpeed = speed; 4575 } 4576 } 4577 } 4578 if (bestId >= 0 && bestId != activeTouchId) { 4579 mPointerGesture.activeTouchId = activeTouchId = bestId; 4580 activeTouchChanged = true; 4581 #if DEBUG_GESTURES 4582 ALOGD("Gestures: BUTTON_CLICK_OR_DRAG switched pointers, " 4583 "bestId=%d, bestSpeed=%0.3f", bestId, bestSpeed); 4584 #endif 4585 } 4586 } 4587 4588 if (activeTouchId >= 0 && mLastFingerIdBits.hasBit(activeTouchId)) { 4589 const RawPointerData::Pointer& currentPointer = 4590 mCurrentRawPointerData.pointerForId(activeTouchId); 4591 const RawPointerData::Pointer& lastPointer = 4592 mLastRawPointerData.pointerForId(activeTouchId); 4593 float deltaX = (currentPointer.x - lastPointer.x) * mPointerXMovementScale; 4594 float deltaY = (currentPointer.y - lastPointer.y) * mPointerYMovementScale; 4595 4596 rotateDelta(mSurfaceOrientation, &deltaX, &deltaY); 4597 mPointerVelocityControl.move(when, &deltaX, &deltaY); 4598 4599 // Move the pointer using a relative motion. 4600 // When using spots, the click will occur at the position of the anchor 4601 // spot and all other spots will move there. 4602 mPointerController->move(deltaX, deltaY); 4603 } else { 4604 mPointerVelocityControl.reset(); 4605 } 4606 4607 float x, y; 4608 mPointerController->getPosition(&x, &y); 4609 4610 mPointerGesture.currentGestureMode = PointerGesture::BUTTON_CLICK_OR_DRAG; 4611 mPointerGesture.currentGestureIdBits.clear(); 4612 mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); 4613 mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; 4614 mPointerGesture.currentGestureProperties[0].clear(); 4615 mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; 4616 mPointerGesture.currentGestureProperties[0].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; 4617 mPointerGesture.currentGestureCoords[0].clear(); 4618 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x); 4619 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y); 4620 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); 4621 } else if (currentFingerCount == 0) { 4622 // Case 3. No fingers down and button is not pressed. (NEUTRAL) 4623 if (mPointerGesture.lastGestureMode != PointerGesture::NEUTRAL) { 4624 *outFinishPreviousGesture = true; 4625 } 4626 4627 // Watch for taps coming out of HOVER or TAP_DRAG mode. 4628 // Checking for taps after TAP_DRAG allows us to detect double-taps. 4629 bool tapped = false; 4630 if ((mPointerGesture.lastGestureMode == PointerGesture::HOVER 4631 || mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG) 4632 && lastFingerCount == 1) { 4633 if (when <= mPointerGesture.tapDownTime + mConfig.pointerGestureTapInterval) { 4634 float x, y; 4635 mPointerController->getPosition(&x, &y); 4636 if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop 4637 && fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) { 4638 #if DEBUG_GESTURES 4639 ALOGD("Gestures: TAP"); 4640 #endif 4641 4642 mPointerGesture.tapUpTime = when; 4643 getContext()->requestTimeoutAtTime(when 4644 + mConfig.pointerGestureTapDragInterval); 4645 4646 mPointerGesture.activeGestureId = 0; 4647 mPointerGesture.currentGestureMode = PointerGesture::TAP; 4648 mPointerGesture.currentGestureIdBits.clear(); 4649 mPointerGesture.currentGestureIdBits.markBit( 4650 mPointerGesture.activeGestureId); 4651 mPointerGesture.currentGestureIdToIndex[ 4652 mPointerGesture.activeGestureId] = 0; 4653 mPointerGesture.currentGestureProperties[0].clear(); 4654 mPointerGesture.currentGestureProperties[0].id = 4655 mPointerGesture.activeGestureId; 4656 mPointerGesture.currentGestureProperties[0].toolType = 4657 AMOTION_EVENT_TOOL_TYPE_FINGER; 4658 mPointerGesture.currentGestureCoords[0].clear(); 4659 mPointerGesture.currentGestureCoords[0].setAxisValue( 4660 AMOTION_EVENT_AXIS_X, mPointerGesture.tapX); 4661 mPointerGesture.currentGestureCoords[0].setAxisValue( 4662 AMOTION_EVENT_AXIS_Y, mPointerGesture.tapY); 4663 mPointerGesture.currentGestureCoords[0].setAxisValue( 4664 AMOTION_EVENT_AXIS_PRESSURE, 1.0f); 4665 4666 tapped = true; 4667 } else { 4668 #if DEBUG_GESTURES 4669 ALOGD("Gestures: Not a TAP, deltaX=%f, deltaY=%f", 4670 x - mPointerGesture.tapX, 4671 y - mPointerGesture.tapY); 4672 #endif 4673 } 4674 } else { 4675 #if DEBUG_GESTURES 4676 ALOGD("Gestures: Not a TAP, %0.3fms since down", 4677 (when - mPointerGesture.tapDownTime) * 0.000001f); 4678 #endif 4679 } 4680 } 4681 4682 mPointerVelocityControl.reset(); 4683 4684 if (!tapped) { 4685 #if DEBUG_GESTURES 4686 ALOGD("Gestures: NEUTRAL"); 4687 #endif 4688 mPointerGesture.activeGestureId = -1; 4689 mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL; 4690 mPointerGesture.currentGestureIdBits.clear(); 4691 } 4692 } else if (currentFingerCount == 1) { 4693 // Case 4. Exactly one finger down, button is not pressed. (HOVER or TAP_DRAG) 4694 // The pointer follows the active touch point. 4695 // When in HOVER, emit HOVER_MOVE events at the pointer location. 4696 // When in TAP_DRAG, emit MOVE events at the pointer location. 4697 ALOG_ASSERT(activeTouchId >= 0); 4698 4699 mPointerGesture.currentGestureMode = PointerGesture::HOVER; 4700 if (mPointerGesture.lastGestureMode == PointerGesture::TAP) { 4701 if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) { 4702 float x, y; 4703 mPointerController->getPosition(&x, &y); 4704 if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop 4705 && fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) { 4706 mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG; 4707 } else { 4708 #if DEBUG_GESTURES 4709 ALOGD("Gestures: Not a TAP_DRAG, deltaX=%f, deltaY=%f", 4710 x - mPointerGesture.tapX, 4711 y - mPointerGesture.tapY); 4712 #endif 4713 } 4714 } else { 4715 #if DEBUG_GESTURES 4716 ALOGD("Gestures: Not a TAP_DRAG, %0.3fms time since up", 4717 (when - mPointerGesture.tapUpTime) * 0.000001f); 4718 #endif 4719 } 4720 } else if (mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG) { 4721 mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG; 4722 } 4723 4724 if (mLastFingerIdBits.hasBit(activeTouchId)) { 4725 const RawPointerData::Pointer& currentPointer = 4726 mCurrentRawPointerData.pointerForId(activeTouchId); 4727 const RawPointerData::Pointer& lastPointer = 4728 mLastRawPointerData.pointerForId(activeTouchId); 4729 float deltaX = (currentPointer.x - lastPointer.x) 4730 * mPointerXMovementScale; 4731 float deltaY = (currentPointer.y - lastPointer.y) 4732 * mPointerYMovementScale; 4733 4734 rotateDelta(mSurfaceOrientation, &deltaX, &deltaY); 4735 mPointerVelocityControl.move(when, &deltaX, &deltaY); 4736 4737 // Move the pointer using a relative motion. 4738 // When using spots, the hover or drag will occur at the position of the anchor spot. 4739 mPointerController->move(deltaX, deltaY); 4740 } else { 4741 mPointerVelocityControl.reset(); 4742 } 4743 4744 bool down; 4745 if (mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG) { 4746 #if DEBUG_GESTURES 4747 ALOGD("Gestures: TAP_DRAG"); 4748 #endif 4749 down = true; 4750 } else { 4751 #if DEBUG_GESTURES 4752 ALOGD("Gestures: HOVER"); 4753 #endif 4754 if (mPointerGesture.lastGestureMode != PointerGesture::HOVER) { 4755 *outFinishPreviousGesture = true; 4756 } 4757 mPointerGesture.activeGestureId = 0; 4758 down = false; 4759 } 4760 4761 float x, y; 4762 mPointerController->getPosition(&x, &y); 4763 4764 mPointerGesture.currentGestureIdBits.clear(); 4765 mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); 4766 mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; 4767 mPointerGesture.currentGestureProperties[0].clear(); 4768 mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; 4769 mPointerGesture.currentGestureProperties[0].toolType = 4770 AMOTION_EVENT_TOOL_TYPE_FINGER; 4771 mPointerGesture.currentGestureCoords[0].clear(); 4772 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x); 4773 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y); 4774 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 4775 down ? 1.0f : 0.0f); 4776 4777 if (lastFingerCount == 0 && currentFingerCount != 0) { 4778 mPointerGesture.resetTap(); 4779 mPointerGesture.tapDownTime = when; 4780 mPointerGesture.tapX = x; 4781 mPointerGesture.tapY = y; 4782 } 4783 } else { 4784 // Case 5. At least two fingers down, button is not pressed. (PRESS, SWIPE or FREEFORM) 4785 // We need to provide feedback for each finger that goes down so we cannot wait 4786 // for the fingers to move before deciding what to do. 4787 // 4788 // The ambiguous case is deciding what to do when there are two fingers down but they 4789 // have not moved enough to determine whether they are part of a drag or part of a 4790 // freeform gesture, or just a press or long-press at the pointer location. 4791 // 4792 // When there are two fingers we start with the PRESS hypothesis and we generate a 4793 // down at the pointer location. 4794 // 4795 // When the two fingers move enough or when additional fingers are added, we make 4796 // a decision to transition into SWIPE or FREEFORM mode accordingly. 4797 ALOG_ASSERT(activeTouchId >= 0); 4798 4799 bool settled = when >= mPointerGesture.firstTouchTime 4800 + mConfig.pointerGestureMultitouchSettleInterval; 4801 if (mPointerGesture.lastGestureMode != PointerGesture::PRESS 4802 && mPointerGesture.lastGestureMode != PointerGesture::SWIPE 4803 && mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) { 4804 *outFinishPreviousGesture = true; 4805 } else if (!settled && currentFingerCount > lastFingerCount) { 4806 // Additional pointers have gone down but not yet settled. 4807 // Reset the gesture. 4808 #if DEBUG_GESTURES 4809 ALOGD("Gestures: Resetting gesture since additional pointers went down for MULTITOUCH, " 4810 "settle time remaining %0.3fms", (mPointerGesture.firstTouchTime 4811 + mConfig.pointerGestureMultitouchSettleInterval - when) 4812 * 0.000001f); 4813 #endif 4814 *outCancelPreviousGesture = true; 4815 } else { 4816 // Continue previous gesture. 4817 mPointerGesture.currentGestureMode = mPointerGesture.lastGestureMode; 4818 } 4819 4820 if (*outFinishPreviousGesture || *outCancelPreviousGesture) { 4821 mPointerGesture.currentGestureMode = PointerGesture::PRESS; 4822 mPointerGesture.activeGestureId = 0; 4823 mPointerGesture.referenceIdBits.clear(); 4824 mPointerVelocityControl.reset(); 4825 4826 // Use the centroid and pointer location as the reference points for the gesture. 4827 #if DEBUG_GESTURES 4828 ALOGD("Gestures: Using centroid as reference for MULTITOUCH, " 4829 "settle time remaining %0.3fms", (mPointerGesture.firstTouchTime 4830 + mConfig.pointerGestureMultitouchSettleInterval - when) 4831 * 0.000001f); 4832 #endif 4833 mCurrentRawPointerData.getCentroidOfTouchingPointers( 4834 &mPointerGesture.referenceTouchX, 4835 &mPointerGesture.referenceTouchY); 4836 mPointerController->getPosition(&mPointerGesture.referenceGestureX, 4837 &mPointerGesture.referenceGestureY); 4838 } 4839 4840 // Clear the reference deltas for fingers not yet included in the reference calculation. 4841 for (BitSet32 idBits(mCurrentFingerIdBits.value 4842 & ~mPointerGesture.referenceIdBits.value); !idBits.isEmpty(); ) { 4843 uint32_t id = idBits.clearFirstMarkedBit(); 4844 mPointerGesture.referenceDeltas[id].dx = 0; 4845 mPointerGesture.referenceDeltas[id].dy = 0; 4846 } 4847 mPointerGesture.referenceIdBits = mCurrentFingerIdBits; 4848 4849 // Add delta for all fingers and calculate a common movement delta. 4850 float commonDeltaX = 0, commonDeltaY = 0; 4851 BitSet32 commonIdBits(mLastFingerIdBits.value 4852 & mCurrentFingerIdBits.value); 4853 for (BitSet32 idBits(commonIdBits); !idBits.isEmpty(); ) { 4854 bool first = (idBits == commonIdBits); 4855 uint32_t id = idBits.clearFirstMarkedBit(); 4856 const RawPointerData::Pointer& cpd = mCurrentRawPointerData.pointerForId(id); 4857 const RawPointerData::Pointer& lpd = mLastRawPointerData.pointerForId(id); 4858 PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; 4859 delta.dx += cpd.x - lpd.x; 4860 delta.dy += cpd.y - lpd.y; 4861 4862 if (first) { 4863 commonDeltaX = delta.dx; 4864 commonDeltaY = delta.dy; 4865 } else { 4866 commonDeltaX = calculateCommonVector(commonDeltaX, delta.dx); 4867 commonDeltaY = calculateCommonVector(commonDeltaY, delta.dy); 4868 } 4869 } 4870 4871 // Consider transitions from PRESS to SWIPE or MULTITOUCH. 4872 if (mPointerGesture.currentGestureMode == PointerGesture::PRESS) { 4873 float dist[MAX_POINTER_ID + 1]; 4874 int32_t distOverThreshold = 0; 4875 for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty(); ) { 4876 uint32_t id = idBits.clearFirstMarkedBit(); 4877 PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; 4878 dist[id] = hypotf(delta.dx * mPointerXZoomScale, 4879 delta.dy * mPointerYZoomScale); 4880 if (dist[id] > mConfig.pointerGestureMultitouchMinDistance) { 4881 distOverThreshold += 1; 4882 } 4883 } 4884 4885 // Only transition when at least two pointers have moved further than 4886 // the minimum distance threshold. 4887 if (distOverThreshold >= 2) { 4888 if (currentFingerCount > 2) { 4889 // There are more than two pointers, switch to FREEFORM. 4890 #if DEBUG_GESTURES 4891 ALOGD("Gestures: PRESS transitioned to FREEFORM, number of pointers %d > 2", 4892 currentFingerCount); 4893 #endif 4894 *outCancelPreviousGesture = true; 4895 mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; 4896 } else { 4897 // There are exactly two pointers. 4898 BitSet32 idBits(mCurrentFingerIdBits); 4899 uint32_t id1 = idBits.clearFirstMarkedBit(); 4900 uint32_t id2 = idBits.firstMarkedBit(); 4901 const RawPointerData::Pointer& p1 = mCurrentRawPointerData.pointerForId(id1); 4902 const RawPointerData::Pointer& p2 = mCurrentRawPointerData.pointerForId(id2); 4903 float mutualDistance = distance(p1.x, p1.y, p2.x, p2.y); 4904 if (mutualDistance > mPointerGestureMaxSwipeWidth) { 4905 // There are two pointers but they are too far apart for a SWIPE, 4906 // switch to FREEFORM. 4907 #if DEBUG_GESTURES 4908 ALOGD("Gestures: PRESS transitioned to FREEFORM, distance %0.3f > %0.3f", 4909 mutualDistance, mPointerGestureMaxSwipeWidth); 4910 #endif 4911 *outCancelPreviousGesture = true; 4912 mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; 4913 } else { 4914 // There are two pointers. Wait for both pointers to start moving 4915 // before deciding whether this is a SWIPE or FREEFORM gesture. 4916 float dist1 = dist[id1]; 4917 float dist2 = dist[id2]; 4918 if (dist1 >= mConfig.pointerGestureMultitouchMinDistance 4919 && dist2 >= mConfig.pointerGestureMultitouchMinDistance) { 4920 // Calculate the dot product of the displacement vectors. 4921 // When the vectors are oriented in approximately the same direction, 4922 // the angle betweeen them is near zero and the cosine of the angle 4923 // approches 1.0. Recall that dot(v1, v2) = cos(angle) * mag(v1) * mag(v2). 4924 PointerGesture::Delta& delta1 = mPointerGesture.referenceDeltas[id1]; 4925 PointerGesture::Delta& delta2 = mPointerGesture.referenceDeltas[id2]; 4926 float dx1 = delta1.dx * mPointerXZoomScale; 4927 float dy1 = delta1.dy * mPointerYZoomScale; 4928 float dx2 = delta2.dx * mPointerXZoomScale; 4929 float dy2 = delta2.dy * mPointerYZoomScale; 4930 float dot = dx1 * dx2 + dy1 * dy2; 4931 float cosine = dot / (dist1 * dist2); // denominator always > 0 4932 if (cosine >= mConfig.pointerGestureSwipeTransitionAngleCosine) { 4933 // Pointers are moving in the same direction. Switch to SWIPE. 4934 #if DEBUG_GESTURES 4935 ALOGD("Gestures: PRESS transitioned to SWIPE, " 4936 "dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, " 4937 "cosine %0.3f >= %0.3f", 4938 dist1, mConfig.pointerGestureMultitouchMinDistance, 4939 dist2, mConfig.pointerGestureMultitouchMinDistance, 4940 cosine, mConfig.pointerGestureSwipeTransitionAngleCosine); 4941 #endif 4942 mPointerGesture.currentGestureMode = PointerGesture::SWIPE; 4943 } else { 4944 // Pointers are moving in different directions. Switch to FREEFORM. 4945 #if DEBUG_GESTURES 4946 ALOGD("Gestures: PRESS transitioned to FREEFORM, " 4947 "dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, " 4948 "cosine %0.3f < %0.3f", 4949 dist1, mConfig.pointerGestureMultitouchMinDistance, 4950 dist2, mConfig.pointerGestureMultitouchMinDistance, 4951 cosine, mConfig.pointerGestureSwipeTransitionAngleCosine); 4952 #endif 4953 *outCancelPreviousGesture = true; 4954 mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; 4955 } 4956 } 4957 } 4958 } 4959 } 4960 } else if (mPointerGesture.currentGestureMode == PointerGesture::SWIPE) { 4961 // Switch from SWIPE to FREEFORM if additional pointers go down. 4962 // Cancel previous gesture. 4963 if (currentFingerCount > 2) { 4964 #if DEBUG_GESTURES 4965 ALOGD("Gestures: SWIPE transitioned to FREEFORM, number of pointers %d > 2", 4966 currentFingerCount); 4967 #endif 4968 *outCancelPreviousGesture = true; 4969 mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; 4970 } 4971 } 4972 4973 // Move the reference points based on the overall group motion of the fingers 4974 // except in PRESS mode while waiting for a transition to occur. 4975 if (mPointerGesture.currentGestureMode != PointerGesture::PRESS 4976 && (commonDeltaX || commonDeltaY)) { 4977 for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty(); ) { 4978 uint32_t id = idBits.clearFirstMarkedBit(); 4979 PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; 4980 delta.dx = 0; 4981 delta.dy = 0; 4982 } 4983 4984 mPointerGesture.referenceTouchX += commonDeltaX; 4985 mPointerGesture.referenceTouchY += commonDeltaY; 4986 4987 commonDeltaX *= mPointerXMovementScale; 4988 commonDeltaY *= mPointerYMovementScale; 4989 4990 rotateDelta(mSurfaceOrientation, &commonDeltaX, &commonDeltaY); 4991 mPointerVelocityControl.move(when, &commonDeltaX, &commonDeltaY); 4992 4993 mPointerGesture.referenceGestureX += commonDeltaX; 4994 mPointerGesture.referenceGestureY += commonDeltaY; 4995 } 4996 4997 // Report gestures. 4998 if (mPointerGesture.currentGestureMode == PointerGesture::PRESS 4999 || mPointerGesture.currentGestureMode == PointerGesture::SWIPE) { 5000 // PRESS or SWIPE mode. 5001 #if DEBUG_GESTURES 5002 ALOGD("Gestures: PRESS or SWIPE activeTouchId=%d," 5003 "activeGestureId=%d, currentTouchPointerCount=%d", 5004 activeTouchId, mPointerGesture.activeGestureId, currentFingerCount); 5005 #endif 5006 ALOG_ASSERT(mPointerGesture.activeGestureId >= 0); 5007 5008 mPointerGesture.currentGestureIdBits.clear(); 5009 mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); 5010 mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; 5011 mPointerGesture.currentGestureProperties[0].clear(); 5012 mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; 5013 mPointerGesture.currentGestureProperties[0].toolType = 5014 AMOTION_EVENT_TOOL_TYPE_FINGER; 5015 mPointerGesture.currentGestureCoords[0].clear(); 5016 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, 5017 mPointerGesture.referenceGestureX); 5018 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, 5019 mPointerGesture.referenceGestureY); 5020 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); 5021 } else if (mPointerGesture.currentGestureMode == PointerGesture::FREEFORM) { 5022 // FREEFORM mode. 5023 #if DEBUG_GESTURES 5024 ALOGD("Gestures: FREEFORM activeTouchId=%d," 5025 "activeGestureId=%d, currentTouchPointerCount=%d", 5026 activeTouchId, mPointerGesture.activeGestureId, currentFingerCount); 5027 #endif 5028 ALOG_ASSERT(mPointerGesture.activeGestureId >= 0); 5029 5030 mPointerGesture.currentGestureIdBits.clear(); 5031 5032 BitSet32 mappedTouchIdBits; 5033 BitSet32 usedGestureIdBits; 5034 if (mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) { 5035 // Initially, assign the active gesture id to the active touch point 5036 // if there is one. No other touch id bits are mapped yet. 5037 if (!*outCancelPreviousGesture) { 5038 mappedTouchIdBits.markBit(activeTouchId); 5039 usedGestureIdBits.markBit(mPointerGesture.activeGestureId); 5040 mPointerGesture.freeformTouchToGestureIdMap[activeTouchId] = 5041 mPointerGesture.activeGestureId; 5042 } else { 5043 mPointerGesture.activeGestureId = -1; 5044 } 5045 } else { 5046 // Otherwise, assume we mapped all touches from the previous frame. 5047 // Reuse all mappings that are still applicable. 5048 mappedTouchIdBits.value = mLastFingerIdBits.value 5049 & mCurrentFingerIdBits.value; 5050 usedGestureIdBits = mPointerGesture.lastGestureIdBits; 5051 5052 // Check whether we need to choose a new active gesture id because the 5053 // current went went up. 5054 for (BitSet32 upTouchIdBits(mLastFingerIdBits.value 5055 & ~mCurrentFingerIdBits.value); 5056 !upTouchIdBits.isEmpty(); ) { 5057 uint32_t upTouchId = upTouchIdBits.clearFirstMarkedBit(); 5058 uint32_t upGestureId = mPointerGesture.freeformTouchToGestureIdMap[upTouchId]; 5059 if (upGestureId == uint32_t(mPointerGesture.activeGestureId)) { 5060 mPointerGesture.activeGestureId = -1; 5061 break; 5062 } 5063 } 5064 } 5065 5066 #if DEBUG_GESTURES 5067 ALOGD("Gestures: FREEFORM follow up " 5068 "mappedTouchIdBits=0x%08x, usedGestureIdBits=0x%08x, " 5069 "activeGestureId=%d", 5070 mappedTouchIdBits.value, usedGestureIdBits.value, 5071 mPointerGesture.activeGestureId); 5072 #endif 5073 5074 BitSet32 idBits(mCurrentFingerIdBits); 5075 for (uint32_t i = 0; i < currentFingerCount; i++) { 5076 uint32_t touchId = idBits.clearFirstMarkedBit(); 5077 uint32_t gestureId; 5078 if (!mappedTouchIdBits.hasBit(touchId)) { 5079 gestureId = usedGestureIdBits.markFirstUnmarkedBit(); 5080 mPointerGesture.freeformTouchToGestureIdMap[touchId] = gestureId; 5081 #if DEBUG_GESTURES 5082 ALOGD("Gestures: FREEFORM " 5083 "new mapping for touch id %d -> gesture id %d", 5084 touchId, gestureId); 5085 #endif 5086 } else { 5087 gestureId = mPointerGesture.freeformTouchToGestureIdMap[touchId]; 5088 #if DEBUG_GESTURES 5089 ALOGD("Gestures: FREEFORM " 5090 "existing mapping for touch id %d -> gesture id %d", 5091 touchId, gestureId); 5092 #endif 5093 } 5094 mPointerGesture.currentGestureIdBits.markBit(gestureId); 5095 mPointerGesture.currentGestureIdToIndex[gestureId] = i; 5096 5097 const RawPointerData::Pointer& pointer = 5098 mCurrentRawPointerData.pointerForId(touchId); 5099 float deltaX = (pointer.x - mPointerGesture.referenceTouchX) 5100 * mPointerXZoomScale; 5101 float deltaY = (pointer.y - mPointerGesture.referenceTouchY) 5102 * mPointerYZoomScale; 5103 rotateDelta(mSurfaceOrientation, &deltaX, &deltaY); 5104 5105 mPointerGesture.currentGestureProperties[i].clear(); 5106 mPointerGesture.currentGestureProperties[i].id = gestureId; 5107 mPointerGesture.currentGestureProperties[i].toolType = 5108 AMOTION_EVENT_TOOL_TYPE_FINGER; 5109 mPointerGesture.currentGestureCoords[i].clear(); 5110 mPointerGesture.currentGestureCoords[i].setAxisValue( 5111 AMOTION_EVENT_AXIS_X, mPointerGesture.referenceGestureX + deltaX); 5112 mPointerGesture.currentGestureCoords[i].setAxisValue( 5113 AMOTION_EVENT_AXIS_Y, mPointerGesture.referenceGestureY + deltaY); 5114 mPointerGesture.currentGestureCoords[i].setAxisValue( 5115 AMOTION_EVENT_AXIS_PRESSURE, 1.0f); 5116 } 5117 5118 if (mPointerGesture.activeGestureId < 0) { 5119 mPointerGesture.activeGestureId = 5120 mPointerGesture.currentGestureIdBits.firstMarkedBit(); 5121 #if DEBUG_GESTURES 5122 ALOGD("Gestures: FREEFORM new " 5123 "activeGestureId=%d", mPointerGesture.activeGestureId); 5124 #endif 5125 } 5126 } 5127 } 5128 5129 mPointerController->setButtonState(mCurrentButtonState); 5130 5131 #if DEBUG_GESTURES 5132 ALOGD("Gestures: finishPreviousGesture=%s, cancelPreviousGesture=%s, " 5133 "currentGestureMode=%d, currentGestureIdBits=0x%08x, " 5134 "lastGestureMode=%d, lastGestureIdBits=0x%08x", 5135 toString(*outFinishPreviousGesture), toString(*outCancelPreviousGesture), 5136 mPointerGesture.currentGestureMode, mPointerGesture.currentGestureIdBits.value, 5137 mPointerGesture.lastGestureMode, mPointerGesture.lastGestureIdBits.value); 5138 for (BitSet32 idBits = mPointerGesture.currentGestureIdBits; !idBits.isEmpty(); ) { 5139 uint32_t id = idBits.clearFirstMarkedBit(); 5140 uint32_t index = mPointerGesture.currentGestureIdToIndex[id]; 5141 const PointerProperties& properties = mPointerGesture.currentGestureProperties[index]; 5142 const PointerCoords& coords = mPointerGesture.currentGestureCoords[index]; 5143 ALOGD(" currentGesture[%d]: index=%d, toolType=%d, " 5144 "x=%0.3f, y=%0.3f, pressure=%0.3f", 5145 id, index, properties.toolType, 5146 coords.getAxisValue(AMOTION_EVENT_AXIS_X), 5147 coords.getAxisValue(AMOTION_EVENT_AXIS_Y), 5148 coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE)); 5149 } 5150 for (BitSet32 idBits = mPointerGesture.lastGestureIdBits; !idBits.isEmpty(); ) { 5151 uint32_t id = idBits.clearFirstMarkedBit(); 5152 uint32_t index = mPointerGesture.lastGestureIdToIndex[id]; 5153 const PointerProperties& properties = mPointerGesture.lastGestureProperties[index]; 5154 const PointerCoords& coords = mPointerGesture.lastGestureCoords[index]; 5155 ALOGD(" lastGesture[%d]: index=%d, toolType=%d, " 5156 "x=%0.3f, y=%0.3f, pressure=%0.3f", 5157 id, index, properties.toolType, 5158 coords.getAxisValue(AMOTION_EVENT_AXIS_X), 5159 coords.getAxisValue(AMOTION_EVENT_AXIS_Y), 5160 coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE)); 5161 } 5162 #endif 5163 return true; 5164 } 5165 5166 void TouchInputMapper::dispatchPointerStylus(nsecs_t when, uint32_t policyFlags) { 5167 mPointerSimple.currentCoords.clear(); 5168 mPointerSimple.currentProperties.clear(); 5169 5170 bool down, hovering; 5171 if (!mCurrentStylusIdBits.isEmpty()) { 5172 uint32_t id = mCurrentStylusIdBits.firstMarkedBit(); 5173 uint32_t index = mCurrentCookedPointerData.idToIndex[id]; 5174 float x = mCurrentCookedPointerData.pointerCoords[index].getX(); 5175 float y = mCurrentCookedPointerData.pointerCoords[index].getY(); 5176 mPointerController->setPosition(x, y); 5177 5178 hovering = mCurrentCookedPointerData.hoveringIdBits.hasBit(id); 5179 down = !hovering; 5180 5181 mPointerController->getPosition(&x, &y); 5182 mPointerSimple.currentCoords.copyFrom(mCurrentCookedPointerData.pointerCoords[index]); 5183 mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); 5184 mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); 5185 mPointerSimple.currentProperties.id = 0; 5186 mPointerSimple.currentProperties.toolType = 5187 mCurrentCookedPointerData.pointerProperties[index].toolType; 5188 } else { 5189 down = false; 5190 hovering = false; 5191 } 5192 5193 dispatchPointerSimple(when, policyFlags, down, hovering); 5194 } 5195 5196 void TouchInputMapper::abortPointerStylus(nsecs_t when, uint32_t policyFlags) { 5197 abortPointerSimple(when, policyFlags); 5198 } 5199 5200 void TouchInputMapper::dispatchPointerMouse(nsecs_t when, uint32_t policyFlags) { 5201 mPointerSimple.currentCoords.clear(); 5202 mPointerSimple.currentProperties.clear(); 5203 5204 bool down, hovering; 5205 if (!mCurrentMouseIdBits.isEmpty()) { 5206 uint32_t id = mCurrentMouseIdBits.firstMarkedBit(); 5207 uint32_t currentIndex = mCurrentRawPointerData.idToIndex[id]; 5208 if (mLastMouseIdBits.hasBit(id)) { 5209 uint32_t lastIndex = mCurrentRawPointerData.idToIndex[id]; 5210 float deltaX = (mCurrentRawPointerData.pointers[currentIndex].x 5211 - mLastRawPointerData.pointers[lastIndex].x) 5212 * mPointerXMovementScale; 5213 float deltaY = (mCurrentRawPointerData.pointers[currentIndex].y 5214 - mLastRawPointerData.pointers[lastIndex].y) 5215 * mPointerYMovementScale; 5216 5217 rotateDelta(mSurfaceOrientation, &deltaX, &deltaY); 5218 mPointerVelocityControl.move(when, &deltaX, &deltaY); 5219 5220 mPointerController->move(deltaX, deltaY); 5221 } else { 5222 mPointerVelocityControl.reset(); 5223 } 5224 5225 down = isPointerDown(mCurrentButtonState); 5226 hovering = !down; 5227 5228 float x, y; 5229 mPointerController->getPosition(&x, &y); 5230 mPointerSimple.currentCoords.copyFrom( 5231 mCurrentCookedPointerData.pointerCoords[currentIndex]); 5232 mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); 5233 mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); 5234 mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 5235 hovering ? 0.0f : 1.0f); 5236 mPointerSimple.currentProperties.id = 0; 5237 mPointerSimple.currentProperties.toolType = 5238 mCurrentCookedPointerData.pointerProperties[currentIndex].toolType; 5239 } else { 5240 mPointerVelocityControl.reset(); 5241 5242 down = false; 5243 hovering = false; 5244 } 5245 5246 dispatchPointerSimple(when, policyFlags, down, hovering); 5247 } 5248 5249 void TouchInputMapper::abortPointerMouse(nsecs_t when, uint32_t policyFlags) { 5250 abortPointerSimple(when, policyFlags); 5251 5252 mPointerVelocityControl.reset(); 5253 } 5254 5255 void TouchInputMapper::dispatchPointerSimple(nsecs_t when, uint32_t policyFlags, 5256 bool down, bool hovering) { 5257 int32_t metaState = getContext()->getGlobalMetaState(); 5258 5259 if (mPointerController != NULL) { 5260 if (down || hovering) { 5261 mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_POINTER); 5262 mPointerController->clearSpots(); 5263 mPointerController->setButtonState(mCurrentButtonState); 5264 mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE); 5265 } else if (!down && !hovering && (mPointerSimple.down || mPointerSimple.hovering)) { 5266 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); 5267 } 5268 } 5269 5270 if (mPointerSimple.down && !down) { 5271 mPointerSimple.down = false; 5272 5273 // Send up. 5274 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, 5275 AMOTION_EVENT_ACTION_UP, 0, metaState, mLastButtonState, 0, 5276 1, &mPointerSimple.lastProperties, &mPointerSimple.lastCoords, 5277 mOrientedXPrecision, mOrientedYPrecision, 5278 mPointerSimple.downTime); 5279 getListener()->notifyMotion(&args); 5280 } 5281 5282 if (mPointerSimple.hovering && !hovering) { 5283 mPointerSimple.hovering = false; 5284 5285 // Send hover exit. 5286 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, 5287 AMOTION_EVENT_ACTION_HOVER_EXIT, 0, metaState, mLastButtonState, 0, 5288 1, &mPointerSimple.lastProperties, &mPointerSimple.lastCoords, 5289 mOrientedXPrecision, mOrientedYPrecision, 5290 mPointerSimple.downTime); 5291 getListener()->notifyMotion(&args); 5292 } 5293 5294 if (down) { 5295 if (!mPointerSimple.down) { 5296 mPointerSimple.down = true; 5297 mPointerSimple.downTime = when; 5298 5299 // Send down. 5300 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, 5301 AMOTION_EVENT_ACTION_DOWN, 0, metaState, mCurrentButtonState, 0, 5302 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, 5303 mOrientedXPrecision, mOrientedYPrecision, 5304 mPointerSimple.downTime); 5305 getListener()->notifyMotion(&args); 5306 } 5307 5308 // Send move. 5309 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, 5310 AMOTION_EVENT_ACTION_MOVE, 0, metaState, mCurrentButtonState, 0, 5311 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, 5312 mOrientedXPrecision, mOrientedYPrecision, 5313 mPointerSimple.downTime); 5314 getListener()->notifyMotion(&args); 5315 } 5316 5317 if (hovering) { 5318 if (!mPointerSimple.hovering) { 5319 mPointerSimple.hovering = true; 5320 5321 // Send hover enter. 5322 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, 5323 AMOTION_EVENT_ACTION_HOVER_ENTER, 0, metaState, mCurrentButtonState, 0, 5324 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, 5325 mOrientedXPrecision, mOrientedYPrecision, 5326 mPointerSimple.downTime); 5327 getListener()->notifyMotion(&args); 5328 } 5329 5330 // Send hover move. 5331 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, 5332 AMOTION_EVENT_ACTION_HOVER_MOVE, 0, metaState, mCurrentButtonState, 0, 5333 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, 5334 mOrientedXPrecision, mOrientedYPrecision, 5335 mPointerSimple.downTime); 5336 getListener()->notifyMotion(&args); 5337 } 5338 5339 if (mCurrentRawVScroll || mCurrentRawHScroll) { 5340 float vscroll = mCurrentRawVScroll; 5341 float hscroll = mCurrentRawHScroll; 5342 mWheelYVelocityControl.move(when, NULL, &vscroll); 5343 mWheelXVelocityControl.move(when, &hscroll, NULL); 5344 5345 // Send scroll. 5346 PointerCoords pointerCoords; 5347 pointerCoords.copyFrom(mPointerSimple.currentCoords); 5348 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll); 5349 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll); 5350 5351 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, 5352 AMOTION_EVENT_ACTION_SCROLL, 0, metaState, mCurrentButtonState, 0, 5353 1, &mPointerSimple.currentProperties, &pointerCoords, 5354 mOrientedXPrecision, mOrientedYPrecision, 5355 mPointerSimple.downTime); 5356 getListener()->notifyMotion(&args); 5357 } 5358 5359 // Save state. 5360 if (down || hovering) { 5361 mPointerSimple.lastCoords.copyFrom(mPointerSimple.currentCoords); 5362 mPointerSimple.lastProperties.copyFrom(mPointerSimple.currentProperties); 5363 } else { 5364 mPointerSimple.reset(); 5365 } 5366 } 5367 5368 void TouchInputMapper::abortPointerSimple(nsecs_t when, uint32_t policyFlags) { 5369 mPointerSimple.currentCoords.clear(); 5370 mPointerSimple.currentProperties.clear(); 5371 5372 dispatchPointerSimple(when, policyFlags, false, false); 5373 } 5374 5375 void TouchInputMapper::dispatchMotion(nsecs_t when, uint32_t policyFlags, uint32_t source, 5376 int32_t action, int32_t flags, int32_t metaState, int32_t buttonState, int32_t edgeFlags, 5377 const PointerProperties* properties, const PointerCoords* coords, 5378 const uint32_t* idToIndex, BitSet32 idBits, 5379 int32_t changedId, float xPrecision, float yPrecision, nsecs_t downTime) { 5380 PointerCoords pointerCoords[MAX_POINTERS]; 5381 PointerProperties pointerProperties[MAX_POINTERS]; 5382 uint32_t pointerCount = 0; 5383 while (!idBits.isEmpty()) { 5384 uint32_t id = idBits.clearFirstMarkedBit(); 5385 uint32_t index = idToIndex[id]; 5386 pointerProperties[pointerCount].copyFrom(properties[index]); 5387 pointerCoords[pointerCount].copyFrom(coords[index]); 5388 5389 if (changedId >= 0 && id == uint32_t(changedId)) { 5390 action |= pointerCount << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT; 5391 } 5392 5393 pointerCount += 1; 5394 } 5395 5396 ALOG_ASSERT(pointerCount != 0); 5397 5398 if (changedId >= 0 && pointerCount == 1) { 5399 // Replace initial down and final up action. 5400 // We can compare the action without masking off the changed pointer index 5401 // because we know the index is 0. 5402 if (action == AMOTION_EVENT_ACTION_POINTER_DOWN) { 5403 action = AMOTION_EVENT_ACTION_DOWN; 5404 } else if (action == AMOTION_EVENT_ACTION_POINTER_UP) { 5405 action = AMOTION_EVENT_ACTION_UP; 5406 } else { 5407 // Can't happen. 5408 ALOG_ASSERT(false); 5409 } 5410 } 5411 5412 NotifyMotionArgs args(when, getDeviceId(), source, policyFlags, 5413 action, flags, metaState, buttonState, edgeFlags, 5414 pointerCount, pointerProperties, pointerCoords, xPrecision, yPrecision, downTime); 5415 getListener()->notifyMotion(&args); 5416 } 5417 5418 bool TouchInputMapper::updateMovedPointers(const PointerProperties* inProperties, 5419 const PointerCoords* inCoords, const uint32_t* inIdToIndex, 5420 PointerProperties* outProperties, PointerCoords* outCoords, const uint32_t* outIdToIndex, 5421 BitSet32 idBits) const { 5422 bool changed = false; 5423 while (!idBits.isEmpty()) { 5424 uint32_t id = idBits.clearFirstMarkedBit(); 5425 uint32_t inIndex = inIdToIndex[id]; 5426 uint32_t outIndex = outIdToIndex[id]; 5427 5428 const PointerProperties& curInProperties = inProperties[inIndex]; 5429 const PointerCoords& curInCoords = inCoords[inIndex]; 5430 PointerProperties& curOutProperties = outProperties[outIndex]; 5431 PointerCoords& curOutCoords = outCoords[outIndex]; 5432 5433 if (curInProperties != curOutProperties) { 5434 curOutProperties.copyFrom(curInProperties); 5435 changed = true; 5436 } 5437 5438 if (curInCoords != curOutCoords) { 5439 curOutCoords.copyFrom(curInCoords); 5440 changed = true; 5441 } 5442 } 5443 return changed; 5444 } 5445 5446 void TouchInputMapper::fadePointer() { 5447 if (mPointerController != NULL) { 5448 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); 5449 } 5450 } 5451 5452 bool TouchInputMapper::isPointInsideSurface(int32_t x, int32_t y) { 5453 return x >= mRawPointerAxes.x.minValue && x <= mRawPointerAxes.x.maxValue 5454 && y >= mRawPointerAxes.y.minValue && y <= mRawPointerAxes.y.maxValue; 5455 } 5456 5457 const TouchInputMapper::VirtualKey* TouchInputMapper::findVirtualKeyHit( 5458 int32_t x, int32_t y) { 5459 size_t numVirtualKeys = mVirtualKeys.size(); 5460 for (size_t i = 0; i < numVirtualKeys; i++) { 5461 const VirtualKey& virtualKey = mVirtualKeys[i]; 5462 5463 #if DEBUG_VIRTUAL_KEYS 5464 ALOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, " 5465 "left=%d, top=%d, right=%d, bottom=%d", 5466 x, y, 5467 virtualKey.keyCode, virtualKey.scanCode, 5468 virtualKey.hitLeft, virtualKey.hitTop, 5469 virtualKey.hitRight, virtualKey.hitBottom); 5470 #endif 5471 5472 if (virtualKey.isHit(x, y)) { 5473 return & virtualKey; 5474 } 5475 } 5476 5477 return NULL; 5478 } 5479 5480 void TouchInputMapper::assignPointerIds() { 5481 uint32_t currentPointerCount = mCurrentRawPointerData.pointerCount; 5482 uint32_t lastPointerCount = mLastRawPointerData.pointerCount; 5483 5484 mCurrentRawPointerData.clearIdBits(); 5485 5486 if (currentPointerCount == 0) { 5487 // No pointers to assign. 5488 return; 5489 } 5490 5491 if (lastPointerCount == 0) { 5492 // All pointers are new. 5493 for (uint32_t i = 0; i < currentPointerCount; i++) { 5494 uint32_t id = i; 5495 mCurrentRawPointerData.pointers[i].id = id; 5496 mCurrentRawPointerData.idToIndex[id] = i; 5497 mCurrentRawPointerData.markIdBit(id, mCurrentRawPointerData.isHovering(i)); 5498 } 5499 return; 5500 } 5501 5502 if (currentPointerCount == 1 && lastPointerCount == 1 5503 && mCurrentRawPointerData.pointers[0].toolType 5504 == mLastRawPointerData.pointers[0].toolType) { 5505 // Only one pointer and no change in count so it must have the same id as before. 5506 uint32_t id = mLastRawPointerData.pointers[0].id; 5507 mCurrentRawPointerData.pointers[0].id = id; 5508 mCurrentRawPointerData.idToIndex[id] = 0; 5509 mCurrentRawPointerData.markIdBit(id, mCurrentRawPointerData.isHovering(0)); 5510 return; 5511 } 5512 5513 // General case. 5514 // We build a heap of squared euclidean distances between current and last pointers 5515 // associated with the current and last pointer indices. Then, we find the best 5516 // match (by distance) for each current pointer. 5517 // The pointers must have the same tool type but it is possible for them to 5518 // transition from hovering to touching or vice-versa while retaining the same id. 5519 PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS]; 5520 5521 uint32_t heapSize = 0; 5522 for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount; 5523 currentPointerIndex++) { 5524 for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount; 5525 lastPointerIndex++) { 5526 const RawPointerData::Pointer& currentPointer = 5527 mCurrentRawPointerData.pointers[currentPointerIndex]; 5528 const RawPointerData::Pointer& lastPointer = 5529 mLastRawPointerData.pointers[lastPointerIndex]; 5530 if (currentPointer.toolType == lastPointer.toolType) { 5531 int64_t deltaX = currentPointer.x - lastPointer.x; 5532 int64_t deltaY = currentPointer.y - lastPointer.y; 5533 5534 uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY); 5535 5536 // Insert new element into the heap (sift up). 5537 heap[heapSize].currentPointerIndex = currentPointerIndex; 5538 heap[heapSize].lastPointerIndex = lastPointerIndex; 5539 heap[heapSize].distance = distance; 5540 heapSize += 1; 5541 } 5542 } 5543 } 5544 5545 // Heapify 5546 for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) { 5547 startIndex -= 1; 5548 for (uint32_t parentIndex = startIndex; ;) { 5549 uint32_t childIndex = parentIndex * 2 + 1; 5550 if (childIndex >= heapSize) { 5551 break; 5552 } 5553 5554 if (childIndex + 1 < heapSize 5555 && heap[childIndex + 1].distance < heap[childIndex].distance) { 5556 childIndex += 1; 5557 } 5558 5559 if (heap[parentIndex].distance <= heap[childIndex].distance) { 5560 break; 5561 } 5562 5563 swap(heap[parentIndex], heap[childIndex]); 5564 parentIndex = childIndex; 5565 } 5566 } 5567 5568 #if DEBUG_POINTER_ASSIGNMENT 5569 ALOGD("assignPointerIds - initial distance min-heap: size=%d", heapSize); 5570 for (size_t i = 0; i < heapSize; i++) { 5571 ALOGD(" heap[%d]: cur=%d, last=%d, distance=%lld", 5572 i, heap[i].currentPointerIndex, heap[i].lastPointerIndex, 5573 heap[i].distance); 5574 } 5575 #endif 5576 5577 // Pull matches out by increasing order of distance. 5578 // To avoid reassigning pointers that have already been matched, the loop keeps track 5579 // of which last and current pointers have been matched using the matchedXXXBits variables. 5580 // It also tracks the used pointer id bits. 5581 BitSet32 matchedLastBits(0); 5582 BitSet32 matchedCurrentBits(0); 5583 BitSet32 usedIdBits(0); 5584 bool first = true; 5585 for (uint32_t i = min(currentPointerCount, lastPointerCount); heapSize > 0 && i > 0; i--) { 5586 while (heapSize > 0) { 5587 if (first) { 5588 // The first time through the loop, we just consume the root element of 5589 // the heap (the one with smallest distance). 5590 first = false; 5591 } else { 5592 // Previous iterations consumed the root element of the heap. 5593 // Pop root element off of the heap (sift down). 5594 heap[0] = heap[heapSize]; 5595 for (uint32_t parentIndex = 0; ;) { 5596 uint32_t childIndex = parentIndex * 2 + 1; 5597 if (childIndex >= heapSize) { 5598 break; 5599 } 5600 5601 if (childIndex + 1 < heapSize 5602 && heap[childIndex + 1].distance < heap[childIndex].distance) { 5603 childIndex += 1; 5604 } 5605 5606 if (heap[parentIndex].distance <= heap[childIndex].distance) { 5607 break; 5608 } 5609 5610 swap(heap[parentIndex], heap[childIndex]); 5611 parentIndex = childIndex; 5612 } 5613 5614 #if DEBUG_POINTER_ASSIGNMENT 5615 ALOGD("assignPointerIds - reduced distance min-heap: size=%d", heapSize); 5616 for (size_t i = 0; i < heapSize; i++) { 5617 ALOGD(" heap[%d]: cur=%d, last=%d, distance=%lld", 5618 i, heap[i].currentPointerIndex, heap[i].lastPointerIndex, 5619 heap[i].distance); 5620 } 5621 #endif 5622 } 5623 5624 heapSize -= 1; 5625 5626 uint32_t currentPointerIndex = heap[0].currentPointerIndex; 5627 if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched 5628 5629 uint32_t lastPointerIndex = heap[0].lastPointerIndex; 5630 if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched 5631 5632 matchedCurrentBits.markBit(currentPointerIndex); 5633 matchedLastBits.markBit(lastPointerIndex); 5634 5635 uint32_t id = mLastRawPointerData.pointers[lastPointerIndex].id; 5636 mCurrentRawPointerData.pointers[currentPointerIndex].id = id; 5637 mCurrentRawPointerData.idToIndex[id] = currentPointerIndex; 5638 mCurrentRawPointerData.markIdBit(id, 5639 mCurrentRawPointerData.isHovering(currentPointerIndex)); 5640 usedIdBits.markBit(id); 5641 5642 #if DEBUG_POINTER_ASSIGNMENT 5643 ALOGD("assignPointerIds - matched: cur=%d, last=%d, id=%d, distance=%lld", 5644 lastPointerIndex, currentPointerIndex, id, heap[0].distance); 5645 #endif 5646 break; 5647 } 5648 } 5649 5650 // Assign fresh ids to pointers that were not matched in the process. 5651 for (uint32_t i = currentPointerCount - matchedCurrentBits.count(); i != 0; i--) { 5652 uint32_t currentPointerIndex = matchedCurrentBits.markFirstUnmarkedBit(); 5653 uint32_t id = usedIdBits.markFirstUnmarkedBit(); 5654 5655 mCurrentRawPointerData.pointers[currentPointerIndex].id = id; 5656 mCurrentRawPointerData.idToIndex[id] = currentPointerIndex; 5657 mCurrentRawPointerData.markIdBit(id, 5658 mCurrentRawPointerData.isHovering(currentPointerIndex)); 5659 5660 #if DEBUG_POINTER_ASSIGNMENT 5661 ALOGD("assignPointerIds - assigned: cur=%d, id=%d", 5662 currentPointerIndex, id); 5663 #endif 5664 } 5665 } 5666 5667 int32_t TouchInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { 5668 if (mCurrentVirtualKey.down && mCurrentVirtualKey.keyCode == keyCode) { 5669 return AKEY_STATE_VIRTUAL; 5670 } 5671 5672 size_t numVirtualKeys = mVirtualKeys.size(); 5673 for (size_t i = 0; i < numVirtualKeys; i++) { 5674 const VirtualKey& virtualKey = mVirtualKeys[i]; 5675 if (virtualKey.keyCode == keyCode) { 5676 return AKEY_STATE_UP; 5677 } 5678 } 5679 5680 return AKEY_STATE_UNKNOWN; 5681 } 5682 5683 int32_t TouchInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { 5684 if (mCurrentVirtualKey.down && mCurrentVirtualKey.scanCode == scanCode) { 5685 return AKEY_STATE_VIRTUAL; 5686 } 5687 5688 size_t numVirtualKeys = mVirtualKeys.size(); 5689 for (size_t i = 0; i < numVirtualKeys; i++) { 5690 const VirtualKey& virtualKey = mVirtualKeys[i]; 5691 if (virtualKey.scanCode == scanCode) { 5692 return AKEY_STATE_UP; 5693 } 5694 } 5695 5696 return AKEY_STATE_UNKNOWN; 5697 } 5698 5699 bool TouchInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, 5700 const int32_t* keyCodes, uint8_t* outFlags) { 5701 size_t numVirtualKeys = mVirtualKeys.size(); 5702 for (size_t i = 0; i < numVirtualKeys; i++) { 5703 const VirtualKey& virtualKey = mVirtualKeys[i]; 5704 5705 for (size_t i = 0; i < numCodes; i++) { 5706 if (virtualKey.keyCode == keyCodes[i]) { 5707 outFlags[i] = 1; 5708 } 5709 } 5710 } 5711 5712 return true; 5713 } 5714 5715 5716 // --- SingleTouchInputMapper --- 5717 5718 SingleTouchInputMapper::SingleTouchInputMapper(InputDevice* device) : 5719 TouchInputMapper(device) { 5720 } 5721 5722 SingleTouchInputMapper::~SingleTouchInputMapper() { 5723 } 5724 5725 void SingleTouchInputMapper::reset(nsecs_t when) { 5726 mSingleTouchMotionAccumulator.reset(getDevice()); 5727 5728 TouchInputMapper::reset(when); 5729 } 5730 5731 void SingleTouchInputMapper::process(const RawEvent* rawEvent) { 5732 TouchInputMapper::process(rawEvent); 5733 5734 mSingleTouchMotionAccumulator.process(rawEvent); 5735 } 5736 5737 void SingleTouchInputMapper::syncTouch(nsecs_t when, bool* outHavePointerIds) { 5738 if (mTouchButtonAccumulator.isToolActive()) { 5739 mCurrentRawPointerData.pointerCount = 1; 5740 mCurrentRawPointerData.idToIndex[0] = 0; 5741 5742 bool isHovering = mTouchButtonAccumulator.getToolType() != AMOTION_EVENT_TOOL_TYPE_MOUSE 5743 && (mTouchButtonAccumulator.isHovering() 5744 || (mRawPointerAxes.pressure.valid 5745 && mSingleTouchMotionAccumulator.getAbsolutePressure() <= 0)); 5746 mCurrentRawPointerData.markIdBit(0, isHovering); 5747 5748 RawPointerData::Pointer& outPointer = mCurrentRawPointerData.pointers[0]; 5749 outPointer.id = 0; 5750 outPointer.x = mSingleTouchMotionAccumulator.getAbsoluteX(); 5751 outPointer.y = mSingleTouchMotionAccumulator.getAbsoluteY(); 5752 outPointer.pressure = mSingleTouchMotionAccumulator.getAbsolutePressure(); 5753 outPointer.touchMajor = 0; 5754 outPointer.touchMinor = 0; 5755 outPointer.toolMajor = mSingleTouchMotionAccumulator.getAbsoluteToolWidth(); 5756 outPointer.toolMinor = mSingleTouchMotionAccumulator.getAbsoluteToolWidth(); 5757 outPointer.orientation = 0; 5758 outPointer.distance = mSingleTouchMotionAccumulator.getAbsoluteDistance(); 5759 outPointer.tiltX = mSingleTouchMotionAccumulator.getAbsoluteTiltX(); 5760 outPointer.tiltY = mSingleTouchMotionAccumulator.getAbsoluteTiltY(); 5761 outPointer.toolType = mTouchButtonAccumulator.getToolType(); 5762 if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { 5763 outPointer.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; 5764 } 5765 outPointer.isHovering = isHovering; 5766 } 5767 } 5768 5769 void SingleTouchInputMapper::configureRawPointerAxes() { 5770 TouchInputMapper::configureRawPointerAxes(); 5771 5772 getAbsoluteAxisInfo(ABS_X, &mRawPointerAxes.x); 5773 getAbsoluteAxisInfo(ABS_Y, &mRawPointerAxes.y); 5774 getAbsoluteAxisInfo(ABS_PRESSURE, &mRawPointerAxes.pressure); 5775 getAbsoluteAxisInfo(ABS_TOOL_WIDTH, &mRawPointerAxes.toolMajor); 5776 getAbsoluteAxisInfo(ABS_DISTANCE, &mRawPointerAxes.distance); 5777 getAbsoluteAxisInfo(ABS_TILT_X, &mRawPointerAxes.tiltX); 5778 getAbsoluteAxisInfo(ABS_TILT_Y, &mRawPointerAxes.tiltY); 5779 } 5780 5781 bool SingleTouchInputMapper::hasStylus() const { 5782 return mTouchButtonAccumulator.hasStylus(); 5783 } 5784 5785 5786 // --- MultiTouchInputMapper --- 5787 5788 MultiTouchInputMapper::MultiTouchInputMapper(InputDevice* device) : 5789 TouchInputMapper(device) { 5790 } 5791 5792 MultiTouchInputMapper::~MultiTouchInputMapper() { 5793 } 5794 5795 void MultiTouchInputMapper::reset(nsecs_t when) { 5796 mMultiTouchMotionAccumulator.reset(getDevice()); 5797 5798 mPointerIdBits.clear(); 5799 5800 TouchInputMapper::reset(when); 5801 } 5802 5803 void MultiTouchInputMapper::process(const RawEvent* rawEvent) { 5804 TouchInputMapper::process(rawEvent); 5805 5806 mMultiTouchMotionAccumulator.process(rawEvent); 5807 } 5808 5809 void MultiTouchInputMapper::syncTouch(nsecs_t when, bool* outHavePointerIds) { 5810 size_t inCount = mMultiTouchMotionAccumulator.getSlotCount(); 5811 size_t outCount = 0; 5812 BitSet32 newPointerIdBits; 5813 5814 for (size_t inIndex = 0; inIndex < inCount; inIndex++) { 5815 const MultiTouchMotionAccumulator::Slot* inSlot = 5816 mMultiTouchMotionAccumulator.getSlot(inIndex); 5817 if (!inSlot->isInUse()) { 5818 continue; 5819 } 5820 5821 if (outCount >= MAX_POINTERS) { 5822 #if DEBUG_POINTERS 5823 ALOGD("MultiTouch device %s emitted more than maximum of %d pointers; " 5824 "ignoring the rest.", 5825 getDeviceName().string(), MAX_POINTERS); 5826 #endif 5827 break; // too many fingers! 5828 } 5829 5830 RawPointerData::Pointer& outPointer = mCurrentRawPointerData.pointers[outCount]; 5831 outPointer.x = inSlot->getX(); 5832 outPointer.y = inSlot->getY(); 5833 outPointer.pressure = inSlot->getPressure(); 5834 outPointer.touchMajor = inSlot->getTouchMajor(); 5835 outPointer.touchMinor = inSlot->getTouchMinor(); 5836 outPointer.toolMajor = inSlot->getToolMajor(); 5837 outPointer.toolMinor = inSlot->getToolMinor(); 5838 outPointer.orientation = inSlot->getOrientation(); 5839 outPointer.distance = inSlot->getDistance(); 5840 outPointer.tiltX = 0; 5841 outPointer.tiltY = 0; 5842 5843 outPointer.toolType = inSlot->getToolType(); 5844 if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { 5845 outPointer.toolType = mTouchButtonAccumulator.getToolType(); 5846 if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { 5847 outPointer.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; 5848 } 5849 } 5850 5851 bool isHovering = mTouchButtonAccumulator.getToolType() != AMOTION_EVENT_TOOL_TYPE_MOUSE 5852 && (mTouchButtonAccumulator.isHovering() 5853 || (mRawPointerAxes.pressure.valid && inSlot->getPressure() <= 0)); 5854 outPointer.isHovering = isHovering; 5855 5856 // Assign pointer id using tracking id if available. 5857 if (*outHavePointerIds) { 5858 int32_t trackingId = inSlot->getTrackingId(); 5859 int32_t id = -1; 5860 if (trackingId >= 0) { 5861 for (BitSet32 idBits(mPointerIdBits); !idBits.isEmpty(); ) { 5862 uint32_t n = idBits.clearFirstMarkedBit(); 5863 if (mPointerTrackingIdMap[n] == trackingId) { 5864 id = n; 5865 } 5866 } 5867 5868 if (id < 0 && !mPointerIdBits.isFull()) { 5869 id = mPointerIdBits.markFirstUnmarkedBit(); 5870 mPointerTrackingIdMap[id] = trackingId; 5871 } 5872 } 5873 if (id < 0) { 5874 *outHavePointerIds = false; 5875 mCurrentRawPointerData.clearIdBits(); 5876 newPointerIdBits.clear(); 5877 } else { 5878 outPointer.id = id; 5879 mCurrentRawPointerData.idToIndex[id] = outCount; 5880 mCurrentRawPointerData.markIdBit(id, isHovering); 5881 newPointerIdBits.markBit(id); 5882 } 5883 } 5884 5885 outCount += 1; 5886 } 5887 5888 mCurrentRawPointerData.pointerCount = outCount; 5889 mPointerIdBits = newPointerIdBits; 5890 5891 mMultiTouchMotionAccumulator.finishSync(); 5892 } 5893 5894 void MultiTouchInputMapper::configureRawPointerAxes() { 5895 TouchInputMapper::configureRawPointerAxes(); 5896 5897 getAbsoluteAxisInfo(ABS_MT_POSITION_X, &mRawPointerAxes.x); 5898 getAbsoluteAxisInfo(ABS_MT_POSITION_Y, &mRawPointerAxes.y); 5899 getAbsoluteAxisInfo(ABS_MT_TOUCH_MAJOR, &mRawPointerAxes.touchMajor); 5900 getAbsoluteAxisInfo(ABS_MT_TOUCH_MINOR, &mRawPointerAxes.touchMinor); 5901 getAbsoluteAxisInfo(ABS_MT_WIDTH_MAJOR, &mRawPointerAxes.toolMajor); 5902 getAbsoluteAxisInfo(ABS_MT_WIDTH_MINOR, &mRawPointerAxes.toolMinor); 5903 getAbsoluteAxisInfo(ABS_MT_ORIENTATION, &mRawPointerAxes.orientation); 5904 getAbsoluteAxisInfo(ABS_MT_PRESSURE, &mRawPointerAxes.pressure); 5905 getAbsoluteAxisInfo(ABS_MT_DISTANCE, &mRawPointerAxes.distance); 5906 getAbsoluteAxisInfo(ABS_MT_TRACKING_ID, &mRawPointerAxes.trackingId); 5907 getAbsoluteAxisInfo(ABS_MT_SLOT, &mRawPointerAxes.slot); 5908 5909 if (mRawPointerAxes.trackingId.valid 5910 && mRawPointerAxes.slot.valid 5911 && mRawPointerAxes.slot.minValue == 0 && mRawPointerAxes.slot.maxValue > 0) { 5912 size_t slotCount = mRawPointerAxes.slot.maxValue + 1; 5913 if (slotCount > MAX_SLOTS) { 5914 ALOGW("MultiTouch Device %s reported %d slots but the framework " 5915 "only supports a maximum of %d slots at this time.", 5916 getDeviceName().string(), slotCount, MAX_SLOTS); 5917 slotCount = MAX_SLOTS; 5918 } 5919 mMultiTouchMotionAccumulator.configure(getDevice(), 5920 slotCount, true /*usingSlotsProtocol*/); 5921 } else { 5922 mMultiTouchMotionAccumulator.configure(getDevice(), 5923 MAX_POINTERS, false /*usingSlotsProtocol*/); 5924 } 5925 } 5926 5927 bool MultiTouchInputMapper::hasStylus() const { 5928 return mMultiTouchMotionAccumulator.hasStylus() 5929 || mTouchButtonAccumulator.hasStylus(); 5930 } 5931 5932 5933 // --- JoystickInputMapper --- 5934 5935 JoystickInputMapper::JoystickInputMapper(InputDevice* device) : 5936 InputMapper(device) { 5937 } 5938 5939 JoystickInputMapper::~JoystickInputMapper() { 5940 } 5941 5942 uint32_t JoystickInputMapper::getSources() { 5943 return AINPUT_SOURCE_JOYSTICK; 5944 } 5945 5946 void JoystickInputMapper::populateDeviceInfo(InputDeviceInfo* info) { 5947 InputMapper::populateDeviceInfo(info); 5948 5949 for (size_t i = 0; i < mAxes.size(); i++) { 5950 const Axis& axis = mAxes.valueAt(i); 5951 info->addMotionRange(axis.axisInfo.axis, AINPUT_SOURCE_JOYSTICK, 5952 axis.min, axis.max, axis.flat, axis.fuzz); 5953 if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { 5954 info->addMotionRange(axis.axisInfo.highAxis, AINPUT_SOURCE_JOYSTICK, 5955 axis.min, axis.max, axis.flat, axis.fuzz); 5956 } 5957 } 5958 } 5959 5960 void JoystickInputMapper::dump(String8& dump) { 5961 dump.append(INDENT2 "Joystick Input Mapper:\n"); 5962 5963 dump.append(INDENT3 "Axes:\n"); 5964 size_t numAxes = mAxes.size(); 5965 for (size_t i = 0; i < numAxes; i++) { 5966 const Axis& axis = mAxes.valueAt(i); 5967 const char* label = getAxisLabel(axis.axisInfo.axis); 5968 if (label) { 5969 dump.appendFormat(INDENT4 "%s", label); 5970 } else { 5971 dump.appendFormat(INDENT4 "%d", axis.axisInfo.axis); 5972 } 5973 if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { 5974 label = getAxisLabel(axis.axisInfo.highAxis); 5975 if (label) { 5976 dump.appendFormat(" / %s (split at %d)", label, axis.axisInfo.splitValue); 5977 } else { 5978 dump.appendFormat(" / %d (split at %d)", axis.axisInfo.highAxis, 5979 axis.axisInfo.splitValue); 5980 } 5981 } else if (axis.axisInfo.mode == AxisInfo::MODE_INVERT) { 5982 dump.append(" (invert)"); 5983 } 5984 5985 dump.appendFormat(": min=%0.5f, max=%0.5f, flat=%0.5f, fuzz=%0.5f\n", 5986 axis.min, axis.max, axis.flat, axis.fuzz); 5987 dump.appendFormat(INDENT4 " scale=%0.5f, offset=%0.5f, " 5988 "highScale=%0.5f, highOffset=%0.5f\n", 5989 axis.scale, axis.offset, axis.highScale, axis.highOffset); 5990 dump.appendFormat(INDENT4 " rawAxis=%d, rawMin=%d, rawMax=%d, " 5991 "rawFlat=%d, rawFuzz=%d, rawResolution=%d\n", 5992 mAxes.keyAt(i), axis.rawAxisInfo.minValue, axis.rawAxisInfo.maxValue, 5993 axis.rawAxisInfo.flat, axis.rawAxisInfo.fuzz, axis.rawAxisInfo.resolution); 5994 } 5995 } 5996 5997 void JoystickInputMapper::configure(nsecs_t when, 5998 const InputReaderConfiguration* config, uint32_t changes) { 5999 InputMapper::configure(when, config, changes); 6000 6001 if (!changes) { // first time only 6002 // Collect all axes. 6003 for (int32_t abs = 0; abs <= ABS_MAX; abs++) { 6004 if (!(getAbsAxisUsage(abs, getDevice()->getClasses()) 6005 & INPUT_DEVICE_CLASS_JOYSTICK)) { 6006 continue; // axis must be claimed by a different device 6007 } 6008 6009 RawAbsoluteAxisInfo rawAxisInfo; 6010 getAbsoluteAxisInfo(abs, &rawAxisInfo); 6011 if (rawAxisInfo.valid) { 6012 // Map axis. 6013 AxisInfo axisInfo; 6014 bool explicitlyMapped = !getEventHub()->mapAxis(getDeviceId(), abs, &axisInfo); 6015 if (!explicitlyMapped) { 6016 // Axis is not explicitly mapped, will choose a generic axis later. 6017 axisInfo.mode = AxisInfo::MODE_NORMAL; 6018 axisInfo.axis = -1; 6019 } 6020 6021 // Apply flat override. 6022 int32_t rawFlat = axisInfo.flatOverride < 0 6023 ? rawAxisInfo.flat : axisInfo.flatOverride; 6024 6025 // Calculate scaling factors and limits. 6026 Axis axis; 6027 if (axisInfo.mode == AxisInfo::MODE_SPLIT) { 6028 float scale = 1.0f / (axisInfo.splitValue - rawAxisInfo.minValue); 6029 float highScale = 1.0f / (rawAxisInfo.maxValue - axisInfo.splitValue); 6030 axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped, 6031 scale, 0.0f, highScale, 0.0f, 6032 0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale); 6033 } else if (isCenteredAxis(axisInfo.axis)) { 6034 float scale = 2.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue); 6035 float offset = avg(rawAxisInfo.minValue, rawAxisInfo.maxValue) * -scale; 6036 axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped, 6037 scale, offset, scale, offset, 6038 -1.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale); 6039 } else { 6040 float scale = 1.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue); 6041 axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped, 6042 scale, 0.0f, scale, 0.0f, 6043 0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale); 6044 } 6045 6046 // To eliminate noise while the joystick is at rest, filter out small variations 6047 // in axis values up front. 6048 axis.filter = axis.flat * 0.25f; 6049 6050 mAxes.add(abs, axis); 6051 } 6052 } 6053 6054 // If there are too many axes, start dropping them. 6055 // Prefer to keep explicitly mapped axes. 6056 if (mAxes.size() > PointerCoords::MAX_AXES) { 6057 ALOGI("Joystick '%s' has %d axes but the framework only supports a maximum of %d.", 6058 getDeviceName().string(), mAxes.size(), PointerCoords::MAX_AXES); 6059 pruneAxes(true); 6060 pruneAxes(false); 6061 } 6062 6063 // Assign generic axis ids to remaining axes. 6064 int32_t nextGenericAxisId = AMOTION_EVENT_AXIS_GENERIC_1; 6065 size_t numAxes = mAxes.size(); 6066 for (size_t i = 0; i < numAxes; i++) { 6067 Axis& axis = mAxes.editValueAt(i); 6068 if (axis.axisInfo.axis < 0) { 6069 while (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16 6070 && haveAxis(nextGenericAxisId)) { 6071 nextGenericAxisId += 1; 6072 } 6073 6074 if (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16) { 6075 axis.axisInfo.axis = nextGenericAxisId; 6076 nextGenericAxisId += 1; 6077 } else { 6078 ALOGI("Ignoring joystick '%s' axis %d because all of the generic axis ids " 6079 "have already been assigned to other axes.", 6080 getDeviceName().string(), mAxes.keyAt(i)); 6081 mAxes.removeItemsAt(i--); 6082 numAxes -= 1; 6083 } 6084 } 6085 } 6086 } 6087 } 6088 6089 bool JoystickInputMapper::haveAxis(int32_t axisId) { 6090 size_t numAxes = mAxes.size(); 6091 for (size_t i = 0; i < numAxes; i++) { 6092 const Axis& axis = mAxes.valueAt(i); 6093 if (axis.axisInfo.axis == axisId 6094 || (axis.axisInfo.mode == AxisInfo::MODE_SPLIT 6095 && axis.axisInfo.highAxis == axisId)) { 6096 return true; 6097 } 6098 } 6099 return false; 6100 } 6101 6102 void JoystickInputMapper::pruneAxes(bool ignoreExplicitlyMappedAxes) { 6103 size_t i = mAxes.size(); 6104 while (mAxes.size() > PointerCoords::MAX_AXES && i-- > 0) { 6105 if (ignoreExplicitlyMappedAxes && mAxes.valueAt(i).explicitlyMapped) { 6106 continue; 6107 } 6108 ALOGI("Discarding joystick '%s' axis %d because there are too many axes.", 6109 getDeviceName().string(), mAxes.keyAt(i)); 6110 mAxes.removeItemsAt(i); 6111 } 6112 } 6113 6114 bool JoystickInputMapper::isCenteredAxis(int32_t axis) { 6115 switch (axis) { 6116 case AMOTION_EVENT_AXIS_X: 6117 case AMOTION_EVENT_AXIS_Y: 6118 case AMOTION_EVENT_AXIS_Z: 6119 case AMOTION_EVENT_AXIS_RX: 6120 case AMOTION_EVENT_AXIS_RY: 6121 case AMOTION_EVENT_AXIS_RZ: 6122 case AMOTION_EVENT_AXIS_HAT_X: 6123 case AMOTION_EVENT_AXIS_HAT_Y: 6124 case AMOTION_EVENT_AXIS_ORIENTATION: 6125 case AMOTION_EVENT_AXIS_RUDDER: 6126 case AMOTION_EVENT_AXIS_WHEEL: 6127 return true; 6128 default: 6129 return false; 6130 } 6131 } 6132 6133 void JoystickInputMapper::reset(nsecs_t when) { 6134 // Recenter all axes. 6135 size_t numAxes = mAxes.size(); 6136 for (size_t i = 0; i < numAxes; i++) { 6137 Axis& axis = mAxes.editValueAt(i); 6138 axis.resetValue(); 6139 } 6140 6141 InputMapper::reset(when); 6142 } 6143 6144 void JoystickInputMapper::process(const RawEvent* rawEvent) { 6145 switch (rawEvent->type) { 6146 case EV_ABS: { 6147 ssize_t index = mAxes.indexOfKey(rawEvent->code); 6148 if (index >= 0) { 6149 Axis& axis = mAxes.editValueAt(index); 6150 float newValue, highNewValue; 6151 switch (axis.axisInfo.mode) { 6152 case AxisInfo::MODE_INVERT: 6153 newValue = (axis.rawAxisInfo.maxValue - rawEvent->value) 6154 * axis.scale + axis.offset; 6155 highNewValue = 0.0f; 6156 break; 6157 case AxisInfo::MODE_SPLIT: 6158 if (rawEvent->value < axis.axisInfo.splitValue) { 6159 newValue = (axis.axisInfo.splitValue - rawEvent->value) 6160 * axis.scale + axis.offset; 6161 highNewValue = 0.0f; 6162 } else if (rawEvent->value > axis.axisInfo.splitValue) { 6163 newValue = 0.0f; 6164 highNewValue = (rawEvent->value - axis.axisInfo.splitValue) 6165 * axis.highScale + axis.highOffset; 6166 } else { 6167 newValue = 0.0f; 6168 highNewValue = 0.0f; 6169 } 6170 break; 6171 default: 6172 newValue = rawEvent->value * axis.scale + axis.offset; 6173 highNewValue = 0.0f; 6174 break; 6175 } 6176 axis.newValue = newValue; 6177 axis.highNewValue = highNewValue; 6178 } 6179 break; 6180 } 6181 6182 case EV_SYN: 6183 switch (rawEvent->code) { 6184 case SYN_REPORT: 6185 sync(rawEvent->when, false /*force*/); 6186 break; 6187 } 6188 break; 6189 } 6190 } 6191 6192 void JoystickInputMapper::sync(nsecs_t when, bool force) { 6193 if (!filterAxes(force)) { 6194 return; 6195 } 6196 6197 int32_t metaState = mContext->getGlobalMetaState(); 6198 int32_t buttonState = 0; 6199 6200 PointerProperties pointerProperties; 6201 pointerProperties.clear(); 6202 pointerProperties.id = 0; 6203 pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_UNKNOWN; 6204 6205 PointerCoords pointerCoords; 6206 pointerCoords.clear(); 6207 6208 size_t numAxes = mAxes.size(); 6209 for (size_t i = 0; i < numAxes; i++) { 6210 const Axis& axis = mAxes.valueAt(i); 6211 pointerCoords.setAxisValue(axis.axisInfo.axis, axis.currentValue); 6212 if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { 6213 pointerCoords.setAxisValue(axis.axisInfo.highAxis, axis.highCurrentValue); 6214 } 6215 } 6216 6217 // Moving a joystick axis should not wake the devide because joysticks can 6218 // be fairly noisy even when not in use. On the other hand, pushing a gamepad 6219 // button will likely wake the device. 6220 // TODO: Use the input device configuration to control this behavior more finely. 6221 uint32_t policyFlags = 0; 6222 6223 NotifyMotionArgs args(when, getDeviceId(), AINPUT_SOURCE_JOYSTICK, policyFlags, 6224 AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, 6225 1, &pointerProperties, &pointerCoords, 0, 0, 0); 6226 getListener()->notifyMotion(&args); 6227 } 6228 6229 bool JoystickInputMapper::filterAxes(bool force) { 6230 bool atLeastOneSignificantChange = force; 6231 size_t numAxes = mAxes.size(); 6232 for (size_t i = 0; i < numAxes; i++) { 6233 Axis& axis = mAxes.editValueAt(i); 6234 if (force || hasValueChangedSignificantly(axis.filter, 6235 axis.newValue, axis.currentValue, axis.min, axis.max)) { 6236 axis.currentValue = axis.newValue; 6237 atLeastOneSignificantChange = true; 6238 } 6239 if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { 6240 if (force || hasValueChangedSignificantly(axis.filter, 6241 axis.highNewValue, axis.highCurrentValue, axis.min, axis.max)) { 6242 axis.highCurrentValue = axis.highNewValue; 6243 atLeastOneSignificantChange = true; 6244 } 6245 } 6246 } 6247 return atLeastOneSignificantChange; 6248 } 6249 6250 bool JoystickInputMapper::hasValueChangedSignificantly( 6251 float filter, float newValue, float currentValue, float min, float max) { 6252 if (newValue != currentValue) { 6253 // Filter out small changes in value unless the value is converging on the axis 6254 // bounds or center point. This is intended to reduce the amount of information 6255 // sent to applications by particularly noisy joysticks (such as PS3). 6256 if (fabs(newValue - currentValue) > filter 6257 || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, min) 6258 || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, max) 6259 || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, 0)) { 6260 return true; 6261 } 6262 } 6263 return false; 6264 } 6265 6266 bool JoystickInputMapper::hasMovedNearerToValueWithinFilteredRange( 6267 float filter, float newValue, float currentValue, float thresholdValue) { 6268 float newDistance = fabs(newValue - thresholdValue); 6269 if (newDistance < filter) { 6270 float oldDistance = fabs(currentValue - thresholdValue); 6271 if (newDistance < oldDistance) { 6272 return true; 6273 } 6274 } 6275 return false; 6276 } 6277 6278 } // namespace android 6279