Home | History | Annotate | Download | only in Sema
      1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/Sema/Initialization.h"
     16 #include "clang/Sema/Lookup.h"
     17 #include "clang/Sema/CXXFieldCollector.h"
     18 #include "clang/Sema/Scope.h"
     19 #include "clang/Sema/ScopeInfo.h"
     20 #include "TypeLocBuilder.h"
     21 #include "clang/AST/ASTConsumer.h"
     22 #include "clang/AST/ASTContext.h"
     23 #include "clang/AST/CXXInheritance.h"
     24 #include "clang/AST/DeclCXX.h"
     25 #include "clang/AST/DeclObjC.h"
     26 #include "clang/AST/DeclTemplate.h"
     27 #include "clang/AST/EvaluatedExprVisitor.h"
     28 #include "clang/AST/ExprCXX.h"
     29 #include "clang/AST/StmtCXX.h"
     30 #include "clang/AST/CharUnits.h"
     31 #include "clang/Sema/DeclSpec.h"
     32 #include "clang/Sema/ParsedTemplate.h"
     33 #include "clang/Parse/ParseDiagnostic.h"
     34 #include "clang/Basic/PartialDiagnostic.h"
     35 #include "clang/Sema/DelayedDiagnostic.h"
     36 #include "clang/Basic/SourceManager.h"
     37 #include "clang/Basic/TargetInfo.h"
     38 // FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
     39 #include "clang/Lex/Preprocessor.h"
     40 #include "clang/Lex/HeaderSearch.h"
     41 #include "clang/Lex/ModuleLoader.h"
     42 #include "llvm/ADT/SmallString.h"
     43 #include "llvm/ADT/Triple.h"
     44 #include <algorithm>
     45 #include <cstring>
     46 #include <functional>
     47 using namespace clang;
     48 using namespace sema;
     49 
     50 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
     51   if (OwnedType) {
     52     Decl *Group[2] = { OwnedType, Ptr };
     53     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
     54   }
     55 
     56   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
     57 }
     58 
     59 namespace {
     60 
     61 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
     62  public:
     63   TypeNameValidatorCCC(bool AllowInvalid) : AllowInvalidDecl(AllowInvalid) {
     64     WantExpressionKeywords = false;
     65     WantCXXNamedCasts = false;
     66     WantRemainingKeywords = false;
     67   }
     68 
     69   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
     70     if (NamedDecl *ND = candidate.getCorrectionDecl())
     71       return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
     72           (AllowInvalidDecl || !ND->isInvalidDecl());
     73     else
     74       return candidate.isKeyword();
     75   }
     76 
     77  private:
     78   bool AllowInvalidDecl;
     79 };
     80 
     81 }
     82 
     83 /// \brief If the identifier refers to a type name within this scope,
     84 /// return the declaration of that type.
     85 ///
     86 /// This routine performs ordinary name lookup of the identifier II
     87 /// within the given scope, with optional C++ scope specifier SS, to
     88 /// determine whether the name refers to a type. If so, returns an
     89 /// opaque pointer (actually a QualType) corresponding to that
     90 /// type. Otherwise, returns NULL.
     91 ///
     92 /// If name lookup results in an ambiguity, this routine will complain
     93 /// and then return NULL.
     94 ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
     95                              Scope *S, CXXScopeSpec *SS,
     96                              bool isClassName, bool HasTrailingDot,
     97                              ParsedType ObjectTypePtr,
     98                              bool IsCtorOrDtorName,
     99                              bool WantNontrivialTypeSourceInfo,
    100                              IdentifierInfo **CorrectedII) {
    101   // Determine where we will perform name lookup.
    102   DeclContext *LookupCtx = 0;
    103   if (ObjectTypePtr) {
    104     QualType ObjectType = ObjectTypePtr.get();
    105     if (ObjectType->isRecordType())
    106       LookupCtx = computeDeclContext(ObjectType);
    107   } else if (SS && SS->isNotEmpty()) {
    108     LookupCtx = computeDeclContext(*SS, false);
    109 
    110     if (!LookupCtx) {
    111       if (isDependentScopeSpecifier(*SS)) {
    112         // C++ [temp.res]p3:
    113         //   A qualified-id that refers to a type and in which the
    114         //   nested-name-specifier depends on a template-parameter (14.6.2)
    115         //   shall be prefixed by the keyword typename to indicate that the
    116         //   qualified-id denotes a type, forming an
    117         //   elaborated-type-specifier (7.1.5.3).
    118         //
    119         // We therefore do not perform any name lookup if the result would
    120         // refer to a member of an unknown specialization.
    121         if (!isClassName && !IsCtorOrDtorName)
    122           return ParsedType();
    123 
    124         // We know from the grammar that this name refers to a type,
    125         // so build a dependent node to describe the type.
    126         if (WantNontrivialTypeSourceInfo)
    127           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
    128 
    129         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
    130         QualType T =
    131           CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
    132                             II, NameLoc);
    133 
    134           return ParsedType::make(T);
    135       }
    136 
    137       return ParsedType();
    138     }
    139 
    140     if (!LookupCtx->isDependentContext() &&
    141         RequireCompleteDeclContext(*SS, LookupCtx))
    142       return ParsedType();
    143   }
    144 
    145   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
    146   // lookup for class-names.
    147   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
    148                                       LookupOrdinaryName;
    149   LookupResult Result(*this, &II, NameLoc, Kind);
    150   if (LookupCtx) {
    151     // Perform "qualified" name lookup into the declaration context we
    152     // computed, which is either the type of the base of a member access
    153     // expression or the declaration context associated with a prior
    154     // nested-name-specifier.
    155     LookupQualifiedName(Result, LookupCtx);
    156 
    157     if (ObjectTypePtr && Result.empty()) {
    158       // C++ [basic.lookup.classref]p3:
    159       //   If the unqualified-id is ~type-name, the type-name is looked up
    160       //   in the context of the entire postfix-expression. If the type T of
    161       //   the object expression is of a class type C, the type-name is also
    162       //   looked up in the scope of class C. At least one of the lookups shall
    163       //   find a name that refers to (possibly cv-qualified) T.
    164       LookupName(Result, S);
    165     }
    166   } else {
    167     // Perform unqualified name lookup.
    168     LookupName(Result, S);
    169   }
    170 
    171   NamedDecl *IIDecl = 0;
    172   switch (Result.getResultKind()) {
    173   case LookupResult::NotFound:
    174   case LookupResult::NotFoundInCurrentInstantiation:
    175     if (CorrectedII) {
    176       TypeNameValidatorCCC Validator(true);
    177       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
    178                                               Kind, S, SS, Validator);
    179       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
    180       TemplateTy Template;
    181       bool MemberOfUnknownSpecialization;
    182       UnqualifiedId TemplateName;
    183       TemplateName.setIdentifier(NewII, NameLoc);
    184       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
    185       CXXScopeSpec NewSS, *NewSSPtr = SS;
    186       if (SS && NNS) {
    187         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
    188         NewSSPtr = &NewSS;
    189       }
    190       if (Correction && (NNS || NewII != &II) &&
    191           // Ignore a correction to a template type as the to-be-corrected
    192           // identifier is not a template (typo correction for template names
    193           // is handled elsewhere).
    194           !(getLangOpts().CPlusPlus && NewSSPtr &&
    195             isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
    196                            false, Template, MemberOfUnknownSpecialization))) {
    197         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
    198                                     isClassName, HasTrailingDot, ObjectTypePtr,
    199                                     IsCtorOrDtorName,
    200                                     WantNontrivialTypeSourceInfo);
    201         if (Ty) {
    202           std::string CorrectedStr(Correction.getAsString(getLangOpts()));
    203           std::string CorrectedQuotedStr(
    204               Correction.getQuoted(getLangOpts()));
    205           Diag(NameLoc, diag::err_unknown_typename_suggest)
    206               << Result.getLookupName() << CorrectedQuotedStr
    207               << FixItHint::CreateReplacement(SourceRange(NameLoc),
    208                                               CorrectedStr);
    209           if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
    210             Diag(FirstDecl->getLocation(), diag::note_previous_decl)
    211               << CorrectedQuotedStr;
    212 
    213           if (SS && NNS)
    214             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
    215           *CorrectedII = NewII;
    216           return Ty;
    217         }
    218       }
    219     }
    220     // If typo correction failed or was not performed, fall through
    221   case LookupResult::FoundOverloaded:
    222   case LookupResult::FoundUnresolvedValue:
    223     Result.suppressDiagnostics();
    224     return ParsedType();
    225 
    226   case LookupResult::Ambiguous:
    227     // Recover from type-hiding ambiguities by hiding the type.  We'll
    228     // do the lookup again when looking for an object, and we can
    229     // diagnose the error then.  If we don't do this, then the error
    230     // about hiding the type will be immediately followed by an error
    231     // that only makes sense if the identifier was treated like a type.
    232     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
    233       Result.suppressDiagnostics();
    234       return ParsedType();
    235     }
    236 
    237     // Look to see if we have a type anywhere in the list of results.
    238     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
    239          Res != ResEnd; ++Res) {
    240       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
    241         if (!IIDecl ||
    242             (*Res)->getLocation().getRawEncoding() <
    243               IIDecl->getLocation().getRawEncoding())
    244           IIDecl = *Res;
    245       }
    246     }
    247 
    248     if (!IIDecl) {
    249       // None of the entities we found is a type, so there is no way
    250       // to even assume that the result is a type. In this case, don't
    251       // complain about the ambiguity. The parser will either try to
    252       // perform this lookup again (e.g., as an object name), which
    253       // will produce the ambiguity, or will complain that it expected
    254       // a type name.
    255       Result.suppressDiagnostics();
    256       return ParsedType();
    257     }
    258 
    259     // We found a type within the ambiguous lookup; diagnose the
    260     // ambiguity and then return that type. This might be the right
    261     // answer, or it might not be, but it suppresses any attempt to
    262     // perform the name lookup again.
    263     break;
    264 
    265   case LookupResult::Found:
    266     IIDecl = Result.getFoundDecl();
    267     break;
    268   }
    269 
    270   assert(IIDecl && "Didn't find decl");
    271 
    272   QualType T;
    273   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
    274     DiagnoseUseOfDecl(IIDecl, NameLoc);
    275 
    276     if (T.isNull())
    277       T = Context.getTypeDeclType(TD);
    278 
    279     // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
    280     // constructor or destructor name (in such a case, the scope specifier
    281     // will be attached to the enclosing Expr or Decl node).
    282     if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
    283       if (WantNontrivialTypeSourceInfo) {
    284         // Construct a type with type-source information.
    285         TypeLocBuilder Builder;
    286         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
    287 
    288         T = getElaboratedType(ETK_None, *SS, T);
    289         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
    290         ElabTL.setElaboratedKeywordLoc(SourceLocation());
    291         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
    292         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    293       } else {
    294         T = getElaboratedType(ETK_None, *SS, T);
    295       }
    296     }
    297   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
    298     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
    299     if (!HasTrailingDot)
    300       T = Context.getObjCInterfaceType(IDecl);
    301   }
    302 
    303   if (T.isNull()) {
    304     // If it's not plausibly a type, suppress diagnostics.
    305     Result.suppressDiagnostics();
    306     return ParsedType();
    307   }
    308   return ParsedType::make(T);
    309 }
    310 
    311 /// isTagName() - This method is called *for error recovery purposes only*
    312 /// to determine if the specified name is a valid tag name ("struct foo").  If
    313 /// so, this returns the TST for the tag corresponding to it (TST_enum,
    314 /// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
    315 /// where the user forgot to specify the tag.
    316 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
    317   // Do a tag name lookup in this scope.
    318   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
    319   LookupName(R, S, false);
    320   R.suppressDiagnostics();
    321   if (R.getResultKind() == LookupResult::Found)
    322     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
    323       switch (TD->getTagKind()) {
    324       case TTK_Struct: return DeclSpec::TST_struct;
    325       case TTK_Union:  return DeclSpec::TST_union;
    326       case TTK_Class:  return DeclSpec::TST_class;
    327       case TTK_Enum:   return DeclSpec::TST_enum;
    328       }
    329     }
    330 
    331   return DeclSpec::TST_unspecified;
    332 }
    333 
    334 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
    335 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
    336 /// then downgrade the missing typename error to a warning.
    337 /// This is needed for MSVC compatibility; Example:
    338 /// @code
    339 /// template<class T> class A {
    340 /// public:
    341 ///   typedef int TYPE;
    342 /// };
    343 /// template<class T> class B : public A<T> {
    344 /// public:
    345 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
    346 /// };
    347 /// @endcode
    348 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
    349   if (CurContext->isRecord()) {
    350     const Type *Ty = SS->getScopeRep()->getAsType();
    351 
    352     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
    353     for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
    354           BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
    355       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
    356         return true;
    357     return S->isFunctionPrototypeScope();
    358   }
    359   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
    360 }
    361 
    362 bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
    363                                    SourceLocation IILoc,
    364                                    Scope *S,
    365                                    CXXScopeSpec *SS,
    366                                    ParsedType &SuggestedType) {
    367   // We don't have anything to suggest (yet).
    368   SuggestedType = ParsedType();
    369 
    370   // There may have been a typo in the name of the type. Look up typo
    371   // results, in case we have something that we can suggest.
    372   TypeNameValidatorCCC Validator(false);
    373   if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
    374                                              LookupOrdinaryName, S, SS,
    375                                              Validator)) {
    376     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
    377     std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
    378 
    379     if (Corrected.isKeyword()) {
    380       // We corrected to a keyword.
    381       // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
    382       Diag(IILoc, diag::err_unknown_typename_suggest)
    383         << &II << CorrectedQuotedStr;
    384     } else {
    385       NamedDecl *Result = Corrected.getCorrectionDecl();
    386       // We found a similarly-named type or interface; suggest that.
    387       if (!SS || !SS->isSet())
    388         Diag(IILoc, diag::err_unknown_typename_suggest)
    389           << &II << CorrectedQuotedStr
    390           << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
    391       else if (DeclContext *DC = computeDeclContext(*SS, false))
    392         Diag(IILoc, diag::err_unknown_nested_typename_suggest)
    393           << &II << DC << CorrectedQuotedStr << SS->getRange()
    394           << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
    395       else
    396         llvm_unreachable("could not have corrected a typo here");
    397 
    398       Diag(Result->getLocation(), diag::note_previous_decl)
    399         << CorrectedQuotedStr;
    400 
    401       SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
    402                                   false, false, ParsedType(),
    403                                   /*IsCtorOrDtorName=*/false,
    404                                   /*NonTrivialTypeSourceInfo=*/true);
    405     }
    406     return true;
    407   }
    408 
    409   if (getLangOpts().CPlusPlus) {
    410     // See if II is a class template that the user forgot to pass arguments to.
    411     UnqualifiedId Name;
    412     Name.setIdentifier(&II, IILoc);
    413     CXXScopeSpec EmptySS;
    414     TemplateTy TemplateResult;
    415     bool MemberOfUnknownSpecialization;
    416     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
    417                        Name, ParsedType(), true, TemplateResult,
    418                        MemberOfUnknownSpecialization) == TNK_Type_template) {
    419       TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
    420       Diag(IILoc, diag::err_template_missing_args) << TplName;
    421       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
    422         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
    423           << TplDecl->getTemplateParameters()->getSourceRange();
    424       }
    425       return true;
    426     }
    427   }
    428 
    429   // FIXME: Should we move the logic that tries to recover from a missing tag
    430   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
    431 
    432   if (!SS || (!SS->isSet() && !SS->isInvalid()))
    433     Diag(IILoc, diag::err_unknown_typename) << &II;
    434   else if (DeclContext *DC = computeDeclContext(*SS, false))
    435     Diag(IILoc, diag::err_typename_nested_not_found)
    436       << &II << DC << SS->getRange();
    437   else if (isDependentScopeSpecifier(*SS)) {
    438     unsigned DiagID = diag::err_typename_missing;
    439     if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
    440       DiagID = diag::warn_typename_missing;
    441 
    442     Diag(SS->getRange().getBegin(), DiagID)
    443       << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
    444       << SourceRange(SS->getRange().getBegin(), IILoc)
    445       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
    446     SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
    447                                                                          .get();
    448   } else {
    449     assert(SS && SS->isInvalid() &&
    450            "Invalid scope specifier has already been diagnosed");
    451   }
    452 
    453   return true;
    454 }
    455 
    456 /// \brief Determine whether the given result set contains either a type name
    457 /// or
    458 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
    459   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
    460                        NextToken.is(tok::less);
    461 
    462   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
    463     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
    464       return true;
    465 
    466     if (CheckTemplate && isa<TemplateDecl>(*I))
    467       return true;
    468   }
    469 
    470   return false;
    471 }
    472 
    473 Sema::NameClassification Sema::ClassifyName(Scope *S,
    474                                             CXXScopeSpec &SS,
    475                                             IdentifierInfo *&Name,
    476                                             SourceLocation NameLoc,
    477                                             const Token &NextToken) {
    478   DeclarationNameInfo NameInfo(Name, NameLoc);
    479   ObjCMethodDecl *CurMethod = getCurMethodDecl();
    480 
    481   if (NextToken.is(tok::coloncolon)) {
    482     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
    483                                 QualType(), false, SS, 0, false);
    484 
    485   }
    486 
    487   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
    488   LookupParsedName(Result, S, &SS, !CurMethod);
    489 
    490   // Perform lookup for Objective-C instance variables (including automatically
    491   // synthesized instance variables), if we're in an Objective-C method.
    492   // FIXME: This lookup really, really needs to be folded in to the normal
    493   // unqualified lookup mechanism.
    494   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
    495     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
    496     if (E.get() || E.isInvalid())
    497       return E;
    498   }
    499 
    500   bool SecondTry = false;
    501   bool IsFilteredTemplateName = false;
    502 
    503 Corrected:
    504   switch (Result.getResultKind()) {
    505   case LookupResult::NotFound:
    506     // If an unqualified-id is followed by a '(', then we have a function
    507     // call.
    508     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
    509       // In C++, this is an ADL-only call.
    510       // FIXME: Reference?
    511       if (getLangOpts().CPlusPlus)
    512         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
    513 
    514       // C90 6.3.2.2:
    515       //   If the expression that precedes the parenthesized argument list in a
    516       //   function call consists solely of an identifier, and if no
    517       //   declaration is visible for this identifier, the identifier is
    518       //   implicitly declared exactly as if, in the innermost block containing
    519       //   the function call, the declaration
    520       //
    521       //     extern int identifier ();
    522       //
    523       //   appeared.
    524       //
    525       // We also allow this in C99 as an extension.
    526       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
    527         Result.addDecl(D);
    528         Result.resolveKind();
    529         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
    530       }
    531     }
    532 
    533     // In C, we first see whether there is a tag type by the same name, in
    534     // which case it's likely that the user just forget to write "enum",
    535     // "struct", or "union".
    536     if (!getLangOpts().CPlusPlus && !SecondTry) {
    537       Result.clear(LookupTagName);
    538       LookupParsedName(Result, S, &SS);
    539       if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
    540         const char *TagName = 0;
    541         const char *FixItTagName = 0;
    542         switch (Tag->getTagKind()) {
    543           case TTK_Class:
    544             TagName = "class";
    545             FixItTagName = "class ";
    546             break;
    547 
    548           case TTK_Enum:
    549             TagName = "enum";
    550             FixItTagName = "enum ";
    551             break;
    552 
    553           case TTK_Struct:
    554             TagName = "struct";
    555             FixItTagName = "struct ";
    556             break;
    557 
    558           case TTK_Union:
    559             TagName = "union";
    560             FixItTagName = "union ";
    561             break;
    562         }
    563 
    564         Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
    565           << Name << TagName << getLangOpts().CPlusPlus
    566           << FixItHint::CreateInsertion(NameLoc, FixItTagName);
    567         break;
    568       }
    569 
    570       Result.clear(LookupOrdinaryName);
    571     }
    572 
    573     // Perform typo correction to determine if there is another name that is
    574     // close to this name.
    575     if (!SecondTry) {
    576       SecondTry = true;
    577       CorrectionCandidateCallback DefaultValidator;
    578       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
    579                                                  Result.getLookupKind(), S,
    580                                                  &SS, DefaultValidator)) {
    581         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
    582         unsigned QualifiedDiag = diag::err_no_member_suggest;
    583         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
    584         std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
    585 
    586         NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
    587         NamedDecl *UnderlyingFirstDecl
    588           = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
    589         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
    590             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
    591           UnqualifiedDiag = diag::err_no_template_suggest;
    592           QualifiedDiag = diag::err_no_member_template_suggest;
    593         } else if (UnderlyingFirstDecl &&
    594                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
    595                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
    596                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
    597            UnqualifiedDiag = diag::err_unknown_typename_suggest;
    598            QualifiedDiag = diag::err_unknown_nested_typename_suggest;
    599          }
    600 
    601         if (SS.isEmpty())
    602           Diag(NameLoc, UnqualifiedDiag)
    603             << Name << CorrectedQuotedStr
    604             << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
    605         else
    606           Diag(NameLoc, QualifiedDiag)
    607             << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
    608             << SS.getRange()
    609             << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
    610 
    611         // Update the name, so that the caller has the new name.
    612         Name = Corrected.getCorrectionAsIdentifierInfo();
    613 
    614         // Typo correction corrected to a keyword.
    615         if (Corrected.isKeyword())
    616           return Corrected.getCorrectionAsIdentifierInfo();
    617 
    618         // Also update the LookupResult...
    619         // FIXME: This should probably go away at some point
    620         Result.clear();
    621         Result.setLookupName(Corrected.getCorrection());
    622         if (FirstDecl) {
    623           Result.addDecl(FirstDecl);
    624           Diag(FirstDecl->getLocation(), diag::note_previous_decl)
    625             << CorrectedQuotedStr;
    626         }
    627 
    628         // If we found an Objective-C instance variable, let
    629         // LookupInObjCMethod build the appropriate expression to
    630         // reference the ivar.
    631         // FIXME: This is a gross hack.
    632         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
    633           Result.clear();
    634           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
    635           return move(E);
    636         }
    637 
    638         goto Corrected;
    639       }
    640     }
    641 
    642     // We failed to correct; just fall through and let the parser deal with it.
    643     Result.suppressDiagnostics();
    644     return NameClassification::Unknown();
    645 
    646   case LookupResult::NotFoundInCurrentInstantiation: {
    647     // We performed name lookup into the current instantiation, and there were
    648     // dependent bases, so we treat this result the same way as any other
    649     // dependent nested-name-specifier.
    650 
    651     // C++ [temp.res]p2:
    652     //   A name used in a template declaration or definition and that is
    653     //   dependent on a template-parameter is assumed not to name a type
    654     //   unless the applicable name lookup finds a type name or the name is
    655     //   qualified by the keyword typename.
    656     //
    657     // FIXME: If the next token is '<', we might want to ask the parser to
    658     // perform some heroics to see if we actually have a
    659     // template-argument-list, which would indicate a missing 'template'
    660     // keyword here.
    661     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
    662                                      NameInfo, /*TemplateArgs=*/0);
    663   }
    664 
    665   case LookupResult::Found:
    666   case LookupResult::FoundOverloaded:
    667   case LookupResult::FoundUnresolvedValue:
    668     break;
    669 
    670   case LookupResult::Ambiguous:
    671     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
    672         hasAnyAcceptableTemplateNames(Result)) {
    673       // C++ [temp.local]p3:
    674       //   A lookup that finds an injected-class-name (10.2) can result in an
    675       //   ambiguity in certain cases (for example, if it is found in more than
    676       //   one base class). If all of the injected-class-names that are found
    677       //   refer to specializations of the same class template, and if the name
    678       //   is followed by a template-argument-list, the reference refers to the
    679       //   class template itself and not a specialization thereof, and is not
    680       //   ambiguous.
    681       //
    682       // This filtering can make an ambiguous result into an unambiguous one,
    683       // so try again after filtering out template names.
    684       FilterAcceptableTemplateNames(Result);
    685       if (!Result.isAmbiguous()) {
    686         IsFilteredTemplateName = true;
    687         break;
    688       }
    689     }
    690 
    691     // Diagnose the ambiguity and return an error.
    692     return NameClassification::Error();
    693   }
    694 
    695   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
    696       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
    697     // C++ [temp.names]p3:
    698     //   After name lookup (3.4) finds that a name is a template-name or that
    699     //   an operator-function-id or a literal- operator-id refers to a set of
    700     //   overloaded functions any member of which is a function template if
    701     //   this is followed by a <, the < is always taken as the delimiter of a
    702     //   template-argument-list and never as the less-than operator.
    703     if (!IsFilteredTemplateName)
    704       FilterAcceptableTemplateNames(Result);
    705 
    706     if (!Result.empty()) {
    707       bool IsFunctionTemplate;
    708       TemplateName Template;
    709       if (Result.end() - Result.begin() > 1) {
    710         IsFunctionTemplate = true;
    711         Template = Context.getOverloadedTemplateName(Result.begin(),
    712                                                      Result.end());
    713       } else {
    714         TemplateDecl *TD
    715           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
    716         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
    717 
    718         if (SS.isSet() && !SS.isInvalid())
    719           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
    720                                                     /*TemplateKeyword=*/false,
    721                                                       TD);
    722         else
    723           Template = TemplateName(TD);
    724       }
    725 
    726       if (IsFunctionTemplate) {
    727         // Function templates always go through overload resolution, at which
    728         // point we'll perform the various checks (e.g., accessibility) we need
    729         // to based on which function we selected.
    730         Result.suppressDiagnostics();
    731 
    732         return NameClassification::FunctionTemplate(Template);
    733       }
    734 
    735       return NameClassification::TypeTemplate(Template);
    736     }
    737   }
    738 
    739   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
    740   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
    741     DiagnoseUseOfDecl(Type, NameLoc);
    742     QualType T = Context.getTypeDeclType(Type);
    743     return ParsedType::make(T);
    744   }
    745 
    746   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
    747   if (!Class) {
    748     // FIXME: It's unfortunate that we don't have a Type node for handling this.
    749     if (ObjCCompatibleAliasDecl *Alias
    750                                 = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
    751       Class = Alias->getClassInterface();
    752   }
    753 
    754   if (Class) {
    755     DiagnoseUseOfDecl(Class, NameLoc);
    756 
    757     if (NextToken.is(tok::period)) {
    758       // Interface. <something> is parsed as a property reference expression.
    759       // Just return "unknown" as a fall-through for now.
    760       Result.suppressDiagnostics();
    761       return NameClassification::Unknown();
    762     }
    763 
    764     QualType T = Context.getObjCInterfaceType(Class);
    765     return ParsedType::make(T);
    766   }
    767 
    768   if (!Result.empty() && (*Result.begin())->isCXXClassMember())
    769     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
    770 
    771   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
    772   return BuildDeclarationNameExpr(SS, Result, ADL);
    773 }
    774 
    775 // Determines the context to return to after temporarily entering a
    776 // context.  This depends in an unnecessarily complicated way on the
    777 // exact ordering of callbacks from the parser.
    778 DeclContext *Sema::getContainingDC(DeclContext *DC) {
    779 
    780   // Functions defined inline within classes aren't parsed until we've
    781   // finished parsing the top-level class, so the top-level class is
    782   // the context we'll need to return to.
    783   if (isa<FunctionDecl>(DC)) {
    784     DC = DC->getLexicalParent();
    785 
    786     // A function not defined within a class will always return to its
    787     // lexical context.
    788     if (!isa<CXXRecordDecl>(DC))
    789       return DC;
    790 
    791     // A C++ inline method/friend is parsed *after* the topmost class
    792     // it was declared in is fully parsed ("complete");  the topmost
    793     // class is the context we need to return to.
    794     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
    795       DC = RD;
    796 
    797     // Return the declaration context of the topmost class the inline method is
    798     // declared in.
    799     return DC;
    800   }
    801 
    802   return DC->getLexicalParent();
    803 }
    804 
    805 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
    806   assert(getContainingDC(DC) == CurContext &&
    807       "The next DeclContext should be lexically contained in the current one.");
    808   CurContext = DC;
    809   S->setEntity(DC);
    810 }
    811 
    812 void Sema::PopDeclContext() {
    813   assert(CurContext && "DeclContext imbalance!");
    814 
    815   CurContext = getContainingDC(CurContext);
    816   assert(CurContext && "Popped translation unit!");
    817 }
    818 
    819 /// EnterDeclaratorContext - Used when we must lookup names in the context
    820 /// of a declarator's nested name specifier.
    821 ///
    822 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
    823   // C++0x [basic.lookup.unqual]p13:
    824   //   A name used in the definition of a static data member of class
    825   //   X (after the qualified-id of the static member) is looked up as
    826   //   if the name was used in a member function of X.
    827   // C++0x [basic.lookup.unqual]p14:
    828   //   If a variable member of a namespace is defined outside of the
    829   //   scope of its namespace then any name used in the definition of
    830   //   the variable member (after the declarator-id) is looked up as
    831   //   if the definition of the variable member occurred in its
    832   //   namespace.
    833   // Both of these imply that we should push a scope whose context
    834   // is the semantic context of the declaration.  We can't use
    835   // PushDeclContext here because that context is not necessarily
    836   // lexically contained in the current context.  Fortunately,
    837   // the containing scope should have the appropriate information.
    838 
    839   assert(!S->getEntity() && "scope already has entity");
    840 
    841 #ifndef NDEBUG
    842   Scope *Ancestor = S->getParent();
    843   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
    844   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
    845 #endif
    846 
    847   CurContext = DC;
    848   S->setEntity(DC);
    849 }
    850 
    851 void Sema::ExitDeclaratorContext(Scope *S) {
    852   assert(S->getEntity() == CurContext && "Context imbalance!");
    853 
    854   // Switch back to the lexical context.  The safety of this is
    855   // enforced by an assert in EnterDeclaratorContext.
    856   Scope *Ancestor = S->getParent();
    857   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
    858   CurContext = (DeclContext*) Ancestor->getEntity();
    859 
    860   // We don't need to do anything with the scope, which is going to
    861   // disappear.
    862 }
    863 
    864 
    865 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
    866   FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
    867   if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
    868     // We assume that the caller has already called
    869     // ActOnReenterTemplateScope
    870     FD = TFD->getTemplatedDecl();
    871   }
    872   if (!FD)
    873     return;
    874 
    875   // Same implementation as PushDeclContext, but enters the context
    876   // from the lexical parent, rather than the top-level class.
    877   assert(CurContext == FD->getLexicalParent() &&
    878     "The next DeclContext should be lexically contained in the current one.");
    879   CurContext = FD;
    880   S->setEntity(CurContext);
    881 
    882   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
    883     ParmVarDecl *Param = FD->getParamDecl(P);
    884     // If the parameter has an identifier, then add it to the scope
    885     if (Param->getIdentifier()) {
    886       S->AddDecl(Param);
    887       IdResolver.AddDecl(Param);
    888     }
    889   }
    890 }
    891 
    892 
    893 void Sema::ActOnExitFunctionContext() {
    894   // Same implementation as PopDeclContext, but returns to the lexical parent,
    895   // rather than the top-level class.
    896   assert(CurContext && "DeclContext imbalance!");
    897   CurContext = CurContext->getLexicalParent();
    898   assert(CurContext && "Popped translation unit!");
    899 }
    900 
    901 
    902 /// \brief Determine whether we allow overloading of the function
    903 /// PrevDecl with another declaration.
    904 ///
    905 /// This routine determines whether overloading is possible, not
    906 /// whether some new function is actually an overload. It will return
    907 /// true in C++ (where we can always provide overloads) or, as an
    908 /// extension, in C when the previous function is already an
    909 /// overloaded function declaration or has the "overloadable"
    910 /// attribute.
    911 static bool AllowOverloadingOfFunction(LookupResult &Previous,
    912                                        ASTContext &Context) {
    913   if (Context.getLangOpts().CPlusPlus)
    914     return true;
    915 
    916   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
    917     return true;
    918 
    919   return (Previous.getResultKind() == LookupResult::Found
    920           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
    921 }
    922 
    923 /// Add this decl to the scope shadowed decl chains.
    924 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
    925   // Move up the scope chain until we find the nearest enclosing
    926   // non-transparent context. The declaration will be introduced into this
    927   // scope.
    928   while (S->getEntity() &&
    929          ((DeclContext *)S->getEntity())->isTransparentContext())
    930     S = S->getParent();
    931 
    932   // Add scoped declarations into their context, so that they can be
    933   // found later. Declarations without a context won't be inserted
    934   // into any context.
    935   if (AddToContext)
    936     CurContext->addDecl(D);
    937 
    938   // Out-of-line definitions shouldn't be pushed into scope in C++.
    939   // Out-of-line variable and function definitions shouldn't even in C.
    940   if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
    941       D->isOutOfLine() &&
    942       !D->getDeclContext()->getRedeclContext()->Equals(
    943         D->getLexicalDeclContext()->getRedeclContext()))
    944     return;
    945 
    946   // Template instantiations should also not be pushed into scope.
    947   if (isa<FunctionDecl>(D) &&
    948       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
    949     return;
    950 
    951   // If this replaces anything in the current scope,
    952   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
    953                                IEnd = IdResolver.end();
    954   for (; I != IEnd; ++I) {
    955     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
    956       S->RemoveDecl(*I);
    957       IdResolver.RemoveDecl(*I);
    958 
    959       // Should only need to replace one decl.
    960       break;
    961     }
    962   }
    963 
    964   S->AddDecl(D);
    965 
    966   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
    967     // Implicitly-generated labels may end up getting generated in an order that
    968     // isn't strictly lexical, which breaks name lookup. Be careful to insert
    969     // the label at the appropriate place in the identifier chain.
    970     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
    971       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
    972       if (IDC == CurContext) {
    973         if (!S->isDeclScope(*I))
    974           continue;
    975       } else if (IDC->Encloses(CurContext))
    976         break;
    977     }
    978 
    979     IdResolver.InsertDeclAfter(I, D);
    980   } else {
    981     IdResolver.AddDecl(D);
    982   }
    983 }
    984 
    985 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
    986   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
    987     TUScope->AddDecl(D);
    988 }
    989 
    990 bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
    991                          bool ExplicitInstantiationOrSpecialization) {
    992   return IdResolver.isDeclInScope(D, Ctx, Context, S,
    993                                   ExplicitInstantiationOrSpecialization);
    994 }
    995 
    996 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
    997   DeclContext *TargetDC = DC->getPrimaryContext();
    998   do {
    999     if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
   1000       if (ScopeDC->getPrimaryContext() == TargetDC)
   1001         return S;
   1002   } while ((S = S->getParent()));
   1003 
   1004   return 0;
   1005 }
   1006 
   1007 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
   1008                                             DeclContext*,
   1009                                             ASTContext&);
   1010 
   1011 /// Filters out lookup results that don't fall within the given scope
   1012 /// as determined by isDeclInScope.
   1013 void Sema::FilterLookupForScope(LookupResult &R,
   1014                                 DeclContext *Ctx, Scope *S,
   1015                                 bool ConsiderLinkage,
   1016                                 bool ExplicitInstantiationOrSpecialization) {
   1017   LookupResult::Filter F = R.makeFilter();
   1018   while (F.hasNext()) {
   1019     NamedDecl *D = F.next();
   1020 
   1021     if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
   1022       continue;
   1023 
   1024     if (ConsiderLinkage &&
   1025         isOutOfScopePreviousDeclaration(D, Ctx, Context))
   1026       continue;
   1027 
   1028     F.erase();
   1029   }
   1030 
   1031   F.done();
   1032 }
   1033 
   1034 static bool isUsingDecl(NamedDecl *D) {
   1035   return isa<UsingShadowDecl>(D) ||
   1036          isa<UnresolvedUsingTypenameDecl>(D) ||
   1037          isa<UnresolvedUsingValueDecl>(D);
   1038 }
   1039 
   1040 /// Removes using shadow declarations from the lookup results.
   1041 static void RemoveUsingDecls(LookupResult &R) {
   1042   LookupResult::Filter F = R.makeFilter();
   1043   while (F.hasNext())
   1044     if (isUsingDecl(F.next()))
   1045       F.erase();
   1046 
   1047   F.done();
   1048 }
   1049 
   1050 /// \brief Check for this common pattern:
   1051 /// @code
   1052 /// class S {
   1053 ///   S(const S&); // DO NOT IMPLEMENT
   1054 ///   void operator=(const S&); // DO NOT IMPLEMENT
   1055 /// };
   1056 /// @endcode
   1057 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
   1058   // FIXME: Should check for private access too but access is set after we get
   1059   // the decl here.
   1060   if (D->doesThisDeclarationHaveABody())
   1061     return false;
   1062 
   1063   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
   1064     return CD->isCopyConstructor();
   1065   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
   1066     return Method->isCopyAssignmentOperator();
   1067   return false;
   1068 }
   1069 
   1070 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
   1071   assert(D);
   1072 
   1073   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
   1074     return false;
   1075 
   1076   // Ignore class templates.
   1077   if (D->getDeclContext()->isDependentContext() ||
   1078       D->getLexicalDeclContext()->isDependentContext())
   1079     return false;
   1080 
   1081   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1082     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
   1083       return false;
   1084 
   1085     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   1086       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
   1087         return false;
   1088     } else {
   1089       // 'static inline' functions are used in headers; don't warn.
   1090       if (FD->getStorageClass() == SC_Static &&
   1091           FD->isInlineSpecified())
   1092         return false;
   1093     }
   1094 
   1095     if (FD->doesThisDeclarationHaveABody() &&
   1096         Context.DeclMustBeEmitted(FD))
   1097       return false;
   1098   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1099     if (!VD->isFileVarDecl() ||
   1100         VD->getType().isConstant(Context) ||
   1101         Context.DeclMustBeEmitted(VD))
   1102       return false;
   1103 
   1104     if (VD->isStaticDataMember() &&
   1105         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
   1106       return false;
   1107 
   1108   } else {
   1109     return false;
   1110   }
   1111 
   1112   // Only warn for unused decls internal to the translation unit.
   1113   if (D->getLinkage() == ExternalLinkage)
   1114     return false;
   1115 
   1116   return true;
   1117 }
   1118 
   1119 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
   1120   if (!D)
   1121     return;
   1122 
   1123   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1124     const FunctionDecl *First = FD->getFirstDeclaration();
   1125     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
   1126       return; // First should already be in the vector.
   1127   }
   1128 
   1129   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1130     const VarDecl *First = VD->getFirstDeclaration();
   1131     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
   1132       return; // First should already be in the vector.
   1133   }
   1134 
   1135    if (ShouldWarnIfUnusedFileScopedDecl(D))
   1136      UnusedFileScopedDecls.push_back(D);
   1137  }
   1138 
   1139 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
   1140   if (D->isInvalidDecl())
   1141     return false;
   1142 
   1143   if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
   1144     return false;
   1145 
   1146   if (isa<LabelDecl>(D))
   1147     return true;
   1148 
   1149   // White-list anything that isn't a local variable.
   1150   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
   1151       !D->getDeclContext()->isFunctionOrMethod())
   1152     return false;
   1153 
   1154   // Types of valid local variables should be complete, so this should succeed.
   1155   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1156 
   1157     // White-list anything with an __attribute__((unused)) type.
   1158     QualType Ty = VD->getType();
   1159 
   1160     // Only look at the outermost level of typedef.
   1161     if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
   1162       if (TT->getDecl()->hasAttr<UnusedAttr>())
   1163         return false;
   1164     }
   1165 
   1166     // If we failed to complete the type for some reason, or if the type is
   1167     // dependent, don't diagnose the variable.
   1168     if (Ty->isIncompleteType() || Ty->isDependentType())
   1169       return false;
   1170 
   1171     if (const TagType *TT = Ty->getAs<TagType>()) {
   1172       const TagDecl *Tag = TT->getDecl();
   1173       if (Tag->hasAttr<UnusedAttr>())
   1174         return false;
   1175 
   1176       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
   1177         if (!RD->hasTrivialDestructor())
   1178           return false;
   1179 
   1180         if (const Expr *Init = VD->getInit()) {
   1181           const CXXConstructExpr *Construct =
   1182             dyn_cast<CXXConstructExpr>(Init);
   1183           if (Construct && !Construct->isElidable()) {
   1184             CXXConstructorDecl *CD = Construct->getConstructor();
   1185             if (!CD->isTrivial())
   1186               return false;
   1187           }
   1188         }
   1189       }
   1190     }
   1191 
   1192     // TODO: __attribute__((unused)) templates?
   1193   }
   1194 
   1195   return true;
   1196 }
   1197 
   1198 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
   1199                                      FixItHint &Hint) {
   1200   if (isa<LabelDecl>(D)) {
   1201     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
   1202                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
   1203     if (AfterColon.isInvalid())
   1204       return;
   1205     Hint = FixItHint::CreateRemoval(CharSourceRange::
   1206                                     getCharRange(D->getLocStart(), AfterColon));
   1207   }
   1208   return;
   1209 }
   1210 
   1211 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
   1212 /// unless they are marked attr(unused).
   1213 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
   1214   FixItHint Hint;
   1215   if (!ShouldDiagnoseUnusedDecl(D))
   1216     return;
   1217 
   1218   GenerateFixForUnusedDecl(D, Context, Hint);
   1219 
   1220   unsigned DiagID;
   1221   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
   1222     DiagID = diag::warn_unused_exception_param;
   1223   else if (isa<LabelDecl>(D))
   1224     DiagID = diag::warn_unused_label;
   1225   else
   1226     DiagID = diag::warn_unused_variable;
   1227 
   1228   Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
   1229 }
   1230 
   1231 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
   1232   // Verify that we have no forward references left.  If so, there was a goto
   1233   // or address of a label taken, but no definition of it.  Label fwd
   1234   // definitions are indicated with a null substmt.
   1235   if (L->getStmt() == 0)
   1236     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
   1237 }
   1238 
   1239 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
   1240   if (S->decl_empty()) return;
   1241   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
   1242          "Scope shouldn't contain decls!");
   1243 
   1244   for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
   1245        I != E; ++I) {
   1246     Decl *TmpD = (*I);
   1247     assert(TmpD && "This decl didn't get pushed??");
   1248 
   1249     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
   1250     NamedDecl *D = cast<NamedDecl>(TmpD);
   1251 
   1252     if (!D->getDeclName()) continue;
   1253 
   1254     // Diagnose unused variables in this scope.
   1255     if (!S->hasErrorOccurred())
   1256       DiagnoseUnusedDecl(D);
   1257 
   1258     // If this was a forward reference to a label, verify it was defined.
   1259     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
   1260       CheckPoppedLabel(LD, *this);
   1261 
   1262     // Remove this name from our lexical scope.
   1263     IdResolver.RemoveDecl(D);
   1264   }
   1265 }
   1266 
   1267 void Sema::ActOnStartFunctionDeclarator() {
   1268   ++InFunctionDeclarator;
   1269 }
   1270 
   1271 void Sema::ActOnEndFunctionDeclarator() {
   1272   assert(InFunctionDeclarator);
   1273   --InFunctionDeclarator;
   1274 }
   1275 
   1276 /// \brief Look for an Objective-C class in the translation unit.
   1277 ///
   1278 /// \param Id The name of the Objective-C class we're looking for. If
   1279 /// typo-correction fixes this name, the Id will be updated
   1280 /// to the fixed name.
   1281 ///
   1282 /// \param IdLoc The location of the name in the translation unit.
   1283 ///
   1284 /// \param TypoCorrection If true, this routine will attempt typo correction
   1285 /// if there is no class with the given name.
   1286 ///
   1287 /// \returns The declaration of the named Objective-C class, or NULL if the
   1288 /// class could not be found.
   1289 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
   1290                                               SourceLocation IdLoc,
   1291                                               bool DoTypoCorrection) {
   1292   // The third "scope" argument is 0 since we aren't enabling lazy built-in
   1293   // creation from this context.
   1294   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
   1295 
   1296   if (!IDecl && DoTypoCorrection) {
   1297     // Perform typo correction at the given location, but only if we
   1298     // find an Objective-C class name.
   1299     DeclFilterCCC<ObjCInterfaceDecl> Validator;
   1300     if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
   1301                                        LookupOrdinaryName, TUScope, NULL,
   1302                                        Validator)) {
   1303       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
   1304       Diag(IdLoc, diag::err_undef_interface_suggest)
   1305         << Id << IDecl->getDeclName()
   1306         << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
   1307       Diag(IDecl->getLocation(), diag::note_previous_decl)
   1308         << IDecl->getDeclName();
   1309 
   1310       Id = IDecl->getIdentifier();
   1311     }
   1312   }
   1313   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
   1314   // This routine must always return a class definition, if any.
   1315   if (Def && Def->getDefinition())
   1316       Def = Def->getDefinition();
   1317   return Def;
   1318 }
   1319 
   1320 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
   1321 /// from S, where a non-field would be declared. This routine copes
   1322 /// with the difference between C and C++ scoping rules in structs and
   1323 /// unions. For example, the following code is well-formed in C but
   1324 /// ill-formed in C++:
   1325 /// @code
   1326 /// struct S6 {
   1327 ///   enum { BAR } e;
   1328 /// };
   1329 ///
   1330 /// void test_S6() {
   1331 ///   struct S6 a;
   1332 ///   a.e = BAR;
   1333 /// }
   1334 /// @endcode
   1335 /// For the declaration of BAR, this routine will return a different
   1336 /// scope. The scope S will be the scope of the unnamed enumeration
   1337 /// within S6. In C++, this routine will return the scope associated
   1338 /// with S6, because the enumeration's scope is a transparent
   1339 /// context but structures can contain non-field names. In C, this
   1340 /// routine will return the translation unit scope, since the
   1341 /// enumeration's scope is a transparent context and structures cannot
   1342 /// contain non-field names.
   1343 Scope *Sema::getNonFieldDeclScope(Scope *S) {
   1344   while (((S->getFlags() & Scope::DeclScope) == 0) ||
   1345          (S->getEntity() &&
   1346           ((DeclContext *)S->getEntity())->isTransparentContext()) ||
   1347          (S->isClassScope() && !getLangOpts().CPlusPlus))
   1348     S = S->getParent();
   1349   return S;
   1350 }
   1351 
   1352 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
   1353 /// file scope.  lazily create a decl for it. ForRedeclaration is true
   1354 /// if we're creating this built-in in anticipation of redeclaring the
   1355 /// built-in.
   1356 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
   1357                                      Scope *S, bool ForRedeclaration,
   1358                                      SourceLocation Loc) {
   1359   Builtin::ID BID = (Builtin::ID)bid;
   1360 
   1361   ASTContext::GetBuiltinTypeError Error;
   1362   QualType R = Context.GetBuiltinType(BID, Error);
   1363   switch (Error) {
   1364   case ASTContext::GE_None:
   1365     // Okay
   1366     break;
   1367 
   1368   case ASTContext::GE_Missing_stdio:
   1369     if (ForRedeclaration)
   1370       Diag(Loc, diag::warn_implicit_decl_requires_stdio)
   1371         << Context.BuiltinInfo.GetName(BID);
   1372     return 0;
   1373 
   1374   case ASTContext::GE_Missing_setjmp:
   1375     if (ForRedeclaration)
   1376       Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
   1377         << Context.BuiltinInfo.GetName(BID);
   1378     return 0;
   1379 
   1380   case ASTContext::GE_Missing_ucontext:
   1381     if (ForRedeclaration)
   1382       Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
   1383         << Context.BuiltinInfo.GetName(BID);
   1384     return 0;
   1385   }
   1386 
   1387   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
   1388     Diag(Loc, diag::ext_implicit_lib_function_decl)
   1389       << Context.BuiltinInfo.GetName(BID)
   1390       << R;
   1391     if (Context.BuiltinInfo.getHeaderName(BID) &&
   1392         Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
   1393           != DiagnosticsEngine::Ignored)
   1394       Diag(Loc, diag::note_please_include_header)
   1395         << Context.BuiltinInfo.getHeaderName(BID)
   1396         << Context.BuiltinInfo.GetName(BID);
   1397   }
   1398 
   1399   FunctionDecl *New = FunctionDecl::Create(Context,
   1400                                            Context.getTranslationUnitDecl(),
   1401                                            Loc, Loc, II, R, /*TInfo=*/0,
   1402                                            SC_Extern,
   1403                                            SC_None, false,
   1404                                            /*hasPrototype=*/true);
   1405   New->setImplicit();
   1406 
   1407   // Create Decl objects for each parameter, adding them to the
   1408   // FunctionDecl.
   1409   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
   1410     SmallVector<ParmVarDecl*, 16> Params;
   1411     for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
   1412       ParmVarDecl *parm =
   1413         ParmVarDecl::Create(Context, New, SourceLocation(),
   1414                             SourceLocation(), 0,
   1415                             FT->getArgType(i), /*TInfo=*/0,
   1416                             SC_None, SC_None, 0);
   1417       parm->setScopeInfo(0, i);
   1418       Params.push_back(parm);
   1419     }
   1420     New->setParams(Params);
   1421   }
   1422 
   1423   AddKnownFunctionAttributes(New);
   1424 
   1425   // TUScope is the translation-unit scope to insert this function into.
   1426   // FIXME: This is hideous. We need to teach PushOnScopeChains to
   1427   // relate Scopes to DeclContexts, and probably eliminate CurContext
   1428   // entirely, but we're not there yet.
   1429   DeclContext *SavedContext = CurContext;
   1430   CurContext = Context.getTranslationUnitDecl();
   1431   PushOnScopeChains(New, TUScope);
   1432   CurContext = SavedContext;
   1433   return New;
   1434 }
   1435 
   1436 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
   1437   QualType OldType;
   1438   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
   1439     OldType = OldTypedef->getUnderlyingType();
   1440   else
   1441     OldType = Context.getTypeDeclType(Old);
   1442   QualType NewType = New->getUnderlyingType();
   1443 
   1444   if (NewType->isVariablyModifiedType()) {
   1445     // Must not redefine a typedef with a variably-modified type.
   1446     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
   1447     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
   1448       << Kind << NewType;
   1449     if (Old->getLocation().isValid())
   1450       Diag(Old->getLocation(), diag::note_previous_definition);
   1451     New->setInvalidDecl();
   1452     return true;
   1453   }
   1454 
   1455   if (OldType != NewType &&
   1456       !OldType->isDependentType() &&
   1457       !NewType->isDependentType() &&
   1458       !Context.hasSameType(OldType, NewType)) {
   1459     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
   1460     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
   1461       << Kind << NewType << OldType;
   1462     if (Old->getLocation().isValid())
   1463       Diag(Old->getLocation(), diag::note_previous_definition);
   1464     New->setInvalidDecl();
   1465     return true;
   1466   }
   1467   return false;
   1468 }
   1469 
   1470 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
   1471 /// same name and scope as a previous declaration 'Old'.  Figure out
   1472 /// how to resolve this situation, merging decls or emitting
   1473 /// diagnostics as appropriate. If there was an error, set New to be invalid.
   1474 ///
   1475 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
   1476   // If the new decl is known invalid already, don't bother doing any
   1477   // merging checks.
   1478   if (New->isInvalidDecl()) return;
   1479 
   1480   // Allow multiple definitions for ObjC built-in typedefs.
   1481   // FIXME: Verify the underlying types are equivalent!
   1482   if (getLangOpts().ObjC1) {
   1483     const IdentifierInfo *TypeID = New->getIdentifier();
   1484     switch (TypeID->getLength()) {
   1485     default: break;
   1486     case 2:
   1487       if (!TypeID->isStr("id"))
   1488         break;
   1489       Context.setObjCIdRedefinitionType(New->getUnderlyingType());
   1490       // Install the built-in type for 'id', ignoring the current definition.
   1491       New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
   1492       return;
   1493     case 5:
   1494       if (!TypeID->isStr("Class"))
   1495         break;
   1496       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
   1497       // Install the built-in type for 'Class', ignoring the current definition.
   1498       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
   1499       return;
   1500     case 3:
   1501       if (!TypeID->isStr("SEL"))
   1502         break;
   1503       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
   1504       // Install the built-in type for 'SEL', ignoring the current definition.
   1505       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
   1506       return;
   1507     }
   1508     // Fall through - the typedef name was not a builtin type.
   1509   }
   1510 
   1511   // Verify the old decl was also a type.
   1512   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
   1513   if (!Old) {
   1514     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   1515       << New->getDeclName();
   1516 
   1517     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
   1518     if (OldD->getLocation().isValid())
   1519       Diag(OldD->getLocation(), diag::note_previous_definition);
   1520 
   1521     return New->setInvalidDecl();
   1522   }
   1523 
   1524   // If the old declaration is invalid, just give up here.
   1525   if (Old->isInvalidDecl())
   1526     return New->setInvalidDecl();
   1527 
   1528   // If the typedef types are not identical, reject them in all languages and
   1529   // with any extensions enabled.
   1530   if (isIncompatibleTypedef(Old, New))
   1531     return;
   1532 
   1533   // The types match.  Link up the redeclaration chain if the old
   1534   // declaration was a typedef.
   1535   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
   1536     New->setPreviousDeclaration(Typedef);
   1537 
   1538   if (getLangOpts().MicrosoftExt)
   1539     return;
   1540 
   1541   if (getLangOpts().CPlusPlus) {
   1542     // C++ [dcl.typedef]p2:
   1543     //   In a given non-class scope, a typedef specifier can be used to
   1544     //   redefine the name of any type declared in that scope to refer
   1545     //   to the type to which it already refers.
   1546     if (!isa<CXXRecordDecl>(CurContext))
   1547       return;
   1548 
   1549     // C++0x [dcl.typedef]p4:
   1550     //   In a given class scope, a typedef specifier can be used to redefine
   1551     //   any class-name declared in that scope that is not also a typedef-name
   1552     //   to refer to the type to which it already refers.
   1553     //
   1554     // This wording came in via DR424, which was a correction to the
   1555     // wording in DR56, which accidentally banned code like:
   1556     //
   1557     //   struct S {
   1558     //     typedef struct A { } A;
   1559     //   };
   1560     //
   1561     // in the C++03 standard. We implement the C++0x semantics, which
   1562     // allow the above but disallow
   1563     //
   1564     //   struct S {
   1565     //     typedef int I;
   1566     //     typedef int I;
   1567     //   };
   1568     //
   1569     // since that was the intent of DR56.
   1570     if (!isa<TypedefNameDecl>(Old))
   1571       return;
   1572 
   1573     Diag(New->getLocation(), diag::err_redefinition)
   1574       << New->getDeclName();
   1575     Diag(Old->getLocation(), diag::note_previous_definition);
   1576     return New->setInvalidDecl();
   1577   }
   1578 
   1579   // Modules always permit redefinition of typedefs, as does C11.
   1580   if (getLangOpts().Modules || getLangOpts().C11)
   1581     return;
   1582 
   1583   // If we have a redefinition of a typedef in C, emit a warning.  This warning
   1584   // is normally mapped to an error, but can be controlled with
   1585   // -Wtypedef-redefinition.  If either the original or the redefinition is
   1586   // in a system header, don't emit this for compatibility with GCC.
   1587   if (getDiagnostics().getSuppressSystemWarnings() &&
   1588       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
   1589        Context.getSourceManager().isInSystemHeader(New->getLocation())))
   1590     return;
   1591 
   1592   Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
   1593     << New->getDeclName();
   1594   Diag(Old->getLocation(), diag::note_previous_definition);
   1595   return;
   1596 }
   1597 
   1598 /// DeclhasAttr - returns true if decl Declaration already has the target
   1599 /// attribute.
   1600 static bool
   1601 DeclHasAttr(const Decl *D, const Attr *A) {
   1602   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
   1603   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
   1604   for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
   1605     if ((*i)->getKind() == A->getKind()) {
   1606       if (Ann) {
   1607         if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
   1608           return true;
   1609         continue;
   1610       }
   1611       // FIXME: Don't hardcode this check
   1612       if (OA && isa<OwnershipAttr>(*i))
   1613         return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
   1614       return true;
   1615     }
   1616 
   1617   return false;
   1618 }
   1619 
   1620 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
   1621 void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
   1622                                bool MergeDeprecation) {
   1623   if (!Old->hasAttrs())
   1624     return;
   1625 
   1626   bool foundAny = New->hasAttrs();
   1627 
   1628   // Ensure that any moving of objects within the allocated map is done before
   1629   // we process them.
   1630   if (!foundAny) New->setAttrs(AttrVec());
   1631 
   1632   for (specific_attr_iterator<InheritableAttr>
   1633          i = Old->specific_attr_begin<InheritableAttr>(),
   1634          e = Old->specific_attr_end<InheritableAttr>();
   1635        i != e; ++i) {
   1636     // Ignore deprecated/unavailable/availability attributes if requested.
   1637     if (!MergeDeprecation &&
   1638         (isa<DeprecatedAttr>(*i) ||
   1639          isa<UnavailableAttr>(*i) ||
   1640          isa<AvailabilityAttr>(*i)))
   1641       continue;
   1642 
   1643     if (!DeclHasAttr(New, *i)) {
   1644       InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(Context));
   1645       newAttr->setInherited(true);
   1646       New->addAttr(newAttr);
   1647       foundAny = true;
   1648     }
   1649   }
   1650 
   1651   if (!foundAny) New->dropAttrs();
   1652 }
   1653 
   1654 /// mergeParamDeclAttributes - Copy attributes from the old parameter
   1655 /// to the new one.
   1656 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
   1657                                      const ParmVarDecl *oldDecl,
   1658                                      ASTContext &C) {
   1659   if (!oldDecl->hasAttrs())
   1660     return;
   1661 
   1662   bool foundAny = newDecl->hasAttrs();
   1663 
   1664   // Ensure that any moving of objects within the allocated map is
   1665   // done before we process them.
   1666   if (!foundAny) newDecl->setAttrs(AttrVec());
   1667 
   1668   for (specific_attr_iterator<InheritableParamAttr>
   1669        i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
   1670        e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
   1671     if (!DeclHasAttr(newDecl, *i)) {
   1672       InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
   1673       newAttr->setInherited(true);
   1674       newDecl->addAttr(newAttr);
   1675       foundAny = true;
   1676     }
   1677   }
   1678 
   1679   if (!foundAny) newDecl->dropAttrs();
   1680 }
   1681 
   1682 namespace {
   1683 
   1684 /// Used in MergeFunctionDecl to keep track of function parameters in
   1685 /// C.
   1686 struct GNUCompatibleParamWarning {
   1687   ParmVarDecl *OldParm;
   1688   ParmVarDecl *NewParm;
   1689   QualType PromotedType;
   1690 };
   1691 
   1692 }
   1693 
   1694 /// getSpecialMember - get the special member enum for a method.
   1695 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
   1696   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
   1697     if (Ctor->isDefaultConstructor())
   1698       return Sema::CXXDefaultConstructor;
   1699 
   1700     if (Ctor->isCopyConstructor())
   1701       return Sema::CXXCopyConstructor;
   1702 
   1703     if (Ctor->isMoveConstructor())
   1704       return Sema::CXXMoveConstructor;
   1705   } else if (isa<CXXDestructorDecl>(MD)) {
   1706     return Sema::CXXDestructor;
   1707   } else if (MD->isCopyAssignmentOperator()) {
   1708     return Sema::CXXCopyAssignment;
   1709   } else if (MD->isMoveAssignmentOperator()) {
   1710     return Sema::CXXMoveAssignment;
   1711   }
   1712 
   1713   return Sema::CXXInvalid;
   1714 }
   1715 
   1716 /// canRedefineFunction - checks if a function can be redefined. Currently,
   1717 /// only extern inline functions can be redefined, and even then only in
   1718 /// GNU89 mode.
   1719 static bool canRedefineFunction(const FunctionDecl *FD,
   1720                                 const LangOptions& LangOpts) {
   1721   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
   1722           !LangOpts.CPlusPlus &&
   1723           FD->isInlineSpecified() &&
   1724           FD->getStorageClass() == SC_Extern);
   1725 }
   1726 
   1727 /// MergeFunctionDecl - We just parsed a function 'New' from
   1728 /// declarator D which has the same name and scope as a previous
   1729 /// declaration 'Old'.  Figure out how to resolve this situation,
   1730 /// merging decls or emitting diagnostics as appropriate.
   1731 ///
   1732 /// In C++, New and Old must be declarations that are not
   1733 /// overloaded. Use IsOverload to determine whether New and Old are
   1734 /// overloaded, and to select the Old declaration that New should be
   1735 /// merged with.
   1736 ///
   1737 /// Returns true if there was an error, false otherwise.
   1738 bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
   1739   // Verify the old decl was also a function.
   1740   FunctionDecl *Old = 0;
   1741   if (FunctionTemplateDecl *OldFunctionTemplate
   1742         = dyn_cast<FunctionTemplateDecl>(OldD))
   1743     Old = OldFunctionTemplate->getTemplatedDecl();
   1744   else
   1745     Old = dyn_cast<FunctionDecl>(OldD);
   1746   if (!Old) {
   1747     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
   1748       Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
   1749       Diag(Shadow->getTargetDecl()->getLocation(),
   1750            diag::note_using_decl_target);
   1751       Diag(Shadow->getUsingDecl()->getLocation(),
   1752            diag::note_using_decl) << 0;
   1753       return true;
   1754     }
   1755 
   1756     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   1757       << New->getDeclName();
   1758     Diag(OldD->getLocation(), diag::note_previous_definition);
   1759     return true;
   1760   }
   1761 
   1762   // Determine whether the previous declaration was a definition,
   1763   // implicit declaration, or a declaration.
   1764   diag::kind PrevDiag;
   1765   if (Old->isThisDeclarationADefinition())
   1766     PrevDiag = diag::note_previous_definition;
   1767   else if (Old->isImplicit())
   1768     PrevDiag = diag::note_previous_implicit_declaration;
   1769   else
   1770     PrevDiag = diag::note_previous_declaration;
   1771 
   1772   QualType OldQType = Context.getCanonicalType(Old->getType());
   1773   QualType NewQType = Context.getCanonicalType(New->getType());
   1774 
   1775   // Don't complain about this if we're in GNU89 mode and the old function
   1776   // is an extern inline function.
   1777   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
   1778       New->getStorageClass() == SC_Static &&
   1779       Old->getStorageClass() != SC_Static &&
   1780       !canRedefineFunction(Old, getLangOpts())) {
   1781     if (getLangOpts().MicrosoftExt) {
   1782       Diag(New->getLocation(), diag::warn_static_non_static) << New;
   1783       Diag(Old->getLocation(), PrevDiag);
   1784     } else {
   1785       Diag(New->getLocation(), diag::err_static_non_static) << New;
   1786       Diag(Old->getLocation(), PrevDiag);
   1787       return true;
   1788     }
   1789   }
   1790 
   1791   // If a function is first declared with a calling convention, but is
   1792   // later declared or defined without one, the second decl assumes the
   1793   // calling convention of the first.
   1794   //
   1795   // For the new decl, we have to look at the NON-canonical type to tell the
   1796   // difference between a function that really doesn't have a calling
   1797   // convention and one that is declared cdecl. That's because in
   1798   // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
   1799   // because it is the default calling convention.
   1800   //
   1801   // Note also that we DO NOT return at this point, because we still have
   1802   // other tests to run.
   1803   const FunctionType *OldType = cast<FunctionType>(OldQType);
   1804   const FunctionType *NewType = New->getType()->getAs<FunctionType>();
   1805   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
   1806   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
   1807   bool RequiresAdjustment = false;
   1808   if (OldTypeInfo.getCC() != CC_Default &&
   1809       NewTypeInfo.getCC() == CC_Default) {
   1810     NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
   1811     RequiresAdjustment = true;
   1812   } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
   1813                                      NewTypeInfo.getCC())) {
   1814     // Calling conventions really aren't compatible, so complain.
   1815     Diag(New->getLocation(), diag::err_cconv_change)
   1816       << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
   1817       << (OldTypeInfo.getCC() == CC_Default)
   1818       << (OldTypeInfo.getCC() == CC_Default ? "" :
   1819           FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
   1820     Diag(Old->getLocation(), diag::note_previous_declaration);
   1821     return true;
   1822   }
   1823 
   1824   // FIXME: diagnose the other way around?
   1825   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
   1826     NewTypeInfo = NewTypeInfo.withNoReturn(true);
   1827     RequiresAdjustment = true;
   1828   }
   1829 
   1830   // Merge regparm attribute.
   1831   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
   1832       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
   1833     if (NewTypeInfo.getHasRegParm()) {
   1834       Diag(New->getLocation(), diag::err_regparm_mismatch)
   1835         << NewType->getRegParmType()
   1836         << OldType->getRegParmType();
   1837       Diag(Old->getLocation(), diag::note_previous_declaration);
   1838       return true;
   1839     }
   1840 
   1841     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
   1842     RequiresAdjustment = true;
   1843   }
   1844 
   1845   // Merge ns_returns_retained attribute.
   1846   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
   1847     if (NewTypeInfo.getProducesResult()) {
   1848       Diag(New->getLocation(), diag::err_returns_retained_mismatch);
   1849       Diag(Old->getLocation(), diag::note_previous_declaration);
   1850       return true;
   1851     }
   1852 
   1853     NewTypeInfo = NewTypeInfo.withProducesResult(true);
   1854     RequiresAdjustment = true;
   1855   }
   1856 
   1857   if (RequiresAdjustment) {
   1858     NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
   1859     New->setType(QualType(NewType, 0));
   1860     NewQType = Context.getCanonicalType(New->getType());
   1861   }
   1862 
   1863   if (getLangOpts().CPlusPlus) {
   1864     // (C++98 13.1p2):
   1865     //   Certain function declarations cannot be overloaded:
   1866     //     -- Function declarations that differ only in the return type
   1867     //        cannot be overloaded.
   1868     QualType OldReturnType = OldType->getResultType();
   1869     QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
   1870     QualType ResQT;
   1871     if (OldReturnType != NewReturnType) {
   1872       if (NewReturnType->isObjCObjectPointerType()
   1873           && OldReturnType->isObjCObjectPointerType())
   1874         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
   1875       if (ResQT.isNull()) {
   1876         if (New->isCXXClassMember() && New->isOutOfLine())
   1877           Diag(New->getLocation(),
   1878                diag::err_member_def_does_not_match_ret_type) << New;
   1879         else
   1880           Diag(New->getLocation(), diag::err_ovl_diff_return_type);
   1881         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   1882         return true;
   1883       }
   1884       else
   1885         NewQType = ResQT;
   1886     }
   1887 
   1888     const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
   1889     CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
   1890     if (OldMethod && NewMethod) {
   1891       // Preserve triviality.
   1892       NewMethod->setTrivial(OldMethod->isTrivial());
   1893 
   1894       // MSVC allows explicit template specialization at class scope:
   1895       // 2 CXMethodDecls referring to the same function will be injected.
   1896       // We don't want a redeclartion error.
   1897       bool IsClassScopeExplicitSpecialization =
   1898                               OldMethod->isFunctionTemplateSpecialization() &&
   1899                               NewMethod->isFunctionTemplateSpecialization();
   1900       bool isFriend = NewMethod->getFriendObjectKind();
   1901 
   1902       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
   1903           !IsClassScopeExplicitSpecialization) {
   1904         //    -- Member function declarations with the same name and the
   1905         //       same parameter types cannot be overloaded if any of them
   1906         //       is a static member function declaration.
   1907         if (OldMethod->isStatic() || NewMethod->isStatic()) {
   1908           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
   1909           Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   1910           return true;
   1911         }
   1912 
   1913         // C++ [class.mem]p1:
   1914         //   [...] A member shall not be declared twice in the
   1915         //   member-specification, except that a nested class or member
   1916         //   class template can be declared and then later defined.
   1917         unsigned NewDiag;
   1918         if (isa<CXXConstructorDecl>(OldMethod))
   1919           NewDiag = diag::err_constructor_redeclared;
   1920         else if (isa<CXXDestructorDecl>(NewMethod))
   1921           NewDiag = diag::err_destructor_redeclared;
   1922         else if (isa<CXXConversionDecl>(NewMethod))
   1923           NewDiag = diag::err_conv_function_redeclared;
   1924         else
   1925           NewDiag = diag::err_member_redeclared;
   1926 
   1927         Diag(New->getLocation(), NewDiag);
   1928         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   1929 
   1930       // Complain if this is an explicit declaration of a special
   1931       // member that was initially declared implicitly.
   1932       //
   1933       // As an exception, it's okay to befriend such methods in order
   1934       // to permit the implicit constructor/destructor/operator calls.
   1935       } else if (OldMethod->isImplicit()) {
   1936         if (isFriend) {
   1937           NewMethod->setImplicit();
   1938         } else {
   1939           Diag(NewMethod->getLocation(),
   1940                diag::err_definition_of_implicitly_declared_member)
   1941             << New << getSpecialMember(OldMethod);
   1942           return true;
   1943         }
   1944       } else if (OldMethod->isExplicitlyDefaulted()) {
   1945         Diag(NewMethod->getLocation(),
   1946              diag::err_definition_of_explicitly_defaulted_member)
   1947           << getSpecialMember(OldMethod);
   1948         return true;
   1949       }
   1950     }
   1951 
   1952     // (C++98 8.3.5p3):
   1953     //   All declarations for a function shall agree exactly in both the
   1954     //   return type and the parameter-type-list.
   1955     // We also want to respect all the extended bits except noreturn.
   1956 
   1957     // noreturn should now match unless the old type info didn't have it.
   1958     QualType OldQTypeForComparison = OldQType;
   1959     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
   1960       assert(OldQType == QualType(OldType, 0));
   1961       const FunctionType *OldTypeForComparison
   1962         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
   1963       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
   1964       assert(OldQTypeForComparison.isCanonical());
   1965     }
   1966 
   1967     if (OldQTypeForComparison == NewQType)
   1968       return MergeCompatibleFunctionDecls(New, Old, S);
   1969 
   1970     // Fall through for conflicting redeclarations and redefinitions.
   1971   }
   1972 
   1973   // C: Function types need to be compatible, not identical. This handles
   1974   // duplicate function decls like "void f(int); void f(enum X);" properly.
   1975   if (!getLangOpts().CPlusPlus &&
   1976       Context.typesAreCompatible(OldQType, NewQType)) {
   1977     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
   1978     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
   1979     const FunctionProtoType *OldProto = 0;
   1980     if (isa<FunctionNoProtoType>(NewFuncType) &&
   1981         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
   1982       // The old declaration provided a function prototype, but the
   1983       // new declaration does not. Merge in the prototype.
   1984       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
   1985       SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
   1986                                                  OldProto->arg_type_end());
   1987       NewQType = Context.getFunctionType(NewFuncType->getResultType(),
   1988                                          ParamTypes.data(), ParamTypes.size(),
   1989                                          OldProto->getExtProtoInfo());
   1990       New->setType(NewQType);
   1991       New->setHasInheritedPrototype();
   1992 
   1993       // Synthesize a parameter for each argument type.
   1994       SmallVector<ParmVarDecl*, 16> Params;
   1995       for (FunctionProtoType::arg_type_iterator
   1996              ParamType = OldProto->arg_type_begin(),
   1997              ParamEnd = OldProto->arg_type_end();
   1998            ParamType != ParamEnd; ++ParamType) {
   1999         ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
   2000                                                  SourceLocation(),
   2001                                                  SourceLocation(), 0,
   2002                                                  *ParamType, /*TInfo=*/0,
   2003                                                  SC_None, SC_None,
   2004                                                  0);
   2005         Param->setScopeInfo(0, Params.size());
   2006         Param->setImplicit();
   2007         Params.push_back(Param);
   2008       }
   2009 
   2010       New->setParams(Params);
   2011     }
   2012 
   2013     return MergeCompatibleFunctionDecls(New, Old, S);
   2014   }
   2015 
   2016   // GNU C permits a K&R definition to follow a prototype declaration
   2017   // if the declared types of the parameters in the K&R definition
   2018   // match the types in the prototype declaration, even when the
   2019   // promoted types of the parameters from the K&R definition differ
   2020   // from the types in the prototype. GCC then keeps the types from
   2021   // the prototype.
   2022   //
   2023   // If a variadic prototype is followed by a non-variadic K&R definition,
   2024   // the K&R definition becomes variadic.  This is sort of an edge case, but
   2025   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
   2026   // C99 6.9.1p8.
   2027   if (!getLangOpts().CPlusPlus &&
   2028       Old->hasPrototype() && !New->hasPrototype() &&
   2029       New->getType()->getAs<FunctionProtoType>() &&
   2030       Old->getNumParams() == New->getNumParams()) {
   2031     SmallVector<QualType, 16> ArgTypes;
   2032     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
   2033     const FunctionProtoType *OldProto
   2034       = Old->getType()->getAs<FunctionProtoType>();
   2035     const FunctionProtoType *NewProto
   2036       = New->getType()->getAs<FunctionProtoType>();
   2037 
   2038     // Determine whether this is the GNU C extension.
   2039     QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
   2040                                                NewProto->getResultType());
   2041     bool LooseCompatible = !MergedReturn.isNull();
   2042     for (unsigned Idx = 0, End = Old->getNumParams();
   2043          LooseCompatible && Idx != End; ++Idx) {
   2044       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
   2045       ParmVarDecl *NewParm = New->getParamDecl(Idx);
   2046       if (Context.typesAreCompatible(OldParm->getType(),
   2047                                      NewProto->getArgType(Idx))) {
   2048         ArgTypes.push_back(NewParm->getType());
   2049       } else if (Context.typesAreCompatible(OldParm->getType(),
   2050                                             NewParm->getType(),
   2051                                             /*CompareUnqualified=*/true)) {
   2052         GNUCompatibleParamWarning Warn
   2053           = { OldParm, NewParm, NewProto->getArgType(Idx) };
   2054         Warnings.push_back(Warn);
   2055         ArgTypes.push_back(NewParm->getType());
   2056       } else
   2057         LooseCompatible = false;
   2058     }
   2059 
   2060     if (LooseCompatible) {
   2061       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
   2062         Diag(Warnings[Warn].NewParm->getLocation(),
   2063              diag::ext_param_promoted_not_compatible_with_prototype)
   2064           << Warnings[Warn].PromotedType
   2065           << Warnings[Warn].OldParm->getType();
   2066         if (Warnings[Warn].OldParm->getLocation().isValid())
   2067           Diag(Warnings[Warn].OldParm->getLocation(),
   2068                diag::note_previous_declaration);
   2069       }
   2070 
   2071       New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
   2072                                            ArgTypes.size(),
   2073                                            OldProto->getExtProtoInfo()));
   2074       return MergeCompatibleFunctionDecls(New, Old, S);
   2075     }
   2076 
   2077     // Fall through to diagnose conflicting types.
   2078   }
   2079 
   2080   // A function that has already been declared has been redeclared or defined
   2081   // with a different type- show appropriate diagnostic
   2082   if (unsigned BuiltinID = Old->getBuiltinID()) {
   2083     // The user has declared a builtin function with an incompatible
   2084     // signature.
   2085     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
   2086       // The function the user is redeclaring is a library-defined
   2087       // function like 'malloc' or 'printf'. Warn about the
   2088       // redeclaration, then pretend that we don't know about this
   2089       // library built-in.
   2090       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
   2091       Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
   2092         << Old << Old->getType();
   2093       New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
   2094       Old->setInvalidDecl();
   2095       return false;
   2096     }
   2097 
   2098     PrevDiag = diag::note_previous_builtin_declaration;
   2099   }
   2100 
   2101   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
   2102   Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   2103   return true;
   2104 }
   2105 
   2106 /// \brief Completes the merge of two function declarations that are
   2107 /// known to be compatible.
   2108 ///
   2109 /// This routine handles the merging of attributes and other
   2110 /// properties of function declarations form the old declaration to
   2111 /// the new declaration, once we know that New is in fact a
   2112 /// redeclaration of Old.
   2113 ///
   2114 /// \returns false
   2115 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
   2116                                         Scope *S) {
   2117   // Merge the attributes
   2118   mergeDeclAttributes(New, Old);
   2119 
   2120   // Merge the storage class.
   2121   if (Old->getStorageClass() != SC_Extern &&
   2122       Old->getStorageClass() != SC_None)
   2123     New->setStorageClass(Old->getStorageClass());
   2124 
   2125   // Merge "pure" flag.
   2126   if (Old->isPure())
   2127     New->setPure();
   2128 
   2129   // Merge attributes from the parameters.  These can mismatch with K&R
   2130   // declarations.
   2131   if (New->getNumParams() == Old->getNumParams())
   2132     for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
   2133       mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
   2134                                Context);
   2135 
   2136   if (getLangOpts().CPlusPlus)
   2137     return MergeCXXFunctionDecl(New, Old, S);
   2138 
   2139   return false;
   2140 }
   2141 
   2142 
   2143 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
   2144                                 ObjCMethodDecl *oldMethod) {
   2145   // We don't want to merge unavailable and deprecated attributes
   2146   // except from interface to implementation.
   2147   bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
   2148 
   2149   // Merge the attributes.
   2150   mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
   2151 
   2152   // Merge attributes from the parameters.
   2153   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
   2154   for (ObjCMethodDecl::param_iterator
   2155          ni = newMethod->param_begin(), ne = newMethod->param_end();
   2156        ni != ne; ++ni, ++oi)
   2157     mergeParamDeclAttributes(*ni, *oi, Context);
   2158 
   2159   CheckObjCMethodOverride(newMethod, oldMethod, true);
   2160 }
   2161 
   2162 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
   2163 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
   2164 /// emitting diagnostics as appropriate.
   2165 ///
   2166 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
   2167 /// to here in AddInitializerToDecl. We can't check them before the initializer
   2168 /// is attached.
   2169 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
   2170   if (New->isInvalidDecl() || Old->isInvalidDecl())
   2171     return;
   2172 
   2173   QualType MergedT;
   2174   if (getLangOpts().CPlusPlus) {
   2175     AutoType *AT = New->getType()->getContainedAutoType();
   2176     if (AT && !AT->isDeduced()) {
   2177       // We don't know what the new type is until the initializer is attached.
   2178       return;
   2179     } else if (Context.hasSameType(New->getType(), Old->getType())) {
   2180       // These could still be something that needs exception specs checked.
   2181       return MergeVarDeclExceptionSpecs(New, Old);
   2182     }
   2183     // C++ [basic.link]p10:
   2184     //   [...] the types specified by all declarations referring to a given
   2185     //   object or function shall be identical, except that declarations for an
   2186     //   array object can specify array types that differ by the presence or
   2187     //   absence of a major array bound (8.3.4).
   2188     else if (Old->getType()->isIncompleteArrayType() &&
   2189              New->getType()->isArrayType()) {
   2190       CanQual<ArrayType> OldArray
   2191         = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
   2192       CanQual<ArrayType> NewArray
   2193         = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
   2194       if (OldArray->getElementType() == NewArray->getElementType())
   2195         MergedT = New->getType();
   2196     } else if (Old->getType()->isArrayType() &&
   2197              New->getType()->isIncompleteArrayType()) {
   2198       CanQual<ArrayType> OldArray
   2199         = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
   2200       CanQual<ArrayType> NewArray
   2201         = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
   2202       if (OldArray->getElementType() == NewArray->getElementType())
   2203         MergedT = Old->getType();
   2204     } else if (New->getType()->isObjCObjectPointerType()
   2205                && Old->getType()->isObjCObjectPointerType()) {
   2206         MergedT = Context.mergeObjCGCQualifiers(New->getType(),
   2207                                                         Old->getType());
   2208     }
   2209   } else {
   2210     MergedT = Context.mergeTypes(New->getType(), Old->getType());
   2211   }
   2212   if (MergedT.isNull()) {
   2213     Diag(New->getLocation(), diag::err_redefinition_different_type)
   2214       << New->getDeclName();
   2215     Diag(Old->getLocation(), diag::note_previous_definition);
   2216     return New->setInvalidDecl();
   2217   }
   2218   New->setType(MergedT);
   2219 }
   2220 
   2221 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
   2222 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
   2223 /// situation, merging decls or emitting diagnostics as appropriate.
   2224 ///
   2225 /// Tentative definition rules (C99 6.9.2p2) are checked by
   2226 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
   2227 /// definitions here, since the initializer hasn't been attached.
   2228 ///
   2229 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
   2230   // If the new decl is already invalid, don't do any other checking.
   2231   if (New->isInvalidDecl())
   2232     return;
   2233 
   2234   // Verify the old decl was also a variable.
   2235   VarDecl *Old = 0;
   2236   if (!Previous.isSingleResult() ||
   2237       !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
   2238     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   2239       << New->getDeclName();
   2240     Diag(Previous.getRepresentativeDecl()->getLocation(),
   2241          diag::note_previous_definition);
   2242     return New->setInvalidDecl();
   2243   }
   2244 
   2245   // C++ [class.mem]p1:
   2246   //   A member shall not be declared twice in the member-specification [...]
   2247   //
   2248   // Here, we need only consider static data members.
   2249   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
   2250     Diag(New->getLocation(), diag::err_duplicate_member)
   2251       << New->getIdentifier();
   2252     Diag(Old->getLocation(), diag::note_previous_declaration);
   2253     New->setInvalidDecl();
   2254   }
   2255 
   2256   mergeDeclAttributes(New, Old);
   2257   // Warn if an already-declared variable is made a weak_import in a subsequent
   2258   // declaration
   2259   if (New->getAttr<WeakImportAttr>() &&
   2260       Old->getStorageClass() == SC_None &&
   2261       !Old->getAttr<WeakImportAttr>()) {
   2262     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
   2263     Diag(Old->getLocation(), diag::note_previous_definition);
   2264     // Remove weak_import attribute on new declaration.
   2265     New->dropAttr<WeakImportAttr>();
   2266   }
   2267 
   2268   // Merge the types.
   2269   MergeVarDeclTypes(New, Old);
   2270   if (New->isInvalidDecl())
   2271     return;
   2272 
   2273   // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
   2274   if (New->getStorageClass() == SC_Static &&
   2275       (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
   2276     Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
   2277     Diag(Old->getLocation(), diag::note_previous_definition);
   2278     return New->setInvalidDecl();
   2279   }
   2280   // C99 6.2.2p4:
   2281   //   For an identifier declared with the storage-class specifier
   2282   //   extern in a scope in which a prior declaration of that
   2283   //   identifier is visible,23) if the prior declaration specifies
   2284   //   internal or external linkage, the linkage of the identifier at
   2285   //   the later declaration is the same as the linkage specified at
   2286   //   the prior declaration. If no prior declaration is visible, or
   2287   //   if the prior declaration specifies no linkage, then the
   2288   //   identifier has external linkage.
   2289   if (New->hasExternalStorage() && Old->hasLinkage())
   2290     /* Okay */;
   2291   else if (New->getStorageClass() != SC_Static &&
   2292            Old->getStorageClass() == SC_Static) {
   2293     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
   2294     Diag(Old->getLocation(), diag::note_previous_definition);
   2295     return New->setInvalidDecl();
   2296   }
   2297 
   2298   // Check if extern is followed by non-extern and vice-versa.
   2299   if (New->hasExternalStorage() &&
   2300       !Old->hasLinkage() && Old->isLocalVarDecl()) {
   2301     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
   2302     Diag(Old->getLocation(), diag::note_previous_definition);
   2303     return New->setInvalidDecl();
   2304   }
   2305   if (Old->hasExternalStorage() &&
   2306       !New->hasLinkage() && New->isLocalVarDecl()) {
   2307     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
   2308     Diag(Old->getLocation(), diag::note_previous_definition);
   2309     return New->setInvalidDecl();
   2310   }
   2311 
   2312   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
   2313 
   2314   // FIXME: The test for external storage here seems wrong? We still
   2315   // need to check for mismatches.
   2316   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
   2317       // Don't complain about out-of-line definitions of static members.
   2318       !(Old->getLexicalDeclContext()->isRecord() &&
   2319         !New->getLexicalDeclContext()->isRecord())) {
   2320     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
   2321     Diag(Old->getLocation(), diag::note_previous_definition);
   2322     return New->setInvalidDecl();
   2323   }
   2324 
   2325   if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
   2326     Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
   2327     Diag(Old->getLocation(), diag::note_previous_definition);
   2328   } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
   2329     Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
   2330     Diag(Old->getLocation(), diag::note_previous_definition);
   2331   }
   2332 
   2333   // C++ doesn't have tentative definitions, so go right ahead and check here.
   2334   const VarDecl *Def;
   2335   if (getLangOpts().CPlusPlus &&
   2336       New->isThisDeclarationADefinition() == VarDecl::Definition &&
   2337       (Def = Old->getDefinition())) {
   2338     Diag(New->getLocation(), diag::err_redefinition)
   2339       << New->getDeclName();
   2340     Diag(Def->getLocation(), diag::note_previous_definition);
   2341     New->setInvalidDecl();
   2342     return;
   2343   }
   2344   // c99 6.2.2 P4.
   2345   // For an identifier declared with the storage-class specifier extern in a
   2346   // scope in which a prior declaration of that identifier is visible, if
   2347   // the prior declaration specifies internal or external linkage, the linkage
   2348   // of the identifier at the later declaration is the same as the linkage
   2349   // specified at the prior declaration.
   2350   // FIXME. revisit this code.
   2351   if (New->hasExternalStorage() &&
   2352       Old->getLinkage() == InternalLinkage &&
   2353       New->getDeclContext() == Old->getDeclContext())
   2354     New->setStorageClass(Old->getStorageClass());
   2355 
   2356   // Keep a chain of previous declarations.
   2357   New->setPreviousDeclaration(Old);
   2358 
   2359   // Inherit access appropriately.
   2360   New->setAccess(Old->getAccess());
   2361 }
   2362 
   2363 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
   2364 /// no declarator (e.g. "struct foo;") is parsed.
   2365 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
   2366                                        DeclSpec &DS) {
   2367   return ParsedFreeStandingDeclSpec(S, AS, DS,
   2368                                     MultiTemplateParamsArg(*this, 0, 0));
   2369 }
   2370 
   2371 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
   2372 /// no declarator (e.g. "struct foo;") is parsed. It also accopts template
   2373 /// parameters to cope with template friend declarations.
   2374 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
   2375                                        DeclSpec &DS,
   2376                                        MultiTemplateParamsArg TemplateParams) {
   2377   Decl *TagD = 0;
   2378   TagDecl *Tag = 0;
   2379   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
   2380       DS.getTypeSpecType() == DeclSpec::TST_struct ||
   2381       DS.getTypeSpecType() == DeclSpec::TST_union ||
   2382       DS.getTypeSpecType() == DeclSpec::TST_enum) {
   2383     TagD = DS.getRepAsDecl();
   2384 
   2385     if (!TagD) // We probably had an error
   2386       return 0;
   2387 
   2388     // Note that the above type specs guarantee that the
   2389     // type rep is a Decl, whereas in many of the others
   2390     // it's a Type.
   2391     if (isa<TagDecl>(TagD))
   2392       Tag = cast<TagDecl>(TagD);
   2393     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
   2394       Tag = CTD->getTemplatedDecl();
   2395   }
   2396 
   2397   if (Tag) {
   2398     Tag->setFreeStanding();
   2399     if (Tag->isInvalidDecl())
   2400       return Tag;
   2401   }
   2402 
   2403   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
   2404     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
   2405     // or incomplete types shall not be restrict-qualified."
   2406     if (TypeQuals & DeclSpec::TQ_restrict)
   2407       Diag(DS.getRestrictSpecLoc(),
   2408            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
   2409            << DS.getSourceRange();
   2410   }
   2411 
   2412   if (DS.isConstexprSpecified()) {
   2413     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
   2414     // and definitions of functions and variables.
   2415     if (Tag)
   2416       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
   2417         << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
   2418             DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
   2419             DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
   2420     else
   2421       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
   2422     // Don't emit warnings after this error.
   2423     return TagD;
   2424   }
   2425 
   2426   if (DS.isFriendSpecified()) {
   2427     // If we're dealing with a decl but not a TagDecl, assume that
   2428     // whatever routines created it handled the friendship aspect.
   2429     if (TagD && !Tag)
   2430       return 0;
   2431     return ActOnFriendTypeDecl(S, DS, TemplateParams);
   2432   }
   2433 
   2434   // Track whether we warned about the fact that there aren't any
   2435   // declarators.
   2436   bool emittedWarning = false;
   2437 
   2438   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
   2439     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
   2440         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
   2441       if (getLangOpts().CPlusPlus ||
   2442           Record->getDeclContext()->isRecord())
   2443         return BuildAnonymousStructOrUnion(S, DS, AS, Record);
   2444 
   2445       Diag(DS.getLocStart(), diag::ext_no_declarators)
   2446         << DS.getSourceRange();
   2447       emittedWarning = true;
   2448     }
   2449   }
   2450 
   2451   // Check for Microsoft C extension: anonymous struct.
   2452   if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
   2453       CurContext->isRecord() &&
   2454       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
   2455     // Handle 2 kinds of anonymous struct:
   2456     //   struct STRUCT;
   2457     // and
   2458     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
   2459     RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
   2460     if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
   2461         (DS.getTypeSpecType() == DeclSpec::TST_typename &&
   2462          DS.getRepAsType().get()->isStructureType())) {
   2463       Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
   2464         << DS.getSourceRange();
   2465       return BuildMicrosoftCAnonymousStruct(S, DS, Record);
   2466     }
   2467   }
   2468 
   2469   if (getLangOpts().CPlusPlus &&
   2470       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
   2471     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
   2472       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
   2473           !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
   2474         Diag(Enum->getLocation(), diag::ext_no_declarators)
   2475           << DS.getSourceRange();
   2476         emittedWarning = true;
   2477       }
   2478 
   2479   // Skip all the checks below if we have a type error.
   2480   if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
   2481 
   2482   if (!DS.isMissingDeclaratorOk()) {
   2483     // Warn about typedefs of enums without names, since this is an
   2484     // extension in both Microsoft and GNU.
   2485     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
   2486         Tag && isa<EnumDecl>(Tag)) {
   2487       Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
   2488         << DS.getSourceRange();
   2489       return Tag;
   2490     }
   2491 
   2492     Diag(DS.getLocStart(), diag::ext_no_declarators)
   2493       << DS.getSourceRange();
   2494     emittedWarning = true;
   2495   }
   2496 
   2497   // We're going to complain about a bunch of spurious specifiers;
   2498   // only do this if we're declaring a tag, because otherwise we
   2499   // should be getting diag::ext_no_declarators.
   2500   if (emittedWarning || (TagD && TagD->isInvalidDecl()))
   2501     return TagD;
   2502 
   2503   // Note that a linkage-specification sets a storage class, but
   2504   // 'extern "C" struct foo;' is actually valid and not theoretically
   2505   // useless.
   2506   if (DeclSpec::SCS scs = DS.getStorageClassSpec())
   2507     if (!DS.isExternInLinkageSpec())
   2508       Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
   2509         << DeclSpec::getSpecifierName(scs);
   2510 
   2511   if (DS.isThreadSpecified())
   2512     Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
   2513   if (DS.getTypeQualifiers()) {
   2514     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
   2515       Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
   2516     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
   2517       Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
   2518     // Restrict is covered above.
   2519   }
   2520   if (DS.isInlineSpecified())
   2521     Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
   2522   if (DS.isVirtualSpecified())
   2523     Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
   2524   if (DS.isExplicitSpecified())
   2525     Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
   2526 
   2527   if (DS.isModulePrivateSpecified() &&
   2528       Tag && Tag->getDeclContext()->isFunctionOrMethod())
   2529     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
   2530       << Tag->getTagKind()
   2531       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
   2532 
   2533   // Warn about ignored type attributes, for example:
   2534   // __attribute__((aligned)) struct A;
   2535   // Attributes should be placed after tag to apply to type declaration.
   2536   if (!DS.getAttributes().empty()) {
   2537     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
   2538     if (TypeSpecType == DeclSpec::TST_class ||
   2539         TypeSpecType == DeclSpec::TST_struct ||
   2540         TypeSpecType == DeclSpec::TST_union ||
   2541         TypeSpecType == DeclSpec::TST_enum) {
   2542       AttributeList* attrs = DS.getAttributes().getList();
   2543       while (attrs) {
   2544         Diag(attrs->getScopeLoc(),
   2545              diag::warn_declspec_attribute_ignored)
   2546         << attrs->getName()
   2547         << (TypeSpecType == DeclSpec::TST_class ? 0 :
   2548             TypeSpecType == DeclSpec::TST_struct ? 1 :
   2549             TypeSpecType == DeclSpec::TST_union ? 2 : 3);
   2550         attrs = attrs->getNext();
   2551       }
   2552     }
   2553   }
   2554 
   2555   return TagD;
   2556 }
   2557 
   2558 /// We are trying to inject an anonymous member into the given scope;
   2559 /// check if there's an existing declaration that can't be overloaded.
   2560 ///
   2561 /// \return true if this is a forbidden redeclaration
   2562 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
   2563                                          Scope *S,
   2564                                          DeclContext *Owner,
   2565                                          DeclarationName Name,
   2566                                          SourceLocation NameLoc,
   2567                                          unsigned diagnostic) {
   2568   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
   2569                  Sema::ForRedeclaration);
   2570   if (!SemaRef.LookupName(R, S)) return false;
   2571 
   2572   if (R.getAsSingle<TagDecl>())
   2573     return false;
   2574 
   2575   // Pick a representative declaration.
   2576   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
   2577   assert(PrevDecl && "Expected a non-null Decl");
   2578 
   2579   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
   2580     return false;
   2581 
   2582   SemaRef.Diag(NameLoc, diagnostic) << Name;
   2583   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   2584 
   2585   return true;
   2586 }
   2587 
   2588 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
   2589 /// anonymous struct or union AnonRecord into the owning context Owner
   2590 /// and scope S. This routine will be invoked just after we realize
   2591 /// that an unnamed union or struct is actually an anonymous union or
   2592 /// struct, e.g.,
   2593 ///
   2594 /// @code
   2595 /// union {
   2596 ///   int i;
   2597 ///   float f;
   2598 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
   2599 ///    // f into the surrounding scope.x
   2600 /// @endcode
   2601 ///
   2602 /// This routine is recursive, injecting the names of nested anonymous
   2603 /// structs/unions into the owning context and scope as well.
   2604 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
   2605                                                 DeclContext *Owner,
   2606                                                 RecordDecl *AnonRecord,
   2607                                                 AccessSpecifier AS,
   2608                               SmallVector<NamedDecl*, 2> &Chaining,
   2609                                                       bool MSAnonStruct) {
   2610   unsigned diagKind
   2611     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
   2612                             : diag::err_anonymous_struct_member_redecl;
   2613 
   2614   bool Invalid = false;
   2615 
   2616   // Look every FieldDecl and IndirectFieldDecl with a name.
   2617   for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
   2618                                DEnd = AnonRecord->decls_end();
   2619        D != DEnd; ++D) {
   2620     if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
   2621         cast<NamedDecl>(*D)->getDeclName()) {
   2622       ValueDecl *VD = cast<ValueDecl>(*D);
   2623       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
   2624                                        VD->getLocation(), diagKind)) {
   2625         // C++ [class.union]p2:
   2626         //   The names of the members of an anonymous union shall be
   2627         //   distinct from the names of any other entity in the
   2628         //   scope in which the anonymous union is declared.
   2629         Invalid = true;
   2630       } else {
   2631         // C++ [class.union]p2:
   2632         //   For the purpose of name lookup, after the anonymous union
   2633         //   definition, the members of the anonymous union are
   2634         //   considered to have been defined in the scope in which the
   2635         //   anonymous union is declared.
   2636         unsigned OldChainingSize = Chaining.size();
   2637         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
   2638           for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
   2639                PE = IF->chain_end(); PI != PE; ++PI)
   2640             Chaining.push_back(*PI);
   2641         else
   2642           Chaining.push_back(VD);
   2643 
   2644         assert(Chaining.size() >= 2);
   2645         NamedDecl **NamedChain =
   2646           new (SemaRef.Context)NamedDecl*[Chaining.size()];
   2647         for (unsigned i = 0; i < Chaining.size(); i++)
   2648           NamedChain[i] = Chaining[i];
   2649 
   2650         IndirectFieldDecl* IndirectField =
   2651           IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
   2652                                     VD->getIdentifier(), VD->getType(),
   2653                                     NamedChain, Chaining.size());
   2654 
   2655         IndirectField->setAccess(AS);
   2656         IndirectField->setImplicit();
   2657         SemaRef.PushOnScopeChains(IndirectField, S);
   2658 
   2659         // That includes picking up the appropriate access specifier.
   2660         if (AS != AS_none) IndirectField->setAccess(AS);
   2661 
   2662         Chaining.resize(OldChainingSize);
   2663       }
   2664     }
   2665   }
   2666 
   2667   return Invalid;
   2668 }
   2669 
   2670 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
   2671 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
   2672 /// illegal input values are mapped to SC_None.
   2673 static StorageClass
   2674 StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
   2675   switch (StorageClassSpec) {
   2676   case DeclSpec::SCS_unspecified:    return SC_None;
   2677   case DeclSpec::SCS_extern:         return SC_Extern;
   2678   case DeclSpec::SCS_static:         return SC_Static;
   2679   case DeclSpec::SCS_auto:           return SC_Auto;
   2680   case DeclSpec::SCS_register:       return SC_Register;
   2681   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
   2682     // Illegal SCSs map to None: error reporting is up to the caller.
   2683   case DeclSpec::SCS_mutable:        // Fall through.
   2684   case DeclSpec::SCS_typedef:        return SC_None;
   2685   }
   2686   llvm_unreachable("unknown storage class specifier");
   2687 }
   2688 
   2689 /// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
   2690 /// a StorageClass. Any error reporting is up to the caller:
   2691 /// illegal input values are mapped to SC_None.
   2692 static StorageClass
   2693 StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
   2694   switch (StorageClassSpec) {
   2695   case DeclSpec::SCS_unspecified:    return SC_None;
   2696   case DeclSpec::SCS_extern:         return SC_Extern;
   2697   case DeclSpec::SCS_static:         return SC_Static;
   2698   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
   2699     // Illegal SCSs map to None: error reporting is up to the caller.
   2700   case DeclSpec::SCS_auto:           // Fall through.
   2701   case DeclSpec::SCS_mutable:        // Fall through.
   2702   case DeclSpec::SCS_register:       // Fall through.
   2703   case DeclSpec::SCS_typedef:        return SC_None;
   2704   }
   2705   llvm_unreachable("unknown storage class specifier");
   2706 }
   2707 
   2708 /// BuildAnonymousStructOrUnion - Handle the declaration of an
   2709 /// anonymous structure or union. Anonymous unions are a C++ feature
   2710 /// (C++ [class.union]) and a C11 feature; anonymous structures
   2711 /// are a C11 feature and GNU C++ extension.
   2712 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
   2713                                              AccessSpecifier AS,
   2714                                              RecordDecl *Record) {
   2715   DeclContext *Owner = Record->getDeclContext();
   2716 
   2717   // Diagnose whether this anonymous struct/union is an extension.
   2718   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
   2719     Diag(Record->getLocation(), diag::ext_anonymous_union);
   2720   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
   2721     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
   2722   else if (!Record->isUnion() && !getLangOpts().C11)
   2723     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
   2724 
   2725   // C and C++ require different kinds of checks for anonymous
   2726   // structs/unions.
   2727   bool Invalid = false;
   2728   if (getLangOpts().CPlusPlus) {
   2729     const char* PrevSpec = 0;
   2730     unsigned DiagID;
   2731     if (Record->isUnion()) {
   2732       // C++ [class.union]p6:
   2733       //   Anonymous unions declared in a named namespace or in the
   2734       //   global namespace shall be declared static.
   2735       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
   2736           (isa<TranslationUnitDecl>(Owner) ||
   2737            (isa<NamespaceDecl>(Owner) &&
   2738             cast<NamespaceDecl>(Owner)->getDeclName()))) {
   2739         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
   2740           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
   2741 
   2742         // Recover by adding 'static'.
   2743         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
   2744                                PrevSpec, DiagID);
   2745       }
   2746       // C++ [class.union]p6:
   2747       //   A storage class is not allowed in a declaration of an
   2748       //   anonymous union in a class scope.
   2749       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
   2750                isa<RecordDecl>(Owner)) {
   2751         Diag(DS.getStorageClassSpecLoc(),
   2752              diag::err_anonymous_union_with_storage_spec)
   2753           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
   2754 
   2755         // Recover by removing the storage specifier.
   2756         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
   2757                                SourceLocation(),
   2758                                PrevSpec, DiagID);
   2759       }
   2760     }
   2761 
   2762     // Ignore const/volatile/restrict qualifiers.
   2763     if (DS.getTypeQualifiers()) {
   2764       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
   2765         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
   2766           << Record->isUnion() << 0
   2767           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
   2768       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
   2769         Diag(DS.getVolatileSpecLoc(),
   2770              diag::ext_anonymous_struct_union_qualified)
   2771           << Record->isUnion() << 1
   2772           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
   2773       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
   2774         Diag(DS.getRestrictSpecLoc(),
   2775              diag::ext_anonymous_struct_union_qualified)
   2776           << Record->isUnion() << 2
   2777           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
   2778 
   2779       DS.ClearTypeQualifiers();
   2780     }
   2781 
   2782     // C++ [class.union]p2:
   2783     //   The member-specification of an anonymous union shall only
   2784     //   define non-static data members. [Note: nested types and
   2785     //   functions cannot be declared within an anonymous union. ]
   2786     for (DeclContext::decl_iterator Mem = Record->decls_begin(),
   2787                                  MemEnd = Record->decls_end();
   2788          Mem != MemEnd; ++Mem) {
   2789       if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
   2790         // C++ [class.union]p3:
   2791         //   An anonymous union shall not have private or protected
   2792         //   members (clause 11).
   2793         assert(FD->getAccess() != AS_none);
   2794         if (FD->getAccess() != AS_public) {
   2795           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
   2796             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
   2797           Invalid = true;
   2798         }
   2799 
   2800         // C++ [class.union]p1
   2801         //   An object of a class with a non-trivial constructor, a non-trivial
   2802         //   copy constructor, a non-trivial destructor, or a non-trivial copy
   2803         //   assignment operator cannot be a member of a union, nor can an
   2804         //   array of such objects.
   2805         if (CheckNontrivialField(FD))
   2806           Invalid = true;
   2807       } else if ((*Mem)->isImplicit()) {
   2808         // Any implicit members are fine.
   2809       } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
   2810         // This is a type that showed up in an
   2811         // elaborated-type-specifier inside the anonymous struct or
   2812         // union, but which actually declares a type outside of the
   2813         // anonymous struct or union. It's okay.
   2814       } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
   2815         if (!MemRecord->isAnonymousStructOrUnion() &&
   2816             MemRecord->getDeclName()) {
   2817           // Visual C++ allows type definition in anonymous struct or union.
   2818           if (getLangOpts().MicrosoftExt)
   2819             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
   2820               << (int)Record->isUnion();
   2821           else {
   2822             // This is a nested type declaration.
   2823             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
   2824               << (int)Record->isUnion();
   2825             Invalid = true;
   2826           }
   2827         }
   2828       } else if (isa<AccessSpecDecl>(*Mem)) {
   2829         // Any access specifier is fine.
   2830       } else {
   2831         // We have something that isn't a non-static data
   2832         // member. Complain about it.
   2833         unsigned DK = diag::err_anonymous_record_bad_member;
   2834         if (isa<TypeDecl>(*Mem))
   2835           DK = diag::err_anonymous_record_with_type;
   2836         else if (isa<FunctionDecl>(*Mem))
   2837           DK = diag::err_anonymous_record_with_function;
   2838         else if (isa<VarDecl>(*Mem))
   2839           DK = diag::err_anonymous_record_with_static;
   2840 
   2841         // Visual C++ allows type definition in anonymous struct or union.
   2842         if (getLangOpts().MicrosoftExt &&
   2843             DK == diag::err_anonymous_record_with_type)
   2844           Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
   2845             << (int)Record->isUnion();
   2846         else {
   2847           Diag((*Mem)->getLocation(), DK)
   2848               << (int)Record->isUnion();
   2849           Invalid = true;
   2850         }
   2851       }
   2852     }
   2853   }
   2854 
   2855   if (!Record->isUnion() && !Owner->isRecord()) {
   2856     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
   2857       << (int)getLangOpts().CPlusPlus;
   2858     Invalid = true;
   2859   }
   2860 
   2861   // Mock up a declarator.
   2862   Declarator Dc(DS, Declarator::MemberContext);
   2863   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
   2864   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
   2865 
   2866   // Create a declaration for this anonymous struct/union.
   2867   NamedDecl *Anon = 0;
   2868   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
   2869     Anon = FieldDecl::Create(Context, OwningClass,
   2870                              DS.getLocStart(),
   2871                              Record->getLocation(),
   2872                              /*IdentifierInfo=*/0,
   2873                              Context.getTypeDeclType(Record),
   2874                              TInfo,
   2875                              /*BitWidth=*/0, /*Mutable=*/false,
   2876                              /*HasInit=*/false);
   2877     Anon->setAccess(AS);
   2878     if (getLangOpts().CPlusPlus)
   2879       FieldCollector->Add(cast<FieldDecl>(Anon));
   2880   } else {
   2881     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
   2882     assert(SCSpec != DeclSpec::SCS_typedef &&
   2883            "Parser allowed 'typedef' as storage class VarDecl.");
   2884     VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
   2885     if (SCSpec == DeclSpec::SCS_mutable) {
   2886       // mutable can only appear on non-static class members, so it's always
   2887       // an error here
   2888       Diag(Record->getLocation(), diag::err_mutable_nonmember);
   2889       Invalid = true;
   2890       SC = SC_None;
   2891     }
   2892     SCSpec = DS.getStorageClassSpecAsWritten();
   2893     VarDecl::StorageClass SCAsWritten
   2894       = StorageClassSpecToVarDeclStorageClass(SCSpec);
   2895 
   2896     Anon = VarDecl::Create(Context, Owner,
   2897                            DS.getLocStart(),
   2898                            Record->getLocation(), /*IdentifierInfo=*/0,
   2899                            Context.getTypeDeclType(Record),
   2900                            TInfo, SC, SCAsWritten);
   2901 
   2902     // Default-initialize the implicit variable. This initialization will be
   2903     // trivial in almost all cases, except if a union member has an in-class
   2904     // initializer:
   2905     //   union { int n = 0; };
   2906     ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
   2907   }
   2908   Anon->setImplicit();
   2909 
   2910   // Add the anonymous struct/union object to the current
   2911   // context. We'll be referencing this object when we refer to one of
   2912   // its members.
   2913   Owner->addDecl(Anon);
   2914 
   2915   // Inject the members of the anonymous struct/union into the owning
   2916   // context and into the identifier resolver chain for name lookup
   2917   // purposes.
   2918   SmallVector<NamedDecl*, 2> Chain;
   2919   Chain.push_back(Anon);
   2920 
   2921   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
   2922                                           Chain, false))
   2923     Invalid = true;
   2924 
   2925   // Mark this as an anonymous struct/union type. Note that we do not
   2926   // do this until after we have already checked and injected the
   2927   // members of this anonymous struct/union type, because otherwise
   2928   // the members could be injected twice: once by DeclContext when it
   2929   // builds its lookup table, and once by
   2930   // InjectAnonymousStructOrUnionMembers.
   2931   Record->setAnonymousStructOrUnion(true);
   2932 
   2933   if (Invalid)
   2934     Anon->setInvalidDecl();
   2935 
   2936   return Anon;
   2937 }
   2938 
   2939 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
   2940 /// Microsoft C anonymous structure.
   2941 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
   2942 /// Example:
   2943 ///
   2944 /// struct A { int a; };
   2945 /// struct B { struct A; int b; };
   2946 ///
   2947 /// void foo() {
   2948 ///   B var;
   2949 ///   var.a = 3;
   2950 /// }
   2951 ///
   2952 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
   2953                                            RecordDecl *Record) {
   2954 
   2955   // If there is no Record, get the record via the typedef.
   2956   if (!Record)
   2957     Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
   2958 
   2959   // Mock up a declarator.
   2960   Declarator Dc(DS, Declarator::TypeNameContext);
   2961   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
   2962   assert(TInfo && "couldn't build declarator info for anonymous struct");
   2963 
   2964   // Create a declaration for this anonymous struct.
   2965   NamedDecl* Anon = FieldDecl::Create(Context,
   2966                              cast<RecordDecl>(CurContext),
   2967                              DS.getLocStart(),
   2968                              DS.getLocStart(),
   2969                              /*IdentifierInfo=*/0,
   2970                              Context.getTypeDeclType(Record),
   2971                              TInfo,
   2972                              /*BitWidth=*/0, /*Mutable=*/false,
   2973                              /*HasInit=*/false);
   2974   Anon->setImplicit();
   2975 
   2976   // Add the anonymous struct object to the current context.
   2977   CurContext->addDecl(Anon);
   2978 
   2979   // Inject the members of the anonymous struct into the current
   2980   // context and into the identifier resolver chain for name lookup
   2981   // purposes.
   2982   SmallVector<NamedDecl*, 2> Chain;
   2983   Chain.push_back(Anon);
   2984 
   2985   RecordDecl *RecordDef = Record->getDefinition();
   2986   if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
   2987                                                         RecordDef, AS_none,
   2988                                                         Chain, true))
   2989     Anon->setInvalidDecl();
   2990 
   2991   return Anon;
   2992 }
   2993 
   2994 /// GetNameForDeclarator - Determine the full declaration name for the
   2995 /// given Declarator.
   2996 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
   2997   return GetNameFromUnqualifiedId(D.getName());
   2998 }
   2999 
   3000 /// \brief Retrieves the declaration name from a parsed unqualified-id.
   3001 DeclarationNameInfo
   3002 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
   3003   DeclarationNameInfo NameInfo;
   3004   NameInfo.setLoc(Name.StartLocation);
   3005 
   3006   switch (Name.getKind()) {
   3007 
   3008   case UnqualifiedId::IK_ImplicitSelfParam:
   3009   case UnqualifiedId::IK_Identifier:
   3010     NameInfo.setName(Name.Identifier);
   3011     NameInfo.setLoc(Name.StartLocation);
   3012     return NameInfo;
   3013 
   3014   case UnqualifiedId::IK_OperatorFunctionId:
   3015     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
   3016                                            Name.OperatorFunctionId.Operator));
   3017     NameInfo.setLoc(Name.StartLocation);
   3018     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
   3019       = Name.OperatorFunctionId.SymbolLocations[0];
   3020     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
   3021       = Name.EndLocation.getRawEncoding();
   3022     return NameInfo;
   3023 
   3024   case UnqualifiedId::IK_LiteralOperatorId:
   3025     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
   3026                                                            Name.Identifier));
   3027     NameInfo.setLoc(Name.StartLocation);
   3028     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
   3029     return NameInfo;
   3030 
   3031   case UnqualifiedId::IK_ConversionFunctionId: {
   3032     TypeSourceInfo *TInfo;
   3033     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
   3034     if (Ty.isNull())
   3035       return DeclarationNameInfo();
   3036     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
   3037                                                Context.getCanonicalType(Ty)));
   3038     NameInfo.setLoc(Name.StartLocation);
   3039     NameInfo.setNamedTypeInfo(TInfo);
   3040     return NameInfo;
   3041   }
   3042 
   3043   case UnqualifiedId::IK_ConstructorName: {
   3044     TypeSourceInfo *TInfo;
   3045     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
   3046     if (Ty.isNull())
   3047       return DeclarationNameInfo();
   3048     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
   3049                                               Context.getCanonicalType(Ty)));
   3050     NameInfo.setLoc(Name.StartLocation);
   3051     NameInfo.setNamedTypeInfo(TInfo);
   3052     return NameInfo;
   3053   }
   3054 
   3055   case UnqualifiedId::IK_ConstructorTemplateId: {
   3056     // In well-formed code, we can only have a constructor
   3057     // template-id that refers to the current context, so go there
   3058     // to find the actual type being constructed.
   3059     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
   3060     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
   3061       return DeclarationNameInfo();
   3062 
   3063     // Determine the type of the class being constructed.
   3064     QualType CurClassType = Context.getTypeDeclType(CurClass);
   3065 
   3066     // FIXME: Check two things: that the template-id names the same type as
   3067     // CurClassType, and that the template-id does not occur when the name
   3068     // was qualified.
   3069 
   3070     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
   3071                                     Context.getCanonicalType(CurClassType)));
   3072     NameInfo.setLoc(Name.StartLocation);
   3073     // FIXME: should we retrieve TypeSourceInfo?
   3074     NameInfo.setNamedTypeInfo(0);
   3075     return NameInfo;
   3076   }
   3077 
   3078   case UnqualifiedId::IK_DestructorName: {
   3079     TypeSourceInfo *TInfo;
   3080     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
   3081     if (Ty.isNull())
   3082       return DeclarationNameInfo();
   3083     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
   3084                                               Context.getCanonicalType(Ty)));
   3085     NameInfo.setLoc(Name.StartLocation);
   3086     NameInfo.setNamedTypeInfo(TInfo);
   3087     return NameInfo;
   3088   }
   3089 
   3090   case UnqualifiedId::IK_TemplateId: {
   3091     TemplateName TName = Name.TemplateId->Template.get();
   3092     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
   3093     return Context.getNameForTemplate(TName, TNameLoc);
   3094   }
   3095 
   3096   } // switch (Name.getKind())
   3097 
   3098   llvm_unreachable("Unknown name kind");
   3099 }
   3100 
   3101 static QualType getCoreType(QualType Ty) {
   3102   do {
   3103     if (Ty->isPointerType() || Ty->isReferenceType())
   3104       Ty = Ty->getPointeeType();
   3105     else if (Ty->isArrayType())
   3106       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
   3107     else
   3108       return Ty.withoutLocalFastQualifiers();
   3109   } while (true);
   3110 }
   3111 
   3112 /// hasSimilarParameters - Determine whether the C++ functions Declaration
   3113 /// and Definition have "nearly" matching parameters. This heuristic is
   3114 /// used to improve diagnostics in the case where an out-of-line function
   3115 /// definition doesn't match any declaration within the class or namespace.
   3116 /// Also sets Params to the list of indices to the parameters that differ
   3117 /// between the declaration and the definition. If hasSimilarParameters
   3118 /// returns true and Params is empty, then all of the parameters match.
   3119 static bool hasSimilarParameters(ASTContext &Context,
   3120                                      FunctionDecl *Declaration,
   3121                                      FunctionDecl *Definition,
   3122                                      llvm::SmallVectorImpl<unsigned> &Params) {
   3123   Params.clear();
   3124   if (Declaration->param_size() != Definition->param_size())
   3125     return false;
   3126   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
   3127     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
   3128     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
   3129 
   3130     // The parameter types are identical
   3131     if (Context.hasSameType(DefParamTy, DeclParamTy))
   3132       continue;
   3133 
   3134     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
   3135     QualType DefParamBaseTy = getCoreType(DefParamTy);
   3136     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
   3137     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
   3138 
   3139     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
   3140         (DeclTyName && DeclTyName == DefTyName))
   3141       Params.push_back(Idx);
   3142     else  // The two parameters aren't even close
   3143       return false;
   3144   }
   3145 
   3146   return true;
   3147 }
   3148 
   3149 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
   3150 /// declarator needs to be rebuilt in the current instantiation.
   3151 /// Any bits of declarator which appear before the name are valid for
   3152 /// consideration here.  That's specifically the type in the decl spec
   3153 /// and the base type in any member-pointer chunks.
   3154 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
   3155                                                     DeclarationName Name) {
   3156   // The types we specifically need to rebuild are:
   3157   //   - typenames, typeofs, and decltypes
   3158   //   - types which will become injected class names
   3159   // Of course, we also need to rebuild any type referencing such a
   3160   // type.  It's safest to just say "dependent", but we call out a
   3161   // few cases here.
   3162 
   3163   DeclSpec &DS = D.getMutableDeclSpec();
   3164   switch (DS.getTypeSpecType()) {
   3165   case DeclSpec::TST_typename:
   3166   case DeclSpec::TST_typeofType:
   3167   case DeclSpec::TST_decltype:
   3168   case DeclSpec::TST_underlyingType:
   3169   case DeclSpec::TST_atomic: {
   3170     // Grab the type from the parser.
   3171     TypeSourceInfo *TSI = 0;
   3172     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
   3173     if (T.isNull() || !T->isDependentType()) break;
   3174 
   3175     // Make sure there's a type source info.  This isn't really much
   3176     // of a waste; most dependent types should have type source info
   3177     // attached already.
   3178     if (!TSI)
   3179       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
   3180 
   3181     // Rebuild the type in the current instantiation.
   3182     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
   3183     if (!TSI) return true;
   3184 
   3185     // Store the new type back in the decl spec.
   3186     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
   3187     DS.UpdateTypeRep(LocType);
   3188     break;
   3189   }
   3190 
   3191   case DeclSpec::TST_typeofExpr: {
   3192     Expr *E = DS.getRepAsExpr();
   3193     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
   3194     if (Result.isInvalid()) return true;
   3195     DS.UpdateExprRep(Result.get());
   3196     break;
   3197   }
   3198 
   3199   default:
   3200     // Nothing to do for these decl specs.
   3201     break;
   3202   }
   3203 
   3204   // It doesn't matter what order we do this in.
   3205   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
   3206     DeclaratorChunk &Chunk = D.getTypeObject(I);
   3207 
   3208     // The only type information in the declarator which can come
   3209     // before the declaration name is the base type of a member
   3210     // pointer.
   3211     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
   3212       continue;
   3213 
   3214     // Rebuild the scope specifier in-place.
   3215     CXXScopeSpec &SS = Chunk.Mem.Scope();
   3216     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
   3217       return true;
   3218   }
   3219 
   3220   return false;
   3221 }
   3222 
   3223 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
   3224   D.setFunctionDefinitionKind(FDK_Declaration);
   3225   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
   3226 
   3227   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
   3228       Dcl->getDeclContext()->isFileContext())
   3229     Dcl->setTopLevelDeclInObjCContainer();
   3230 
   3231   return Dcl;
   3232 }
   3233 
   3234 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
   3235 ///   If T is the name of a class, then each of the following shall have a
   3236 ///   name different from T:
   3237 ///     - every static data member of class T;
   3238 ///     - every member function of class T
   3239 ///     - every member of class T that is itself a type;
   3240 /// \returns true if the declaration name violates these rules.
   3241 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
   3242                                    DeclarationNameInfo NameInfo) {
   3243   DeclarationName Name = NameInfo.getName();
   3244 
   3245   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
   3246     if (Record->getIdentifier() && Record->getDeclName() == Name) {
   3247       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
   3248       return true;
   3249     }
   3250 
   3251   return false;
   3252 }
   3253 
   3254 /// \brief Diagnose a declaration whose declarator-id has the given
   3255 /// nested-name-specifier.
   3256 ///
   3257 /// \param SS The nested-name-specifier of the declarator-id.
   3258 ///
   3259 /// \param DC The declaration context to which the nested-name-specifier
   3260 /// resolves.
   3261 ///
   3262 /// \param Name The name of the entity being declared.
   3263 ///
   3264 /// \param Loc The location of the name of the entity being declared.
   3265 ///
   3266 /// \returns true if we cannot safely recover from this error, false otherwise.
   3267 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
   3268                                         DeclarationName Name,
   3269                                       SourceLocation Loc) {
   3270   DeclContext *Cur = CurContext;
   3271   while (isa<LinkageSpecDecl>(Cur))
   3272     Cur = Cur->getParent();
   3273 
   3274   // C++ [dcl.meaning]p1:
   3275   //   A declarator-id shall not be qualified except for the definition
   3276   //   of a member function (9.3) or static data member (9.4) outside of
   3277   //   its class, the definition or explicit instantiation of a function
   3278   //   or variable member of a namespace outside of its namespace, or the
   3279   //   definition of an explicit specialization outside of its namespace,
   3280   //   or the declaration of a friend function that is a member of
   3281   //   another class or namespace (11.3). [...]
   3282 
   3283   // The user provided a superfluous scope specifier that refers back to the
   3284   // class or namespaces in which the entity is already declared.
   3285   //
   3286   // class X {
   3287   //   void X::f();
   3288   // };
   3289   if (Cur->Equals(DC)) {
   3290     Diag(Loc, diag::warn_member_extra_qualification)
   3291       << Name << FixItHint::CreateRemoval(SS.getRange());
   3292     SS.clear();
   3293     return false;
   3294   }
   3295 
   3296   // Check whether the qualifying scope encloses the scope of the original
   3297   // declaration.
   3298   if (!Cur->Encloses(DC)) {
   3299     if (Cur->isRecord())
   3300       Diag(Loc, diag::err_member_qualification)
   3301         << Name << SS.getRange();
   3302     else if (isa<TranslationUnitDecl>(DC))
   3303       Diag(Loc, diag::err_invalid_declarator_global_scope)
   3304         << Name << SS.getRange();
   3305     else if (isa<FunctionDecl>(Cur))
   3306       Diag(Loc, diag::err_invalid_declarator_in_function)
   3307         << Name << SS.getRange();
   3308     else
   3309       Diag(Loc, diag::err_invalid_declarator_scope)
   3310       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
   3311 
   3312     return true;
   3313   }
   3314 
   3315   if (Cur->isRecord()) {
   3316     // Cannot qualify members within a class.
   3317     Diag(Loc, diag::err_member_qualification)
   3318       << Name << SS.getRange();
   3319     SS.clear();
   3320 
   3321     // C++ constructors and destructors with incorrect scopes can break
   3322     // our AST invariants by having the wrong underlying types. If
   3323     // that's the case, then drop this declaration entirely.
   3324     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
   3325          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
   3326         !Context.hasSameType(Name.getCXXNameType(),
   3327                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
   3328       return true;
   3329 
   3330     return false;
   3331   }
   3332 
   3333   // C++11 [dcl.meaning]p1:
   3334   //   [...] "The nested-name-specifier of the qualified declarator-id shall
   3335   //   not begin with a decltype-specifer"
   3336   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
   3337   while (SpecLoc.getPrefix())
   3338     SpecLoc = SpecLoc.getPrefix();
   3339   if (dyn_cast_or_null<DecltypeType>(
   3340         SpecLoc.getNestedNameSpecifier()->getAsType()))
   3341     Diag(Loc, diag::err_decltype_in_declarator)
   3342       << SpecLoc.getTypeLoc().getSourceRange();
   3343 
   3344   return false;
   3345 }
   3346 
   3347 Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
   3348                              MultiTemplateParamsArg TemplateParamLists) {
   3349   // TODO: consider using NameInfo for diagnostic.
   3350   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   3351   DeclarationName Name = NameInfo.getName();
   3352 
   3353   // All of these full declarators require an identifier.  If it doesn't have
   3354   // one, the ParsedFreeStandingDeclSpec action should be used.
   3355   if (!Name) {
   3356     if (!D.isInvalidType())  // Reject this if we think it is valid.
   3357       Diag(D.getDeclSpec().getLocStart(),
   3358            diag::err_declarator_need_ident)
   3359         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
   3360     return 0;
   3361   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
   3362     return 0;
   3363 
   3364   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   3365   // we find one that is.
   3366   while ((S->getFlags() & Scope::DeclScope) == 0 ||
   3367          (S->getFlags() & Scope::TemplateParamScope) != 0)
   3368     S = S->getParent();
   3369 
   3370   DeclContext *DC = CurContext;
   3371   if (D.getCXXScopeSpec().isInvalid())
   3372     D.setInvalidType();
   3373   else if (D.getCXXScopeSpec().isSet()) {
   3374     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
   3375                                         UPPC_DeclarationQualifier))
   3376       return 0;
   3377 
   3378     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
   3379     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
   3380     if (!DC) {
   3381       // If we could not compute the declaration context, it's because the
   3382       // declaration context is dependent but does not refer to a class,
   3383       // class template, or class template partial specialization. Complain
   3384       // and return early, to avoid the coming semantic disaster.
   3385       Diag(D.getIdentifierLoc(),
   3386            diag::err_template_qualified_declarator_no_match)
   3387         << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
   3388         << D.getCXXScopeSpec().getRange();
   3389       return 0;
   3390     }
   3391     bool IsDependentContext = DC->isDependentContext();
   3392 
   3393     if (!IsDependentContext &&
   3394         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
   3395       return 0;
   3396 
   3397     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
   3398       Diag(D.getIdentifierLoc(),
   3399            diag::err_member_def_undefined_record)
   3400         << Name << DC << D.getCXXScopeSpec().getRange();
   3401       D.setInvalidType();
   3402     } else if (!D.getDeclSpec().isFriendSpecified()) {
   3403       if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
   3404                                       Name, D.getIdentifierLoc())) {
   3405         if (DC->isRecord())
   3406           return 0;
   3407 
   3408         D.setInvalidType();
   3409       }
   3410     }
   3411 
   3412     // Check whether we need to rebuild the type of the given
   3413     // declaration in the current instantiation.
   3414     if (EnteringContext && IsDependentContext &&
   3415         TemplateParamLists.size() != 0) {
   3416       ContextRAII SavedContext(*this, DC);
   3417       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
   3418         D.setInvalidType();
   3419     }
   3420   }
   3421 
   3422   if (DiagnoseClassNameShadow(DC, NameInfo))
   3423     // If this is a typedef, we'll end up spewing multiple diagnostics.
   3424     // Just return early; it's safer.
   3425     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
   3426       return 0;
   3427 
   3428   NamedDecl *New;
   3429 
   3430   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   3431   QualType R = TInfo->getType();
   3432 
   3433   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   3434                                       UPPC_DeclarationType))
   3435     D.setInvalidType();
   3436 
   3437   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
   3438                         ForRedeclaration);
   3439 
   3440   // See if this is a redefinition of a variable in the same scope.
   3441   if (!D.getCXXScopeSpec().isSet()) {
   3442     bool IsLinkageLookup = false;
   3443 
   3444     // If the declaration we're planning to build will be a function
   3445     // or object with linkage, then look for another declaration with
   3446     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
   3447     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
   3448       /* Do nothing*/;
   3449     else if (R->isFunctionType()) {
   3450       if (CurContext->isFunctionOrMethod() ||
   3451           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
   3452         IsLinkageLookup = true;
   3453     } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
   3454       IsLinkageLookup = true;
   3455     else if (CurContext->getRedeclContext()->isTranslationUnit() &&
   3456              D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
   3457       IsLinkageLookup = true;
   3458 
   3459     if (IsLinkageLookup)
   3460       Previous.clear(LookupRedeclarationWithLinkage);
   3461 
   3462     LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
   3463   } else { // Something like "int foo::x;"
   3464     LookupQualifiedName(Previous, DC);
   3465 
   3466     // C++ [dcl.meaning]p1:
   3467     //   When the declarator-id is qualified, the declaration shall refer to a
   3468     //  previously declared member of the class or namespace to which the
   3469     //  qualifier refers (or, in the case of a namespace, of an element of the
   3470     //  inline namespace set of that namespace (7.3.1)) or to a specialization
   3471     //  thereof; [...]
   3472     //
   3473     // Note that we already checked the context above, and that we do not have
   3474     // enough information to make sure that Previous contains the declaration
   3475     // we want to match. For example, given:
   3476     //
   3477     //   class X {
   3478     //     void f();
   3479     //     void f(float);
   3480     //   };
   3481     //
   3482     //   void X::f(int) { } // ill-formed
   3483     //
   3484     // In this case, Previous will point to the overload set
   3485     // containing the two f's declared in X, but neither of them
   3486     // matches.
   3487 
   3488     // C++ [dcl.meaning]p1:
   3489     //   [...] the member shall not merely have been introduced by a
   3490     //   using-declaration in the scope of the class or namespace nominated by
   3491     //   the nested-name-specifier of the declarator-id.
   3492     RemoveUsingDecls(Previous);
   3493   }
   3494 
   3495   if (Previous.isSingleResult() &&
   3496       Previous.getFoundDecl()->isTemplateParameter()) {
   3497     // Maybe we will complain about the shadowed template parameter.
   3498     if (!D.isInvalidType())
   3499       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
   3500                                       Previous.getFoundDecl());
   3501 
   3502     // Just pretend that we didn't see the previous declaration.
   3503     Previous.clear();
   3504   }
   3505 
   3506   // In C++, the previous declaration we find might be a tag type
   3507   // (class or enum). In this case, the new declaration will hide the
   3508   // tag type. Note that this does does not apply if we're declaring a
   3509   // typedef (C++ [dcl.typedef]p4).
   3510   if (Previous.isSingleTagDecl() &&
   3511       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
   3512     Previous.clear();
   3513 
   3514   bool AddToScope = true;
   3515   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
   3516     if (TemplateParamLists.size()) {
   3517       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
   3518       return 0;
   3519     }
   3520 
   3521     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
   3522   } else if (R->isFunctionType()) {
   3523     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
   3524                                   move(TemplateParamLists),
   3525                                   AddToScope);
   3526   } else {
   3527     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
   3528                                   move(TemplateParamLists));
   3529   }
   3530 
   3531   if (New == 0)
   3532     return 0;
   3533 
   3534   // If this has an identifier and is not an invalid redeclaration or
   3535   // function template specialization, add it to the scope stack.
   3536   if (New->getDeclName() && AddToScope &&
   3537        !(D.isRedeclaration() && New->isInvalidDecl()))
   3538     PushOnScopeChains(New, S);
   3539 
   3540   return New;
   3541 }
   3542 
   3543 /// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
   3544 /// types into constant array types in certain situations which would otherwise
   3545 /// be errors (for GCC compatibility).
   3546 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
   3547                                                     ASTContext &Context,
   3548                                                     bool &SizeIsNegative,
   3549                                                     llvm::APSInt &Oversized) {
   3550   // This method tries to turn a variable array into a constant
   3551   // array even when the size isn't an ICE.  This is necessary
   3552   // for compatibility with code that depends on gcc's buggy
   3553   // constant expression folding, like struct {char x[(int)(char*)2];}
   3554   SizeIsNegative = false;
   3555   Oversized = 0;
   3556 
   3557   if (T->isDependentType())
   3558     return QualType();
   3559 
   3560   QualifierCollector Qs;
   3561   const Type *Ty = Qs.strip(T);
   3562 
   3563   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
   3564     QualType Pointee = PTy->getPointeeType();
   3565     QualType FixedType =
   3566         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
   3567                                             Oversized);
   3568     if (FixedType.isNull()) return FixedType;
   3569     FixedType = Context.getPointerType(FixedType);
   3570     return Qs.apply(Context, FixedType);
   3571   }
   3572   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
   3573     QualType Inner = PTy->getInnerType();
   3574     QualType FixedType =
   3575         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
   3576                                             Oversized);
   3577     if (FixedType.isNull()) return FixedType;
   3578     FixedType = Context.getParenType(FixedType);
   3579     return Qs.apply(Context, FixedType);
   3580   }
   3581 
   3582   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
   3583   if (!VLATy)
   3584     return QualType();
   3585   // FIXME: We should probably handle this case
   3586   if (VLATy->getElementType()->isVariablyModifiedType())
   3587     return QualType();
   3588 
   3589   llvm::APSInt Res;
   3590   if (!VLATy->getSizeExpr() ||
   3591       !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
   3592     return QualType();
   3593 
   3594   // Check whether the array size is negative.
   3595   if (Res.isSigned() && Res.isNegative()) {
   3596     SizeIsNegative = true;
   3597     return QualType();
   3598   }
   3599 
   3600   // Check whether the array is too large to be addressed.
   3601   unsigned ActiveSizeBits
   3602     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
   3603                                               Res);
   3604   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
   3605     Oversized = Res;
   3606     return QualType();
   3607   }
   3608 
   3609   return Context.getConstantArrayType(VLATy->getElementType(),
   3610                                       Res, ArrayType::Normal, 0);
   3611 }
   3612 
   3613 /// \brief Register the given locally-scoped external C declaration so
   3614 /// that it can be found later for redeclarations
   3615 void
   3616 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
   3617                                        const LookupResult &Previous,
   3618                                        Scope *S) {
   3619   assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
   3620          "Decl is not a locally-scoped decl!");
   3621   // Note that we have a locally-scoped external with this name.
   3622   LocallyScopedExternalDecls[ND->getDeclName()] = ND;
   3623 
   3624   if (!Previous.isSingleResult())
   3625     return;
   3626 
   3627   NamedDecl *PrevDecl = Previous.getFoundDecl();
   3628 
   3629   // If there was a previous declaration of this variable, it may be
   3630   // in our identifier chain. Update the identifier chain with the new
   3631   // declaration.
   3632   if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
   3633     // The previous declaration was found on the identifer resolver
   3634     // chain, so remove it from its scope.
   3635 
   3636     if (S->isDeclScope(PrevDecl)) {
   3637       // Special case for redeclarations in the SAME scope.
   3638       // Because this declaration is going to be added to the identifier chain
   3639       // later, we should temporarily take it OFF the chain.
   3640       IdResolver.RemoveDecl(ND);
   3641 
   3642     } else {
   3643       // Find the scope for the original declaration.
   3644       while (S && !S->isDeclScope(PrevDecl))
   3645         S = S->getParent();
   3646     }
   3647 
   3648     if (S)
   3649       S->RemoveDecl(PrevDecl);
   3650   }
   3651 }
   3652 
   3653 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
   3654 Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
   3655   if (ExternalSource) {
   3656     // Load locally-scoped external decls from the external source.
   3657     SmallVector<NamedDecl *, 4> Decls;
   3658     ExternalSource->ReadLocallyScopedExternalDecls(Decls);
   3659     for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
   3660       llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
   3661         = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
   3662       if (Pos == LocallyScopedExternalDecls.end())
   3663         LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
   3664     }
   3665   }
   3666 
   3667   return LocallyScopedExternalDecls.find(Name);
   3668 }
   3669 
   3670 /// \brief Diagnose function specifiers on a declaration of an identifier that
   3671 /// does not identify a function.
   3672 void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
   3673   // FIXME: We should probably indicate the identifier in question to avoid
   3674   // confusion for constructs like "inline int a(), b;"
   3675   if (D.getDeclSpec().isInlineSpecified())
   3676     Diag(D.getDeclSpec().getInlineSpecLoc(),
   3677          diag::err_inline_non_function);
   3678 
   3679   if (D.getDeclSpec().isVirtualSpecified())
   3680     Diag(D.getDeclSpec().getVirtualSpecLoc(),
   3681          diag::err_virtual_non_function);
   3682 
   3683   if (D.getDeclSpec().isExplicitSpecified())
   3684     Diag(D.getDeclSpec().getExplicitSpecLoc(),
   3685          diag::err_explicit_non_function);
   3686 }
   3687 
   3688 NamedDecl*
   3689 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
   3690                              TypeSourceInfo *TInfo, LookupResult &Previous) {
   3691   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
   3692   if (D.getCXXScopeSpec().isSet()) {
   3693     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
   3694       << D.getCXXScopeSpec().getRange();
   3695     D.setInvalidType();
   3696     // Pretend we didn't see the scope specifier.
   3697     DC = CurContext;
   3698     Previous.clear();
   3699   }
   3700 
   3701   if (getLangOpts().CPlusPlus) {
   3702     // Check that there are no default arguments (C++ only).
   3703     CheckExtraCXXDefaultArguments(D);
   3704   }
   3705 
   3706   DiagnoseFunctionSpecifiers(D);
   3707 
   3708   if (D.getDeclSpec().isThreadSpecified())
   3709     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   3710   if (D.getDeclSpec().isConstexprSpecified())
   3711     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
   3712       << 1;
   3713 
   3714   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
   3715     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
   3716       << D.getName().getSourceRange();
   3717     return 0;
   3718   }
   3719 
   3720   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
   3721   if (!NewTD) return 0;
   3722 
   3723   // Handle attributes prior to checking for duplicates in MergeVarDecl
   3724   ProcessDeclAttributes(S, NewTD, D);
   3725 
   3726   CheckTypedefForVariablyModifiedType(S, NewTD);
   3727 
   3728   bool Redeclaration = D.isRedeclaration();
   3729   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
   3730   D.setRedeclaration(Redeclaration);
   3731   return ND;
   3732 }
   3733 
   3734 void
   3735 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
   3736   // C99 6.7.7p2: If a typedef name specifies a variably modified type
   3737   // then it shall have block scope.
   3738   // Note that variably modified types must be fixed before merging the decl so
   3739   // that redeclarations will match.
   3740   QualType T = NewTD->getUnderlyingType();
   3741   if (T->isVariablyModifiedType()) {
   3742     getCurFunction()->setHasBranchProtectedScope();
   3743 
   3744     if (S->getFnParent() == 0) {
   3745       bool SizeIsNegative;
   3746       llvm::APSInt Oversized;
   3747       QualType FixedTy =
   3748           TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
   3749                                               Oversized);
   3750       if (!FixedTy.isNull()) {
   3751         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
   3752         NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
   3753       } else {
   3754         if (SizeIsNegative)
   3755           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
   3756         else if (T->isVariableArrayType())
   3757           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
   3758         else if (Oversized.getBoolValue())
   3759           Diag(NewTD->getLocation(), diag::err_array_too_large)
   3760             << Oversized.toString(10);
   3761         else
   3762           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
   3763         NewTD->setInvalidDecl();
   3764       }
   3765     }
   3766   }
   3767 }
   3768 
   3769 
   3770 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
   3771 /// declares a typedef-name, either using the 'typedef' type specifier or via
   3772 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
   3773 NamedDecl*
   3774 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
   3775                            LookupResult &Previous, bool &Redeclaration) {
   3776   // Merge the decl with the existing one if appropriate. If the decl is
   3777   // in an outer scope, it isn't the same thing.
   3778   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
   3779                        /*ExplicitInstantiationOrSpecialization=*/false);
   3780   if (!Previous.empty()) {
   3781     Redeclaration = true;
   3782     MergeTypedefNameDecl(NewTD, Previous);
   3783   }
   3784 
   3785   // If this is the C FILE type, notify the AST context.
   3786   if (IdentifierInfo *II = NewTD->getIdentifier())
   3787     if (!NewTD->isInvalidDecl() &&
   3788         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   3789       if (II->isStr("FILE"))
   3790         Context.setFILEDecl(NewTD);
   3791       else if (II->isStr("jmp_buf"))
   3792         Context.setjmp_bufDecl(NewTD);
   3793       else if (II->isStr("sigjmp_buf"))
   3794         Context.setsigjmp_bufDecl(NewTD);
   3795       else if (II->isStr("ucontext_t"))
   3796         Context.setucontext_tDecl(NewTD);
   3797       else if (II->isStr("__builtin_va_list"))
   3798         Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
   3799     }
   3800 
   3801   return NewTD;
   3802 }
   3803 
   3804 /// \brief Determines whether the given declaration is an out-of-scope
   3805 /// previous declaration.
   3806 ///
   3807 /// This routine should be invoked when name lookup has found a
   3808 /// previous declaration (PrevDecl) that is not in the scope where a
   3809 /// new declaration by the same name is being introduced. If the new
   3810 /// declaration occurs in a local scope, previous declarations with
   3811 /// linkage may still be considered previous declarations (C99
   3812 /// 6.2.2p4-5, C++ [basic.link]p6).
   3813 ///
   3814 /// \param PrevDecl the previous declaration found by name
   3815 /// lookup
   3816 ///
   3817 /// \param DC the context in which the new declaration is being
   3818 /// declared.
   3819 ///
   3820 /// \returns true if PrevDecl is an out-of-scope previous declaration
   3821 /// for a new delcaration with the same name.
   3822 static bool
   3823 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
   3824                                 ASTContext &Context) {
   3825   if (!PrevDecl)
   3826     return false;
   3827 
   3828   if (!PrevDecl->hasLinkage())
   3829     return false;
   3830 
   3831   if (Context.getLangOpts().CPlusPlus) {
   3832     // C++ [basic.link]p6:
   3833     //   If there is a visible declaration of an entity with linkage
   3834     //   having the same name and type, ignoring entities declared
   3835     //   outside the innermost enclosing namespace scope, the block
   3836     //   scope declaration declares that same entity and receives the
   3837     //   linkage of the previous declaration.
   3838     DeclContext *OuterContext = DC->getRedeclContext();
   3839     if (!OuterContext->isFunctionOrMethod())
   3840       // This rule only applies to block-scope declarations.
   3841       return false;
   3842 
   3843     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
   3844     if (PrevOuterContext->isRecord())
   3845       // We found a member function: ignore it.
   3846       return false;
   3847 
   3848     // Find the innermost enclosing namespace for the new and
   3849     // previous declarations.
   3850     OuterContext = OuterContext->getEnclosingNamespaceContext();
   3851     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
   3852 
   3853     // The previous declaration is in a different namespace, so it
   3854     // isn't the same function.
   3855     if (!OuterContext->Equals(PrevOuterContext))
   3856       return false;
   3857   }
   3858 
   3859   return true;
   3860 }
   3861 
   3862 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
   3863   CXXScopeSpec &SS = D.getCXXScopeSpec();
   3864   if (!SS.isSet()) return;
   3865   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
   3866 }
   3867 
   3868 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
   3869   QualType type = decl->getType();
   3870   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
   3871   if (lifetime == Qualifiers::OCL_Autoreleasing) {
   3872     // Various kinds of declaration aren't allowed to be __autoreleasing.
   3873     unsigned kind = -1U;
   3874     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
   3875       if (var->hasAttr<BlocksAttr>())
   3876         kind = 0; // __block
   3877       else if (!var->hasLocalStorage())
   3878         kind = 1; // global
   3879     } else if (isa<ObjCIvarDecl>(decl)) {
   3880       kind = 3; // ivar
   3881     } else if (isa<FieldDecl>(decl)) {
   3882       kind = 2; // field
   3883     }
   3884 
   3885     if (kind != -1U) {
   3886       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
   3887         << kind;
   3888     }
   3889   } else if (lifetime == Qualifiers::OCL_None) {
   3890     // Try to infer lifetime.
   3891     if (!type->isObjCLifetimeType())
   3892       return false;
   3893 
   3894     lifetime = type->getObjCARCImplicitLifetime();
   3895     type = Context.getLifetimeQualifiedType(type, lifetime);
   3896     decl->setType(type);
   3897   }
   3898 
   3899   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
   3900     // Thread-local variables cannot have lifetime.
   3901     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
   3902         var->isThreadSpecified()) {
   3903       Diag(var->getLocation(), diag::err_arc_thread_ownership)
   3904         << var->getType();
   3905       return true;
   3906     }
   3907   }
   3908 
   3909   return false;
   3910 }
   3911 
   3912 NamedDecl*
   3913 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
   3914                               TypeSourceInfo *TInfo, LookupResult &Previous,
   3915                               MultiTemplateParamsArg TemplateParamLists) {
   3916   QualType R = TInfo->getType();
   3917   DeclarationName Name = GetNameForDeclarator(D).getName();
   3918 
   3919   // Check that there are no default arguments (C++ only).
   3920   if (getLangOpts().CPlusPlus)
   3921     CheckExtraCXXDefaultArguments(D);
   3922 
   3923   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
   3924   assert(SCSpec != DeclSpec::SCS_typedef &&
   3925          "Parser allowed 'typedef' as storage class VarDecl.");
   3926   VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
   3927   if (SCSpec == DeclSpec::SCS_mutable) {
   3928     // mutable can only appear on non-static class members, so it's always
   3929     // an error here
   3930     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
   3931     D.setInvalidType();
   3932     SC = SC_None;
   3933   }
   3934   SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
   3935   VarDecl::StorageClass SCAsWritten
   3936     = StorageClassSpecToVarDeclStorageClass(SCSpec);
   3937 
   3938   IdentifierInfo *II = Name.getAsIdentifierInfo();
   3939   if (!II) {
   3940     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
   3941       << Name;
   3942     return 0;
   3943   }
   3944 
   3945   DiagnoseFunctionSpecifiers(D);
   3946 
   3947   if (!DC->isRecord() && S->getFnParent() == 0) {
   3948     // C99 6.9p2: The storage-class specifiers auto and register shall not
   3949     // appear in the declaration specifiers in an external declaration.
   3950     if (SC == SC_Auto || SC == SC_Register) {
   3951 
   3952       // If this is a register variable with an asm label specified, then this
   3953       // is a GNU extension.
   3954       if (SC == SC_Register && D.getAsmLabel())
   3955         Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
   3956       else
   3957         Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
   3958       D.setInvalidType();
   3959     }
   3960   }
   3961 
   3962   if (getLangOpts().OpenCL) {
   3963     // Set up the special work-group-local storage class for variables in the
   3964     // OpenCL __local address space.
   3965     if (R.getAddressSpace() == LangAS::opencl_local)
   3966       SC = SC_OpenCLWorkGroupLocal;
   3967   }
   3968 
   3969   bool isExplicitSpecialization = false;
   3970   VarDecl *NewVD;
   3971   if (!getLangOpts().CPlusPlus) {
   3972     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
   3973                             D.getIdentifierLoc(), II,
   3974                             R, TInfo, SC, SCAsWritten);
   3975 
   3976     if (D.isInvalidType())
   3977       NewVD->setInvalidDecl();
   3978   } else {
   3979     if (DC->isRecord() && !CurContext->isRecord()) {
   3980       // This is an out-of-line definition of a static data member.
   3981       if (SC == SC_Static) {
   3982         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   3983              diag::err_static_out_of_line)
   3984           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   3985       } else if (SC == SC_None)
   3986         SC = SC_Static;
   3987     }
   3988     if (SC == SC_Static && CurContext->isRecord()) {
   3989       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
   3990         if (RD->isLocalClass())
   3991           Diag(D.getIdentifierLoc(),
   3992                diag::err_static_data_member_not_allowed_in_local_class)
   3993             << Name << RD->getDeclName();
   3994 
   3995         // C++98 [class.union]p1: If a union contains a static data member,
   3996         // the program is ill-formed. C++11 drops this restriction.
   3997         if (RD->isUnion())
   3998           Diag(D.getIdentifierLoc(),
   3999                getLangOpts().CPlusPlus0x
   4000                  ? diag::warn_cxx98_compat_static_data_member_in_union
   4001                  : diag::ext_static_data_member_in_union) << Name;
   4002         // We conservatively disallow static data members in anonymous structs.
   4003         else if (!RD->getDeclName())
   4004           Diag(D.getIdentifierLoc(),
   4005                diag::err_static_data_member_not_allowed_in_anon_struct)
   4006             << Name << RD->isUnion();
   4007       }
   4008     }
   4009 
   4010     // Match up the template parameter lists with the scope specifier, then
   4011     // determine whether we have a template or a template specialization.
   4012     isExplicitSpecialization = false;
   4013     bool Invalid = false;
   4014     if (TemplateParameterList *TemplateParams
   4015         = MatchTemplateParametersToScopeSpecifier(
   4016                                   D.getDeclSpec().getLocStart(),
   4017                                                   D.getIdentifierLoc(),
   4018                                                   D.getCXXScopeSpec(),
   4019                                                   TemplateParamLists.get(),
   4020                                                   TemplateParamLists.size(),
   4021                                                   /*never a friend*/ false,
   4022                                                   isExplicitSpecialization,
   4023                                                   Invalid)) {
   4024       if (TemplateParams->size() > 0) {
   4025         // There is no such thing as a variable template.
   4026         Diag(D.getIdentifierLoc(), diag::err_template_variable)
   4027           << II
   4028           << SourceRange(TemplateParams->getTemplateLoc(),
   4029                          TemplateParams->getRAngleLoc());
   4030         return 0;
   4031       } else {
   4032         // There is an extraneous 'template<>' for this variable. Complain
   4033         // about it, but allow the declaration of the variable.
   4034         Diag(TemplateParams->getTemplateLoc(),
   4035              diag::err_template_variable_noparams)
   4036           << II
   4037           << SourceRange(TemplateParams->getTemplateLoc(),
   4038                          TemplateParams->getRAngleLoc());
   4039       }
   4040     }
   4041 
   4042     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
   4043                             D.getIdentifierLoc(), II,
   4044                             R, TInfo, SC, SCAsWritten);
   4045 
   4046     // If this decl has an auto type in need of deduction, make a note of the
   4047     // Decl so we can diagnose uses of it in its own initializer.
   4048     if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
   4049         R->getContainedAutoType())
   4050       ParsingInitForAutoVars.insert(NewVD);
   4051 
   4052     if (D.isInvalidType() || Invalid)
   4053       NewVD->setInvalidDecl();
   4054 
   4055     SetNestedNameSpecifier(NewVD, D);
   4056 
   4057     if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
   4058       NewVD->setTemplateParameterListsInfo(Context,
   4059                                            TemplateParamLists.size(),
   4060                                            TemplateParamLists.release());
   4061     }
   4062 
   4063     if (D.getDeclSpec().isConstexprSpecified())
   4064       NewVD->setConstexpr(true);
   4065   }
   4066 
   4067   // Set the lexical context. If the declarator has a C++ scope specifier, the
   4068   // lexical context will be different from the semantic context.
   4069   NewVD->setLexicalDeclContext(CurContext);
   4070 
   4071   if (D.getDeclSpec().isThreadSpecified()) {
   4072     if (NewVD->hasLocalStorage())
   4073       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
   4074     else if (!Context.getTargetInfo().isTLSSupported())
   4075       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
   4076     else
   4077       NewVD->setThreadSpecified(true);
   4078   }
   4079 
   4080   if (D.getDeclSpec().isModulePrivateSpecified()) {
   4081     if (isExplicitSpecialization)
   4082       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
   4083         << 2
   4084         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   4085     else if (NewVD->hasLocalStorage())
   4086       Diag(NewVD->getLocation(), diag::err_module_private_local)
   4087         << 0 << NewVD->getDeclName()
   4088         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   4089         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   4090     else
   4091       NewVD->setModulePrivate();
   4092   }
   4093 
   4094   // Handle attributes prior to checking for duplicates in MergeVarDecl
   4095   ProcessDeclAttributes(S, NewVD, D);
   4096 
   4097   // In auto-retain/release, infer strong retension for variables of
   4098   // retainable type.
   4099   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
   4100     NewVD->setInvalidDecl();
   4101 
   4102   // Handle GNU asm-label extension (encoded as an attribute).
   4103   if (Expr *E = (Expr*)D.getAsmLabel()) {
   4104     // The parser guarantees this is a string.
   4105     StringLiteral *SE = cast<StringLiteral>(E);
   4106     StringRef Label = SE->getString();
   4107     if (S->getFnParent() != 0) {
   4108       switch (SC) {
   4109       case SC_None:
   4110       case SC_Auto:
   4111         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
   4112         break;
   4113       case SC_Register:
   4114         if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
   4115           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
   4116         break;
   4117       case SC_Static:
   4118       case SC_Extern:
   4119       case SC_PrivateExtern:
   4120       case SC_OpenCLWorkGroupLocal:
   4121         break;
   4122       }
   4123     }
   4124 
   4125     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
   4126                                                 Context, Label));
   4127   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
   4128     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
   4129       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
   4130     if (I != ExtnameUndeclaredIdentifiers.end()) {
   4131       NewVD->addAttr(I->second);
   4132       ExtnameUndeclaredIdentifiers.erase(I);
   4133     }
   4134   }
   4135 
   4136   // Diagnose shadowed variables before filtering for scope.
   4137   if (!D.getCXXScopeSpec().isSet())
   4138     CheckShadow(S, NewVD, Previous);
   4139 
   4140   // Don't consider existing declarations that are in a different
   4141   // scope and are out-of-semantic-context declarations (if the new
   4142   // declaration has linkage).
   4143   FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
   4144                        isExplicitSpecialization);
   4145 
   4146   if (!getLangOpts().CPlusPlus) {
   4147     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
   4148   } else {
   4149     // Merge the decl with the existing one if appropriate.
   4150     if (!Previous.empty()) {
   4151       if (Previous.isSingleResult() &&
   4152           isa<FieldDecl>(Previous.getFoundDecl()) &&
   4153           D.getCXXScopeSpec().isSet()) {
   4154         // The user tried to define a non-static data member
   4155         // out-of-line (C++ [dcl.meaning]p1).
   4156         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
   4157           << D.getCXXScopeSpec().getRange();
   4158         Previous.clear();
   4159         NewVD->setInvalidDecl();
   4160       }
   4161     } else if (D.getCXXScopeSpec().isSet()) {
   4162       // No previous declaration in the qualifying scope.
   4163       Diag(D.getIdentifierLoc(), diag::err_no_member)
   4164         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
   4165         << D.getCXXScopeSpec().getRange();
   4166       NewVD->setInvalidDecl();
   4167     }
   4168 
   4169     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
   4170 
   4171     // This is an explicit specialization of a static data member. Check it.
   4172     if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
   4173         CheckMemberSpecialization(NewVD, Previous))
   4174       NewVD->setInvalidDecl();
   4175   }
   4176 
   4177   // attributes declared post-definition are currently ignored
   4178   // FIXME: This should be handled in attribute merging, not
   4179   // here.
   4180   if (Previous.isSingleResult()) {
   4181     VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
   4182     if (Def && (Def = Def->getDefinition()) &&
   4183         Def != NewVD && D.hasAttributes()) {
   4184       Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
   4185       Diag(Def->getLocation(), diag::note_previous_definition);
   4186     }
   4187   }
   4188 
   4189   // If this is a locally-scoped extern C variable, update the map of
   4190   // such variables.
   4191   if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
   4192       !NewVD->isInvalidDecl())
   4193     RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
   4194 
   4195   // If there's a #pragma GCC visibility in scope, and this isn't a class
   4196   // member, set the visibility of this variable.
   4197   if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
   4198     AddPushedVisibilityAttribute(NewVD);
   4199 
   4200   MarkUnusedFileScopedDecl(NewVD);
   4201 
   4202   return NewVD;
   4203 }
   4204 
   4205 /// \brief Diagnose variable or built-in function shadowing.  Implements
   4206 /// -Wshadow.
   4207 ///
   4208 /// This method is called whenever a VarDecl is added to a "useful"
   4209 /// scope.
   4210 ///
   4211 /// \param S the scope in which the shadowing name is being declared
   4212 /// \param R the lookup of the name
   4213 ///
   4214 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
   4215   // Return if warning is ignored.
   4216   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
   4217         DiagnosticsEngine::Ignored)
   4218     return;
   4219 
   4220   // Don't diagnose declarations at file scope.
   4221   if (D->hasGlobalStorage())
   4222     return;
   4223 
   4224   DeclContext *NewDC = D->getDeclContext();
   4225 
   4226   // Only diagnose if we're shadowing an unambiguous field or variable.
   4227   if (R.getResultKind() != LookupResult::Found)
   4228     return;
   4229 
   4230   NamedDecl* ShadowedDecl = R.getFoundDecl();
   4231   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
   4232     return;
   4233 
   4234   // Fields are not shadowed by variables in C++ static methods.
   4235   if (isa<FieldDecl>(ShadowedDecl))
   4236     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
   4237       if (MD->isStatic())
   4238         return;
   4239 
   4240   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
   4241     if (shadowedVar->isExternC()) {
   4242       // For shadowing external vars, make sure that we point to the global
   4243       // declaration, not a locally scoped extern declaration.
   4244       for (VarDecl::redecl_iterator
   4245              I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
   4246            I != E; ++I)
   4247         if (I->isFileVarDecl()) {
   4248           ShadowedDecl = *I;
   4249           break;
   4250         }
   4251     }
   4252 
   4253   DeclContext *OldDC = ShadowedDecl->getDeclContext();
   4254 
   4255   // Only warn about certain kinds of shadowing for class members.
   4256   if (NewDC && NewDC->isRecord()) {
   4257     // In particular, don't warn about shadowing non-class members.
   4258     if (!OldDC->isRecord())
   4259       return;
   4260 
   4261     // TODO: should we warn about static data members shadowing
   4262     // static data members from base classes?
   4263 
   4264     // TODO: don't diagnose for inaccessible shadowed members.
   4265     // This is hard to do perfectly because we might friend the
   4266     // shadowing context, but that's just a false negative.
   4267   }
   4268 
   4269   // Determine what kind of declaration we're shadowing.
   4270   unsigned Kind;
   4271   if (isa<RecordDecl>(OldDC)) {
   4272     if (isa<FieldDecl>(ShadowedDecl))
   4273       Kind = 3; // field
   4274     else
   4275       Kind = 2; // static data member
   4276   } else if (OldDC->isFileContext())
   4277     Kind = 1; // global
   4278   else
   4279     Kind = 0; // local
   4280 
   4281   DeclarationName Name = R.getLookupName();
   4282 
   4283   // Emit warning and note.
   4284   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
   4285   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
   4286 }
   4287 
   4288 /// \brief Check -Wshadow without the advantage of a previous lookup.
   4289 void Sema::CheckShadow(Scope *S, VarDecl *D) {
   4290   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
   4291         DiagnosticsEngine::Ignored)
   4292     return;
   4293 
   4294   LookupResult R(*this, D->getDeclName(), D->getLocation(),
   4295                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
   4296   LookupName(R, S);
   4297   CheckShadow(S, D, R);
   4298 }
   4299 
   4300 /// \brief Perform semantic checking on a newly-created variable
   4301 /// declaration.
   4302 ///
   4303 /// This routine performs all of the type-checking required for a
   4304 /// variable declaration once it has been built. It is used both to
   4305 /// check variables after they have been parsed and their declarators
   4306 /// have been translated into a declaration, and to check variables
   4307 /// that have been instantiated from a template.
   4308 ///
   4309 /// Sets NewVD->isInvalidDecl() if an error was encountered.
   4310 ///
   4311 /// Returns true if the variable declaration is a redeclaration.
   4312 bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
   4313                                     LookupResult &Previous) {
   4314   // If the decl is already known invalid, don't check it.
   4315   if (NewVD->isInvalidDecl())
   4316     return false;
   4317 
   4318   QualType T = NewVD->getType();
   4319 
   4320   if (T->isObjCObjectType()) {
   4321     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
   4322       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
   4323     T = Context.getObjCObjectPointerType(T);
   4324     NewVD->setType(T);
   4325   }
   4326 
   4327   // Emit an error if an address space was applied to decl with local storage.
   4328   // This includes arrays of objects with address space qualifiers, but not
   4329   // automatic variables that point to other address spaces.
   4330   // ISO/IEC TR 18037 S5.1.2
   4331   if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
   4332     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
   4333     NewVD->setInvalidDecl();
   4334     return false;
   4335   }
   4336 
   4337   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
   4338       && !NewVD->hasAttr<BlocksAttr>()) {
   4339     if (getLangOpts().getGC() != LangOptions::NonGC)
   4340       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
   4341     else
   4342       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
   4343   }
   4344 
   4345   bool isVM = T->isVariablyModifiedType();
   4346   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
   4347       NewVD->hasAttr<BlocksAttr>())
   4348     getCurFunction()->setHasBranchProtectedScope();
   4349 
   4350   if ((isVM && NewVD->hasLinkage()) ||
   4351       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
   4352     bool SizeIsNegative;
   4353     llvm::APSInt Oversized;
   4354     QualType FixedTy =
   4355         TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
   4356                                             Oversized);
   4357 
   4358     if (FixedTy.isNull() && T->isVariableArrayType()) {
   4359       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
   4360       // FIXME: This won't give the correct result for
   4361       // int a[10][n];
   4362       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
   4363 
   4364       if (NewVD->isFileVarDecl())
   4365         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
   4366         << SizeRange;
   4367       else if (NewVD->getStorageClass() == SC_Static)
   4368         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
   4369         << SizeRange;
   4370       else
   4371         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
   4372         << SizeRange;
   4373       NewVD->setInvalidDecl();
   4374       return false;
   4375     }
   4376 
   4377     if (FixedTy.isNull()) {
   4378       if (NewVD->isFileVarDecl())
   4379         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
   4380       else
   4381         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
   4382       NewVD->setInvalidDecl();
   4383       return false;
   4384     }
   4385 
   4386     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
   4387     NewVD->setType(FixedTy);
   4388   }
   4389 
   4390   if (Previous.empty() && NewVD->isExternC()) {
   4391     // Since we did not find anything by this name and we're declaring
   4392     // an extern "C" variable, look for a non-visible extern "C"
   4393     // declaration with the same name.
   4394     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
   4395       = findLocallyScopedExternalDecl(NewVD->getDeclName());
   4396     if (Pos != LocallyScopedExternalDecls.end())
   4397       Previous.addDecl(Pos->second);
   4398   }
   4399 
   4400   if (T->isVoidType() && !NewVD->hasExternalStorage()) {
   4401     Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
   4402       << T;
   4403     NewVD->setInvalidDecl();
   4404     return false;
   4405   }
   4406 
   4407   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
   4408     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
   4409     NewVD->setInvalidDecl();
   4410     return false;
   4411   }
   4412 
   4413   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
   4414     Diag(NewVD->getLocation(), diag::err_block_on_vm);
   4415     NewVD->setInvalidDecl();
   4416     return false;
   4417   }
   4418 
   4419   if (NewVD->isConstexpr() && !T->isDependentType() &&
   4420       RequireLiteralType(NewVD->getLocation(), T,
   4421                          PDiag(diag::err_constexpr_var_non_literal))) {
   4422     NewVD->setInvalidDecl();
   4423     return false;
   4424   }
   4425 
   4426   if (!Previous.empty()) {
   4427     MergeVarDecl(NewVD, Previous);
   4428     return true;
   4429   }
   4430   return false;
   4431 }
   4432 
   4433 /// \brief Data used with FindOverriddenMethod
   4434 struct FindOverriddenMethodData {
   4435   Sema *S;
   4436   CXXMethodDecl *Method;
   4437 };
   4438 
   4439 /// \brief Member lookup function that determines whether a given C++
   4440 /// method overrides a method in a base class, to be used with
   4441 /// CXXRecordDecl::lookupInBases().
   4442 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
   4443                                  CXXBasePath &Path,
   4444                                  void *UserData) {
   4445   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
   4446 
   4447   FindOverriddenMethodData *Data
   4448     = reinterpret_cast<FindOverriddenMethodData*>(UserData);
   4449 
   4450   DeclarationName Name = Data->Method->getDeclName();
   4451 
   4452   // FIXME: Do we care about other names here too?
   4453   if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   4454     // We really want to find the base class destructor here.
   4455     QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
   4456     CanQualType CT = Data->S->Context.getCanonicalType(T);
   4457 
   4458     Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
   4459   }
   4460 
   4461   for (Path.Decls = BaseRecord->lookup(Name);
   4462        Path.Decls.first != Path.Decls.second;
   4463        ++Path.Decls.first) {
   4464     NamedDecl *D = *Path.Decls.first;
   4465     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
   4466       if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
   4467         return true;
   4468     }
   4469   }
   4470 
   4471   return false;
   4472 }
   4473 
   4474 static bool hasDelayedExceptionSpec(CXXMethodDecl *Method) {
   4475   const FunctionProtoType *Proto =Method->getType()->getAs<FunctionProtoType>();
   4476   return Proto && Proto->getExceptionSpecType() == EST_Delayed;
   4477 }
   4478 
   4479 /// AddOverriddenMethods - See if a method overrides any in the base classes,
   4480 /// and if so, check that it's a valid override and remember it.
   4481 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
   4482   // Look for virtual methods in base classes that this method might override.
   4483   CXXBasePaths Paths;
   4484   FindOverriddenMethodData Data;
   4485   Data.Method = MD;
   4486   Data.S = this;
   4487   bool AddedAny = false;
   4488   if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
   4489     for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
   4490          E = Paths.found_decls_end(); I != E; ++I) {
   4491       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
   4492         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
   4493         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
   4494             (hasDelayedExceptionSpec(MD) ||
   4495              !CheckOverridingFunctionExceptionSpec(MD, OldMD)) &&
   4496             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
   4497           AddedAny = true;
   4498         }
   4499       }
   4500     }
   4501   }
   4502 
   4503   return AddedAny;
   4504 }
   4505 
   4506 namespace {
   4507   // Struct for holding all of the extra arguments needed by
   4508   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
   4509   struct ActOnFDArgs {
   4510     Scope *S;
   4511     Declarator &D;
   4512     MultiTemplateParamsArg TemplateParamLists;
   4513     bool AddToScope;
   4514   };
   4515 }
   4516 
   4517 namespace {
   4518 
   4519 // Callback to only accept typo corrections that have a non-zero edit distance.
   4520 // Also only accept corrections that have the same parent decl.
   4521 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
   4522  public:
   4523   DifferentNameValidatorCCC(CXXRecordDecl *Parent)
   4524       : ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
   4525 
   4526   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
   4527     if (candidate.getEditDistance() == 0)
   4528       return false;
   4529 
   4530     if (CXXMethodDecl *MD = candidate.getCorrectionDeclAs<CXXMethodDecl>()) {
   4531       CXXRecordDecl *Parent = MD->getParent();
   4532       return Parent && Parent->getCanonicalDecl() == ExpectedParent;
   4533     }
   4534 
   4535     return !ExpectedParent;
   4536   }
   4537 
   4538  private:
   4539   CXXRecordDecl *ExpectedParent;
   4540 };
   4541 
   4542 }
   4543 
   4544 /// \brief Generate diagnostics for an invalid function redeclaration.
   4545 ///
   4546 /// This routine handles generating the diagnostic messages for an invalid
   4547 /// function redeclaration, including finding possible similar declarations
   4548 /// or performing typo correction if there are no previous declarations with
   4549 /// the same name.
   4550 ///
   4551 /// Returns a NamedDecl iff typo correction was performed and substituting in
   4552 /// the new declaration name does not cause new errors.
   4553 static NamedDecl* DiagnoseInvalidRedeclaration(
   4554     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
   4555     ActOnFDArgs &ExtraArgs) {
   4556   NamedDecl *Result = NULL;
   4557   DeclarationName Name = NewFD->getDeclName();
   4558   DeclContext *NewDC = NewFD->getDeclContext();
   4559   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
   4560                     Sema::LookupOrdinaryName, Sema::ForRedeclaration);
   4561   llvm::SmallVector<unsigned, 1> MismatchedParams;
   4562   llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
   4563   TypoCorrection Correction;
   4564   bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
   4565                        ExtraArgs.D.getDeclSpec().isFriendSpecified());
   4566   unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
   4567                                   : diag::err_member_def_does_not_match;
   4568 
   4569   NewFD->setInvalidDecl();
   4570   SemaRef.LookupQualifiedName(Prev, NewDC);
   4571   assert(!Prev.isAmbiguous() &&
   4572          "Cannot have an ambiguity in previous-declaration lookup");
   4573   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
   4574   DifferentNameValidatorCCC Validator(MD ? MD->getParent() : 0);
   4575   if (!Prev.empty()) {
   4576     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
   4577          Func != FuncEnd; ++Func) {
   4578       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
   4579       if (FD &&
   4580           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
   4581         // Add 1 to the index so that 0 can mean the mismatch didn't
   4582         // involve a parameter
   4583         unsigned ParamNum =
   4584             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
   4585         NearMatches.push_back(std::make_pair(FD, ParamNum));
   4586       }
   4587     }
   4588   // If the qualified name lookup yielded nothing, try typo correction
   4589   } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
   4590                                          Prev.getLookupKind(), 0, 0,
   4591                                          Validator, NewDC))) {
   4592     // Trap errors.
   4593     Sema::SFINAETrap Trap(SemaRef);
   4594 
   4595     // Set up everything for the call to ActOnFunctionDeclarator
   4596     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
   4597                               ExtraArgs.D.getIdentifierLoc());
   4598     Previous.clear();
   4599     Previous.setLookupName(Correction.getCorrection());
   4600     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
   4601                                     CDeclEnd = Correction.end();
   4602          CDecl != CDeclEnd; ++CDecl) {
   4603       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
   4604       if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
   4605                                      MismatchedParams)) {
   4606         Previous.addDecl(FD);
   4607       }
   4608     }
   4609     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
   4610     // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
   4611     // pieces need to verify the typo-corrected C++ declaraction and hopefully
   4612     // eliminate the need for the parameter pack ExtraArgs.
   4613     Result = SemaRef.ActOnFunctionDeclarator(
   4614         ExtraArgs.S, ExtraArgs.D,
   4615         Correction.getCorrectionDecl()->getDeclContext(),
   4616         NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
   4617         ExtraArgs.AddToScope);
   4618     if (Trap.hasErrorOccurred()) {
   4619       // Pretend the typo correction never occurred
   4620       ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
   4621                                 ExtraArgs.D.getIdentifierLoc());
   4622       ExtraArgs.D.setRedeclaration(wasRedeclaration);
   4623       Previous.clear();
   4624       Previous.setLookupName(Name);
   4625       Result = NULL;
   4626     } else {
   4627       for (LookupResult::iterator Func = Previous.begin(),
   4628                                FuncEnd = Previous.end();
   4629            Func != FuncEnd; ++Func) {
   4630         if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
   4631           NearMatches.push_back(std::make_pair(FD, 0));
   4632       }
   4633     }
   4634     if (NearMatches.empty()) {
   4635       // Ignore the correction if it didn't yield any close FunctionDecl matches
   4636       Correction = TypoCorrection();
   4637     } else {
   4638       DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
   4639                              : diag::err_member_def_does_not_match_suggest;
   4640     }
   4641   }
   4642 
   4643   if (Correction)
   4644     SemaRef.Diag(NewFD->getLocation(), DiagMsg)
   4645         << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
   4646         << FixItHint::CreateReplacement(
   4647             NewFD->getLocation(),
   4648             Correction.getAsString(SemaRef.getLangOpts()));
   4649   else
   4650     SemaRef.Diag(NewFD->getLocation(), DiagMsg)
   4651         << Name << NewDC << NewFD->getLocation();
   4652 
   4653   bool NewFDisConst = false;
   4654   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
   4655     NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
   4656 
   4657   for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
   4658        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
   4659        NearMatch != NearMatchEnd; ++NearMatch) {
   4660     FunctionDecl *FD = NearMatch->first;
   4661     bool FDisConst = false;
   4662     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
   4663       FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
   4664 
   4665     if (unsigned Idx = NearMatch->second) {
   4666       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
   4667       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
   4668       if (Loc.isInvalid()) Loc = FD->getLocation();
   4669       SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
   4670           << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
   4671     } else if (Correction) {
   4672       SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
   4673           << Correction.getQuoted(SemaRef.getLangOpts());
   4674     } else if (FDisConst != NewFDisConst) {
   4675       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
   4676           << NewFDisConst << FD->getSourceRange().getEnd();
   4677     } else
   4678       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
   4679   }
   4680   return Result;
   4681 }
   4682 
   4683 static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
   4684                                                           Declarator &D) {
   4685   switch (D.getDeclSpec().getStorageClassSpec()) {
   4686   default: llvm_unreachable("Unknown storage class!");
   4687   case DeclSpec::SCS_auto:
   4688   case DeclSpec::SCS_register:
   4689   case DeclSpec::SCS_mutable:
   4690     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   4691                  diag::err_typecheck_sclass_func);
   4692     D.setInvalidType();
   4693     break;
   4694   case DeclSpec::SCS_unspecified: break;
   4695   case DeclSpec::SCS_extern: return SC_Extern;
   4696   case DeclSpec::SCS_static: {
   4697     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
   4698       // C99 6.7.1p5:
   4699       //   The declaration of an identifier for a function that has
   4700       //   block scope shall have no explicit storage-class specifier
   4701       //   other than extern
   4702       // See also (C++ [dcl.stc]p4).
   4703       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   4704                    diag::err_static_block_func);
   4705       break;
   4706     } else
   4707       return SC_Static;
   4708   }
   4709   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
   4710   }
   4711 
   4712   // No explicit storage class has already been returned
   4713   return SC_None;
   4714 }
   4715 
   4716 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
   4717                                            DeclContext *DC, QualType &R,
   4718                                            TypeSourceInfo *TInfo,
   4719                                            FunctionDecl::StorageClass SC,
   4720                                            bool &IsVirtualOkay) {
   4721   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
   4722   DeclarationName Name = NameInfo.getName();
   4723 
   4724   FunctionDecl *NewFD = 0;
   4725   bool isInline = D.getDeclSpec().isInlineSpecified();
   4726   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
   4727   FunctionDecl::StorageClass SCAsWritten
   4728     = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
   4729 
   4730   if (!SemaRef.getLangOpts().CPlusPlus) {
   4731     // Determine whether the function was written with a
   4732     // prototype. This true when:
   4733     //   - there is a prototype in the declarator, or
   4734     //   - the type R of the function is some kind of typedef or other reference
   4735     //     to a type name (which eventually refers to a function type).
   4736     bool HasPrototype =
   4737       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
   4738       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
   4739 
   4740     NewFD = FunctionDecl::Create(SemaRef.Context, DC,
   4741                                  D.getLocStart(), NameInfo, R,
   4742                                  TInfo, SC, SCAsWritten, isInline,
   4743                                  HasPrototype);
   4744     if (D.isInvalidType())
   4745       NewFD->setInvalidDecl();
   4746 
   4747     // Set the lexical context.
   4748     NewFD->setLexicalDeclContext(SemaRef.CurContext);
   4749 
   4750     return NewFD;
   4751   }
   4752 
   4753   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
   4754   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
   4755 
   4756   // Check that the return type is not an abstract class type.
   4757   // For record types, this is done by the AbstractClassUsageDiagnoser once
   4758   // the class has been completely parsed.
   4759   if (!DC->isRecord() &&
   4760       SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
   4761                                      R->getAs<FunctionType>()->getResultType(),
   4762                                      diag::err_abstract_type_in_decl,
   4763                                      SemaRef.AbstractReturnType))
   4764     D.setInvalidType();
   4765 
   4766   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
   4767     // This is a C++ constructor declaration.
   4768     assert(DC->isRecord() &&
   4769            "Constructors can only be declared in a member context");
   4770 
   4771     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
   4772     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
   4773                                       D.getLocStart(), NameInfo,
   4774                                       R, TInfo, isExplicit, isInline,
   4775                                       /*isImplicitlyDeclared=*/false,
   4776                                       isConstexpr);
   4777 
   4778   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   4779     // This is a C++ destructor declaration.
   4780     if (DC->isRecord()) {
   4781       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
   4782       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
   4783       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
   4784                                         SemaRef.Context, Record,
   4785                                         D.getLocStart(),
   4786                                         NameInfo, R, TInfo, isInline,
   4787                                         /*isImplicitlyDeclared=*/false);
   4788 
   4789       // If the class is complete, then we now create the implicit exception
   4790       // specification. If the class is incomplete or dependent, we can't do
   4791       // it yet.
   4792       if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
   4793           Record->getDefinition() && !Record->isBeingDefined() &&
   4794           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
   4795         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
   4796       }
   4797 
   4798       IsVirtualOkay = true;
   4799       return NewDD;
   4800 
   4801     } else {
   4802       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
   4803       D.setInvalidType();
   4804 
   4805       // Create a FunctionDecl to satisfy the function definition parsing
   4806       // code path.
   4807       return FunctionDecl::Create(SemaRef.Context, DC,
   4808                                   D.getLocStart(),
   4809                                   D.getIdentifierLoc(), Name, R, TInfo,
   4810                                   SC, SCAsWritten, isInline,
   4811                                   /*hasPrototype=*/true, isConstexpr);
   4812     }
   4813 
   4814   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
   4815     if (!DC->isRecord()) {
   4816       SemaRef.Diag(D.getIdentifierLoc(),
   4817            diag::err_conv_function_not_member);
   4818       return 0;
   4819     }
   4820 
   4821     SemaRef.CheckConversionDeclarator(D, R, SC);
   4822     IsVirtualOkay = true;
   4823     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
   4824                                      D.getLocStart(), NameInfo,
   4825                                      R, TInfo, isInline, isExplicit,
   4826                                      isConstexpr, SourceLocation());
   4827 
   4828   } else if (DC->isRecord()) {
   4829     // If the name of the function is the same as the name of the record,
   4830     // then this must be an invalid constructor that has a return type.
   4831     // (The parser checks for a return type and makes the declarator a
   4832     // constructor if it has no return type).
   4833     if (Name.getAsIdentifierInfo() &&
   4834         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
   4835       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
   4836         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
   4837         << SourceRange(D.getIdentifierLoc());
   4838       return 0;
   4839     }
   4840 
   4841     bool isStatic = SC == SC_Static;
   4842 
   4843     // [class.free]p1:
   4844     // Any allocation function for a class T is a static member
   4845     // (even if not explicitly declared static).
   4846     if (Name.getCXXOverloadedOperator() == OO_New ||
   4847         Name.getCXXOverloadedOperator() == OO_Array_New)
   4848       isStatic = true;
   4849 
   4850     // [class.free]p6 Any deallocation function for a class X is a static member
   4851     // (even if not explicitly declared static).
   4852     if (Name.getCXXOverloadedOperator() == OO_Delete ||
   4853         Name.getCXXOverloadedOperator() == OO_Array_Delete)
   4854       isStatic = true;
   4855 
   4856     IsVirtualOkay = !isStatic;
   4857 
   4858     // This is a C++ method declaration.
   4859     return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
   4860                                  D.getLocStart(), NameInfo, R,
   4861                                  TInfo, isStatic, SCAsWritten, isInline,
   4862                                  isConstexpr, SourceLocation());
   4863 
   4864   } else {
   4865     // Determine whether the function was written with a
   4866     // prototype. This true when:
   4867     //   - we're in C++ (where every function has a prototype),
   4868     return FunctionDecl::Create(SemaRef.Context, DC,
   4869                                 D.getLocStart(),
   4870                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
   4871                                 true/*HasPrototype*/, isConstexpr);
   4872   }
   4873 }
   4874 
   4875 NamedDecl*
   4876 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
   4877                               TypeSourceInfo *TInfo, LookupResult &Previous,
   4878                               MultiTemplateParamsArg TemplateParamLists,
   4879                               bool &AddToScope) {
   4880   QualType R = TInfo->getType();
   4881 
   4882   assert(R.getTypePtr()->isFunctionType());
   4883 
   4884   // TODO: consider using NameInfo for diagnostic.
   4885   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   4886   DeclarationName Name = NameInfo.getName();
   4887   FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
   4888 
   4889   if (D.getDeclSpec().isThreadSpecified())
   4890     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   4891 
   4892   // Do not allow returning a objc interface by-value.
   4893   if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
   4894     Diag(D.getIdentifierLoc(),
   4895          diag::err_object_cannot_be_passed_returned_by_value) << 0
   4896     << R->getAs<FunctionType>()->getResultType()
   4897     << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
   4898 
   4899     QualType T = R->getAs<FunctionType>()->getResultType();
   4900     T = Context.getObjCObjectPointerType(T);
   4901     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
   4902       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   4903       R = Context.getFunctionType(T, FPT->arg_type_begin(),
   4904                                   FPT->getNumArgs(), EPI);
   4905     }
   4906     else if (isa<FunctionNoProtoType>(R))
   4907       R = Context.getFunctionNoProtoType(T);
   4908   }
   4909 
   4910   bool isFriend = false;
   4911   FunctionTemplateDecl *FunctionTemplate = 0;
   4912   bool isExplicitSpecialization = false;
   4913   bool isFunctionTemplateSpecialization = false;
   4914   bool isDependentClassScopeExplicitSpecialization = false;
   4915   bool isVirtualOkay = false;
   4916 
   4917   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
   4918                                               isVirtualOkay);
   4919   if (!NewFD) return 0;
   4920 
   4921   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
   4922     NewFD->setTopLevelDeclInObjCContainer();
   4923 
   4924   if (getLangOpts().CPlusPlus) {
   4925     bool isInline = D.getDeclSpec().isInlineSpecified();
   4926     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
   4927     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
   4928     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
   4929     isFriend = D.getDeclSpec().isFriendSpecified();
   4930     if (isFriend && !isInline && D.isFunctionDefinition()) {
   4931       // C++ [class.friend]p5
   4932       //   A function can be defined in a friend declaration of a
   4933       //   class . . . . Such a function is implicitly inline.
   4934       NewFD->setImplicitlyInline();
   4935     }
   4936 
   4937     SetNestedNameSpecifier(NewFD, D);
   4938     isExplicitSpecialization = false;
   4939     isFunctionTemplateSpecialization = false;
   4940     if (D.isInvalidType())
   4941       NewFD->setInvalidDecl();
   4942 
   4943     // Set the lexical context. If the declarator has a C++
   4944     // scope specifier, or is the object of a friend declaration, the
   4945     // lexical context will be different from the semantic context.
   4946     NewFD->setLexicalDeclContext(CurContext);
   4947 
   4948     // Match up the template parameter lists with the scope specifier, then
   4949     // determine whether we have a template or a template specialization.
   4950     bool Invalid = false;
   4951     if (TemplateParameterList *TemplateParams
   4952           = MatchTemplateParametersToScopeSpecifier(
   4953                                   D.getDeclSpec().getLocStart(),
   4954                                   D.getIdentifierLoc(),
   4955                                   D.getCXXScopeSpec(),
   4956                                   TemplateParamLists.get(),
   4957                                   TemplateParamLists.size(),
   4958                                   isFriend,
   4959                                   isExplicitSpecialization,
   4960                                   Invalid)) {
   4961       if (TemplateParams->size() > 0) {
   4962         // This is a function template
   4963 
   4964         // Check that we can declare a template here.
   4965         if (CheckTemplateDeclScope(S, TemplateParams))
   4966           return 0;
   4967 
   4968         // A destructor cannot be a template.
   4969         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   4970           Diag(NewFD->getLocation(), diag::err_destructor_template);
   4971           return 0;
   4972         }
   4973 
   4974         // If we're adding a template to a dependent context, we may need to
   4975         // rebuilding some of the types used within the template parameter list,
   4976         // now that we know what the current instantiation is.
   4977         if (DC->isDependentContext()) {
   4978           ContextRAII SavedContext(*this, DC);
   4979           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
   4980             Invalid = true;
   4981         }
   4982 
   4983 
   4984         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
   4985                                                         NewFD->getLocation(),
   4986                                                         Name, TemplateParams,
   4987                                                         NewFD);
   4988         FunctionTemplate->setLexicalDeclContext(CurContext);
   4989         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
   4990 
   4991         // For source fidelity, store the other template param lists.
   4992         if (TemplateParamLists.size() > 1) {
   4993           NewFD->setTemplateParameterListsInfo(Context,
   4994                                                TemplateParamLists.size() - 1,
   4995                                                TemplateParamLists.release());
   4996         }
   4997       } else {
   4998         // This is a function template specialization.
   4999         isFunctionTemplateSpecialization = true;
   5000         // For source fidelity, store all the template param lists.
   5001         NewFD->setTemplateParameterListsInfo(Context,
   5002                                              TemplateParamLists.size(),
   5003                                              TemplateParamLists.release());
   5004 
   5005         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
   5006         if (isFriend) {
   5007           // We want to remove the "template<>", found here.
   5008           SourceRange RemoveRange = TemplateParams->getSourceRange();
   5009 
   5010           // If we remove the template<> and the name is not a
   5011           // template-id, we're actually silently creating a problem:
   5012           // the friend declaration will refer to an untemplated decl,
   5013           // and clearly the user wants a template specialization.  So
   5014           // we need to insert '<>' after the name.
   5015           SourceLocation InsertLoc;
   5016           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
   5017             InsertLoc = D.getName().getSourceRange().getEnd();
   5018             InsertLoc = PP.getLocForEndOfToken(InsertLoc);
   5019           }
   5020 
   5021           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
   5022             << Name << RemoveRange
   5023             << FixItHint::CreateRemoval(RemoveRange)
   5024             << FixItHint::CreateInsertion(InsertLoc, "<>");
   5025         }
   5026       }
   5027     }
   5028     else {
   5029       // All template param lists were matched against the scope specifier:
   5030       // this is NOT (an explicit specialization of) a template.
   5031       if (TemplateParamLists.size() > 0)
   5032         // For source fidelity, store all the template param lists.
   5033         NewFD->setTemplateParameterListsInfo(Context,
   5034                                              TemplateParamLists.size(),
   5035                                              TemplateParamLists.release());
   5036     }
   5037 
   5038     if (Invalid) {
   5039       NewFD->setInvalidDecl();
   5040       if (FunctionTemplate)
   5041         FunctionTemplate->setInvalidDecl();
   5042     }
   5043 
   5044     // If we see "T var();" at block scope, where T is a class type, it is
   5045     // probably an attempt to initialize a variable, not a function declaration.
   5046     // We don't catch this case earlier, since there is no ambiguity here.
   5047     if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
   5048         CurContext->isFunctionOrMethod() &&
   5049         D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
   5050         D.getDeclSpec().getStorageClassSpecAsWritten()
   5051           == DeclSpec::SCS_unspecified) {
   5052       QualType T = R->getAs<FunctionType>()->getResultType();
   5053       DeclaratorChunk &C = D.getTypeObject(0);
   5054       if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
   5055           !C.Fun.TrailingReturnType &&
   5056           C.Fun.getExceptionSpecType() == EST_None) {
   5057         SourceRange ParenRange(C.Loc, C.EndLoc);
   5058         Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
   5059 
   5060         // If the declaration looks like:
   5061         //   T var1,
   5062         //   f();
   5063         // and name lookup finds a function named 'f', then the ',' was
   5064         // probably intended to be a ';'.
   5065         if (!D.isFirstDeclarator() && D.getIdentifier()) {
   5066           FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
   5067           FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
   5068           if (Comma.getFileID() != Name.getFileID() ||
   5069               Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
   5070             LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
   5071                                 LookupOrdinaryName);
   5072             if (LookupName(Result, S))
   5073               Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
   5074                 << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
   5075           }
   5076         }
   5077         const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
   5078         // Empty parens mean value-initialization, and no parens mean default
   5079         // initialization. These are equivalent if the default constructor is
   5080         // user-provided, or if zero-initialization is a no-op.
   5081         if (RD && RD->hasDefinition() &&
   5082             (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
   5083           Diag(C.Loc, diag::note_empty_parens_default_ctor)
   5084             << FixItHint::CreateRemoval(ParenRange);
   5085         else if (const char *Init = getFixItZeroInitializerForType(T))
   5086           Diag(C.Loc, diag::note_empty_parens_zero_initialize)
   5087             << FixItHint::CreateReplacement(ParenRange, Init);
   5088         else if (LangOpts.CPlusPlus0x)
   5089           Diag(C.Loc, diag::note_empty_parens_zero_initialize)
   5090             << FixItHint::CreateReplacement(ParenRange, "{}");
   5091       }
   5092     }
   5093 
   5094     // C++ [dcl.fct.spec]p5:
   5095     //   The virtual specifier shall only be used in declarations of
   5096     //   nonstatic class member functions that appear within a
   5097     //   member-specification of a class declaration; see 10.3.
   5098     //
   5099     if (isVirtual && !NewFD->isInvalidDecl()) {
   5100       if (!isVirtualOkay) {
   5101         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   5102              diag::err_virtual_non_function);
   5103       } else if (!CurContext->isRecord()) {
   5104         // 'virtual' was specified outside of the class.
   5105         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   5106              diag::err_virtual_out_of_class)
   5107           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
   5108       } else if (NewFD->getDescribedFunctionTemplate()) {
   5109         // C++ [temp.mem]p3:
   5110         //  A member function template shall not be virtual.
   5111         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   5112              diag::err_virtual_member_function_template)
   5113           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
   5114       } else {
   5115         // Okay: Add virtual to the method.
   5116         NewFD->setVirtualAsWritten(true);
   5117       }
   5118     }
   5119 
   5120     // C++ [dcl.fct.spec]p3:
   5121     //  The inline specifier shall not appear on a block scope function
   5122     //  declaration.
   5123     if (isInline && !NewFD->isInvalidDecl()) {
   5124       if (CurContext->isFunctionOrMethod()) {
   5125         // 'inline' is not allowed on block scope function declaration.
   5126         Diag(D.getDeclSpec().getInlineSpecLoc(),
   5127              diag::err_inline_declaration_block_scope) << Name
   5128           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
   5129       }
   5130     }
   5131 
   5132     // C++ [dcl.fct.spec]p6:
   5133     //  The explicit specifier shall be used only in the declaration of a
   5134     //  constructor or conversion function within its class definition;
   5135     //  see 12.3.1 and 12.3.2.
   5136     if (isExplicit && !NewFD->isInvalidDecl()) {
   5137       if (!CurContext->isRecord()) {
   5138         // 'explicit' was specified outside of the class.
   5139         Diag(D.getDeclSpec().getExplicitSpecLoc(),
   5140              diag::err_explicit_out_of_class)
   5141           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
   5142       } else if (!isa<CXXConstructorDecl>(NewFD) &&
   5143                  !isa<CXXConversionDecl>(NewFD)) {
   5144         // 'explicit' was specified on a function that wasn't a constructor
   5145         // or conversion function.
   5146         Diag(D.getDeclSpec().getExplicitSpecLoc(),
   5147              diag::err_explicit_non_ctor_or_conv_function)
   5148           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
   5149       }
   5150     }
   5151 
   5152     if (isConstexpr) {
   5153       // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
   5154       // are implicitly inline.
   5155       NewFD->setImplicitlyInline();
   5156 
   5157       // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
   5158       // be either constructors or to return a literal type. Therefore,
   5159       // destructors cannot be declared constexpr.
   5160       if (isa<CXXDestructorDecl>(NewFD))
   5161         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
   5162     }
   5163 
   5164     // If __module_private__ was specified, mark the function accordingly.
   5165     if (D.getDeclSpec().isModulePrivateSpecified()) {
   5166       if (isFunctionTemplateSpecialization) {
   5167         SourceLocation ModulePrivateLoc
   5168           = D.getDeclSpec().getModulePrivateSpecLoc();
   5169         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
   5170           << 0
   5171           << FixItHint::CreateRemoval(ModulePrivateLoc);
   5172       } else {
   5173         NewFD->setModulePrivate();
   5174         if (FunctionTemplate)
   5175           FunctionTemplate->setModulePrivate();
   5176       }
   5177     }
   5178 
   5179     if (isFriend) {
   5180       // For now, claim that the objects have no previous declaration.
   5181       if (FunctionTemplate) {
   5182         FunctionTemplate->setObjectOfFriendDecl(false);
   5183         FunctionTemplate->setAccess(AS_public);
   5184       }
   5185       NewFD->setObjectOfFriendDecl(false);
   5186       NewFD->setAccess(AS_public);
   5187     }
   5188 
   5189     // If a function is defined as defaulted or deleted, mark it as such now.
   5190     switch (D.getFunctionDefinitionKind()) {
   5191       case FDK_Declaration:
   5192       case FDK_Definition:
   5193         break;
   5194 
   5195       case FDK_Defaulted:
   5196         NewFD->setDefaulted();
   5197         break;
   5198 
   5199       case FDK_Deleted:
   5200         NewFD->setDeletedAsWritten();
   5201         break;
   5202     }
   5203 
   5204     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
   5205         D.isFunctionDefinition()) {
   5206       // C++ [class.mfct]p2:
   5207       //   A member function may be defined (8.4) in its class definition, in
   5208       //   which case it is an inline member function (7.1.2)
   5209       NewFD->setImplicitlyInline();
   5210     }
   5211 
   5212     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
   5213         !CurContext->isRecord()) {
   5214       // C++ [class.static]p1:
   5215       //   A data or function member of a class may be declared static
   5216       //   in a class definition, in which case it is a static member of
   5217       //   the class.
   5218 
   5219       // Complain about the 'static' specifier if it's on an out-of-line
   5220       // member function definition.
   5221       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   5222            diag::err_static_out_of_line)
   5223         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   5224     }
   5225   }
   5226 
   5227   // Filter out previous declarations that don't match the scope.
   5228   FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
   5229                        isExplicitSpecialization ||
   5230                        isFunctionTemplateSpecialization);
   5231 
   5232   // Handle GNU asm-label extension (encoded as an attribute).
   5233   if (Expr *E = (Expr*) D.getAsmLabel()) {
   5234     // The parser guarantees this is a string.
   5235     StringLiteral *SE = cast<StringLiteral>(E);
   5236     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
   5237                                                 SE->getString()));
   5238   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
   5239     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
   5240       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
   5241     if (I != ExtnameUndeclaredIdentifiers.end()) {
   5242       NewFD->addAttr(I->second);
   5243       ExtnameUndeclaredIdentifiers.erase(I);
   5244     }
   5245   }
   5246 
   5247   // Copy the parameter declarations from the declarator D to the function
   5248   // declaration NewFD, if they are available.  First scavenge them into Params.
   5249   SmallVector<ParmVarDecl*, 16> Params;
   5250   if (D.isFunctionDeclarator()) {
   5251     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   5252 
   5253     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
   5254     // function that takes no arguments, not a function that takes a
   5255     // single void argument.
   5256     // We let through "const void" here because Sema::GetTypeForDeclarator
   5257     // already checks for that case.
   5258     if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
   5259         FTI.ArgInfo[0].Param &&
   5260         cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
   5261       // Empty arg list, don't push any params.
   5262       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
   5263 
   5264       // In C++, the empty parameter-type-list must be spelled "void"; a
   5265       // typedef of void is not permitted.
   5266       if (getLangOpts().CPlusPlus &&
   5267           Param->getType().getUnqualifiedType() != Context.VoidTy) {
   5268         bool IsTypeAlias = false;
   5269         if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
   5270           IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
   5271         else if (const TemplateSpecializationType *TST =
   5272                    Param->getType()->getAs<TemplateSpecializationType>())
   5273           IsTypeAlias = TST->isTypeAlias();
   5274         Diag(Param->getLocation(), diag::err_param_typedef_of_void)
   5275           << IsTypeAlias;
   5276       }
   5277     } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
   5278       for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
   5279         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
   5280         assert(Param->getDeclContext() != NewFD && "Was set before ?");
   5281         Param->setDeclContext(NewFD);
   5282         Params.push_back(Param);
   5283 
   5284         if (Param->isInvalidDecl())
   5285           NewFD->setInvalidDecl();
   5286       }
   5287     }
   5288 
   5289   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
   5290     // When we're declaring a function with a typedef, typeof, etc as in the
   5291     // following example, we'll need to synthesize (unnamed)
   5292     // parameters for use in the declaration.
   5293     //
   5294     // @code
   5295     // typedef void fn(int);
   5296     // fn f;
   5297     // @endcode
   5298 
   5299     // Synthesize a parameter for each argument type.
   5300     for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
   5301          AE = FT->arg_type_end(); AI != AE; ++AI) {
   5302       ParmVarDecl *Param =
   5303         BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
   5304       Param->setScopeInfo(0, Params.size());
   5305       Params.push_back(Param);
   5306     }
   5307   } else {
   5308     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
   5309            "Should not need args for typedef of non-prototype fn");
   5310   }
   5311 
   5312   // Finally, we know we have the right number of parameters, install them.
   5313   NewFD->setParams(Params);
   5314 
   5315   // Find all anonymous symbols defined during the declaration of this function
   5316   // and add to NewFD. This lets us track decls such 'enum Y' in:
   5317   //
   5318   //   void f(enum Y {AA} x) {}
   5319   //
   5320   // which would otherwise incorrectly end up in the translation unit scope.
   5321   NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
   5322   DeclsInPrototypeScope.clear();
   5323 
   5324   // Process the non-inheritable attributes on this declaration.
   5325   ProcessDeclAttributes(S, NewFD, D,
   5326                         /*NonInheritable=*/true, /*Inheritable=*/false);
   5327 
   5328   // Functions returning a variably modified type violate C99 6.7.5.2p2
   5329   // because all functions have linkage.
   5330   if (!NewFD->isInvalidDecl() &&
   5331       NewFD->getResultType()->isVariablyModifiedType()) {
   5332     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
   5333     NewFD->setInvalidDecl();
   5334   }
   5335 
   5336   if (!getLangOpts().CPlusPlus) {
   5337     // Perform semantic checking on the function declaration.
   5338     bool isExplicitSpecialization=false;
   5339     if (!NewFD->isInvalidDecl()) {
   5340       if (NewFD->isMain())
   5341         CheckMain(NewFD, D.getDeclSpec());
   5342       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
   5343                                                   isExplicitSpecialization));
   5344     }
   5345     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
   5346             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
   5347            "previous declaration set still overloaded");
   5348   } else {
   5349     // If the declarator is a template-id, translate the parser's template
   5350     // argument list into our AST format.
   5351     bool HasExplicitTemplateArgs = false;
   5352     TemplateArgumentListInfo TemplateArgs;
   5353     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
   5354       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
   5355       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
   5356       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
   5357       ASTTemplateArgsPtr TemplateArgsPtr(*this,
   5358                                          TemplateId->getTemplateArgs(),
   5359                                          TemplateId->NumArgs);
   5360       translateTemplateArguments(TemplateArgsPtr,
   5361                                  TemplateArgs);
   5362       TemplateArgsPtr.release();
   5363 
   5364       HasExplicitTemplateArgs = true;
   5365 
   5366       if (NewFD->isInvalidDecl()) {
   5367         HasExplicitTemplateArgs = false;
   5368       } else if (FunctionTemplate) {
   5369         // Function template with explicit template arguments.
   5370         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
   5371           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
   5372 
   5373         HasExplicitTemplateArgs = false;
   5374       } else if (!isFunctionTemplateSpecialization &&
   5375                  !D.getDeclSpec().isFriendSpecified()) {
   5376         // We have encountered something that the user meant to be a
   5377         // specialization (because it has explicitly-specified template
   5378         // arguments) but that was not introduced with a "template<>" (or had
   5379         // too few of them).
   5380         Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
   5381           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
   5382           << FixItHint::CreateInsertion(
   5383                                     D.getDeclSpec().getLocStart(),
   5384                                         "template<> ");
   5385         isFunctionTemplateSpecialization = true;
   5386       } else {
   5387         // "friend void foo<>(int);" is an implicit specialization decl.
   5388         isFunctionTemplateSpecialization = true;
   5389       }
   5390     } else if (isFriend && isFunctionTemplateSpecialization) {
   5391       // This combination is only possible in a recovery case;  the user
   5392       // wrote something like:
   5393       //   template <> friend void foo(int);
   5394       // which we're recovering from as if the user had written:
   5395       //   friend void foo<>(int);
   5396       // Go ahead and fake up a template id.
   5397       HasExplicitTemplateArgs = true;
   5398         TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
   5399       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
   5400     }
   5401 
   5402     // If it's a friend (and only if it's a friend), it's possible
   5403     // that either the specialized function type or the specialized
   5404     // template is dependent, and therefore matching will fail.  In
   5405     // this case, don't check the specialization yet.
   5406     bool InstantiationDependent = false;
   5407     if (isFunctionTemplateSpecialization && isFriend &&
   5408         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
   5409          TemplateSpecializationType::anyDependentTemplateArguments(
   5410             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
   5411             InstantiationDependent))) {
   5412       assert(HasExplicitTemplateArgs &&
   5413              "friend function specialization without template args");
   5414       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
   5415                                                        Previous))
   5416         NewFD->setInvalidDecl();
   5417     } else if (isFunctionTemplateSpecialization) {
   5418       if (CurContext->isDependentContext() && CurContext->isRecord()
   5419           && !isFriend) {
   5420         isDependentClassScopeExplicitSpecialization = true;
   5421         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
   5422           diag::ext_function_specialization_in_class :
   5423           diag::err_function_specialization_in_class)
   5424           << NewFD->getDeclName();
   5425       } else if (CheckFunctionTemplateSpecialization(NewFD,
   5426                                   (HasExplicitTemplateArgs ? &TemplateArgs : 0),
   5427                                                      Previous))
   5428         NewFD->setInvalidDecl();
   5429 
   5430       // C++ [dcl.stc]p1:
   5431       //   A storage-class-specifier shall not be specified in an explicit
   5432       //   specialization (14.7.3)
   5433       if (SC != SC_None) {
   5434         if (SC != NewFD->getStorageClass())
   5435           Diag(NewFD->getLocation(),
   5436                diag::err_explicit_specialization_inconsistent_storage_class)
   5437             << SC
   5438             << FixItHint::CreateRemoval(
   5439                                       D.getDeclSpec().getStorageClassSpecLoc());
   5440 
   5441         else
   5442           Diag(NewFD->getLocation(),
   5443                diag::ext_explicit_specialization_storage_class)
   5444             << FixItHint::CreateRemoval(
   5445                                       D.getDeclSpec().getStorageClassSpecLoc());
   5446       }
   5447 
   5448     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
   5449       if (CheckMemberSpecialization(NewFD, Previous))
   5450           NewFD->setInvalidDecl();
   5451     }
   5452 
   5453     // Perform semantic checking on the function declaration.
   5454     if (!isDependentClassScopeExplicitSpecialization) {
   5455       if (NewFD->isInvalidDecl()) {
   5456         // If this is a class member, mark the class invalid immediately.
   5457         // This avoids some consistency errors later.
   5458         if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
   5459           methodDecl->getParent()->setInvalidDecl();
   5460       } else {
   5461         if (NewFD->isMain())
   5462           CheckMain(NewFD, D.getDeclSpec());
   5463         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
   5464                                                     isExplicitSpecialization));
   5465       }
   5466     }
   5467 
   5468     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
   5469             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
   5470            "previous declaration set still overloaded");
   5471 
   5472     NamedDecl *PrincipalDecl = (FunctionTemplate
   5473                                 ? cast<NamedDecl>(FunctionTemplate)
   5474                                 : NewFD);
   5475 
   5476     if (isFriend && D.isRedeclaration()) {
   5477       AccessSpecifier Access = AS_public;
   5478       if (!NewFD->isInvalidDecl())
   5479         Access = NewFD->getPreviousDecl()->getAccess();
   5480 
   5481       NewFD->setAccess(Access);
   5482       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
   5483 
   5484       PrincipalDecl->setObjectOfFriendDecl(true);
   5485     }
   5486 
   5487     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
   5488         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
   5489       PrincipalDecl->setNonMemberOperator();
   5490 
   5491     // If we have a function template, check the template parameter
   5492     // list. This will check and merge default template arguments.
   5493     if (FunctionTemplate) {
   5494       FunctionTemplateDecl *PrevTemplate =
   5495                                      FunctionTemplate->getPreviousDecl();
   5496       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
   5497                        PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
   5498                             D.getDeclSpec().isFriendSpecified()
   5499                               ? (D.isFunctionDefinition()
   5500                                    ? TPC_FriendFunctionTemplateDefinition
   5501                                    : TPC_FriendFunctionTemplate)
   5502                               : (D.getCXXScopeSpec().isSet() &&
   5503                                  DC && DC->isRecord() &&
   5504                                  DC->isDependentContext())
   5505                                   ? TPC_ClassTemplateMember
   5506                                   : TPC_FunctionTemplate);
   5507     }
   5508 
   5509     if (NewFD->isInvalidDecl()) {
   5510       // Ignore all the rest of this.
   5511     } else if (!D.isRedeclaration()) {
   5512       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
   5513                                        AddToScope };
   5514       // Fake up an access specifier if it's supposed to be a class member.
   5515       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
   5516         NewFD->setAccess(AS_public);
   5517 
   5518       // Qualified decls generally require a previous declaration.
   5519       if (D.getCXXScopeSpec().isSet()) {
   5520         // ...with the major exception of templated-scope or
   5521         // dependent-scope friend declarations.
   5522 
   5523         // TODO: we currently also suppress this check in dependent
   5524         // contexts because (1) the parameter depth will be off when
   5525         // matching friend templates and (2) we might actually be
   5526         // selecting a friend based on a dependent factor.  But there
   5527         // are situations where these conditions don't apply and we
   5528         // can actually do this check immediately.
   5529         if (isFriend &&
   5530             (TemplateParamLists.size() ||
   5531              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
   5532              CurContext->isDependentContext())) {
   5533           // ignore these
   5534         } else {
   5535           // The user tried to provide an out-of-line definition for a
   5536           // function that is a member of a class or namespace, but there
   5537           // was no such member function declared (C++ [class.mfct]p2,
   5538           // C++ [namespace.memdef]p2). For example:
   5539           //
   5540           // class X {
   5541           //   void f() const;
   5542           // };
   5543           //
   5544           // void X::f() { } // ill-formed
   5545           //
   5546           // Complain about this problem, and attempt to suggest close
   5547           // matches (e.g., those that differ only in cv-qualifiers and
   5548           // whether the parameter types are references).
   5549 
   5550           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
   5551                                                                NewFD,
   5552                                                                ExtraArgs)) {
   5553             AddToScope = ExtraArgs.AddToScope;
   5554             return Result;
   5555           }
   5556         }
   5557 
   5558         // Unqualified local friend declarations are required to resolve
   5559         // to something.
   5560       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
   5561         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
   5562                                                              NewFD,
   5563                                                              ExtraArgs)) {
   5564           AddToScope = ExtraArgs.AddToScope;
   5565           return Result;
   5566         }
   5567       }
   5568 
   5569     } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
   5570                !isFriend && !isFunctionTemplateSpecialization &&
   5571                !isExplicitSpecialization) {
   5572       // An out-of-line member function declaration must also be a
   5573       // definition (C++ [dcl.meaning]p1).
   5574       // Note that this is not the case for explicit specializations of
   5575       // function templates or member functions of class templates, per
   5576       // C++ [temp.expl.spec]p2. We also allow these declarations as an
   5577       // extension for compatibility with old SWIG code which likes to
   5578       // generate them.
   5579       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
   5580         << D.getCXXScopeSpec().getRange();
   5581     }
   5582   }
   5583 
   5584 
   5585   // Handle attributes. We need to have merged decls when handling attributes
   5586   // (for example to check for conflicts, etc).
   5587   // FIXME: This needs to happen before we merge declarations. Then,
   5588   // let attribute merging cope with attribute conflicts.
   5589   ProcessDeclAttributes(S, NewFD, D,
   5590                         /*NonInheritable=*/false, /*Inheritable=*/true);
   5591 
   5592   // attributes declared post-definition are currently ignored
   5593   // FIXME: This should happen during attribute merging
   5594   if (D.isRedeclaration() && Previous.isSingleResult()) {
   5595     const FunctionDecl *Def;
   5596     FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
   5597     if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
   5598       Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
   5599       Diag(Def->getLocation(), diag::note_previous_definition);
   5600     }
   5601   }
   5602 
   5603   AddKnownFunctionAttributes(NewFD);
   5604 
   5605   if (NewFD->hasAttr<OverloadableAttr>() &&
   5606       !NewFD->getType()->getAs<FunctionProtoType>()) {
   5607     Diag(NewFD->getLocation(),
   5608          diag::err_attribute_overloadable_no_prototype)
   5609       << NewFD;
   5610 
   5611     // Turn this into a variadic function with no parameters.
   5612     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
   5613     FunctionProtoType::ExtProtoInfo EPI;
   5614     EPI.Variadic = true;
   5615     EPI.ExtInfo = FT->getExtInfo();
   5616 
   5617     QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
   5618     NewFD->setType(R);
   5619   }
   5620 
   5621   // If there's a #pragma GCC visibility in scope, and this isn't a class
   5622   // member, set the visibility of this function.
   5623   if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
   5624     AddPushedVisibilityAttribute(NewFD);
   5625 
   5626   // If there's a #pragma clang arc_cf_code_audited in scope, consider
   5627   // marking the function.
   5628   AddCFAuditedAttribute(NewFD);
   5629 
   5630   // If this is a locally-scoped extern C function, update the
   5631   // map of such names.
   5632   if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
   5633       && !NewFD->isInvalidDecl())
   5634     RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
   5635 
   5636   // Set this FunctionDecl's range up to the right paren.
   5637   NewFD->setRangeEnd(D.getSourceRange().getEnd());
   5638 
   5639   if (getLangOpts().CPlusPlus) {
   5640     if (FunctionTemplate) {
   5641       if (NewFD->isInvalidDecl())
   5642         FunctionTemplate->setInvalidDecl();
   5643       return FunctionTemplate;
   5644     }
   5645   }
   5646 
   5647   MarkUnusedFileScopedDecl(NewFD);
   5648 
   5649   if (getLangOpts().CUDA)
   5650     if (IdentifierInfo *II = NewFD->getIdentifier())
   5651       if (!NewFD->isInvalidDecl() &&
   5652           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   5653         if (II->isStr("cudaConfigureCall")) {
   5654           if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
   5655             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
   5656 
   5657           Context.setcudaConfigureCallDecl(NewFD);
   5658         }
   5659       }
   5660 
   5661   // Here we have an function template explicit specialization at class scope.
   5662   // The actually specialization will be postponed to template instatiation
   5663   // time via the ClassScopeFunctionSpecializationDecl node.
   5664   if (isDependentClassScopeExplicitSpecialization) {
   5665     ClassScopeFunctionSpecializationDecl *NewSpec =
   5666                          ClassScopeFunctionSpecializationDecl::Create(
   5667                                 Context, CurContext,  SourceLocation(),
   5668                                 cast<CXXMethodDecl>(NewFD));
   5669     CurContext->addDecl(NewSpec);
   5670     AddToScope = false;
   5671   }
   5672 
   5673   return NewFD;
   5674 }
   5675 
   5676 /// \brief Perform semantic checking of a new function declaration.
   5677 ///
   5678 /// Performs semantic analysis of the new function declaration
   5679 /// NewFD. This routine performs all semantic checking that does not
   5680 /// require the actual declarator involved in the declaration, and is
   5681 /// used both for the declaration of functions as they are parsed
   5682 /// (called via ActOnDeclarator) and for the declaration of functions
   5683 /// that have been instantiated via C++ template instantiation (called
   5684 /// via InstantiateDecl).
   5685 ///
   5686 /// \param IsExplicitSpecialiation whether this new function declaration is
   5687 /// an explicit specialization of the previous declaration.
   5688 ///
   5689 /// This sets NewFD->isInvalidDecl() to true if there was an error.
   5690 ///
   5691 /// Returns true if the function declaration is a redeclaration.
   5692 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
   5693                                     LookupResult &Previous,
   5694                                     bool IsExplicitSpecialization) {
   5695   assert(!NewFD->getResultType()->isVariablyModifiedType()
   5696          && "Variably modified return types are not handled here");
   5697 
   5698   // Check for a previous declaration of this name.
   5699   if (Previous.empty() && NewFD->isExternC()) {
   5700     // Since we did not find anything by this name and we're declaring
   5701     // an extern "C" function, look for a non-visible extern "C"
   5702     // declaration with the same name.
   5703     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
   5704       = findLocallyScopedExternalDecl(NewFD->getDeclName());
   5705     if (Pos != LocallyScopedExternalDecls.end())
   5706       Previous.addDecl(Pos->second);
   5707   }
   5708 
   5709   bool Redeclaration = false;
   5710 
   5711   // Merge or overload the declaration with an existing declaration of
   5712   // the same name, if appropriate.
   5713   if (!Previous.empty()) {
   5714     // Determine whether NewFD is an overload of PrevDecl or
   5715     // a declaration that requires merging. If it's an overload,
   5716     // there's no more work to do here; we'll just add the new
   5717     // function to the scope.
   5718 
   5719     NamedDecl *OldDecl = 0;
   5720     if (!AllowOverloadingOfFunction(Previous, Context)) {
   5721       Redeclaration = true;
   5722       OldDecl = Previous.getFoundDecl();
   5723     } else {
   5724       switch (CheckOverload(S, NewFD, Previous, OldDecl,
   5725                             /*NewIsUsingDecl*/ false)) {
   5726       case Ovl_Match:
   5727         Redeclaration = true;
   5728         break;
   5729 
   5730       case Ovl_NonFunction:
   5731         Redeclaration = true;
   5732         break;
   5733 
   5734       case Ovl_Overload:
   5735         Redeclaration = false;
   5736         break;
   5737       }
   5738 
   5739       if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
   5740         // If a function name is overloadable in C, then every function
   5741         // with that name must be marked "overloadable".
   5742         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
   5743           << Redeclaration << NewFD;
   5744         NamedDecl *OverloadedDecl = 0;
   5745         if (Redeclaration)
   5746           OverloadedDecl = OldDecl;
   5747         else if (!Previous.empty())
   5748           OverloadedDecl = Previous.getRepresentativeDecl();
   5749         if (OverloadedDecl)
   5750           Diag(OverloadedDecl->getLocation(),
   5751                diag::note_attribute_overloadable_prev_overload);
   5752         NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
   5753                                                         Context));
   5754       }
   5755     }
   5756 
   5757     if (Redeclaration) {
   5758       // NewFD and OldDecl represent declarations that need to be
   5759       // merged.
   5760       if (MergeFunctionDecl(NewFD, OldDecl, S)) {
   5761         NewFD->setInvalidDecl();
   5762         return Redeclaration;
   5763       }
   5764 
   5765       Previous.clear();
   5766       Previous.addDecl(OldDecl);
   5767 
   5768       if (FunctionTemplateDecl *OldTemplateDecl
   5769                                     = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
   5770         NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
   5771         FunctionTemplateDecl *NewTemplateDecl
   5772           = NewFD->getDescribedFunctionTemplate();
   5773         assert(NewTemplateDecl && "Template/non-template mismatch");
   5774         if (CXXMethodDecl *Method
   5775               = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
   5776           Method->setAccess(OldTemplateDecl->getAccess());
   5777           NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
   5778         }
   5779 
   5780         // If this is an explicit specialization of a member that is a function
   5781         // template, mark it as a member specialization.
   5782         if (IsExplicitSpecialization &&
   5783             NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
   5784           NewTemplateDecl->setMemberSpecialization();
   5785           assert(OldTemplateDecl->isMemberSpecialization());
   5786         }
   5787 
   5788       } else {
   5789         if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
   5790           NewFD->setAccess(OldDecl->getAccess());
   5791         NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
   5792       }
   5793     }
   5794   }
   5795 
   5796   // Semantic checking for this function declaration (in isolation).
   5797   if (getLangOpts().CPlusPlus) {
   5798     // C++-specific checks.
   5799     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
   5800       CheckConstructor(Constructor);
   5801     } else if (CXXDestructorDecl *Destructor =
   5802                 dyn_cast<CXXDestructorDecl>(NewFD)) {
   5803       CXXRecordDecl *Record = Destructor->getParent();
   5804       QualType ClassType = Context.getTypeDeclType(Record);
   5805 
   5806       // FIXME: Shouldn't we be able to perform this check even when the class
   5807       // type is dependent? Both gcc and edg can handle that.
   5808       if (!ClassType->isDependentType()) {
   5809         DeclarationName Name
   5810           = Context.DeclarationNames.getCXXDestructorName(
   5811                                         Context.getCanonicalType(ClassType));
   5812         if (NewFD->getDeclName() != Name) {
   5813           Diag(NewFD->getLocation(), diag::err_destructor_name);
   5814           NewFD->setInvalidDecl();
   5815           return Redeclaration;
   5816         }
   5817       }
   5818     } else if (CXXConversionDecl *Conversion
   5819                = dyn_cast<CXXConversionDecl>(NewFD)) {
   5820       ActOnConversionDeclarator(Conversion);
   5821     }
   5822 
   5823     // Find any virtual functions that this function overrides.
   5824     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
   5825       if (!Method->isFunctionTemplateSpecialization() &&
   5826           !Method->getDescribedFunctionTemplate()) {
   5827         if (AddOverriddenMethods(Method->getParent(), Method)) {
   5828           // If the function was marked as "static", we have a problem.
   5829           if (NewFD->getStorageClass() == SC_Static) {
   5830             Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
   5831               << NewFD->getDeclName();
   5832             for (CXXMethodDecl::method_iterator
   5833                       Overridden = Method->begin_overridden_methods(),
   5834                    OverriddenEnd = Method->end_overridden_methods();
   5835                  Overridden != OverriddenEnd;
   5836                  ++Overridden) {
   5837               Diag((*Overridden)->getLocation(),
   5838                    diag::note_overridden_virtual_function);
   5839             }
   5840           }
   5841         }
   5842       }
   5843 
   5844       if (Method->isStatic())
   5845         checkThisInStaticMemberFunctionType(Method);
   5846     }
   5847 
   5848     // Extra checking for C++ overloaded operators (C++ [over.oper]).
   5849     if (NewFD->isOverloadedOperator() &&
   5850         CheckOverloadedOperatorDeclaration(NewFD)) {
   5851       NewFD->setInvalidDecl();
   5852       return Redeclaration;
   5853     }
   5854 
   5855     // Extra checking for C++0x literal operators (C++0x [over.literal]).
   5856     if (NewFD->getLiteralIdentifier() &&
   5857         CheckLiteralOperatorDeclaration(NewFD)) {
   5858       NewFD->setInvalidDecl();
   5859       return Redeclaration;
   5860     }
   5861 
   5862     // In C++, check default arguments now that we have merged decls. Unless
   5863     // the lexical context is the class, because in this case this is done
   5864     // during delayed parsing anyway.
   5865     if (!CurContext->isRecord())
   5866       CheckCXXDefaultArguments(NewFD);
   5867 
   5868     // If this function declares a builtin function, check the type of this
   5869     // declaration against the expected type for the builtin.
   5870     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
   5871       ASTContext::GetBuiltinTypeError Error;
   5872       QualType T = Context.GetBuiltinType(BuiltinID, Error);
   5873       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
   5874         // The type of this function differs from the type of the builtin,
   5875         // so forget about the builtin entirely.
   5876         Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
   5877       }
   5878     }
   5879 
   5880     // If this function is declared as being extern "C", then check to see if
   5881     // the function returns a UDT (class, struct, or union type) that is not C
   5882     // compatible, and if it does, warn the user.
   5883     if (NewFD->isExternC()) {
   5884       QualType R = NewFD->getResultType();
   5885       if (!R.isPODType(Context) &&
   5886           !R->isVoidType())
   5887         Diag( NewFD->getLocation(), diag::warn_return_value_udt )
   5888           << NewFD << R;
   5889     }
   5890   }
   5891   return Redeclaration;
   5892 }
   5893 
   5894 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
   5895   // C++11 [basic.start.main]p3:  A program that declares main to be inline,
   5896   //   static or constexpr is ill-formed.
   5897   // C99 6.7.4p4:  In a hosted environment, the inline function specifier
   5898   //   shall not appear in a declaration of main.
   5899   // static main is not an error under C99, but we should warn about it.
   5900   if (FD->getStorageClass() == SC_Static)
   5901     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
   5902          ? diag::err_static_main : diag::warn_static_main)
   5903       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
   5904   if (FD->isInlineSpecified())
   5905     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
   5906       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
   5907   if (FD->isConstexpr()) {
   5908     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
   5909       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
   5910     FD->setConstexpr(false);
   5911   }
   5912 
   5913   QualType T = FD->getType();
   5914   assert(T->isFunctionType() && "function decl is not of function type");
   5915   const FunctionType* FT = T->castAs<FunctionType>();
   5916 
   5917   // All the standards say that main() should should return 'int'.
   5918   if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
   5919     // In C and C++, main magically returns 0 if you fall off the end;
   5920     // set the flag which tells us that.
   5921     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
   5922     FD->setHasImplicitReturnZero(true);
   5923 
   5924   // In C with GNU extensions we allow main() to have non-integer return
   5925   // type, but we should warn about the extension, and we disable the
   5926   // implicit-return-zero rule.
   5927   } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
   5928     Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
   5929 
   5930   // Otherwise, this is just a flat-out error.
   5931   } else {
   5932     Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
   5933     FD->setInvalidDecl(true);
   5934   }
   5935 
   5936   // Treat protoless main() as nullary.
   5937   if (isa<FunctionNoProtoType>(FT)) return;
   5938 
   5939   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
   5940   unsigned nparams = FTP->getNumArgs();
   5941   assert(FD->getNumParams() == nparams);
   5942 
   5943   bool HasExtraParameters = (nparams > 3);
   5944 
   5945   // Darwin passes an undocumented fourth argument of type char**.  If
   5946   // other platforms start sprouting these, the logic below will start
   5947   // getting shifty.
   5948   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
   5949     HasExtraParameters = false;
   5950 
   5951   if (HasExtraParameters) {
   5952     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
   5953     FD->setInvalidDecl(true);
   5954     nparams = 3;
   5955   }
   5956 
   5957   // FIXME: a lot of the following diagnostics would be improved
   5958   // if we had some location information about types.
   5959 
   5960   QualType CharPP =
   5961     Context.getPointerType(Context.getPointerType(Context.CharTy));
   5962   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
   5963 
   5964   for (unsigned i = 0; i < nparams; ++i) {
   5965     QualType AT = FTP->getArgType(i);
   5966 
   5967     bool mismatch = true;
   5968 
   5969     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
   5970       mismatch = false;
   5971     else if (Expected[i] == CharPP) {
   5972       // As an extension, the following forms are okay:
   5973       //   char const **
   5974       //   char const * const *
   5975       //   char * const *
   5976 
   5977       QualifierCollector qs;
   5978       const PointerType* PT;
   5979       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
   5980           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
   5981           (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
   5982         qs.removeConst();
   5983         mismatch = !qs.empty();
   5984       }
   5985     }
   5986 
   5987     if (mismatch) {
   5988       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
   5989       // TODO: suggest replacing given type with expected type
   5990       FD->setInvalidDecl(true);
   5991     }
   5992   }
   5993 
   5994   if (nparams == 1 && !FD->isInvalidDecl()) {
   5995     Diag(FD->getLocation(), diag::warn_main_one_arg);
   5996   }
   5997 
   5998   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
   5999     Diag(FD->getLocation(), diag::err_main_template_decl);
   6000     FD->setInvalidDecl();
   6001   }
   6002 }
   6003 
   6004 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
   6005   // FIXME: Need strict checking.  In C89, we need to check for
   6006   // any assignment, increment, decrement, function-calls, or
   6007   // commas outside of a sizeof.  In C99, it's the same list,
   6008   // except that the aforementioned are allowed in unevaluated
   6009   // expressions.  Everything else falls under the
   6010   // "may accept other forms of constant expressions" exception.
   6011   // (We never end up here for C++, so the constant expression
   6012   // rules there don't matter.)
   6013   if (Init->isConstantInitializer(Context, false))
   6014     return false;
   6015   Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
   6016     << Init->getSourceRange();
   6017   return true;
   6018 }
   6019 
   6020 namespace {
   6021   // Visits an initialization expression to see if OrigDecl is evaluated in
   6022   // its own initialization and throws a warning if it does.
   6023   class SelfReferenceChecker
   6024       : public EvaluatedExprVisitor<SelfReferenceChecker> {
   6025     Sema &S;
   6026     Decl *OrigDecl;
   6027     bool isRecordType;
   6028     bool isPODType;
   6029 
   6030   public:
   6031     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
   6032 
   6033     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
   6034                                                     S(S), OrigDecl(OrigDecl) {
   6035       isPODType = false;
   6036       isRecordType = false;
   6037       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
   6038         isPODType = VD->getType().isPODType(S.Context);
   6039         isRecordType = VD->getType()->isRecordType();
   6040       }
   6041     }
   6042 
   6043     void VisitExpr(Expr *E) {
   6044       if (isa<ObjCMessageExpr>(*E)) return;
   6045       if (isRecordType) {
   6046         Expr *expr = E;
   6047         if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   6048           ValueDecl *VD = ME->getMemberDecl();
   6049           if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
   6050           expr = ME->getBase();
   6051         }
   6052         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
   6053           HandleDeclRefExpr(DRE);
   6054           return;
   6055         }
   6056       }
   6057       Inherited::VisitExpr(E);
   6058     }
   6059 
   6060     void VisitMemberExpr(MemberExpr *E) {
   6061       if (E->getType()->canDecayToPointerType()) return;
   6062       ValueDecl *VD = E->getMemberDecl();
   6063       if (isa<FieldDecl>(VD) || isa<CXXMethodDecl>(VD))
   6064         if (DeclRefExpr *DRE
   6065               = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
   6066           HandleDeclRefExpr(DRE);
   6067           return;
   6068         }
   6069       Inherited::VisitMemberExpr(E);
   6070     }
   6071 
   6072     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
   6073       if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
   6074           (isRecordType && E->getCastKind() == CK_NoOp)) {
   6075         Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
   6076         if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
   6077           SubExpr = ME->getBase()->IgnoreParenImpCasts();
   6078         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
   6079           HandleDeclRefExpr(DRE);
   6080           return;
   6081         }
   6082       }
   6083       Inherited::VisitImplicitCastExpr(E);
   6084     }
   6085 
   6086     void VisitUnaryOperator(UnaryOperator *E) {
   6087       // For POD record types, addresses of its own members are well-defined.
   6088       if (isRecordType && isPODType) return;
   6089       Inherited::VisitUnaryOperator(E);
   6090     }
   6091 
   6092     void HandleDeclRefExpr(DeclRefExpr *DRE) {
   6093       Decl* ReferenceDecl = DRE->getDecl();
   6094       if (OrigDecl != ReferenceDecl) return;
   6095       LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
   6096                           Sema::NotForRedeclaration);
   6097       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
   6098                             S.PDiag(diag::warn_uninit_self_reference_in_init)
   6099                               << Result.getLookupName()
   6100                               << OrigDecl->getLocation()
   6101                               << DRE->getSourceRange());
   6102     }
   6103   };
   6104 }
   6105 
   6106 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
   6107 void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
   6108   SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
   6109 }
   6110 
   6111 /// AddInitializerToDecl - Adds the initializer Init to the
   6112 /// declaration dcl. If DirectInit is true, this is C++ direct
   6113 /// initialization rather than copy initialization.
   6114 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
   6115                                 bool DirectInit, bool TypeMayContainAuto) {
   6116   // If there is no declaration, there was an error parsing it.  Just ignore
   6117   // the initializer.
   6118   if (RealDecl == 0 || RealDecl->isInvalidDecl())
   6119     return;
   6120 
   6121   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
   6122     // With declarators parsed the way they are, the parser cannot
   6123     // distinguish between a normal initializer and a pure-specifier.
   6124     // Thus this grotesque test.
   6125     IntegerLiteral *IL;
   6126     if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
   6127         Context.getCanonicalType(IL->getType()) == Context.IntTy)
   6128       CheckPureMethod(Method, Init->getSourceRange());
   6129     else {
   6130       Diag(Method->getLocation(), diag::err_member_function_initialization)
   6131         << Method->getDeclName() << Init->getSourceRange();
   6132       Method->setInvalidDecl();
   6133     }
   6134     return;
   6135   }
   6136 
   6137   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
   6138   if (!VDecl) {
   6139     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
   6140     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
   6141     RealDecl->setInvalidDecl();
   6142     return;
   6143   }
   6144 
   6145   // Check for self-references within variable initializers.
   6146   // Variables declared within a function/method body are handled
   6147   // by a dataflow analysis.
   6148   if (!VDecl->hasLocalStorage() && !VDecl->isStaticLocal())
   6149     CheckSelfReference(RealDecl, Init);
   6150 
   6151   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
   6152 
   6153   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
   6154   if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
   6155     Expr *DeduceInit = Init;
   6156     // Initializer could be a C++ direct-initializer. Deduction only works if it
   6157     // contains exactly one expression.
   6158     if (CXXDirectInit) {
   6159       if (CXXDirectInit->getNumExprs() == 0) {
   6160         // It isn't possible to write this directly, but it is possible to
   6161         // end up in this situation with "auto x(some_pack...);"
   6162         Diag(CXXDirectInit->getLocStart(),
   6163              diag::err_auto_var_init_no_expression)
   6164           << VDecl->getDeclName() << VDecl->getType()
   6165           << VDecl->getSourceRange();
   6166         RealDecl->setInvalidDecl();
   6167         return;
   6168       } else if (CXXDirectInit->getNumExprs() > 1) {
   6169         Diag(CXXDirectInit->getExpr(1)->getLocStart(),
   6170              diag::err_auto_var_init_multiple_expressions)
   6171           << VDecl->getDeclName() << VDecl->getType()
   6172           << VDecl->getSourceRange();
   6173         RealDecl->setInvalidDecl();
   6174         return;
   6175       } else {
   6176         DeduceInit = CXXDirectInit->getExpr(0);
   6177       }
   6178     }
   6179     TypeSourceInfo *DeducedType = 0;
   6180     if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
   6181             DAR_Failed)
   6182       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
   6183     if (!DeducedType) {
   6184       RealDecl->setInvalidDecl();
   6185       return;
   6186     }
   6187     VDecl->setTypeSourceInfo(DeducedType);
   6188     VDecl->setType(DeducedType->getType());
   6189     VDecl->ClearLinkageCache();
   6190 
   6191     // In ARC, infer lifetime.
   6192     if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
   6193       VDecl->setInvalidDecl();
   6194 
   6195     // If this is a redeclaration, check that the type we just deduced matches
   6196     // the previously declared type.
   6197     if (VarDecl *Old = VDecl->getPreviousDecl())
   6198       MergeVarDeclTypes(VDecl, Old);
   6199   }
   6200 
   6201   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
   6202     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
   6203     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
   6204     VDecl->setInvalidDecl();
   6205     return;
   6206   }
   6207 
   6208   if (!VDecl->getType()->isDependentType()) {
   6209     // A definition must end up with a complete type, which means it must be
   6210     // complete with the restriction that an array type might be completed by
   6211     // the initializer; note that later code assumes this restriction.
   6212     QualType BaseDeclType = VDecl->getType();
   6213     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
   6214       BaseDeclType = Array->getElementType();
   6215     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
   6216                             diag::err_typecheck_decl_incomplete_type)) {
   6217       RealDecl->setInvalidDecl();
   6218       return;
   6219     }
   6220 
   6221     // The variable can not have an abstract class type.
   6222     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
   6223                                diag::err_abstract_type_in_decl,
   6224                                AbstractVariableType))
   6225       VDecl->setInvalidDecl();
   6226   }
   6227 
   6228   const VarDecl *Def;
   6229   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
   6230     Diag(VDecl->getLocation(), diag::err_redefinition)
   6231       << VDecl->getDeclName();
   6232     Diag(Def->getLocation(), diag::note_previous_definition);
   6233     VDecl->setInvalidDecl();
   6234     return;
   6235   }
   6236 
   6237   const VarDecl* PrevInit = 0;
   6238   if (getLangOpts().CPlusPlus) {
   6239     // C++ [class.static.data]p4
   6240     //   If a static data member is of const integral or const
   6241     //   enumeration type, its declaration in the class definition can
   6242     //   specify a constant-initializer which shall be an integral
   6243     //   constant expression (5.19). In that case, the member can appear
   6244     //   in integral constant expressions. The member shall still be
   6245     //   defined in a namespace scope if it is used in the program and the
   6246     //   namespace scope definition shall not contain an initializer.
   6247     //
   6248     // We already performed a redefinition check above, but for static
   6249     // data members we also need to check whether there was an in-class
   6250     // declaration with an initializer.
   6251     if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
   6252       Diag(VDecl->getLocation(), diag::err_redefinition)
   6253         << VDecl->getDeclName();
   6254       Diag(PrevInit->getLocation(), diag::note_previous_definition);
   6255       return;
   6256     }
   6257 
   6258     if (VDecl->hasLocalStorage())
   6259       getCurFunction()->setHasBranchProtectedScope();
   6260 
   6261     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
   6262       VDecl->setInvalidDecl();
   6263       return;
   6264     }
   6265   }
   6266 
   6267   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
   6268   // a kernel function cannot be initialized."
   6269   if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
   6270     Diag(VDecl->getLocation(), diag::err_local_cant_init);
   6271     VDecl->setInvalidDecl();
   6272     return;
   6273   }
   6274 
   6275   // Get the decls type and save a reference for later, since
   6276   // CheckInitializerTypes may change it.
   6277   QualType DclT = VDecl->getType(), SavT = DclT;
   6278 
   6279   // Top-level message sends default to 'id' when we're in a debugger
   6280   // and we are assigning it to a variable of 'id' type.
   6281   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
   6282     if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
   6283       ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
   6284       if (Result.isInvalid()) {
   6285         VDecl->setInvalidDecl();
   6286         return;
   6287       }
   6288       Init = Result.take();
   6289     }
   6290 
   6291   // Perform the initialization.
   6292   if (!VDecl->isInvalidDecl()) {
   6293     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
   6294     InitializationKind Kind
   6295       = DirectInit ?
   6296           CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
   6297                                                            Init->getLocStart(),
   6298                                                            Init->getLocEnd())
   6299                         : InitializationKind::CreateDirectList(
   6300                                                           VDecl->getLocation())
   6301                    : InitializationKind::CreateCopy(VDecl->getLocation(),
   6302                                                     Init->getLocStart());
   6303 
   6304     Expr **Args = &Init;
   6305     unsigned NumArgs = 1;
   6306     if (CXXDirectInit) {
   6307       Args = CXXDirectInit->getExprs();
   6308       NumArgs = CXXDirectInit->getNumExprs();
   6309     }
   6310     InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
   6311     ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
   6312                                               MultiExprArg(*this, Args,NumArgs),
   6313                                               &DclT);
   6314     if (Result.isInvalid()) {
   6315       VDecl->setInvalidDecl();
   6316       return;
   6317     }
   6318 
   6319     Init = Result.takeAs<Expr>();
   6320   }
   6321 
   6322   // If the type changed, it means we had an incomplete type that was
   6323   // completed by the initializer. For example:
   6324   //   int ary[] = { 1, 3, 5 };
   6325   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
   6326   if (!VDecl->isInvalidDecl() && (DclT != SavT))
   6327     VDecl->setType(DclT);
   6328 
   6329   // Check any implicit conversions within the expression.
   6330   CheckImplicitConversions(Init, VDecl->getLocation());
   6331 
   6332   if (!VDecl->isInvalidDecl())
   6333     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
   6334 
   6335   Init = MaybeCreateExprWithCleanups(Init);
   6336   // Attach the initializer to the decl.
   6337   VDecl->setInit(Init);
   6338 
   6339   if (VDecl->isLocalVarDecl()) {
   6340     // C99 6.7.8p4: All the expressions in an initializer for an object that has
   6341     // static storage duration shall be constant expressions or string literals.
   6342     // C++ does not have this restriction.
   6343     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
   6344         VDecl->getStorageClass() == SC_Static)
   6345       CheckForConstantInitializer(Init, DclT);
   6346   } else if (VDecl->isStaticDataMember() &&
   6347              VDecl->getLexicalDeclContext()->isRecord()) {
   6348     // This is an in-class initialization for a static data member, e.g.,
   6349     //
   6350     // struct S {
   6351     //   static const int value = 17;
   6352     // };
   6353 
   6354     // C++ [class.mem]p4:
   6355     //   A member-declarator can contain a constant-initializer only
   6356     //   if it declares a static member (9.4) of const integral or
   6357     //   const enumeration type, see 9.4.2.
   6358     //
   6359     // C++11 [class.static.data]p3:
   6360     //   If a non-volatile const static data member is of integral or
   6361     //   enumeration type, its declaration in the class definition can
   6362     //   specify a brace-or-equal-initializer in which every initalizer-clause
   6363     //   that is an assignment-expression is a constant expression. A static
   6364     //   data member of literal type can be declared in the class definition
   6365     //   with the constexpr specifier; if so, its declaration shall specify a
   6366     //   brace-or-equal-initializer in which every initializer-clause that is
   6367     //   an assignment-expression is a constant expression.
   6368 
   6369     // Do nothing on dependent types.
   6370     if (DclT->isDependentType()) {
   6371 
   6372     // Allow any 'static constexpr' members, whether or not they are of literal
   6373     // type. We separately check that every constexpr variable is of literal
   6374     // type.
   6375     } else if (VDecl->isConstexpr()) {
   6376 
   6377     // Require constness.
   6378     } else if (!DclT.isConstQualified()) {
   6379       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
   6380         << Init->getSourceRange();
   6381       VDecl->setInvalidDecl();
   6382 
   6383     // We allow integer constant expressions in all cases.
   6384     } else if (DclT->isIntegralOrEnumerationType()) {
   6385       // Check whether the expression is a constant expression.
   6386       SourceLocation Loc;
   6387       if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
   6388         // In C++11, a non-constexpr const static data member with an
   6389         // in-class initializer cannot be volatile.
   6390         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
   6391       else if (Init->isValueDependent())
   6392         ; // Nothing to check.
   6393       else if (Init->isIntegerConstantExpr(Context, &Loc))
   6394         ; // Ok, it's an ICE!
   6395       else if (Init->isEvaluatable(Context)) {
   6396         // If we can constant fold the initializer through heroics, accept it,
   6397         // but report this as a use of an extension for -pedantic.
   6398         Diag(Loc, diag::ext_in_class_initializer_non_constant)
   6399           << Init->getSourceRange();
   6400       } else {
   6401         // Otherwise, this is some crazy unknown case.  Report the issue at the
   6402         // location provided by the isIntegerConstantExpr failed check.
   6403         Diag(Loc, diag::err_in_class_initializer_non_constant)
   6404           << Init->getSourceRange();
   6405         VDecl->setInvalidDecl();
   6406       }
   6407 
   6408     // We allow foldable floating-point constants as an extension.
   6409     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
   6410       Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
   6411         << DclT << Init->getSourceRange();
   6412       if (getLangOpts().CPlusPlus0x)
   6413         Diag(VDecl->getLocation(),
   6414              diag::note_in_class_initializer_float_type_constexpr)
   6415           << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
   6416 
   6417       if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
   6418         Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
   6419           << Init->getSourceRange();
   6420         VDecl->setInvalidDecl();
   6421       }
   6422 
   6423     // Suggest adding 'constexpr' in C++11 for literal types.
   6424     } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
   6425       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
   6426         << DclT << Init->getSourceRange()
   6427         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
   6428       VDecl->setConstexpr(true);
   6429 
   6430     } else {
   6431       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
   6432         << DclT << Init->getSourceRange();
   6433       VDecl->setInvalidDecl();
   6434     }
   6435   } else if (VDecl->isFileVarDecl()) {
   6436     if (VDecl->getStorageClassAsWritten() == SC_Extern &&
   6437         (!getLangOpts().CPlusPlus ||
   6438          !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
   6439       Diag(VDecl->getLocation(), diag::warn_extern_init);
   6440 
   6441     // C99 6.7.8p4. All file scoped initializers need to be constant.
   6442     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
   6443       CheckForConstantInitializer(Init, DclT);
   6444   }
   6445 
   6446   // We will represent direct-initialization similarly to copy-initialization:
   6447   //    int x(1);  -as-> int x = 1;
   6448   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
   6449   //
   6450   // Clients that want to distinguish between the two forms, can check for
   6451   // direct initializer using VarDecl::getInitStyle().
   6452   // A major benefit is that clients that don't particularly care about which
   6453   // exactly form was it (like the CodeGen) can handle both cases without
   6454   // special case code.
   6455 
   6456   // C++ 8.5p11:
   6457   // The form of initialization (using parentheses or '=') is generally
   6458   // insignificant, but does matter when the entity being initialized has a
   6459   // class type.
   6460   if (CXXDirectInit) {
   6461     assert(DirectInit && "Call-style initializer must be direct init.");
   6462     VDecl->setInitStyle(VarDecl::CallInit);
   6463   } else if (DirectInit) {
   6464     // This must be list-initialization. No other way is direct-initialization.
   6465     VDecl->setInitStyle(VarDecl::ListInit);
   6466   }
   6467 
   6468   CheckCompleteVariableDeclaration(VDecl);
   6469 }
   6470 
   6471 /// ActOnInitializerError - Given that there was an error parsing an
   6472 /// initializer for the given declaration, try to return to some form
   6473 /// of sanity.
   6474 void Sema::ActOnInitializerError(Decl *D) {
   6475   // Our main concern here is re-establishing invariants like "a
   6476   // variable's type is either dependent or complete".
   6477   if (!D || D->isInvalidDecl()) return;
   6478 
   6479   VarDecl *VD = dyn_cast<VarDecl>(D);
   6480   if (!VD) return;
   6481 
   6482   // Auto types are meaningless if we can't make sense of the initializer.
   6483   if (ParsingInitForAutoVars.count(D)) {
   6484     D->setInvalidDecl();
   6485     return;
   6486   }
   6487 
   6488   QualType Ty = VD->getType();
   6489   if (Ty->isDependentType()) return;
   6490 
   6491   // Require a complete type.
   6492   if (RequireCompleteType(VD->getLocation(),
   6493                           Context.getBaseElementType(Ty),
   6494                           diag::err_typecheck_decl_incomplete_type)) {
   6495     VD->setInvalidDecl();
   6496     return;
   6497   }
   6498 
   6499   // Require an abstract type.
   6500   if (RequireNonAbstractType(VD->getLocation(), Ty,
   6501                              diag::err_abstract_type_in_decl,
   6502                              AbstractVariableType)) {
   6503     VD->setInvalidDecl();
   6504     return;
   6505   }
   6506 
   6507   // Don't bother complaining about constructors or destructors,
   6508   // though.
   6509 }
   6510 
   6511 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
   6512                                   bool TypeMayContainAuto) {
   6513   // If there is no declaration, there was an error parsing it. Just ignore it.
   6514   if (RealDecl == 0)
   6515     return;
   6516 
   6517   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
   6518     QualType Type = Var->getType();
   6519 
   6520     // C++11 [dcl.spec.auto]p3
   6521     if (TypeMayContainAuto && Type->getContainedAutoType()) {
   6522       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
   6523         << Var->getDeclName() << Type;
   6524       Var->setInvalidDecl();
   6525       return;
   6526     }
   6527 
   6528     // C++11 [class.static.data]p3: A static data member can be declared with
   6529     // the constexpr specifier; if so, its declaration shall specify
   6530     // a brace-or-equal-initializer.
   6531     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
   6532     // the definition of a variable [...] or the declaration of a static data
   6533     // member.
   6534     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
   6535       if (Var->isStaticDataMember())
   6536         Diag(Var->getLocation(),
   6537              diag::err_constexpr_static_mem_var_requires_init)
   6538           << Var->getDeclName();
   6539       else
   6540         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
   6541       Var->setInvalidDecl();
   6542       return;
   6543     }
   6544 
   6545     switch (Var->isThisDeclarationADefinition()) {
   6546     case VarDecl::Definition:
   6547       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
   6548         break;
   6549 
   6550       // We have an out-of-line definition of a static data member
   6551       // that has an in-class initializer, so we type-check this like
   6552       // a declaration.
   6553       //
   6554       // Fall through
   6555 
   6556     case VarDecl::DeclarationOnly:
   6557       // It's only a declaration.
   6558 
   6559       // Block scope. C99 6.7p7: If an identifier for an object is
   6560       // declared with no linkage (C99 6.2.2p6), the type for the
   6561       // object shall be complete.
   6562       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
   6563           !Var->getLinkage() && !Var->isInvalidDecl() &&
   6564           RequireCompleteType(Var->getLocation(), Type,
   6565                               diag::err_typecheck_decl_incomplete_type))
   6566         Var->setInvalidDecl();
   6567 
   6568       // Make sure that the type is not abstract.
   6569       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
   6570           RequireNonAbstractType(Var->getLocation(), Type,
   6571                                  diag::err_abstract_type_in_decl,
   6572                                  AbstractVariableType))
   6573         Var->setInvalidDecl();
   6574       return;
   6575 
   6576     case VarDecl::TentativeDefinition:
   6577       // File scope. C99 6.9.2p2: A declaration of an identifier for an
   6578       // object that has file scope without an initializer, and without a
   6579       // storage-class specifier or with the storage-class specifier "static",
   6580       // constitutes a tentative definition. Note: A tentative definition with
   6581       // external linkage is valid (C99 6.2.2p5).
   6582       if (!Var->isInvalidDecl()) {
   6583         if (const IncompleteArrayType *ArrayT
   6584                                     = Context.getAsIncompleteArrayType(Type)) {
   6585           if (RequireCompleteType(Var->getLocation(),
   6586                                   ArrayT->getElementType(),
   6587                                   diag::err_illegal_decl_array_incomplete_type))
   6588             Var->setInvalidDecl();
   6589         } else if (Var->getStorageClass() == SC_Static) {
   6590           // C99 6.9.2p3: If the declaration of an identifier for an object is
   6591           // a tentative definition and has internal linkage (C99 6.2.2p3), the
   6592           // declared type shall not be an incomplete type.
   6593           // NOTE: code such as the following
   6594           //     static struct s;
   6595           //     struct s { int a; };
   6596           // is accepted by gcc. Hence here we issue a warning instead of
   6597           // an error and we do not invalidate the static declaration.
   6598           // NOTE: to avoid multiple warnings, only check the first declaration.
   6599           if (Var->getPreviousDecl() == 0)
   6600             RequireCompleteType(Var->getLocation(), Type,
   6601                                 diag::ext_typecheck_decl_incomplete_type);
   6602         }
   6603       }
   6604 
   6605       // Record the tentative definition; we're done.
   6606       if (!Var->isInvalidDecl())
   6607         TentativeDefinitions.push_back(Var);
   6608       return;
   6609     }
   6610 
   6611     // Provide a specific diagnostic for uninitialized variable
   6612     // definitions with incomplete array type.
   6613     if (Type->isIncompleteArrayType()) {
   6614       Diag(Var->getLocation(),
   6615            diag::err_typecheck_incomplete_array_needs_initializer);
   6616       Var->setInvalidDecl();
   6617       return;
   6618     }
   6619 
   6620     // Provide a specific diagnostic for uninitialized variable
   6621     // definitions with reference type.
   6622     if (Type->isReferenceType()) {
   6623       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
   6624         << Var->getDeclName()
   6625         << SourceRange(Var->getLocation(), Var->getLocation());
   6626       Var->setInvalidDecl();
   6627       return;
   6628     }
   6629 
   6630     // Do not attempt to type-check the default initializer for a
   6631     // variable with dependent type.
   6632     if (Type->isDependentType())
   6633       return;
   6634 
   6635     if (Var->isInvalidDecl())
   6636       return;
   6637 
   6638     if (RequireCompleteType(Var->getLocation(),
   6639                             Context.getBaseElementType(Type),
   6640                             diag::err_typecheck_decl_incomplete_type)) {
   6641       Var->setInvalidDecl();
   6642       return;
   6643     }
   6644 
   6645     // The variable can not have an abstract class type.
   6646     if (RequireNonAbstractType(Var->getLocation(), Type,
   6647                                diag::err_abstract_type_in_decl,
   6648                                AbstractVariableType)) {
   6649       Var->setInvalidDecl();
   6650       return;
   6651     }
   6652 
   6653     // Check for jumps past the implicit initializer.  C++0x
   6654     // clarifies that this applies to a "variable with automatic
   6655     // storage duration", not a "local variable".
   6656     // C++11 [stmt.dcl]p3
   6657     //   A program that jumps from a point where a variable with automatic
   6658     //   storage duration is not in scope to a point where it is in scope is
   6659     //   ill-formed unless the variable has scalar type, class type with a
   6660     //   trivial default constructor and a trivial destructor, a cv-qualified
   6661     //   version of one of these types, or an array of one of the preceding
   6662     //   types and is declared without an initializer.
   6663     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
   6664       if (const RecordType *Record
   6665             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
   6666         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
   6667         // Mark the function for further checking even if the looser rules of
   6668         // C++11 do not require such checks, so that we can diagnose
   6669         // incompatibilities with C++98.
   6670         if (!CXXRecord->isPOD())
   6671           getCurFunction()->setHasBranchProtectedScope();
   6672       }
   6673     }
   6674 
   6675     // C++03 [dcl.init]p9:
   6676     //   If no initializer is specified for an object, and the
   6677     //   object is of (possibly cv-qualified) non-POD class type (or
   6678     //   array thereof), the object shall be default-initialized; if
   6679     //   the object is of const-qualified type, the underlying class
   6680     //   type shall have a user-declared default
   6681     //   constructor. Otherwise, if no initializer is specified for
   6682     //   a non- static object, the object and its subobjects, if
   6683     //   any, have an indeterminate initial value); if the object
   6684     //   or any of its subobjects are of const-qualified type, the
   6685     //   program is ill-formed.
   6686     // C++0x [dcl.init]p11:
   6687     //   If no initializer is specified for an object, the object is
   6688     //   default-initialized; [...].
   6689     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
   6690     InitializationKind Kind
   6691       = InitializationKind::CreateDefault(Var->getLocation());
   6692 
   6693     InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
   6694     ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
   6695                                       MultiExprArg(*this, 0, 0));
   6696     if (Init.isInvalid())
   6697       Var->setInvalidDecl();
   6698     else if (Init.get()) {
   6699       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
   6700       // This is important for template substitution.
   6701       Var->setInitStyle(VarDecl::CallInit);
   6702     }
   6703 
   6704     CheckCompleteVariableDeclaration(Var);
   6705   }
   6706 }
   6707 
   6708 void Sema::ActOnCXXForRangeDecl(Decl *D) {
   6709   VarDecl *VD = dyn_cast<VarDecl>(D);
   6710   if (!VD) {
   6711     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
   6712     D->setInvalidDecl();
   6713     return;
   6714   }
   6715 
   6716   VD->setCXXForRangeDecl(true);
   6717 
   6718   // for-range-declaration cannot be given a storage class specifier.
   6719   int Error = -1;
   6720   switch (VD->getStorageClassAsWritten()) {
   6721   case SC_None:
   6722     break;
   6723   case SC_Extern:
   6724     Error = 0;
   6725     break;
   6726   case SC_Static:
   6727     Error = 1;
   6728     break;
   6729   case SC_PrivateExtern:
   6730     Error = 2;
   6731     break;
   6732   case SC_Auto:
   6733     Error = 3;
   6734     break;
   6735   case SC_Register:
   6736     Error = 4;
   6737     break;
   6738   case SC_OpenCLWorkGroupLocal:
   6739     llvm_unreachable("Unexpected storage class");
   6740   }
   6741   if (VD->isConstexpr())
   6742     Error = 5;
   6743   if (Error != -1) {
   6744     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
   6745       << VD->getDeclName() << Error;
   6746     D->setInvalidDecl();
   6747   }
   6748 }
   6749 
   6750 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
   6751   if (var->isInvalidDecl()) return;
   6752 
   6753   // In ARC, don't allow jumps past the implicit initialization of a
   6754   // local retaining variable.
   6755   if (getLangOpts().ObjCAutoRefCount &&
   6756       var->hasLocalStorage()) {
   6757     switch (var->getType().getObjCLifetime()) {
   6758     case Qualifiers::OCL_None:
   6759     case Qualifiers::OCL_ExplicitNone:
   6760     case Qualifiers::OCL_Autoreleasing:
   6761       break;
   6762 
   6763     case Qualifiers::OCL_Weak:
   6764     case Qualifiers::OCL_Strong:
   6765       getCurFunction()->setHasBranchProtectedScope();
   6766       break;
   6767     }
   6768   }
   6769 
   6770   // All the following checks are C++ only.
   6771   if (!getLangOpts().CPlusPlus) return;
   6772 
   6773   QualType baseType = Context.getBaseElementType(var->getType());
   6774   if (baseType->isDependentType()) return;
   6775 
   6776   // __block variables might require us to capture a copy-initializer.
   6777   if (var->hasAttr<BlocksAttr>()) {
   6778     // It's currently invalid to ever have a __block variable with an
   6779     // array type; should we diagnose that here?
   6780 
   6781     // Regardless, we don't want to ignore array nesting when
   6782     // constructing this copy.
   6783     QualType type = var->getType();
   6784 
   6785     if (type->isStructureOrClassType()) {
   6786       SourceLocation poi = var->getLocation();
   6787       Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
   6788       ExprResult result =
   6789         PerformCopyInitialization(
   6790                         InitializedEntity::InitializeBlock(poi, type, false),
   6791                                   poi, Owned(varRef));
   6792       if (!result.isInvalid()) {
   6793         result = MaybeCreateExprWithCleanups(result);
   6794         Expr *init = result.takeAs<Expr>();
   6795         Context.setBlockVarCopyInits(var, init);
   6796       }
   6797     }
   6798   }
   6799 
   6800   Expr *Init = var->getInit();
   6801   bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
   6802 
   6803   if (!var->getDeclContext()->isDependentContext() && Init) {
   6804     if (IsGlobal && !var->isConstexpr() &&
   6805         getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
   6806                                             var->getLocation())
   6807           != DiagnosticsEngine::Ignored &&
   6808         !Init->isConstantInitializer(Context, baseType->isReferenceType()))
   6809       Diag(var->getLocation(), diag::warn_global_constructor)
   6810         << Init->getSourceRange();
   6811 
   6812     if (var->isConstexpr()) {
   6813       llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
   6814       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
   6815         SourceLocation DiagLoc = var->getLocation();
   6816         // If the note doesn't add any useful information other than a source
   6817         // location, fold it into the primary diagnostic.
   6818         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
   6819               diag::note_invalid_subexpr_in_const_expr) {
   6820           DiagLoc = Notes[0].first;
   6821           Notes.clear();
   6822         }
   6823         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
   6824           << var << Init->getSourceRange();
   6825         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
   6826           Diag(Notes[I].first, Notes[I].second);
   6827       }
   6828     } else if (var->isUsableInConstantExpressions(Context)) {
   6829       // Check whether the initializer of a const variable of integral or
   6830       // enumeration type is an ICE now, since we can't tell whether it was
   6831       // initialized by a constant expression if we check later.
   6832       var->checkInitIsICE();
   6833     }
   6834   }
   6835 
   6836   // Require the destructor.
   6837   if (const RecordType *recordType = baseType->getAs<RecordType>())
   6838     FinalizeVarWithDestructor(var, recordType);
   6839 }
   6840 
   6841 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
   6842 /// any semantic actions necessary after any initializer has been attached.
   6843 void
   6844 Sema::FinalizeDeclaration(Decl *ThisDecl) {
   6845   // Note that we are no longer parsing the initializer for this declaration.
   6846   ParsingInitForAutoVars.erase(ThisDecl);
   6847 }
   6848 
   6849 Sema::DeclGroupPtrTy
   6850 Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
   6851                               Decl **Group, unsigned NumDecls) {
   6852   SmallVector<Decl*, 8> Decls;
   6853 
   6854   if (DS.isTypeSpecOwned())
   6855     Decls.push_back(DS.getRepAsDecl());
   6856 
   6857   for (unsigned i = 0; i != NumDecls; ++i)
   6858     if (Decl *D = Group[i])
   6859       Decls.push_back(D);
   6860 
   6861   return BuildDeclaratorGroup(Decls.data(), Decls.size(),
   6862                               DS.getTypeSpecType() == DeclSpec::TST_auto);
   6863 }
   6864 
   6865 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
   6866 /// group, performing any necessary semantic checking.
   6867 Sema::DeclGroupPtrTy
   6868 Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
   6869                            bool TypeMayContainAuto) {
   6870   // C++0x [dcl.spec.auto]p7:
   6871   //   If the type deduced for the template parameter U is not the same in each
   6872   //   deduction, the program is ill-formed.
   6873   // FIXME: When initializer-list support is added, a distinction is needed
   6874   // between the deduced type U and the deduced type which 'auto' stands for.
   6875   //   auto a = 0, b = { 1, 2, 3 };
   6876   // is legal because the deduced type U is 'int' in both cases.
   6877   if (TypeMayContainAuto && NumDecls > 1) {
   6878     QualType Deduced;
   6879     CanQualType DeducedCanon;
   6880     VarDecl *DeducedDecl = 0;
   6881     for (unsigned i = 0; i != NumDecls; ++i) {
   6882       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
   6883         AutoType *AT = D->getType()->getContainedAutoType();
   6884         // Don't reissue diagnostics when instantiating a template.
   6885         if (AT && D->isInvalidDecl())
   6886           break;
   6887         if (AT && AT->isDeduced()) {
   6888           QualType U = AT->getDeducedType();
   6889           CanQualType UCanon = Context.getCanonicalType(U);
   6890           if (Deduced.isNull()) {
   6891             Deduced = U;
   6892             DeducedCanon = UCanon;
   6893             DeducedDecl = D;
   6894           } else if (DeducedCanon != UCanon) {
   6895             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
   6896                  diag::err_auto_different_deductions)
   6897               << Deduced << DeducedDecl->getDeclName()
   6898               << U << D->getDeclName()
   6899               << DeducedDecl->getInit()->getSourceRange()
   6900               << D->getInit()->getSourceRange();
   6901             D->setInvalidDecl();
   6902             break;
   6903           }
   6904         }
   6905       }
   6906     }
   6907   }
   6908 
   6909   return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
   6910 }
   6911 
   6912 
   6913 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
   6914 /// to introduce parameters into function prototype scope.
   6915 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
   6916   const DeclSpec &DS = D.getDeclSpec();
   6917 
   6918   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
   6919   // C++03 [dcl.stc]p2 also permits 'auto'.
   6920   VarDecl::StorageClass StorageClass = SC_None;
   6921   VarDecl::StorageClass StorageClassAsWritten = SC_None;
   6922   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
   6923     StorageClass = SC_Register;
   6924     StorageClassAsWritten = SC_Register;
   6925   } else if (getLangOpts().CPlusPlus &&
   6926              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
   6927     StorageClass = SC_Auto;
   6928     StorageClassAsWritten = SC_Auto;
   6929   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
   6930     Diag(DS.getStorageClassSpecLoc(),
   6931          diag::err_invalid_storage_class_in_func_decl);
   6932     D.getMutableDeclSpec().ClearStorageClassSpecs();
   6933   }
   6934 
   6935   if (D.getDeclSpec().isThreadSpecified())
   6936     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   6937   if (D.getDeclSpec().isConstexprSpecified())
   6938     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
   6939       << 0;
   6940 
   6941   DiagnoseFunctionSpecifiers(D);
   6942 
   6943   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   6944   QualType parmDeclType = TInfo->getType();
   6945 
   6946   if (getLangOpts().CPlusPlus) {
   6947     // Check that there are no default arguments inside the type of this
   6948     // parameter.
   6949     CheckExtraCXXDefaultArguments(D);
   6950 
   6951     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
   6952     if (D.getCXXScopeSpec().isSet()) {
   6953       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
   6954         << D.getCXXScopeSpec().getRange();
   6955       D.getCXXScopeSpec().clear();
   6956     }
   6957   }
   6958 
   6959   // Ensure we have a valid name
   6960   IdentifierInfo *II = 0;
   6961   if (D.hasName()) {
   6962     II = D.getIdentifier();
   6963     if (!II) {
   6964       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
   6965         << GetNameForDeclarator(D).getName().getAsString();
   6966       D.setInvalidType(true);
   6967     }
   6968   }
   6969 
   6970   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
   6971   if (II) {
   6972     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
   6973                    ForRedeclaration);
   6974     LookupName(R, S);
   6975     if (R.isSingleResult()) {
   6976       NamedDecl *PrevDecl = R.getFoundDecl();
   6977       if (PrevDecl->isTemplateParameter()) {
   6978         // Maybe we will complain about the shadowed template parameter.
   6979         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   6980         // Just pretend that we didn't see the previous declaration.
   6981         PrevDecl = 0;
   6982       } else if (S->isDeclScope(PrevDecl)) {
   6983         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
   6984         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   6985 
   6986         // Recover by removing the name
   6987         II = 0;
   6988         D.SetIdentifier(0, D.getIdentifierLoc());
   6989         D.setInvalidType(true);
   6990       }
   6991     }
   6992   }
   6993 
   6994   // Temporarily put parameter variables in the translation unit, not
   6995   // the enclosing context.  This prevents them from accidentally
   6996   // looking like class members in C++.
   6997   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
   6998                                     D.getLocStart(),
   6999                                     D.getIdentifierLoc(), II,
   7000                                     parmDeclType, TInfo,
   7001                                     StorageClass, StorageClassAsWritten);
   7002 
   7003   if (D.isInvalidType())
   7004     New->setInvalidDecl();
   7005 
   7006   assert(S->isFunctionPrototypeScope());
   7007   assert(S->getFunctionPrototypeDepth() >= 1);
   7008   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
   7009                     S->getNextFunctionPrototypeIndex());
   7010 
   7011   // Add the parameter declaration into this scope.
   7012   S->AddDecl(New);
   7013   if (II)
   7014     IdResolver.AddDecl(New);
   7015 
   7016   ProcessDeclAttributes(S, New, D);
   7017 
   7018   if (D.getDeclSpec().isModulePrivateSpecified())
   7019     Diag(New->getLocation(), diag::err_module_private_local)
   7020       << 1 << New->getDeclName()
   7021       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   7022       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   7023 
   7024   if (New->hasAttr<BlocksAttr>()) {
   7025     Diag(New->getLocation(), diag::err_block_on_nonlocal);
   7026   }
   7027   return New;
   7028 }
   7029 
   7030 /// \brief Synthesizes a variable for a parameter arising from a
   7031 /// typedef.
   7032 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
   7033                                               SourceLocation Loc,
   7034                                               QualType T) {
   7035   /* FIXME: setting StartLoc == Loc.
   7036      Would it be worth to modify callers so as to provide proper source
   7037      location for the unnamed parameters, embedding the parameter's type? */
   7038   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
   7039                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
   7040                                            SC_None, SC_None, 0);
   7041   Param->setImplicit();
   7042   return Param;
   7043 }
   7044 
   7045 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
   7046                                     ParmVarDecl * const *ParamEnd) {
   7047   // Don't diagnose unused-parameter errors in template instantiations; we
   7048   // will already have done so in the template itself.
   7049   if (!ActiveTemplateInstantiations.empty())
   7050     return;
   7051 
   7052   for (; Param != ParamEnd; ++Param) {
   7053     if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
   7054         !(*Param)->hasAttr<UnusedAttr>()) {
   7055       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
   7056         << (*Param)->getDeclName();
   7057     }
   7058   }
   7059 }
   7060 
   7061 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
   7062                                                   ParmVarDecl * const *ParamEnd,
   7063                                                   QualType ReturnTy,
   7064                                                   NamedDecl *D) {
   7065   if (LangOpts.NumLargeByValueCopy == 0) // No check.
   7066     return;
   7067 
   7068   // Warn if the return value is pass-by-value and larger than the specified
   7069   // threshold.
   7070   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
   7071     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
   7072     if (Size > LangOpts.NumLargeByValueCopy)
   7073       Diag(D->getLocation(), diag::warn_return_value_size)
   7074           << D->getDeclName() << Size;
   7075   }
   7076 
   7077   // Warn if any parameter is pass-by-value and larger than the specified
   7078   // threshold.
   7079   for (; Param != ParamEnd; ++Param) {
   7080     QualType T = (*Param)->getType();
   7081     if (T->isDependentType() || !T.isPODType(Context))
   7082       continue;
   7083     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
   7084     if (Size > LangOpts.NumLargeByValueCopy)
   7085       Diag((*Param)->getLocation(), diag::warn_parameter_size)
   7086           << (*Param)->getDeclName() << Size;
   7087   }
   7088 }
   7089 
   7090 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
   7091                                   SourceLocation NameLoc, IdentifierInfo *Name,
   7092                                   QualType T, TypeSourceInfo *TSInfo,
   7093                                   VarDecl::StorageClass StorageClass,
   7094                                   VarDecl::StorageClass StorageClassAsWritten) {
   7095   // In ARC, infer a lifetime qualifier for appropriate parameter types.
   7096   if (getLangOpts().ObjCAutoRefCount &&
   7097       T.getObjCLifetime() == Qualifiers::OCL_None &&
   7098       T->isObjCLifetimeType()) {
   7099 
   7100     Qualifiers::ObjCLifetime lifetime;
   7101 
   7102     // Special cases for arrays:
   7103     //   - if it's const, use __unsafe_unretained
   7104     //   - otherwise, it's an error
   7105     if (T->isArrayType()) {
   7106       if (!T.isConstQualified()) {
   7107         DelayedDiagnostics.add(
   7108             sema::DelayedDiagnostic::makeForbiddenType(
   7109             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
   7110       }
   7111       lifetime = Qualifiers::OCL_ExplicitNone;
   7112     } else {
   7113       lifetime = T->getObjCARCImplicitLifetime();
   7114     }
   7115     T = Context.getLifetimeQualifiedType(T, lifetime);
   7116   }
   7117 
   7118   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
   7119                                          Context.getAdjustedParameterType(T),
   7120                                          TSInfo,
   7121                                          StorageClass, StorageClassAsWritten,
   7122                                          0);
   7123 
   7124   // Parameters can not be abstract class types.
   7125   // For record types, this is done by the AbstractClassUsageDiagnoser once
   7126   // the class has been completely parsed.
   7127   if (!CurContext->isRecord() &&
   7128       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
   7129                              AbstractParamType))
   7130     New->setInvalidDecl();
   7131 
   7132   // Parameter declarators cannot be interface types. All ObjC objects are
   7133   // passed by reference.
   7134   if (T->isObjCObjectType()) {
   7135     Diag(NameLoc,
   7136          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
   7137       << FixItHint::CreateInsertion(NameLoc, "*");
   7138     T = Context.getObjCObjectPointerType(T);
   7139     New->setType(T);
   7140   }
   7141 
   7142   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
   7143   // duration shall not be qualified by an address-space qualifier."
   7144   // Since all parameters have automatic store duration, they can not have
   7145   // an address space.
   7146   if (T.getAddressSpace() != 0) {
   7147     Diag(NameLoc, diag::err_arg_with_address_space);
   7148     New->setInvalidDecl();
   7149   }
   7150 
   7151   return New;
   7152 }
   7153 
   7154 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
   7155                                            SourceLocation LocAfterDecls) {
   7156   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   7157 
   7158   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
   7159   // for a K&R function.
   7160   if (!FTI.hasPrototype) {
   7161     for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
   7162       --i;
   7163       if (FTI.ArgInfo[i].Param == 0) {
   7164         SmallString<256> Code;
   7165         llvm::raw_svector_ostream(Code) << "  int "
   7166                                         << FTI.ArgInfo[i].Ident->getName()
   7167                                         << ";\n";
   7168         Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
   7169           << FTI.ArgInfo[i].Ident
   7170           << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
   7171 
   7172         // Implicitly declare the argument as type 'int' for lack of a better
   7173         // type.
   7174         AttributeFactory attrs;
   7175         DeclSpec DS(attrs);
   7176         const char* PrevSpec; // unused
   7177         unsigned DiagID; // unused
   7178         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
   7179                            PrevSpec, DiagID);
   7180         Declarator ParamD(DS, Declarator::KNRTypeListContext);
   7181         ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
   7182         FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
   7183       }
   7184     }
   7185   }
   7186 }
   7187 
   7188 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
   7189   assert(getCurFunctionDecl() == 0 && "Function parsing confused");
   7190   assert(D.isFunctionDeclarator() && "Not a function declarator!");
   7191   Scope *ParentScope = FnBodyScope->getParent();
   7192 
   7193   D.setFunctionDefinitionKind(FDK_Definition);
   7194   Decl *DP = HandleDeclarator(ParentScope, D,
   7195                               MultiTemplateParamsArg(*this));
   7196   return ActOnStartOfFunctionDef(FnBodyScope, DP);
   7197 }
   7198 
   7199 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
   7200   // Don't warn about invalid declarations.
   7201   if (FD->isInvalidDecl())
   7202     return false;
   7203 
   7204   // Or declarations that aren't global.
   7205   if (!FD->isGlobal())
   7206     return false;
   7207 
   7208   // Don't warn about C++ member functions.
   7209   if (isa<CXXMethodDecl>(FD))
   7210     return false;
   7211 
   7212   // Don't warn about 'main'.
   7213   if (FD->isMain())
   7214     return false;
   7215 
   7216   // Don't warn about inline functions.
   7217   if (FD->isInlined())
   7218     return false;
   7219 
   7220   // Don't warn about function templates.
   7221   if (FD->getDescribedFunctionTemplate())
   7222     return false;
   7223 
   7224   // Don't warn about function template specializations.
   7225   if (FD->isFunctionTemplateSpecialization())
   7226     return false;
   7227 
   7228   bool MissingPrototype = true;
   7229   for (const FunctionDecl *Prev = FD->getPreviousDecl();
   7230        Prev; Prev = Prev->getPreviousDecl()) {
   7231     // Ignore any declarations that occur in function or method
   7232     // scope, because they aren't visible from the header.
   7233     if (Prev->getDeclContext()->isFunctionOrMethod())
   7234       continue;
   7235 
   7236     MissingPrototype = !Prev->getType()->isFunctionProtoType();
   7237     break;
   7238   }
   7239 
   7240   return MissingPrototype;
   7241 }
   7242 
   7243 void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
   7244   // Don't complain if we're in GNU89 mode and the previous definition
   7245   // was an extern inline function.
   7246   const FunctionDecl *Definition;
   7247   if (FD->isDefined(Definition) &&
   7248       !canRedefineFunction(Definition, getLangOpts())) {
   7249     if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
   7250         Definition->getStorageClass() == SC_Extern)
   7251       Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
   7252         << FD->getDeclName() << getLangOpts().CPlusPlus;
   7253     else
   7254       Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
   7255     Diag(Definition->getLocation(), diag::note_previous_definition);
   7256   }
   7257 }
   7258 
   7259 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
   7260   // Clear the last template instantiation error context.
   7261   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
   7262 
   7263   if (!D)
   7264     return D;
   7265   FunctionDecl *FD = 0;
   7266 
   7267   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
   7268     FD = FunTmpl->getTemplatedDecl();
   7269   else
   7270     FD = cast<FunctionDecl>(D);
   7271 
   7272   // Enter a new function scope
   7273   PushFunctionScope();
   7274 
   7275   // See if this is a redefinition.
   7276   if (!FD->isLateTemplateParsed())
   7277     CheckForFunctionRedefinition(FD);
   7278 
   7279   // Builtin functions cannot be defined.
   7280   if (unsigned BuiltinID = FD->getBuiltinID()) {
   7281     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
   7282       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
   7283       FD->setInvalidDecl();
   7284     }
   7285   }
   7286 
   7287   // The return type of a function definition must be complete
   7288   // (C99 6.9.1p3, C++ [dcl.fct]p6).
   7289   QualType ResultType = FD->getResultType();
   7290   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
   7291       !FD->isInvalidDecl() &&
   7292       RequireCompleteType(FD->getLocation(), ResultType,
   7293                           diag::err_func_def_incomplete_result))
   7294     FD->setInvalidDecl();
   7295 
   7296   // GNU warning -Wmissing-prototypes:
   7297   //   Warn if a global function is defined without a previous
   7298   //   prototype declaration. This warning is issued even if the
   7299   //   definition itself provides a prototype. The aim is to detect
   7300   //   global functions that fail to be declared in header files.
   7301   if (ShouldWarnAboutMissingPrototype(FD))
   7302     Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
   7303 
   7304   if (FnBodyScope)
   7305     PushDeclContext(FnBodyScope, FD);
   7306 
   7307   // Check the validity of our function parameters
   7308   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
   7309                            /*CheckParameterNames=*/true);
   7310 
   7311   // Introduce our parameters into the function scope
   7312   for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
   7313     ParmVarDecl *Param = FD->getParamDecl(p);
   7314     Param->setOwningFunction(FD);
   7315 
   7316     // If this has an identifier, add it to the scope stack.
   7317     if (Param->getIdentifier() && FnBodyScope) {
   7318       CheckShadow(FnBodyScope, Param);
   7319 
   7320       PushOnScopeChains(Param, FnBodyScope);
   7321     }
   7322   }
   7323 
   7324   // If we had any tags defined in the function prototype,
   7325   // introduce them into the function scope.
   7326   if (FnBodyScope) {
   7327     for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
   7328            E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
   7329       NamedDecl *D = *I;
   7330 
   7331       // Some of these decls (like enums) may have been pinned to the translation unit
   7332       // for lack of a real context earlier. If so, remove from the translation unit
   7333       // and reattach to the current context.
   7334       if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
   7335         // Is the decl actually in the context?
   7336         for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
   7337                DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
   7338           if (*DI == D) {
   7339             Context.getTranslationUnitDecl()->removeDecl(D);
   7340             break;
   7341           }
   7342         }
   7343         // Either way, reassign the lexical decl context to our FunctionDecl.
   7344         D->setLexicalDeclContext(CurContext);
   7345       }
   7346 
   7347       // If the decl has a non-null name, make accessible in the current scope.
   7348       if (!D->getName().empty())
   7349         PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
   7350 
   7351       // Similarly, dive into enums and fish their constants out, making them
   7352       // accessible in this scope.
   7353       if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
   7354         for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
   7355                EE = ED->enumerator_end(); EI != EE; ++EI)
   7356           PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
   7357       }
   7358     }
   7359   }
   7360 
   7361   // Ensure that the function's exception specification is instantiated.
   7362   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
   7363     ResolveExceptionSpec(D->getLocation(), FPT);
   7364 
   7365   // Checking attributes of current function definition
   7366   // dllimport attribute.
   7367   DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
   7368   if (DA && (!FD->getAttr<DLLExportAttr>())) {
   7369     // dllimport attribute cannot be directly applied to definition.
   7370     // Microsoft accepts dllimport for functions defined within class scope.
   7371     if (!DA->isInherited() &&
   7372         !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
   7373       Diag(FD->getLocation(),
   7374            diag::err_attribute_can_be_applied_only_to_symbol_declaration)
   7375         << "dllimport";
   7376       FD->setInvalidDecl();
   7377       return FD;
   7378     }
   7379 
   7380     // Visual C++ appears to not think this is an issue, so only issue
   7381     // a warning when Microsoft extensions are disabled.
   7382     if (!LangOpts.MicrosoftExt) {
   7383       // If a symbol previously declared dllimport is later defined, the
   7384       // attribute is ignored in subsequent references, and a warning is
   7385       // emitted.
   7386       Diag(FD->getLocation(),
   7387            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
   7388         << FD->getName() << "dllimport";
   7389     }
   7390   }
   7391   return FD;
   7392 }
   7393 
   7394 /// \brief Given the set of return statements within a function body,
   7395 /// compute the variables that are subject to the named return value
   7396 /// optimization.
   7397 ///
   7398 /// Each of the variables that is subject to the named return value
   7399 /// optimization will be marked as NRVO variables in the AST, and any
   7400 /// return statement that has a marked NRVO variable as its NRVO candidate can
   7401 /// use the named return value optimization.
   7402 ///
   7403 /// This function applies a very simplistic algorithm for NRVO: if every return
   7404 /// statement in the function has the same NRVO candidate, that candidate is
   7405 /// the NRVO variable.
   7406 ///
   7407 /// FIXME: Employ a smarter algorithm that accounts for multiple return
   7408 /// statements and the lifetimes of the NRVO candidates. We should be able to
   7409 /// find a maximal set of NRVO variables.
   7410 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
   7411   ReturnStmt **Returns = Scope->Returns.data();
   7412 
   7413   const VarDecl *NRVOCandidate = 0;
   7414   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
   7415     if (!Returns[I]->getNRVOCandidate())
   7416       return;
   7417 
   7418     if (!NRVOCandidate)
   7419       NRVOCandidate = Returns[I]->getNRVOCandidate();
   7420     else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
   7421       return;
   7422   }
   7423 
   7424   if (NRVOCandidate)
   7425     const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
   7426 }
   7427 
   7428 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
   7429   return ActOnFinishFunctionBody(D, move(BodyArg), false);
   7430 }
   7431 
   7432 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
   7433                                     bool IsInstantiation) {
   7434   FunctionDecl *FD = 0;
   7435   FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
   7436   if (FunTmpl)
   7437     FD = FunTmpl->getTemplatedDecl();
   7438   else
   7439     FD = dyn_cast_or_null<FunctionDecl>(dcl);
   7440 
   7441   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
   7442   sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
   7443 
   7444   if (FD) {
   7445     FD->setBody(Body);
   7446 
   7447     // If the function implicitly returns zero (like 'main') or is naked,
   7448     // don't complain about missing return statements.
   7449     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
   7450       WP.disableCheckFallThrough();
   7451 
   7452     // MSVC permits the use of pure specifier (=0) on function definition,
   7453     // defined at class scope, warn about this non standard construct.
   7454     if (getLangOpts().MicrosoftExt && FD->isPure())
   7455       Diag(FD->getLocation(), diag::warn_pure_function_definition);
   7456 
   7457     if (!FD->isInvalidDecl()) {
   7458       DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
   7459       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
   7460                                              FD->getResultType(), FD);
   7461 
   7462       // If this is a constructor, we need a vtable.
   7463       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
   7464         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
   7465 
   7466       computeNRVO(Body, getCurFunction());
   7467     }
   7468 
   7469     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
   7470            "Function parsing confused");
   7471   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
   7472     assert(MD == getCurMethodDecl() && "Method parsing confused");
   7473     MD->setBody(Body);
   7474     if (Body)
   7475       MD->setEndLoc(Body->getLocEnd());
   7476     if (!MD->isInvalidDecl()) {
   7477       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
   7478       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
   7479                                              MD->getResultType(), MD);
   7480 
   7481       if (Body)
   7482         computeNRVO(Body, getCurFunction());
   7483     }
   7484     if (ObjCShouldCallSuperDealloc) {
   7485       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
   7486       ObjCShouldCallSuperDealloc = false;
   7487     }
   7488     if (ObjCShouldCallSuperFinalize) {
   7489       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
   7490       ObjCShouldCallSuperFinalize = false;
   7491     }
   7492   } else {
   7493     return 0;
   7494   }
   7495 
   7496   assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
   7497          "ObjC methods, which should have been handled in the block above.");
   7498   assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
   7499          "ObjC methods, which should have been handled in the block above.");
   7500 
   7501   // Verify and clean out per-function state.
   7502   if (Body) {
   7503     // C++ constructors that have function-try-blocks can't have return
   7504     // statements in the handlers of that block. (C++ [except.handle]p14)
   7505     // Verify this.
   7506     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
   7507       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
   7508 
   7509     // Verify that gotos and switch cases don't jump into scopes illegally.
   7510     if (getCurFunction()->NeedsScopeChecking() &&
   7511         !dcl->isInvalidDecl() &&
   7512         !hasAnyUnrecoverableErrorsInThisFunction())
   7513       DiagnoseInvalidJumps(Body);
   7514 
   7515     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
   7516       if (!Destructor->getParent()->isDependentType())
   7517         CheckDestructor(Destructor);
   7518 
   7519       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
   7520                                              Destructor->getParent());
   7521     }
   7522 
   7523     // If any errors have occurred, clear out any temporaries that may have
   7524     // been leftover. This ensures that these temporaries won't be picked up for
   7525     // deletion in some later function.
   7526     if (PP.getDiagnostics().hasErrorOccurred() ||
   7527         PP.getDiagnostics().getSuppressAllDiagnostics()) {
   7528       DiscardCleanupsInEvaluationContext();
   7529     } else if (!isa<FunctionTemplateDecl>(dcl)) {
   7530       // Since the body is valid, issue any analysis-based warnings that are
   7531       // enabled.
   7532       ActivePolicy = &WP;
   7533     }
   7534 
   7535     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
   7536         (!CheckConstexprFunctionDecl(FD) ||
   7537          !CheckConstexprFunctionBody(FD, Body)))
   7538       FD->setInvalidDecl();
   7539 
   7540     assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
   7541     assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
   7542     assert(MaybeODRUseExprs.empty() &&
   7543            "Leftover expressions for odr-use checking");
   7544   }
   7545 
   7546   if (!IsInstantiation)
   7547     PopDeclContext();
   7548 
   7549   PopFunctionScopeInfo(ActivePolicy, dcl);
   7550 
   7551   // If any errors have occurred, clear out any temporaries that may have
   7552   // been leftover. This ensures that these temporaries won't be picked up for
   7553   // deletion in some later function.
   7554   if (getDiagnostics().hasErrorOccurred()) {
   7555     DiscardCleanupsInEvaluationContext();
   7556   }
   7557 
   7558   return dcl;
   7559 }
   7560 
   7561 
   7562 /// When we finish delayed parsing of an attribute, we must attach it to the
   7563 /// relevant Decl.
   7564 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
   7565                                        ParsedAttributes &Attrs) {
   7566   // Always attach attributes to the underlying decl.
   7567   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
   7568     D = TD->getTemplatedDecl();
   7569   ProcessDeclAttributeList(S, D, Attrs.getList());
   7570 
   7571   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
   7572     if (Method->isStatic())
   7573       checkThisInStaticMemberFunctionAttributes(Method);
   7574 }
   7575 
   7576 
   7577 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
   7578 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
   7579 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
   7580                                           IdentifierInfo &II, Scope *S) {
   7581   // Before we produce a declaration for an implicitly defined
   7582   // function, see whether there was a locally-scoped declaration of
   7583   // this name as a function or variable. If so, use that
   7584   // (non-visible) declaration, and complain about it.
   7585   llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
   7586     = findLocallyScopedExternalDecl(&II);
   7587   if (Pos != LocallyScopedExternalDecls.end()) {
   7588     Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
   7589     Diag(Pos->second->getLocation(), diag::note_previous_declaration);
   7590     return Pos->second;
   7591   }
   7592 
   7593   // Extension in C99.  Legal in C90, but warn about it.
   7594   unsigned diag_id;
   7595   if (II.getName().startswith("__builtin_"))
   7596     diag_id = diag::warn_builtin_unknown;
   7597   else if (getLangOpts().C99)
   7598     diag_id = diag::ext_implicit_function_decl;
   7599   else
   7600     diag_id = diag::warn_implicit_function_decl;
   7601   Diag(Loc, diag_id) << &II;
   7602 
   7603   // Because typo correction is expensive, only do it if the implicit
   7604   // function declaration is going to be treated as an error.
   7605   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
   7606     TypoCorrection Corrected;
   7607     DeclFilterCCC<FunctionDecl> Validator;
   7608     if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
   7609                                       LookupOrdinaryName, S, 0, Validator))) {
   7610       std::string CorrectedStr = Corrected.getAsString(getLangOpts());
   7611       std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
   7612       FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
   7613 
   7614       Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
   7615           << FixItHint::CreateReplacement(Loc, CorrectedStr);
   7616 
   7617       if (Func->getLocation().isValid()
   7618           && !II.getName().startswith("__builtin_"))
   7619         Diag(Func->getLocation(), diag::note_previous_decl)
   7620             << CorrectedQuotedStr;
   7621     }
   7622   }
   7623 
   7624   // Set a Declarator for the implicit definition: int foo();
   7625   const char *Dummy;
   7626   AttributeFactory attrFactory;
   7627   DeclSpec DS(attrFactory);
   7628   unsigned DiagID;
   7629   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
   7630   (void)Error; // Silence warning.
   7631   assert(!Error && "Error setting up implicit decl!");
   7632   Declarator D(DS, Declarator::BlockContext);
   7633   D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
   7634                                              0, 0, true, SourceLocation(),
   7635                                              SourceLocation(), SourceLocation(),
   7636                                              SourceLocation(),
   7637                                              EST_None, SourceLocation(),
   7638                                              0, 0, 0, 0, 0, Loc, Loc, D),
   7639                 DS.getAttributes(),
   7640                 SourceLocation());
   7641   D.SetIdentifier(&II, Loc);
   7642 
   7643   // Insert this function into translation-unit scope.
   7644 
   7645   DeclContext *PrevDC = CurContext;
   7646   CurContext = Context.getTranslationUnitDecl();
   7647 
   7648   FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
   7649   FD->setImplicit();
   7650 
   7651   CurContext = PrevDC;
   7652 
   7653   AddKnownFunctionAttributes(FD);
   7654 
   7655   return FD;
   7656 }
   7657 
   7658 /// \brief Adds any function attributes that we know a priori based on
   7659 /// the declaration of this function.
   7660 ///
   7661 /// These attributes can apply both to implicitly-declared builtins
   7662 /// (like __builtin___printf_chk) or to library-declared functions
   7663 /// like NSLog or printf.
   7664 ///
   7665 /// We need to check for duplicate attributes both here and where user-written
   7666 /// attributes are applied to declarations.
   7667 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
   7668   if (FD->isInvalidDecl())
   7669     return;
   7670 
   7671   // If this is a built-in function, map its builtin attributes to
   7672   // actual attributes.
   7673   if (unsigned BuiltinID = FD->getBuiltinID()) {
   7674     // Handle printf-formatting attributes.
   7675     unsigned FormatIdx;
   7676     bool HasVAListArg;
   7677     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
   7678       if (!FD->getAttr<FormatAttr>()) {
   7679         const char *fmt = "printf";
   7680         unsigned int NumParams = FD->getNumParams();
   7681         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
   7682             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
   7683           fmt = "NSString";
   7684         FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
   7685                                                fmt, FormatIdx+1,
   7686                                                HasVAListArg ? 0 : FormatIdx+2));
   7687       }
   7688     }
   7689     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
   7690                                              HasVAListArg)) {
   7691      if (!FD->getAttr<FormatAttr>())
   7692        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
   7693                                               "scanf", FormatIdx+1,
   7694                                               HasVAListArg ? 0 : FormatIdx+2));
   7695     }
   7696 
   7697     // Mark const if we don't care about errno and that is the only
   7698     // thing preventing the function from being const. This allows
   7699     // IRgen to use LLVM intrinsics for such functions.
   7700     if (!getLangOpts().MathErrno &&
   7701         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
   7702       if (!FD->getAttr<ConstAttr>())
   7703         FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
   7704     }
   7705 
   7706     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
   7707         !FD->getAttr<ReturnsTwiceAttr>())
   7708       FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
   7709     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
   7710       FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
   7711     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
   7712       FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
   7713   }
   7714 
   7715   IdentifierInfo *Name = FD->getIdentifier();
   7716   if (!Name)
   7717     return;
   7718   if ((!getLangOpts().CPlusPlus &&
   7719        FD->getDeclContext()->isTranslationUnit()) ||
   7720       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
   7721        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
   7722        LinkageSpecDecl::lang_c)) {
   7723     // Okay: this could be a libc/libm/Objective-C function we know
   7724     // about.
   7725   } else
   7726     return;
   7727 
   7728   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
   7729     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
   7730     // target-specific builtins, perhaps?
   7731     if (!FD->getAttr<FormatAttr>())
   7732       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
   7733                                              "printf", 2,
   7734                                              Name->isStr("vasprintf") ? 0 : 3));
   7735   }
   7736 }
   7737 
   7738 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
   7739                                     TypeSourceInfo *TInfo) {
   7740   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
   7741   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
   7742 
   7743   if (!TInfo) {
   7744     assert(D.isInvalidType() && "no declarator info for valid type");
   7745     TInfo = Context.getTrivialTypeSourceInfo(T);
   7746   }
   7747 
   7748   // Scope manipulation handled by caller.
   7749   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
   7750                                            D.getLocStart(),
   7751                                            D.getIdentifierLoc(),
   7752                                            D.getIdentifier(),
   7753                                            TInfo);
   7754 
   7755   // Bail out immediately if we have an invalid declaration.
   7756   if (D.isInvalidType()) {
   7757     NewTD->setInvalidDecl();
   7758     return NewTD;
   7759   }
   7760 
   7761   if (D.getDeclSpec().isModulePrivateSpecified()) {
   7762     if (CurContext->isFunctionOrMethod())
   7763       Diag(NewTD->getLocation(), diag::err_module_private_local)
   7764         << 2 << NewTD->getDeclName()
   7765         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   7766         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   7767     else
   7768       NewTD->setModulePrivate();
   7769   }
   7770 
   7771   // C++ [dcl.typedef]p8:
   7772   //   If the typedef declaration defines an unnamed class (or
   7773   //   enum), the first typedef-name declared by the declaration
   7774   //   to be that class type (or enum type) is used to denote the
   7775   //   class type (or enum type) for linkage purposes only.
   7776   // We need to check whether the type was declared in the declaration.
   7777   switch (D.getDeclSpec().getTypeSpecType()) {
   7778   case TST_enum:
   7779   case TST_struct:
   7780   case TST_union:
   7781   case TST_class: {
   7782     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
   7783 
   7784     // Do nothing if the tag is not anonymous or already has an
   7785     // associated typedef (from an earlier typedef in this decl group).
   7786     if (tagFromDeclSpec->getIdentifier()) break;
   7787     if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
   7788 
   7789     // A well-formed anonymous tag must always be a TUK_Definition.
   7790     assert(tagFromDeclSpec->isThisDeclarationADefinition());
   7791 
   7792     // The type must match the tag exactly;  no qualifiers allowed.
   7793     if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
   7794       break;
   7795 
   7796     // Otherwise, set this is the anon-decl typedef for the tag.
   7797     tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
   7798     break;
   7799   }
   7800 
   7801   default:
   7802     break;
   7803   }
   7804 
   7805   return NewTD;
   7806 }
   7807 
   7808 
   7809 /// \brief Check that this is a valid underlying type for an enum declaration.
   7810 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
   7811   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
   7812   QualType T = TI->getType();
   7813 
   7814   if (T->isDependentType() || T->isIntegralType(Context))
   7815     return false;
   7816 
   7817   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
   7818   return true;
   7819 }
   7820 
   7821 /// Check whether this is a valid redeclaration of a previous enumeration.
   7822 /// \return true if the redeclaration was invalid.
   7823 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
   7824                                   QualType EnumUnderlyingTy,
   7825                                   const EnumDecl *Prev) {
   7826   bool IsFixed = !EnumUnderlyingTy.isNull();
   7827 
   7828   if (IsScoped != Prev->isScoped()) {
   7829     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
   7830       << Prev->isScoped();
   7831     Diag(Prev->getLocation(), diag::note_previous_use);
   7832     return true;
   7833   }
   7834 
   7835   if (IsFixed && Prev->isFixed()) {
   7836     if (!EnumUnderlyingTy->isDependentType() &&
   7837         !Prev->getIntegerType()->isDependentType() &&
   7838         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
   7839                                         Prev->getIntegerType())) {
   7840       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
   7841         << EnumUnderlyingTy << Prev->getIntegerType();
   7842       Diag(Prev->getLocation(), diag::note_previous_use);
   7843       return true;
   7844     }
   7845   } else if (IsFixed != Prev->isFixed()) {
   7846     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
   7847       << Prev->isFixed();
   7848     Diag(Prev->getLocation(), diag::note_previous_use);
   7849     return true;
   7850   }
   7851 
   7852   return false;
   7853 }
   7854 
   7855 /// \brief Determine whether a tag with a given kind is acceptable
   7856 /// as a redeclaration of the given tag declaration.
   7857 ///
   7858 /// \returns true if the new tag kind is acceptable, false otherwise.
   7859 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
   7860                                         TagTypeKind NewTag, bool isDefinition,
   7861                                         SourceLocation NewTagLoc,
   7862                                         const IdentifierInfo &Name) {
   7863   // C++ [dcl.type.elab]p3:
   7864   //   The class-key or enum keyword present in the
   7865   //   elaborated-type-specifier shall agree in kind with the
   7866   //   declaration to which the name in the elaborated-type-specifier
   7867   //   refers. This rule also applies to the form of
   7868   //   elaborated-type-specifier that declares a class-name or
   7869   //   friend class since it can be construed as referring to the
   7870   //   definition of the class. Thus, in any
   7871   //   elaborated-type-specifier, the enum keyword shall be used to
   7872   //   refer to an enumeration (7.2), the union class-key shall be
   7873   //   used to refer to a union (clause 9), and either the class or
   7874   //   struct class-key shall be used to refer to a class (clause 9)
   7875   //   declared using the class or struct class-key.
   7876   TagTypeKind OldTag = Previous->getTagKind();
   7877   if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
   7878     if (OldTag == NewTag)
   7879       return true;
   7880 
   7881   if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
   7882       (NewTag == TTK_Struct || NewTag == TTK_Class)) {
   7883     // Warn about the struct/class tag mismatch.
   7884     bool isTemplate = false;
   7885     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
   7886       isTemplate = Record->getDescribedClassTemplate();
   7887 
   7888     if (!ActiveTemplateInstantiations.empty()) {
   7889       // In a template instantiation, do not offer fix-its for tag mismatches
   7890       // since they usually mess up the template instead of fixing the problem.
   7891       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
   7892         << (NewTag == TTK_Class) << isTemplate << &Name;
   7893       return true;
   7894     }
   7895 
   7896     if (isDefinition) {
   7897       // On definitions, check previous tags and issue a fix-it for each
   7898       // one that doesn't match the current tag.
   7899       if (Previous->getDefinition()) {
   7900         // Don't suggest fix-its for redefinitions.
   7901         return true;
   7902       }
   7903 
   7904       bool previousMismatch = false;
   7905       for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
   7906            E(Previous->redecls_end()); I != E; ++I) {
   7907         if (I->getTagKind() != NewTag) {
   7908           if (!previousMismatch) {
   7909             previousMismatch = true;
   7910             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
   7911               << (NewTag == TTK_Class) << isTemplate << &Name;
   7912           }
   7913           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
   7914             << (NewTag == TTK_Class)
   7915             << FixItHint::CreateReplacement(I->getInnerLocStart(),
   7916                                             NewTag == TTK_Class?
   7917                                             "class" : "struct");
   7918         }
   7919       }
   7920       return true;
   7921     }
   7922 
   7923     // Check for a previous definition.  If current tag and definition
   7924     // are same type, do nothing.  If no definition, but disagree with
   7925     // with previous tag type, give a warning, but no fix-it.
   7926     const TagDecl *Redecl = Previous->getDefinition() ?
   7927                             Previous->getDefinition() : Previous;
   7928     if (Redecl->getTagKind() == NewTag) {
   7929       return true;
   7930     }
   7931 
   7932     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
   7933       << (NewTag == TTK_Class)
   7934       << isTemplate << &Name;
   7935     Diag(Redecl->getLocation(), diag::note_previous_use);
   7936 
   7937     // If there is a previous defintion, suggest a fix-it.
   7938     if (Previous->getDefinition()) {
   7939         Diag(NewTagLoc, diag::note_struct_class_suggestion)
   7940           << (Redecl->getTagKind() == TTK_Class)
   7941           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
   7942                         Redecl->getTagKind() == TTK_Class? "class" : "struct");
   7943     }
   7944 
   7945     return true;
   7946   }
   7947   return false;
   7948 }
   7949 
   7950 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
   7951 /// former case, Name will be non-null.  In the later case, Name will be null.
   7952 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
   7953 /// reference/declaration/definition of a tag.
   7954 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
   7955                      SourceLocation KWLoc, CXXScopeSpec &SS,
   7956                      IdentifierInfo *Name, SourceLocation NameLoc,
   7957                      AttributeList *Attr, AccessSpecifier AS,
   7958                      SourceLocation ModulePrivateLoc,
   7959                      MultiTemplateParamsArg TemplateParameterLists,
   7960                      bool &OwnedDecl, bool &IsDependent,
   7961                      SourceLocation ScopedEnumKWLoc,
   7962                      bool ScopedEnumUsesClassTag,
   7963                      TypeResult UnderlyingType) {
   7964   // If this is not a definition, it must have a name.
   7965   IdentifierInfo *OrigName = Name;
   7966   assert((Name != 0 || TUK == TUK_Definition) &&
   7967          "Nameless record must be a definition!");
   7968   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
   7969 
   7970   OwnedDecl = false;
   7971   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   7972   bool ScopedEnum = ScopedEnumKWLoc.isValid();
   7973 
   7974   // FIXME: Check explicit specializations more carefully.
   7975   bool isExplicitSpecialization = false;
   7976   bool Invalid = false;
   7977 
   7978   // We only need to do this matching if we have template parameters
   7979   // or a scope specifier, which also conveniently avoids this work
   7980   // for non-C++ cases.
   7981   if (TemplateParameterLists.size() > 0 ||
   7982       (SS.isNotEmpty() && TUK != TUK_Reference)) {
   7983     if (TemplateParameterList *TemplateParams
   7984           = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
   7985                                                 TemplateParameterLists.get(),
   7986                                                 TemplateParameterLists.size(),
   7987                                                     TUK == TUK_Friend,
   7988                                                     isExplicitSpecialization,
   7989                                                     Invalid)) {
   7990       if (TemplateParams->size() > 0) {
   7991         // This is a declaration or definition of a class template (which may
   7992         // be a member of another template).
   7993 
   7994         if (Invalid)
   7995           return 0;
   7996 
   7997         OwnedDecl = false;
   7998         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
   7999                                                SS, Name, NameLoc, Attr,
   8000                                                TemplateParams, AS,
   8001                                                ModulePrivateLoc,
   8002                                            TemplateParameterLists.size() - 1,
   8003                  (TemplateParameterList**) TemplateParameterLists.release());
   8004         return Result.get();
   8005       } else {
   8006         // The "template<>" header is extraneous.
   8007         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
   8008           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
   8009         isExplicitSpecialization = true;
   8010       }
   8011     }
   8012   }
   8013 
   8014   // Figure out the underlying type if this a enum declaration. We need to do
   8015   // this early, because it's needed to detect if this is an incompatible
   8016   // redeclaration.
   8017   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
   8018 
   8019   if (Kind == TTK_Enum) {
   8020     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
   8021       // No underlying type explicitly specified, or we failed to parse the
   8022       // type, default to int.
   8023       EnumUnderlying = Context.IntTy.getTypePtr();
   8024     else if (UnderlyingType.get()) {
   8025       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
   8026       // integral type; any cv-qualification is ignored.
   8027       TypeSourceInfo *TI = 0;
   8028       GetTypeFromParser(UnderlyingType.get(), &TI);
   8029       EnumUnderlying = TI;
   8030 
   8031       if (CheckEnumUnderlyingType(TI))
   8032         // Recover by falling back to int.
   8033         EnumUnderlying = Context.IntTy.getTypePtr();
   8034 
   8035       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
   8036                                           UPPC_FixedUnderlyingType))
   8037         EnumUnderlying = Context.IntTy.getTypePtr();
   8038 
   8039     } else if (getLangOpts().MicrosoftMode)
   8040       // Microsoft enums are always of int type.
   8041       EnumUnderlying = Context.IntTy.getTypePtr();
   8042   }
   8043 
   8044   DeclContext *SearchDC = CurContext;
   8045   DeclContext *DC = CurContext;
   8046   bool isStdBadAlloc = false;
   8047 
   8048   RedeclarationKind Redecl = ForRedeclaration;
   8049   if (TUK == TUK_Friend || TUK == TUK_Reference)
   8050     Redecl = NotForRedeclaration;
   8051 
   8052   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
   8053 
   8054   if (Name && SS.isNotEmpty()) {
   8055     // We have a nested-name tag ('struct foo::bar').
   8056 
   8057     // Check for invalid 'foo::'.
   8058     if (SS.isInvalid()) {
   8059       Name = 0;
   8060       goto CreateNewDecl;
   8061     }
   8062 
   8063     // If this is a friend or a reference to a class in a dependent
   8064     // context, don't try to make a decl for it.
   8065     if (TUK == TUK_Friend || TUK == TUK_Reference) {
   8066       DC = computeDeclContext(SS, false);
   8067       if (!DC) {
   8068         IsDependent = true;
   8069         return 0;
   8070       }
   8071     } else {
   8072       DC = computeDeclContext(SS, true);
   8073       if (!DC) {
   8074         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
   8075           << SS.getRange();
   8076         return 0;
   8077       }
   8078     }
   8079 
   8080     if (RequireCompleteDeclContext(SS, DC))
   8081       return 0;
   8082 
   8083     SearchDC = DC;
   8084     // Look-up name inside 'foo::'.
   8085     LookupQualifiedName(Previous, DC);
   8086 
   8087     if (Previous.isAmbiguous())
   8088       return 0;
   8089 
   8090     if (Previous.empty()) {
   8091       // Name lookup did not find anything. However, if the
   8092       // nested-name-specifier refers to the current instantiation,
   8093       // and that current instantiation has any dependent base
   8094       // classes, we might find something at instantiation time: treat
   8095       // this as a dependent elaborated-type-specifier.
   8096       // But this only makes any sense for reference-like lookups.
   8097       if (Previous.wasNotFoundInCurrentInstantiation() &&
   8098           (TUK == TUK_Reference || TUK == TUK_Friend)) {
   8099         IsDependent = true;
   8100         return 0;
   8101       }
   8102 
   8103       // A tag 'foo::bar' must already exist.
   8104       Diag(NameLoc, diag::err_not_tag_in_scope)
   8105         << Kind << Name << DC << SS.getRange();
   8106       Name = 0;
   8107       Invalid = true;
   8108       goto CreateNewDecl;
   8109     }
   8110   } else if (Name) {
   8111     // If this is a named struct, check to see if there was a previous forward
   8112     // declaration or definition.
   8113     // FIXME: We're looking into outer scopes here, even when we
   8114     // shouldn't be. Doing so can result in ambiguities that we
   8115     // shouldn't be diagnosing.
   8116     LookupName(Previous, S);
   8117 
   8118     if (Previous.isAmbiguous() &&
   8119         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
   8120       LookupResult::Filter F = Previous.makeFilter();
   8121       while (F.hasNext()) {
   8122         NamedDecl *ND = F.next();
   8123         if (ND->getDeclContext()->getRedeclContext() != SearchDC)
   8124           F.erase();
   8125       }
   8126       F.done();
   8127     }
   8128 
   8129     // Note:  there used to be some attempt at recovery here.
   8130     if (Previous.isAmbiguous())
   8131       return 0;
   8132 
   8133     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
   8134       // FIXME: This makes sure that we ignore the contexts associated
   8135       // with C structs, unions, and enums when looking for a matching
   8136       // tag declaration or definition. See the similar lookup tweak
   8137       // in Sema::LookupName; is there a better way to deal with this?
   8138       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
   8139         SearchDC = SearchDC->getParent();
   8140     }
   8141   } else if (S->isFunctionPrototypeScope()) {
   8142     // If this is an enum declaration in function prototype scope, set its
   8143     // initial context to the translation unit.
   8144     // FIXME: [citation needed]
   8145     SearchDC = Context.getTranslationUnitDecl();
   8146   }
   8147 
   8148   if (Previous.isSingleResult() &&
   8149       Previous.getFoundDecl()->isTemplateParameter()) {
   8150     // Maybe we will complain about the shadowed template parameter.
   8151     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
   8152     // Just pretend that we didn't see the previous declaration.
   8153     Previous.clear();
   8154   }
   8155 
   8156   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
   8157       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
   8158     // This is a declaration of or a reference to "std::bad_alloc".
   8159     isStdBadAlloc = true;
   8160 
   8161     if (Previous.empty() && StdBadAlloc) {
   8162       // std::bad_alloc has been implicitly declared (but made invisible to
   8163       // name lookup). Fill in this implicit declaration as the previous
   8164       // declaration, so that the declarations get chained appropriately.
   8165       Previous.addDecl(getStdBadAlloc());
   8166     }
   8167   }
   8168 
   8169   // If we didn't find a previous declaration, and this is a reference
   8170   // (or friend reference), move to the correct scope.  In C++, we
   8171   // also need to do a redeclaration lookup there, just in case
   8172   // there's a shadow friend decl.
   8173   if (Name && Previous.empty() &&
   8174       (TUK == TUK_Reference || TUK == TUK_Friend)) {
   8175     if (Invalid) goto CreateNewDecl;
   8176     assert(SS.isEmpty());
   8177 
   8178     if (TUK == TUK_Reference) {
   8179       // C++ [basic.scope.pdecl]p5:
   8180       //   -- for an elaborated-type-specifier of the form
   8181       //
   8182       //          class-key identifier
   8183       //
   8184       //      if the elaborated-type-specifier is used in the
   8185       //      decl-specifier-seq or parameter-declaration-clause of a
   8186       //      function defined in namespace scope, the identifier is
   8187       //      declared as a class-name in the namespace that contains
   8188       //      the declaration; otherwise, except as a friend
   8189       //      declaration, the identifier is declared in the smallest
   8190       //      non-class, non-function-prototype scope that contains the
   8191       //      declaration.
   8192       //
   8193       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
   8194       // C structs and unions.
   8195       //
   8196       // It is an error in C++ to declare (rather than define) an enum
   8197       // type, including via an elaborated type specifier.  We'll
   8198       // diagnose that later; for now, declare the enum in the same
   8199       // scope as we would have picked for any other tag type.
   8200       //
   8201       // GNU C also supports this behavior as part of its incomplete
   8202       // enum types extension, while GNU C++ does not.
   8203       //
   8204       // Find the context where we'll be declaring the tag.
   8205       // FIXME: We would like to maintain the current DeclContext as the
   8206       // lexical context,
   8207       while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
   8208         SearchDC = SearchDC->getParent();
   8209 
   8210       // Find the scope where we'll be declaring the tag.
   8211       while (S->isClassScope() ||
   8212              (getLangOpts().CPlusPlus &&
   8213               S->isFunctionPrototypeScope()) ||
   8214              ((S->getFlags() & Scope::DeclScope) == 0) ||
   8215              (S->getEntity() &&
   8216               ((DeclContext *)S->getEntity())->isTransparentContext()))
   8217         S = S->getParent();
   8218     } else {
   8219       assert(TUK == TUK_Friend);
   8220       // C++ [namespace.memdef]p3:
   8221       //   If a friend declaration in a non-local class first declares a
   8222       //   class or function, the friend class or function is a member of
   8223       //   the innermost enclosing namespace.
   8224       SearchDC = SearchDC->getEnclosingNamespaceContext();
   8225     }
   8226 
   8227     // In C++, we need to do a redeclaration lookup to properly
   8228     // diagnose some problems.
   8229     if (getLangOpts().CPlusPlus) {
   8230       Previous.setRedeclarationKind(ForRedeclaration);
   8231       LookupQualifiedName(Previous, SearchDC);
   8232     }
   8233   }
   8234 
   8235   if (!Previous.empty()) {
   8236     NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
   8237 
   8238     // It's okay to have a tag decl in the same scope as a typedef
   8239     // which hides a tag decl in the same scope.  Finding this
   8240     // insanity with a redeclaration lookup can only actually happen
   8241     // in C++.
   8242     //
   8243     // This is also okay for elaborated-type-specifiers, which is
   8244     // technically forbidden by the current standard but which is
   8245     // okay according to the likely resolution of an open issue;
   8246     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
   8247     if (getLangOpts().CPlusPlus) {
   8248       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
   8249         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
   8250           TagDecl *Tag = TT->getDecl();
   8251           if (Tag->getDeclName() == Name &&
   8252               Tag->getDeclContext()->getRedeclContext()
   8253                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
   8254             PrevDecl = Tag;
   8255             Previous.clear();
   8256             Previous.addDecl(Tag);
   8257             Previous.resolveKind();
   8258           }
   8259         }
   8260       }
   8261     }
   8262 
   8263     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
   8264       // If this is a use of a previous tag, or if the tag is already declared
   8265       // in the same scope (so that the definition/declaration completes or
   8266       // rementions the tag), reuse the decl.
   8267       if (TUK == TUK_Reference || TUK == TUK_Friend ||
   8268           isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
   8269         // Make sure that this wasn't declared as an enum and now used as a
   8270         // struct or something similar.
   8271         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
   8272                                           TUK == TUK_Definition, KWLoc,
   8273                                           *Name)) {
   8274           bool SafeToContinue
   8275             = (PrevTagDecl->getTagKind() != TTK_Enum &&
   8276                Kind != TTK_Enum);
   8277           if (SafeToContinue)
   8278             Diag(KWLoc, diag::err_use_with_wrong_tag)
   8279               << Name
   8280               << FixItHint::CreateReplacement(SourceRange(KWLoc),
   8281                                               PrevTagDecl->getKindName());
   8282           else
   8283             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
   8284           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
   8285 
   8286           if (SafeToContinue)
   8287             Kind = PrevTagDecl->getTagKind();
   8288           else {
   8289             // Recover by making this an anonymous redefinition.
   8290             Name = 0;
   8291             Previous.clear();
   8292             Invalid = true;
   8293           }
   8294         }
   8295 
   8296         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
   8297           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
   8298 
   8299           // If this is an elaborated-type-specifier for a scoped enumeration,
   8300           // the 'class' keyword is not necessary and not permitted.
   8301           if (TUK == TUK_Reference || TUK == TUK_Friend) {
   8302             if (ScopedEnum)
   8303               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
   8304                 << PrevEnum->isScoped()
   8305                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
   8306             return PrevTagDecl;
   8307           }
   8308 
   8309           QualType EnumUnderlyingTy;
   8310           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
   8311             EnumUnderlyingTy = TI->getType();
   8312           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
   8313             EnumUnderlyingTy = QualType(T, 0);
   8314 
   8315           // All conflicts with previous declarations are recovered by
   8316           // returning the previous declaration, unless this is a definition,
   8317           // in which case we want the caller to bail out.
   8318           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
   8319                                      ScopedEnum, EnumUnderlyingTy, PrevEnum))
   8320             return TUK == TUK_Declaration ? PrevTagDecl : 0;
   8321         }
   8322 
   8323         if (!Invalid) {
   8324           // If this is a use, just return the declaration we found.
   8325 
   8326           // FIXME: In the future, return a variant or some other clue
   8327           // for the consumer of this Decl to know it doesn't own it.
   8328           // For our current ASTs this shouldn't be a problem, but will
   8329           // need to be changed with DeclGroups.
   8330           if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
   8331                getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
   8332             return PrevTagDecl;
   8333 
   8334           // Diagnose attempts to redefine a tag.
   8335           if (TUK == TUK_Definition) {
   8336             if (TagDecl *Def = PrevTagDecl->getDefinition()) {
   8337               // If we're defining a specialization and the previous definition
   8338               // is from an implicit instantiation, don't emit an error
   8339               // here; we'll catch this in the general case below.
   8340               bool IsExplicitSpecializationAfterInstantiation = false;
   8341               if (isExplicitSpecialization) {
   8342                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
   8343                   IsExplicitSpecializationAfterInstantiation =
   8344                     RD->getTemplateSpecializationKind() !=
   8345                     TSK_ExplicitSpecialization;
   8346                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
   8347                   IsExplicitSpecializationAfterInstantiation =
   8348                     ED->getTemplateSpecializationKind() !=
   8349                     TSK_ExplicitSpecialization;
   8350               }
   8351 
   8352               if (!IsExplicitSpecializationAfterInstantiation) {
   8353                 // A redeclaration in function prototype scope in C isn't
   8354                 // visible elsewhere, so merely issue a warning.
   8355                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
   8356                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
   8357                 else
   8358                   Diag(NameLoc, diag::err_redefinition) << Name;
   8359                 Diag(Def->getLocation(), diag::note_previous_definition);
   8360                 // If this is a redefinition, recover by making this
   8361                 // struct be anonymous, which will make any later
   8362                 // references get the previous definition.
   8363                 Name = 0;
   8364                 Previous.clear();
   8365                 Invalid = true;
   8366               }
   8367             } else {
   8368               // If the type is currently being defined, complain
   8369               // about a nested redefinition.
   8370               const TagType *Tag
   8371                 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
   8372               if (Tag->isBeingDefined()) {
   8373                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
   8374                 Diag(PrevTagDecl->getLocation(),
   8375                      diag::note_previous_definition);
   8376                 Name = 0;
   8377                 Previous.clear();
   8378                 Invalid = true;
   8379               }
   8380             }
   8381 
   8382             // Okay, this is definition of a previously declared or referenced
   8383             // tag PrevDecl. We're going to create a new Decl for it.
   8384           }
   8385         }
   8386         // If we get here we have (another) forward declaration or we
   8387         // have a definition.  Just create a new decl.
   8388 
   8389       } else {
   8390         // If we get here, this is a definition of a new tag type in a nested
   8391         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
   8392         // new decl/type.  We set PrevDecl to NULL so that the entities
   8393         // have distinct types.
   8394         Previous.clear();
   8395       }
   8396       // If we get here, we're going to create a new Decl. If PrevDecl
   8397       // is non-NULL, it's a definition of the tag declared by
   8398       // PrevDecl. If it's NULL, we have a new definition.
   8399 
   8400 
   8401     // Otherwise, PrevDecl is not a tag, but was found with tag
   8402     // lookup.  This is only actually possible in C++, where a few
   8403     // things like templates still live in the tag namespace.
   8404     } else {
   8405       // Use a better diagnostic if an elaborated-type-specifier
   8406       // found the wrong kind of type on the first
   8407       // (non-redeclaration) lookup.
   8408       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
   8409           !Previous.isForRedeclaration()) {
   8410         unsigned Kind = 0;
   8411         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
   8412         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
   8413         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
   8414         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
   8415         Diag(PrevDecl->getLocation(), diag::note_declared_at);
   8416         Invalid = true;
   8417 
   8418       // Otherwise, only diagnose if the declaration is in scope.
   8419       } else if (!isDeclInScope(PrevDecl, SearchDC, S,
   8420                                 isExplicitSpecialization)) {
   8421         // do nothing
   8422 
   8423       // Diagnose implicit declarations introduced by elaborated types.
   8424       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
   8425         unsigned Kind = 0;
   8426         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
   8427         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
   8428         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
   8429         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
   8430         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
   8431         Invalid = true;
   8432 
   8433       // Otherwise it's a declaration.  Call out a particularly common
   8434       // case here.
   8435       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
   8436         unsigned Kind = 0;
   8437         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
   8438         Diag(NameLoc, diag::err_tag_definition_of_typedef)
   8439           << Name << Kind << TND->getUnderlyingType();
   8440         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
   8441         Invalid = true;
   8442 
   8443       // Otherwise, diagnose.
   8444       } else {
   8445         // The tag name clashes with something else in the target scope,
   8446         // issue an error and recover by making this tag be anonymous.
   8447         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
   8448         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   8449         Name = 0;
   8450         Invalid = true;
   8451       }
   8452 
   8453       // The existing declaration isn't relevant to us; we're in a
   8454       // new scope, so clear out the previous declaration.
   8455       Previous.clear();
   8456     }
   8457   }
   8458 
   8459 CreateNewDecl:
   8460 
   8461   TagDecl *PrevDecl = 0;
   8462   if (Previous.isSingleResult())
   8463     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
   8464 
   8465   // If there is an identifier, use the location of the identifier as the
   8466   // location of the decl, otherwise use the location of the struct/union
   8467   // keyword.
   8468   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
   8469 
   8470   // Otherwise, create a new declaration. If there is a previous
   8471   // declaration of the same entity, the two will be linked via
   8472   // PrevDecl.
   8473   TagDecl *New;
   8474 
   8475   bool IsForwardReference = false;
   8476   if (Kind == TTK_Enum) {
   8477     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
   8478     // enum X { A, B, C } D;    D should chain to X.
   8479     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
   8480                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
   8481                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
   8482     // If this is an undefined enum, warn.
   8483     if (TUK != TUK_Definition && !Invalid) {
   8484       TagDecl *Def;
   8485       if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
   8486         // C++0x: 7.2p2: opaque-enum-declaration.
   8487         // Conflicts are diagnosed above. Do nothing.
   8488       }
   8489       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
   8490         Diag(Loc, diag::ext_forward_ref_enum_def)
   8491           << New;
   8492         Diag(Def->getLocation(), diag::note_previous_definition);
   8493       } else {
   8494         unsigned DiagID = diag::ext_forward_ref_enum;
   8495         if (getLangOpts().MicrosoftMode)
   8496           DiagID = diag::ext_ms_forward_ref_enum;
   8497         else if (getLangOpts().CPlusPlus)
   8498           DiagID = diag::err_forward_ref_enum;
   8499         Diag(Loc, DiagID);
   8500 
   8501         // If this is a forward-declared reference to an enumeration, make a
   8502         // note of it; we won't actually be introducing the declaration into
   8503         // the declaration context.
   8504         if (TUK == TUK_Reference)
   8505           IsForwardReference = true;
   8506       }
   8507     }
   8508 
   8509     if (EnumUnderlying) {
   8510       EnumDecl *ED = cast<EnumDecl>(New);
   8511       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
   8512         ED->setIntegerTypeSourceInfo(TI);
   8513       else
   8514         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
   8515       ED->setPromotionType(ED->getIntegerType());
   8516     }
   8517 
   8518   } else {
   8519     // struct/union/class
   8520 
   8521     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
   8522     // struct X { int A; } D;    D should chain to X.
   8523     if (getLangOpts().CPlusPlus) {
   8524       // FIXME: Look for a way to use RecordDecl for simple structs.
   8525       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
   8526                                   cast_or_null<CXXRecordDecl>(PrevDecl));
   8527 
   8528       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
   8529         StdBadAlloc = cast<CXXRecordDecl>(New);
   8530     } else
   8531       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
   8532                                cast_or_null<RecordDecl>(PrevDecl));
   8533   }
   8534 
   8535   // Maybe add qualifier info.
   8536   if (SS.isNotEmpty()) {
   8537     if (SS.isSet()) {
   8538       // If this is either a declaration or a definition, check the
   8539       // nested-name-specifier against the current context. We don't do this
   8540       // for explicit specializations, because they have similar checking
   8541       // (with more specific diagnostics) in the call to
   8542       // CheckMemberSpecialization, below.
   8543       if (!isExplicitSpecialization &&
   8544           (TUK == TUK_Definition || TUK == TUK_Declaration) &&
   8545           diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
   8546         Invalid = true;
   8547 
   8548       New->setQualifierInfo(SS.getWithLocInContext(Context));
   8549       if (TemplateParameterLists.size() > 0) {
   8550         New->setTemplateParameterListsInfo(Context,
   8551                                            TemplateParameterLists.size(),
   8552                     (TemplateParameterList**) TemplateParameterLists.release());
   8553       }
   8554     }
   8555     else
   8556       Invalid = true;
   8557   }
   8558 
   8559   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
   8560     // Add alignment attributes if necessary; these attributes are checked when
   8561     // the ASTContext lays out the structure.
   8562     //
   8563     // It is important for implementing the correct semantics that this
   8564     // happen here (in act on tag decl). The #pragma pack stack is
   8565     // maintained as a result of parser callbacks which can occur at
   8566     // many points during the parsing of a struct declaration (because
   8567     // the #pragma tokens are effectively skipped over during the
   8568     // parsing of the struct).
   8569     AddAlignmentAttributesForRecord(RD);
   8570 
   8571     AddMsStructLayoutForRecord(RD);
   8572   }
   8573 
   8574   if (ModulePrivateLoc.isValid()) {
   8575     if (isExplicitSpecialization)
   8576       Diag(New->getLocation(), diag::err_module_private_specialization)
   8577         << 2
   8578         << FixItHint::CreateRemoval(ModulePrivateLoc);
   8579     // __module_private__ does not apply to local classes. However, we only
   8580     // diagnose this as an error when the declaration specifiers are
   8581     // freestanding. Here, we just ignore the __module_private__.
   8582     else if (!SearchDC->isFunctionOrMethod())
   8583       New->setModulePrivate();
   8584   }
   8585 
   8586   // If this is a specialization of a member class (of a class template),
   8587   // check the specialization.
   8588   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
   8589     Invalid = true;
   8590 
   8591   if (Invalid)
   8592     New->setInvalidDecl();
   8593 
   8594   if (Attr)
   8595     ProcessDeclAttributeList(S, New, Attr);
   8596 
   8597   // If we're declaring or defining a tag in function prototype scope
   8598   // in C, note that this type can only be used within the function.
   8599   if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
   8600     Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
   8601 
   8602   // Set the lexical context. If the tag has a C++ scope specifier, the
   8603   // lexical context will be different from the semantic context.
   8604   New->setLexicalDeclContext(CurContext);
   8605 
   8606   // Mark this as a friend decl if applicable.
   8607   // In Microsoft mode, a friend declaration also acts as a forward
   8608   // declaration so we always pass true to setObjectOfFriendDecl to make
   8609   // the tag name visible.
   8610   if (TUK == TUK_Friend)
   8611     New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
   8612                                getLangOpts().MicrosoftExt);
   8613 
   8614   // Set the access specifier.
   8615   if (!Invalid && SearchDC->isRecord())
   8616     SetMemberAccessSpecifier(New, PrevDecl, AS);
   8617 
   8618   if (TUK == TUK_Definition)
   8619     New->startDefinition();
   8620 
   8621   // If this has an identifier, add it to the scope stack.
   8622   if (TUK == TUK_Friend) {
   8623     // We might be replacing an existing declaration in the lookup tables;
   8624     // if so, borrow its access specifier.
   8625     if (PrevDecl)
   8626       New->setAccess(PrevDecl->getAccess());
   8627 
   8628     DeclContext *DC = New->getDeclContext()->getRedeclContext();
   8629     DC->makeDeclVisibleInContext(New);
   8630     if (Name) // can be null along some error paths
   8631       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
   8632         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
   8633   } else if (Name) {
   8634     S = getNonFieldDeclScope(S);
   8635     PushOnScopeChains(New, S, !IsForwardReference);
   8636     if (IsForwardReference)
   8637       SearchDC->makeDeclVisibleInContext(New);
   8638 
   8639   } else {
   8640     CurContext->addDecl(New);
   8641   }
   8642 
   8643   // If this is the C FILE type, notify the AST context.
   8644   if (IdentifierInfo *II = New->getIdentifier())
   8645     if (!New->isInvalidDecl() &&
   8646         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
   8647         II->isStr("FILE"))
   8648       Context.setFILEDecl(New);
   8649 
   8650   // If we were in function prototype scope (and not in C++ mode), add this
   8651   // tag to the list of decls to inject into the function definition scope.
   8652   if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
   8653       InFunctionDeclarator && Name)
   8654     DeclsInPrototypeScope.push_back(New);
   8655 
   8656   OwnedDecl = true;
   8657   return New;
   8658 }
   8659 
   8660 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
   8661   AdjustDeclIfTemplate(TagD);
   8662   TagDecl *Tag = cast<TagDecl>(TagD);
   8663 
   8664   // Enter the tag context.
   8665   PushDeclContext(S, Tag);
   8666 }
   8667 
   8668 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
   8669   assert(isa<ObjCContainerDecl>(IDecl) &&
   8670          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
   8671   DeclContext *OCD = cast<DeclContext>(IDecl);
   8672   assert(getContainingDC(OCD) == CurContext &&
   8673       "The next DeclContext should be lexically contained in the current one.");
   8674   CurContext = OCD;
   8675   return IDecl;
   8676 }
   8677 
   8678 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
   8679                                            SourceLocation FinalLoc,
   8680                                            SourceLocation LBraceLoc) {
   8681   AdjustDeclIfTemplate(TagD);
   8682   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
   8683 
   8684   FieldCollector->StartClass();
   8685 
   8686   if (!Record->getIdentifier())
   8687     return;
   8688 
   8689   if (FinalLoc.isValid())
   8690     Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
   8691 
   8692   // C++ [class]p2:
   8693   //   [...] The class-name is also inserted into the scope of the
   8694   //   class itself; this is known as the injected-class-name. For
   8695   //   purposes of access checking, the injected-class-name is treated
   8696   //   as if it were a public member name.
   8697   CXXRecordDecl *InjectedClassName
   8698     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
   8699                             Record->getLocStart(), Record->getLocation(),
   8700                             Record->getIdentifier(),
   8701                             /*PrevDecl=*/0,
   8702                             /*DelayTypeCreation=*/true);
   8703   Context.getTypeDeclType(InjectedClassName, Record);
   8704   InjectedClassName->setImplicit();
   8705   InjectedClassName->setAccess(AS_public);
   8706   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
   8707       InjectedClassName->setDescribedClassTemplate(Template);
   8708   PushOnScopeChains(InjectedClassName, S);
   8709   assert(InjectedClassName->isInjectedClassName() &&
   8710          "Broken injected-class-name");
   8711 }
   8712 
   8713 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
   8714                                     SourceLocation RBraceLoc) {
   8715   AdjustDeclIfTemplate(TagD);
   8716   TagDecl *Tag = cast<TagDecl>(TagD);
   8717   Tag->setRBraceLoc(RBraceLoc);
   8718 
   8719   // Make sure we "complete" the definition even it is invalid.
   8720   if (Tag->isBeingDefined()) {
   8721     assert(Tag->isInvalidDecl() && "We should already have completed it");
   8722     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
   8723       RD->completeDefinition();
   8724   }
   8725 
   8726   if (isa<CXXRecordDecl>(Tag))
   8727     FieldCollector->FinishClass();
   8728 
   8729   // Exit this scope of this tag's definition.
   8730   PopDeclContext();
   8731 
   8732   // Notify the consumer that we've defined a tag.
   8733   Consumer.HandleTagDeclDefinition(Tag);
   8734 }
   8735 
   8736 void Sema::ActOnObjCContainerFinishDefinition() {
   8737   // Exit this scope of this interface definition.
   8738   PopDeclContext();
   8739 }
   8740 
   8741 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
   8742   assert(DC == CurContext && "Mismatch of container contexts");
   8743   OriginalLexicalContext = DC;
   8744   ActOnObjCContainerFinishDefinition();
   8745 }
   8746 
   8747 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
   8748   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
   8749   OriginalLexicalContext = 0;
   8750 }
   8751 
   8752 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
   8753   AdjustDeclIfTemplate(TagD);
   8754   TagDecl *Tag = cast<TagDecl>(TagD);
   8755   Tag->setInvalidDecl();
   8756 
   8757   // Make sure we "complete" the definition even it is invalid.
   8758   if (Tag->isBeingDefined()) {
   8759     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
   8760       RD->completeDefinition();
   8761   }
   8762 
   8763   // We're undoing ActOnTagStartDefinition here, not
   8764   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
   8765   // the FieldCollector.
   8766 
   8767   PopDeclContext();
   8768 }
   8769 
   8770 // Note that FieldName may be null for anonymous bitfields.
   8771 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
   8772                                 IdentifierInfo *FieldName,
   8773                                 QualType FieldTy, Expr *BitWidth,
   8774                                 bool *ZeroWidth) {
   8775   // Default to true; that shouldn't confuse checks for emptiness
   8776   if (ZeroWidth)
   8777     *ZeroWidth = true;
   8778 
   8779   // C99 6.7.2.1p4 - verify the field type.
   8780   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
   8781   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
   8782     // Handle incomplete types with specific error.
   8783     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
   8784       return ExprError();
   8785     if (FieldName)
   8786       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
   8787         << FieldName << FieldTy << BitWidth->getSourceRange();
   8788     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
   8789       << FieldTy << BitWidth->getSourceRange();
   8790   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
   8791                                              UPPC_BitFieldWidth))
   8792     return ExprError();
   8793 
   8794   // If the bit-width is type- or value-dependent, don't try to check
   8795   // it now.
   8796   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
   8797     return Owned(BitWidth);
   8798 
   8799   llvm::APSInt Value;
   8800   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
   8801   if (ICE.isInvalid())
   8802     return ICE;
   8803   BitWidth = ICE.take();
   8804 
   8805   if (Value != 0 && ZeroWidth)
   8806     *ZeroWidth = false;
   8807 
   8808   // Zero-width bitfield is ok for anonymous field.
   8809   if (Value == 0 && FieldName)
   8810     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
   8811 
   8812   if (Value.isSigned() && Value.isNegative()) {
   8813     if (FieldName)
   8814       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
   8815                << FieldName << Value.toString(10);
   8816     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
   8817       << Value.toString(10);
   8818   }
   8819 
   8820   if (!FieldTy->isDependentType()) {
   8821     uint64_t TypeSize = Context.getTypeSize(FieldTy);
   8822     if (Value.getZExtValue() > TypeSize) {
   8823       if (!getLangOpts().CPlusPlus) {
   8824         if (FieldName)
   8825           return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
   8826             << FieldName << (unsigned)Value.getZExtValue()
   8827             << (unsigned)TypeSize;
   8828 
   8829         return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
   8830           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
   8831       }
   8832 
   8833       if (FieldName)
   8834         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
   8835           << FieldName << (unsigned)Value.getZExtValue()
   8836           << (unsigned)TypeSize;
   8837       else
   8838         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
   8839           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
   8840     }
   8841   }
   8842 
   8843   return Owned(BitWidth);
   8844 }
   8845 
   8846 /// ActOnField - Each field of a C struct/union is passed into this in order
   8847 /// to create a FieldDecl object for it.
   8848 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
   8849                        Declarator &D, Expr *BitfieldWidth) {
   8850   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
   8851                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
   8852                                /*HasInit=*/false, AS_public);
   8853   return Res;
   8854 }
   8855 
   8856 /// HandleField - Analyze a field of a C struct or a C++ data member.
   8857 ///
   8858 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
   8859                              SourceLocation DeclStart,
   8860                              Declarator &D, Expr *BitWidth, bool HasInit,
   8861                              AccessSpecifier AS) {
   8862   IdentifierInfo *II = D.getIdentifier();
   8863   SourceLocation Loc = DeclStart;
   8864   if (II) Loc = D.getIdentifierLoc();
   8865 
   8866   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   8867   QualType T = TInfo->getType();
   8868   if (getLangOpts().CPlusPlus) {
   8869     CheckExtraCXXDefaultArguments(D);
   8870 
   8871     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   8872                                         UPPC_DataMemberType)) {
   8873       D.setInvalidType();
   8874       T = Context.IntTy;
   8875       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
   8876     }
   8877   }
   8878 
   8879   DiagnoseFunctionSpecifiers(D);
   8880 
   8881   if (D.getDeclSpec().isThreadSpecified())
   8882     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   8883   if (D.getDeclSpec().isConstexprSpecified())
   8884     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
   8885       << 2;
   8886 
   8887   // Check to see if this name was declared as a member previously
   8888   NamedDecl *PrevDecl = 0;
   8889   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
   8890   LookupName(Previous, S);
   8891   switch (Previous.getResultKind()) {
   8892     case LookupResult::Found:
   8893     case LookupResult::FoundUnresolvedValue:
   8894       PrevDecl = Previous.getAsSingle<NamedDecl>();
   8895       break;
   8896 
   8897     case LookupResult::FoundOverloaded:
   8898       PrevDecl = Previous.getRepresentativeDecl();
   8899       break;
   8900 
   8901     case LookupResult::NotFound:
   8902     case LookupResult::NotFoundInCurrentInstantiation:
   8903     case LookupResult::Ambiguous:
   8904       break;
   8905   }
   8906   Previous.suppressDiagnostics();
   8907 
   8908   if (PrevDecl && PrevDecl->isTemplateParameter()) {
   8909     // Maybe we will complain about the shadowed template parameter.
   8910     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   8911     // Just pretend that we didn't see the previous declaration.
   8912     PrevDecl = 0;
   8913   }
   8914 
   8915   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
   8916     PrevDecl = 0;
   8917 
   8918   bool Mutable
   8919     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
   8920   SourceLocation TSSL = D.getLocStart();
   8921   FieldDecl *NewFD
   8922     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
   8923                      TSSL, AS, PrevDecl, &D);
   8924 
   8925   if (NewFD->isInvalidDecl())
   8926     Record->setInvalidDecl();
   8927 
   8928   if (D.getDeclSpec().isModulePrivateSpecified())
   8929     NewFD->setModulePrivate();
   8930 
   8931   if (NewFD->isInvalidDecl() && PrevDecl) {
   8932     // Don't introduce NewFD into scope; there's already something
   8933     // with the same name in the same scope.
   8934   } else if (II) {
   8935     PushOnScopeChains(NewFD, S);
   8936   } else
   8937     Record->addDecl(NewFD);
   8938 
   8939   return NewFD;
   8940 }
   8941 
   8942 /// \brief Build a new FieldDecl and check its well-formedness.
   8943 ///
   8944 /// This routine builds a new FieldDecl given the fields name, type,
   8945 /// record, etc. \p PrevDecl should refer to any previous declaration
   8946 /// with the same name and in the same scope as the field to be
   8947 /// created.
   8948 ///
   8949 /// \returns a new FieldDecl.
   8950 ///
   8951 /// \todo The Declarator argument is a hack. It will be removed once
   8952 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
   8953                                 TypeSourceInfo *TInfo,
   8954                                 RecordDecl *Record, SourceLocation Loc,
   8955                                 bool Mutable, Expr *BitWidth, bool HasInit,
   8956                                 SourceLocation TSSL,
   8957                                 AccessSpecifier AS, NamedDecl *PrevDecl,
   8958                                 Declarator *D) {
   8959   IdentifierInfo *II = Name.getAsIdentifierInfo();
   8960   bool InvalidDecl = false;
   8961   if (D) InvalidDecl = D->isInvalidType();
   8962 
   8963   // If we receive a broken type, recover by assuming 'int' and
   8964   // marking this declaration as invalid.
   8965   if (T.isNull()) {
   8966     InvalidDecl = true;
   8967     T = Context.IntTy;
   8968   }
   8969 
   8970   QualType EltTy = Context.getBaseElementType(T);
   8971   if (!EltTy->isDependentType()) {
   8972     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
   8973       // Fields of incomplete type force their record to be invalid.
   8974       Record->setInvalidDecl();
   8975       InvalidDecl = true;
   8976     } else {
   8977       NamedDecl *Def;
   8978       EltTy->isIncompleteType(&Def);
   8979       if (Def && Def->isInvalidDecl()) {
   8980         Record->setInvalidDecl();
   8981         InvalidDecl = true;
   8982       }
   8983     }
   8984   }
   8985 
   8986   // C99 6.7.2.1p8: A member of a structure or union may have any type other
   8987   // than a variably modified type.
   8988   if (!InvalidDecl && T->isVariablyModifiedType()) {
   8989     bool SizeIsNegative;
   8990     llvm::APSInt Oversized;
   8991     QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
   8992                                                            SizeIsNegative,
   8993                                                            Oversized);
   8994     if (!FixedTy.isNull()) {
   8995       Diag(Loc, diag::warn_illegal_constant_array_size);
   8996       T = FixedTy;
   8997     } else {
   8998       if (SizeIsNegative)
   8999         Diag(Loc, diag::err_typecheck_negative_array_size);
   9000       else if (Oversized.getBoolValue())
   9001         Diag(Loc, diag::err_array_too_large)
   9002           << Oversized.toString(10);
   9003       else
   9004         Diag(Loc, diag::err_typecheck_field_variable_size);
   9005       InvalidDecl = true;
   9006     }
   9007   }
   9008 
   9009   // Fields can not have abstract class types
   9010   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
   9011                                              diag::err_abstract_type_in_decl,
   9012                                              AbstractFieldType))
   9013     InvalidDecl = true;
   9014 
   9015   bool ZeroWidth = false;
   9016   // If this is declared as a bit-field, check the bit-field.
   9017   if (!InvalidDecl && BitWidth) {
   9018     BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
   9019     if (!BitWidth) {
   9020       InvalidDecl = true;
   9021       BitWidth = 0;
   9022       ZeroWidth = false;
   9023     }
   9024   }
   9025 
   9026   // Check that 'mutable' is consistent with the type of the declaration.
   9027   if (!InvalidDecl && Mutable) {
   9028     unsigned DiagID = 0;
   9029     if (T->isReferenceType())
   9030       DiagID = diag::err_mutable_reference;
   9031     else if (T.isConstQualified())
   9032       DiagID = diag::err_mutable_const;
   9033 
   9034     if (DiagID) {
   9035       SourceLocation ErrLoc = Loc;
   9036       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
   9037         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
   9038       Diag(ErrLoc, DiagID);
   9039       Mutable = false;
   9040       InvalidDecl = true;
   9041     }
   9042   }
   9043 
   9044   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
   9045                                        BitWidth, Mutable, HasInit);
   9046   if (InvalidDecl)
   9047     NewFD->setInvalidDecl();
   9048 
   9049   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
   9050     Diag(Loc, diag::err_duplicate_member) << II;
   9051     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   9052     NewFD->setInvalidDecl();
   9053   }
   9054 
   9055   if (!InvalidDecl && getLangOpts().CPlusPlus) {
   9056     if (Record->isUnion()) {
   9057       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
   9058         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
   9059         if (RDecl->getDefinition()) {
   9060           // C++ [class.union]p1: An object of a class with a non-trivial
   9061           // constructor, a non-trivial copy constructor, a non-trivial
   9062           // destructor, or a non-trivial copy assignment operator
   9063           // cannot be a member of a union, nor can an array of such
   9064           // objects.
   9065           if (CheckNontrivialField(NewFD))
   9066             NewFD->setInvalidDecl();
   9067         }
   9068       }
   9069 
   9070       // C++ [class.union]p1: If a union contains a member of reference type,
   9071       // the program is ill-formed.
   9072       if (EltTy->isReferenceType()) {
   9073         Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
   9074           << NewFD->getDeclName() << EltTy;
   9075         NewFD->setInvalidDecl();
   9076       }
   9077     }
   9078   }
   9079 
   9080   // FIXME: We need to pass in the attributes given an AST
   9081   // representation, not a parser representation.
   9082   if (D)
   9083     // FIXME: What to pass instead of TUScope?
   9084     ProcessDeclAttributes(TUScope, NewFD, *D);
   9085 
   9086   // In auto-retain/release, infer strong retension for fields of
   9087   // retainable type.
   9088   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
   9089     NewFD->setInvalidDecl();
   9090 
   9091   if (T.isObjCGCWeak())
   9092     Diag(Loc, diag::warn_attribute_weak_on_field);
   9093 
   9094   NewFD->setAccess(AS);
   9095   return NewFD;
   9096 }
   9097 
   9098 bool Sema::CheckNontrivialField(FieldDecl *FD) {
   9099   assert(FD);
   9100   assert(getLangOpts().CPlusPlus && "valid check only for C++");
   9101 
   9102   if (FD->isInvalidDecl())
   9103     return true;
   9104 
   9105   QualType EltTy = Context.getBaseElementType(FD->getType());
   9106   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
   9107     CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
   9108     if (RDecl->getDefinition()) {
   9109       // We check for copy constructors before constructors
   9110       // because otherwise we'll never get complaints about
   9111       // copy constructors.
   9112 
   9113       CXXSpecialMember member = CXXInvalid;
   9114       if (!RDecl->hasTrivialCopyConstructor())
   9115         member = CXXCopyConstructor;
   9116       else if (!RDecl->hasTrivialDefaultConstructor())
   9117         member = CXXDefaultConstructor;
   9118       else if (!RDecl->hasTrivialCopyAssignment())
   9119         member = CXXCopyAssignment;
   9120       else if (!RDecl->hasTrivialDestructor())
   9121         member = CXXDestructor;
   9122 
   9123       if (member != CXXInvalid) {
   9124         if (!getLangOpts().CPlusPlus0x &&
   9125             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
   9126           // Objective-C++ ARC: it is an error to have a non-trivial field of
   9127           // a union. However, system headers in Objective-C programs
   9128           // occasionally have Objective-C lifetime objects within unions,
   9129           // and rather than cause the program to fail, we make those
   9130           // members unavailable.
   9131           SourceLocation Loc = FD->getLocation();
   9132           if (getSourceManager().isInSystemHeader(Loc)) {
   9133             if (!FD->hasAttr<UnavailableAttr>())
   9134               FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
   9135                                   "this system field has retaining ownership"));
   9136             return false;
   9137           }
   9138         }
   9139 
   9140         Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
   9141                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
   9142                diag::err_illegal_union_or_anon_struct_member)
   9143           << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
   9144         DiagnoseNontrivial(RT, member);
   9145         return !getLangOpts().CPlusPlus0x;
   9146       }
   9147     }
   9148   }
   9149 
   9150   return false;
   9151 }
   9152 
   9153 /// If the given constructor is user-provided, produce a diagnostic explaining
   9154 /// that it makes the class non-trivial.
   9155 static bool DiagnoseNontrivialUserProvidedCtor(Sema &S, QualType QT,
   9156                                                CXXConstructorDecl *CD,
   9157                                                Sema::CXXSpecialMember CSM) {
   9158   if (!CD->isUserProvided())
   9159     return false;
   9160 
   9161   SourceLocation CtorLoc = CD->getLocation();
   9162   S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
   9163   return true;
   9164 }
   9165 
   9166 /// DiagnoseNontrivial - Given that a class has a non-trivial
   9167 /// special member, figure out why.
   9168 void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
   9169   QualType QT(T, 0U);
   9170   CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
   9171 
   9172   // Check whether the member was user-declared.
   9173   switch (member) {
   9174   case CXXInvalid:
   9175     break;
   9176 
   9177   case CXXDefaultConstructor:
   9178     if (RD->hasUserDeclaredConstructor()) {
   9179       typedef CXXRecordDecl::ctor_iterator ctor_iter;
   9180       for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
   9181         if (DiagnoseNontrivialUserProvidedCtor(*this, QT, *CI, member))
   9182           return;
   9183 
   9184       // No user-provided constructors; look for constructor templates.
   9185       typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
   9186           tmpl_iter;
   9187       for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
   9188            TI != TE; ++TI) {
   9189         CXXConstructorDecl *CD =
   9190             dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
   9191         if (CD && DiagnoseNontrivialUserProvidedCtor(*this, QT, CD, member))
   9192           return;
   9193       }
   9194     }
   9195     break;
   9196 
   9197   case CXXCopyConstructor:
   9198     if (RD->hasUserDeclaredCopyConstructor()) {
   9199       SourceLocation CtorLoc =
   9200         RD->getCopyConstructor(0)->getLocation();
   9201       Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
   9202       return;
   9203     }
   9204     break;
   9205 
   9206   case CXXMoveConstructor:
   9207     if (RD->hasUserDeclaredMoveConstructor()) {
   9208       SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
   9209       Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
   9210       return;
   9211     }
   9212     break;
   9213 
   9214   case CXXCopyAssignment:
   9215     if (RD->hasUserDeclaredCopyAssignment()) {
   9216       // FIXME: this should use the location of the copy
   9217       // assignment, not the type.
   9218       SourceLocation TyLoc = RD->getLocStart();
   9219       Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
   9220       return;
   9221     }
   9222     break;
   9223 
   9224   case CXXMoveAssignment:
   9225     if (RD->hasUserDeclaredMoveAssignment()) {
   9226       SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
   9227       Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
   9228       return;
   9229     }
   9230     break;
   9231 
   9232   case CXXDestructor:
   9233     if (RD->hasUserDeclaredDestructor()) {
   9234       SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
   9235       Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
   9236       return;
   9237     }
   9238     break;
   9239   }
   9240 
   9241   typedef CXXRecordDecl::base_class_iterator base_iter;
   9242 
   9243   // Virtual bases and members inhibit trivial copying/construction,
   9244   // but not trivial destruction.
   9245   if (member != CXXDestructor) {
   9246     // Check for virtual bases.  vbases includes indirect virtual bases,
   9247     // so we just iterate through the direct bases.
   9248     for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
   9249       if (bi->isVirtual()) {
   9250         SourceLocation BaseLoc = bi->getLocStart();
   9251         Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
   9252         return;
   9253       }
   9254 
   9255     // Check for virtual methods.
   9256     typedef CXXRecordDecl::method_iterator meth_iter;
   9257     for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
   9258          ++mi) {
   9259       if (mi->isVirtual()) {
   9260         SourceLocation MLoc = mi->getLocStart();
   9261         Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
   9262         return;
   9263       }
   9264     }
   9265   }
   9266 
   9267   bool (CXXRecordDecl::*hasTrivial)() const;
   9268   switch (member) {
   9269   case CXXDefaultConstructor:
   9270     hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
   9271   case CXXCopyConstructor:
   9272     hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
   9273   case CXXCopyAssignment:
   9274     hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
   9275   case CXXDestructor:
   9276     hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
   9277   default:
   9278     llvm_unreachable("unexpected special member");
   9279   }
   9280 
   9281   // Check for nontrivial bases (and recurse).
   9282   for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
   9283     const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
   9284     assert(BaseRT && "Don't know how to handle dependent bases");
   9285     CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
   9286     if (!(BaseRecTy->*hasTrivial)()) {
   9287       SourceLocation BaseLoc = bi->getLocStart();
   9288       Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
   9289       DiagnoseNontrivial(BaseRT, member);
   9290       return;
   9291     }
   9292   }
   9293 
   9294   // Check for nontrivial members (and recurse).
   9295   typedef RecordDecl::field_iterator field_iter;
   9296   for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
   9297        ++fi) {
   9298     QualType EltTy = Context.getBaseElementType((*fi)->getType());
   9299     if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
   9300       CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
   9301 
   9302       if (!(EltRD->*hasTrivial)()) {
   9303         SourceLocation FLoc = (*fi)->getLocation();
   9304         Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
   9305         DiagnoseNontrivial(EltRT, member);
   9306         return;
   9307       }
   9308     }
   9309 
   9310     if (EltTy->isObjCLifetimeType()) {
   9311       switch (EltTy.getObjCLifetime()) {
   9312       case Qualifiers::OCL_None:
   9313       case Qualifiers::OCL_ExplicitNone:
   9314         break;
   9315 
   9316       case Qualifiers::OCL_Autoreleasing:
   9317       case Qualifiers::OCL_Weak:
   9318       case Qualifiers::OCL_Strong:
   9319         Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
   9320           << QT << EltTy.getObjCLifetime();
   9321         return;
   9322       }
   9323     }
   9324   }
   9325 
   9326   llvm_unreachable("found no explanation for non-trivial member");
   9327 }
   9328 
   9329 /// TranslateIvarVisibility - Translate visibility from a token ID to an
   9330 ///  AST enum value.
   9331 static ObjCIvarDecl::AccessControl
   9332 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
   9333   switch (ivarVisibility) {
   9334   default: llvm_unreachable("Unknown visitibility kind");
   9335   case tok::objc_private: return ObjCIvarDecl::Private;
   9336   case tok::objc_public: return ObjCIvarDecl::Public;
   9337   case tok::objc_protected: return ObjCIvarDecl::Protected;
   9338   case tok::objc_package: return ObjCIvarDecl::Package;
   9339   }
   9340 }
   9341 
   9342 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
   9343 /// in order to create an IvarDecl object for it.
   9344 Decl *Sema::ActOnIvar(Scope *S,
   9345                                 SourceLocation DeclStart,
   9346                                 Declarator &D, Expr *BitfieldWidth,
   9347                                 tok::ObjCKeywordKind Visibility) {
   9348 
   9349   IdentifierInfo *II = D.getIdentifier();
   9350   Expr *BitWidth = (Expr*)BitfieldWidth;
   9351   SourceLocation Loc = DeclStart;
   9352   if (II) Loc = D.getIdentifierLoc();
   9353 
   9354   // FIXME: Unnamed fields can be handled in various different ways, for
   9355   // example, unnamed unions inject all members into the struct namespace!
   9356 
   9357   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   9358   QualType T = TInfo->getType();
   9359 
   9360   if (BitWidth) {
   9361     // 6.7.2.1p3, 6.7.2.1p4
   9362     BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
   9363     if (!BitWidth)
   9364       D.setInvalidType();
   9365   } else {
   9366     // Not a bitfield.
   9367 
   9368     // validate II.
   9369 
   9370   }
   9371   if (T->isReferenceType()) {
   9372     Diag(Loc, diag::err_ivar_reference_type);
   9373     D.setInvalidType();
   9374   }
   9375   // C99 6.7.2.1p8: A member of a structure or union may have any type other
   9376   // than a variably modified type.
   9377   else if (T->isVariablyModifiedType()) {
   9378     Diag(Loc, diag::err_typecheck_ivar_variable_size);
   9379     D.setInvalidType();
   9380   }
   9381 
   9382   // Get the visibility (access control) for this ivar.
   9383   ObjCIvarDecl::AccessControl ac =
   9384     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
   9385                                         : ObjCIvarDecl::None;
   9386   // Must set ivar's DeclContext to its enclosing interface.
   9387   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
   9388   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
   9389     return 0;
   9390   ObjCContainerDecl *EnclosingContext;
   9391   if (ObjCImplementationDecl *IMPDecl =
   9392       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
   9393     if (!LangOpts.ObjCNonFragileABI2) {
   9394     // Case of ivar declared in an implementation. Context is that of its class.
   9395       EnclosingContext = IMPDecl->getClassInterface();
   9396       assert(EnclosingContext && "Implementation has no class interface!");
   9397     }
   9398     else
   9399       EnclosingContext = EnclosingDecl;
   9400   } else {
   9401     if (ObjCCategoryDecl *CDecl =
   9402         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
   9403       if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
   9404         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
   9405         return 0;
   9406       }
   9407     }
   9408     EnclosingContext = EnclosingDecl;
   9409   }
   9410 
   9411   // Construct the decl.
   9412   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
   9413                                              DeclStart, Loc, II, T,
   9414                                              TInfo, ac, (Expr *)BitfieldWidth);
   9415 
   9416   if (II) {
   9417     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
   9418                                            ForRedeclaration);
   9419     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
   9420         && !isa<TagDecl>(PrevDecl)) {
   9421       Diag(Loc, diag::err_duplicate_member) << II;
   9422       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   9423       NewID->setInvalidDecl();
   9424     }
   9425   }
   9426 
   9427   // Process attributes attached to the ivar.
   9428   ProcessDeclAttributes(S, NewID, D);
   9429 
   9430   if (D.isInvalidType())
   9431     NewID->setInvalidDecl();
   9432 
   9433   // In ARC, infer 'retaining' for ivars of retainable type.
   9434   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
   9435     NewID->setInvalidDecl();
   9436 
   9437   if (D.getDeclSpec().isModulePrivateSpecified())
   9438     NewID->setModulePrivate();
   9439 
   9440   if (II) {
   9441     // FIXME: When interfaces are DeclContexts, we'll need to add
   9442     // these to the interface.
   9443     S->AddDecl(NewID);
   9444     IdResolver.AddDecl(NewID);
   9445   }
   9446 
   9447   return NewID;
   9448 }
   9449 
   9450 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
   9451 /// class and class extensions. For every class @interface and class
   9452 /// extension @interface, if the last ivar is a bitfield of any type,
   9453 /// then add an implicit `char :0` ivar to the end of that interface.
   9454 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
   9455                              SmallVectorImpl<Decl *> &AllIvarDecls) {
   9456   if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
   9457     return;
   9458 
   9459   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
   9460   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
   9461 
   9462   if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
   9463     return;
   9464   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
   9465   if (!ID) {
   9466     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
   9467       if (!CD->IsClassExtension())
   9468         return;
   9469     }
   9470     // No need to add this to end of @implementation.
   9471     else
   9472       return;
   9473   }
   9474   // All conditions are met. Add a new bitfield to the tail end of ivars.
   9475   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
   9476   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
   9477 
   9478   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
   9479                               DeclLoc, DeclLoc, 0,
   9480                               Context.CharTy,
   9481                               Context.getTrivialTypeSourceInfo(Context.CharTy,
   9482                                                                DeclLoc),
   9483                               ObjCIvarDecl::Private, BW,
   9484                               true);
   9485   AllIvarDecls.push_back(Ivar);
   9486 }
   9487 
   9488 void Sema::ActOnFields(Scope* S,
   9489                        SourceLocation RecLoc, Decl *EnclosingDecl,
   9490                        llvm::ArrayRef<Decl *> Fields,
   9491                        SourceLocation LBrac, SourceLocation RBrac,
   9492                        AttributeList *Attr) {
   9493   assert(EnclosingDecl && "missing record or interface decl");
   9494 
   9495   // If the decl this is being inserted into is invalid, then it may be a
   9496   // redeclaration or some other bogus case.  Don't try to add fields to it.
   9497   if (EnclosingDecl->isInvalidDecl())
   9498     return;
   9499 
   9500   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
   9501 
   9502   // Start counting up the number of named members; make sure to include
   9503   // members of anonymous structs and unions in the total.
   9504   unsigned NumNamedMembers = 0;
   9505   if (Record) {
   9506     for (RecordDecl::decl_iterator i = Record->decls_begin(),
   9507                                    e = Record->decls_end(); i != e; i++) {
   9508       if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
   9509         if (IFD->getDeclName())
   9510           ++NumNamedMembers;
   9511     }
   9512   }
   9513 
   9514   // Verify that all the fields are okay.
   9515   SmallVector<FieldDecl*, 32> RecFields;
   9516 
   9517   bool ARCErrReported = false;
   9518   for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
   9519        i != end; ++i) {
   9520     FieldDecl *FD = cast<FieldDecl>(*i);
   9521 
   9522     // Get the type for the field.
   9523     const Type *FDTy = FD->getType().getTypePtr();
   9524 
   9525     if (!FD->isAnonymousStructOrUnion()) {
   9526       // Remember all fields written by the user.
   9527       RecFields.push_back(FD);
   9528     }
   9529 
   9530     // If the field is already invalid for some reason, don't emit more
   9531     // diagnostics about it.
   9532     if (FD->isInvalidDecl()) {
   9533       EnclosingDecl->setInvalidDecl();
   9534       continue;
   9535     }
   9536 
   9537     // C99 6.7.2.1p2:
   9538     //   A structure or union shall not contain a member with
   9539     //   incomplete or function type (hence, a structure shall not
   9540     //   contain an instance of itself, but may contain a pointer to
   9541     //   an instance of itself), except that the last member of a
   9542     //   structure with more than one named member may have incomplete
   9543     //   array type; such a structure (and any union containing,
   9544     //   possibly recursively, a member that is such a structure)
   9545     //   shall not be a member of a structure or an element of an
   9546     //   array.
   9547     if (FDTy->isFunctionType()) {
   9548       // Field declared as a function.
   9549       Diag(FD->getLocation(), diag::err_field_declared_as_function)
   9550         << FD->getDeclName();
   9551       FD->setInvalidDecl();
   9552       EnclosingDecl->setInvalidDecl();
   9553       continue;
   9554     } else if (FDTy->isIncompleteArrayType() && Record &&
   9555                ((i + 1 == Fields.end() && !Record->isUnion()) ||
   9556                 ((getLangOpts().MicrosoftExt ||
   9557                   getLangOpts().CPlusPlus) &&
   9558                  (i + 1 == Fields.end() || Record->isUnion())))) {
   9559       // Flexible array member.
   9560       // Microsoft and g++ is more permissive regarding flexible array.
   9561       // It will accept flexible array in union and also
   9562       // as the sole element of a struct/class.
   9563       if (getLangOpts().MicrosoftExt) {
   9564         if (Record->isUnion())
   9565           Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
   9566             << FD->getDeclName();
   9567         else if (Fields.size() == 1)
   9568           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
   9569             << FD->getDeclName() << Record->getTagKind();
   9570       } else if (getLangOpts().CPlusPlus) {
   9571         if (Record->isUnion())
   9572           Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
   9573             << FD->getDeclName();
   9574         else if (Fields.size() == 1)
   9575           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
   9576             << FD->getDeclName() << Record->getTagKind();
   9577       } else if (!getLangOpts().C99) {
   9578       if (Record->isUnion())
   9579         Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
   9580           << FD->getDeclName();
   9581       else
   9582         Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
   9583           << FD->getDeclName() << Record->getTagKind();
   9584       } else if (NumNamedMembers < 1) {
   9585         Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
   9586           << FD->getDeclName();
   9587         FD->setInvalidDecl();
   9588         EnclosingDecl->setInvalidDecl();
   9589         continue;
   9590       }
   9591       if (!FD->getType()->isDependentType() &&
   9592           !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
   9593         Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
   9594           << FD->getDeclName() << FD->getType();
   9595         FD->setInvalidDecl();
   9596         EnclosingDecl->setInvalidDecl();
   9597         continue;
   9598       }
   9599       // Okay, we have a legal flexible array member at the end of the struct.
   9600       if (Record)
   9601         Record->setHasFlexibleArrayMember(true);
   9602     } else if (!FDTy->isDependentType() &&
   9603                RequireCompleteType(FD->getLocation(), FD->getType(),
   9604                                    diag::err_field_incomplete)) {
   9605       // Incomplete type
   9606       FD->setInvalidDecl();
   9607       EnclosingDecl->setInvalidDecl();
   9608       continue;
   9609     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
   9610       if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
   9611         // If this is a member of a union, then entire union becomes "flexible".
   9612         if (Record && Record->isUnion()) {
   9613           Record->setHasFlexibleArrayMember(true);
   9614         } else {
   9615           // If this is a struct/class and this is not the last element, reject
   9616           // it.  Note that GCC supports variable sized arrays in the middle of
   9617           // structures.
   9618           if (i + 1 != Fields.end())
   9619             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
   9620               << FD->getDeclName() << FD->getType();
   9621           else {
   9622             // We support flexible arrays at the end of structs in
   9623             // other structs as an extension.
   9624             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
   9625               << FD->getDeclName();
   9626             if (Record)
   9627               Record->setHasFlexibleArrayMember(true);
   9628           }
   9629         }
   9630       }
   9631       if (Record && FDTTy->getDecl()->hasObjectMember())
   9632         Record->setHasObjectMember(true);
   9633     } else if (FDTy->isObjCObjectType()) {
   9634       /// A field cannot be an Objective-c object
   9635       Diag(FD->getLocation(), diag::err_statically_allocated_object)
   9636         << FixItHint::CreateInsertion(FD->getLocation(), "*");
   9637       QualType T = Context.getObjCObjectPointerType(FD->getType());
   9638       FD->setType(T);
   9639     }
   9640     else if (!getLangOpts().CPlusPlus) {
   9641       if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
   9642         // It's an error in ARC if a field has lifetime.
   9643         // We don't want to report this in a system header, though,
   9644         // so we just make the field unavailable.
   9645         // FIXME: that's really not sufficient; we need to make the type
   9646         // itself invalid to, say, initialize or copy.
   9647         QualType T = FD->getType();
   9648         Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
   9649         if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
   9650           SourceLocation loc = FD->getLocation();
   9651           if (getSourceManager().isInSystemHeader(loc)) {
   9652             if (!FD->hasAttr<UnavailableAttr>()) {
   9653               FD->addAttr(new (Context) UnavailableAttr(loc, Context,
   9654                                 "this system field has retaining ownership"));
   9655             }
   9656           } else {
   9657             Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
   9658               << T->isBlockPointerType();
   9659           }
   9660           ARCErrReported = true;
   9661         }
   9662       }
   9663       else if (getLangOpts().ObjC1 &&
   9664                getLangOpts().getGC() != LangOptions::NonGC &&
   9665                Record && !Record->hasObjectMember()) {
   9666         if (FD->getType()->isObjCObjectPointerType() ||
   9667             FD->getType().isObjCGCStrong())
   9668           Record->setHasObjectMember(true);
   9669         else if (Context.getAsArrayType(FD->getType())) {
   9670           QualType BaseType = Context.getBaseElementType(FD->getType());
   9671           if (BaseType->isRecordType() &&
   9672               BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
   9673             Record->setHasObjectMember(true);
   9674           else if (BaseType->isObjCObjectPointerType() ||
   9675                    BaseType.isObjCGCStrong())
   9676                  Record->setHasObjectMember(true);
   9677         }
   9678       }
   9679     }
   9680     // Keep track of the number of named members.
   9681     if (FD->getIdentifier())
   9682       ++NumNamedMembers;
   9683   }
   9684 
   9685   // Okay, we successfully defined 'Record'.
   9686   if (Record) {
   9687     bool Completed = false;
   9688     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
   9689       if (!CXXRecord->isInvalidDecl()) {
   9690         // Set access bits correctly on the directly-declared conversions.
   9691         UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
   9692         for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
   9693              I != E; ++I)
   9694           Convs->setAccess(I, (*I)->getAccess());
   9695 
   9696         if (!CXXRecord->isDependentType()) {
   9697           // Objective-C Automatic Reference Counting:
   9698           //   If a class has a non-static data member of Objective-C pointer
   9699           //   type (or array thereof), it is a non-POD type and its
   9700           //   default constructor (if any), copy constructor, copy assignment
   9701           //   operator, and destructor are non-trivial.
   9702           //
   9703           // This rule is also handled by CXXRecordDecl::completeDefinition().
   9704           // However, here we check whether this particular class is only
   9705           // non-POD because of the presence of an Objective-C pointer member.
   9706           // If so, objects of this type cannot be shared between code compiled
   9707           // with instant objects and code compiled with manual retain/release.
   9708           if (getLangOpts().ObjCAutoRefCount &&
   9709               CXXRecord->hasObjectMember() &&
   9710               CXXRecord->getLinkage() == ExternalLinkage) {
   9711             if (CXXRecord->isPOD()) {
   9712               Diag(CXXRecord->getLocation(),
   9713                    diag::warn_arc_non_pod_class_with_object_member)
   9714                << CXXRecord;
   9715             } else {
   9716               // FIXME: Fix-Its would be nice here, but finding a good location
   9717               // for them is going to be tricky.
   9718               if (CXXRecord->hasTrivialCopyConstructor())
   9719                 Diag(CXXRecord->getLocation(),
   9720                      diag::warn_arc_trivial_member_function_with_object_member)
   9721                   << CXXRecord << 0;
   9722               if (CXXRecord->hasTrivialCopyAssignment())
   9723                 Diag(CXXRecord->getLocation(),
   9724                      diag::warn_arc_trivial_member_function_with_object_member)
   9725                 << CXXRecord << 1;
   9726               if (CXXRecord->hasTrivialDestructor())
   9727                 Diag(CXXRecord->getLocation(),
   9728                      diag::warn_arc_trivial_member_function_with_object_member)
   9729                 << CXXRecord << 2;
   9730             }
   9731           }
   9732 
   9733           // Adjust user-defined destructor exception spec.
   9734           if (getLangOpts().CPlusPlus0x &&
   9735               CXXRecord->hasUserDeclaredDestructor())
   9736             AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
   9737 
   9738           // Add any implicitly-declared members to this class.
   9739           AddImplicitlyDeclaredMembersToClass(CXXRecord);
   9740 
   9741           // If we have virtual base classes, we may end up finding multiple
   9742           // final overriders for a given virtual function. Check for this
   9743           // problem now.
   9744           if (CXXRecord->getNumVBases()) {
   9745             CXXFinalOverriderMap FinalOverriders;
   9746             CXXRecord->getFinalOverriders(FinalOverriders);
   9747 
   9748             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
   9749                                              MEnd = FinalOverriders.end();
   9750                  M != MEnd; ++M) {
   9751               for (OverridingMethods::iterator SO = M->second.begin(),
   9752                                             SOEnd = M->second.end();
   9753                    SO != SOEnd; ++SO) {
   9754                 assert(SO->second.size() > 0 &&
   9755                        "Virtual function without overridding functions?");
   9756                 if (SO->second.size() == 1)
   9757                   continue;
   9758 
   9759                 // C++ [class.virtual]p2:
   9760                 //   In a derived class, if a virtual member function of a base
   9761                 //   class subobject has more than one final overrider the
   9762                 //   program is ill-formed.
   9763                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
   9764                   << (NamedDecl *)M->first << Record;
   9765                 Diag(M->first->getLocation(),
   9766                      diag::note_overridden_virtual_function);
   9767                 for (OverridingMethods::overriding_iterator
   9768                           OM = SO->second.begin(),
   9769                        OMEnd = SO->second.end();
   9770                      OM != OMEnd; ++OM)
   9771                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
   9772                     << (NamedDecl *)M->first << OM->Method->getParent();
   9773 
   9774                 Record->setInvalidDecl();
   9775               }
   9776             }
   9777             CXXRecord->completeDefinition(&FinalOverriders);
   9778             Completed = true;
   9779           }
   9780         }
   9781       }
   9782     }
   9783 
   9784     if (!Completed)
   9785       Record->completeDefinition();
   9786 
   9787     // Now that the record is complete, do any delayed exception spec checks
   9788     // we were missing.
   9789     while (!DelayedDestructorExceptionSpecChecks.empty()) {
   9790       const CXXDestructorDecl *Dtor =
   9791               DelayedDestructorExceptionSpecChecks.back().first;
   9792       if (Dtor->getParent() != Record)
   9793         break;
   9794 
   9795       assert(!Dtor->getParent()->isDependentType() &&
   9796           "Should not ever add destructors of templates into the list.");
   9797       CheckOverridingFunctionExceptionSpec(Dtor,
   9798           DelayedDestructorExceptionSpecChecks.back().second);
   9799       DelayedDestructorExceptionSpecChecks.pop_back();
   9800     }
   9801 
   9802   } else {
   9803     ObjCIvarDecl **ClsFields =
   9804       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
   9805     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
   9806       ID->setEndOfDefinitionLoc(RBrac);
   9807       // Add ivar's to class's DeclContext.
   9808       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
   9809         ClsFields[i]->setLexicalDeclContext(ID);
   9810         ID->addDecl(ClsFields[i]);
   9811       }
   9812       // Must enforce the rule that ivars in the base classes may not be
   9813       // duplicates.
   9814       if (ID->getSuperClass())
   9815         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
   9816     } else if (ObjCImplementationDecl *IMPDecl =
   9817                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
   9818       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
   9819       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
   9820         // Ivar declared in @implementation never belongs to the implementation.
   9821         // Only it is in implementation's lexical context.
   9822         ClsFields[I]->setLexicalDeclContext(IMPDecl);
   9823       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
   9824       IMPDecl->setIvarLBraceLoc(LBrac);
   9825       IMPDecl->setIvarRBraceLoc(RBrac);
   9826     } else if (ObjCCategoryDecl *CDecl =
   9827                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
   9828       // case of ivars in class extension; all other cases have been
   9829       // reported as errors elsewhere.
   9830       // FIXME. Class extension does not have a LocEnd field.
   9831       // CDecl->setLocEnd(RBrac);
   9832       // Add ivar's to class extension's DeclContext.
   9833       // Diagnose redeclaration of private ivars.
   9834       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
   9835       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
   9836         if (IDecl) {
   9837           if (const ObjCIvarDecl *ClsIvar =
   9838               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
   9839             Diag(ClsFields[i]->getLocation(),
   9840                  diag::err_duplicate_ivar_declaration);
   9841             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   9842             continue;
   9843           }
   9844           for (const ObjCCategoryDecl *ClsExtDecl =
   9845                 IDecl->getFirstClassExtension();
   9846                ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
   9847             if (const ObjCIvarDecl *ClsExtIvar =
   9848                 ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
   9849               Diag(ClsFields[i]->getLocation(),
   9850                    diag::err_duplicate_ivar_declaration);
   9851               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
   9852               continue;
   9853             }
   9854           }
   9855         }
   9856         ClsFields[i]->setLexicalDeclContext(CDecl);
   9857         CDecl->addDecl(ClsFields[i]);
   9858       }
   9859       CDecl->setIvarLBraceLoc(LBrac);
   9860       CDecl->setIvarRBraceLoc(RBrac);
   9861     }
   9862   }
   9863 
   9864   if (Attr)
   9865     ProcessDeclAttributeList(S, Record, Attr);
   9866 
   9867   // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
   9868   // set the visibility of this record.
   9869   if (Record && !Record->getDeclContext()->isRecord())
   9870     AddPushedVisibilityAttribute(Record);
   9871 }
   9872 
   9873 /// \brief Determine whether the given integral value is representable within
   9874 /// the given type T.
   9875 static bool isRepresentableIntegerValue(ASTContext &Context,
   9876                                         llvm::APSInt &Value,
   9877                                         QualType T) {
   9878   assert(T->isIntegralType(Context) && "Integral type required!");
   9879   unsigned BitWidth = Context.getIntWidth(T);
   9880 
   9881   if (Value.isUnsigned() || Value.isNonNegative()) {
   9882     if (T->isSignedIntegerOrEnumerationType())
   9883       --BitWidth;
   9884     return Value.getActiveBits() <= BitWidth;
   9885   }
   9886   return Value.getMinSignedBits() <= BitWidth;
   9887 }
   9888 
   9889 // \brief Given an integral type, return the next larger integral type
   9890 // (or a NULL type of no such type exists).
   9891 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
   9892   // FIXME: Int128/UInt128 support, which also needs to be introduced into
   9893   // enum checking below.
   9894   assert(T->isIntegralType(Context) && "Integral type required!");
   9895   const unsigned NumTypes = 4;
   9896   QualType SignedIntegralTypes[NumTypes] = {
   9897     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
   9898   };
   9899   QualType UnsignedIntegralTypes[NumTypes] = {
   9900     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
   9901     Context.UnsignedLongLongTy
   9902   };
   9903 
   9904   unsigned BitWidth = Context.getTypeSize(T);
   9905   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
   9906                                                         : UnsignedIntegralTypes;
   9907   for (unsigned I = 0; I != NumTypes; ++I)
   9908     if (Context.getTypeSize(Types[I]) > BitWidth)
   9909       return Types[I];
   9910 
   9911   return QualType();
   9912 }
   9913 
   9914 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
   9915                                           EnumConstantDecl *LastEnumConst,
   9916                                           SourceLocation IdLoc,
   9917                                           IdentifierInfo *Id,
   9918                                           Expr *Val) {
   9919   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
   9920   llvm::APSInt EnumVal(IntWidth);
   9921   QualType EltTy;
   9922 
   9923   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
   9924     Val = 0;
   9925 
   9926   if (Val)
   9927     Val = DefaultLvalueConversion(Val).take();
   9928 
   9929   if (Val) {
   9930     if (Enum->isDependentType() || Val->isTypeDependent())
   9931       EltTy = Context.DependentTy;
   9932     else {
   9933       SourceLocation ExpLoc;
   9934       if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
   9935           !getLangOpts().MicrosoftMode) {
   9936         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
   9937         // constant-expression in the enumerator-definition shall be a converted
   9938         // constant expression of the underlying type.
   9939         EltTy = Enum->getIntegerType();
   9940         ExprResult Converted =
   9941           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
   9942                                            CCEK_Enumerator);
   9943         if (Converted.isInvalid())
   9944           Val = 0;
   9945         else
   9946           Val = Converted.take();
   9947       } else if (!Val->isValueDependent() &&
   9948                  !(Val = VerifyIntegerConstantExpression(Val,
   9949                                                          &EnumVal).take())) {
   9950         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
   9951       } else {
   9952         if (Enum->isFixed()) {
   9953           EltTy = Enum->getIntegerType();
   9954 
   9955           // In Obj-C and Microsoft mode, require the enumeration value to be
   9956           // representable in the underlying type of the enumeration. In C++11,
   9957           // we perform a non-narrowing conversion as part of converted constant
   9958           // expression checking.
   9959           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
   9960             if (getLangOpts().MicrosoftMode) {
   9961               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
   9962               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
   9963             } else
   9964               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
   9965           } else
   9966             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
   9967         } else if (getLangOpts().CPlusPlus) {
   9968           // C++11 [dcl.enum]p5:
   9969           //   If the underlying type is not fixed, the type of each enumerator
   9970           //   is the type of its initializing value:
   9971           //     - If an initializer is specified for an enumerator, the
   9972           //       initializing value has the same type as the expression.
   9973           EltTy = Val->getType();
   9974         } else {
   9975           // C99 6.7.2.2p2:
   9976           //   The expression that defines the value of an enumeration constant
   9977           //   shall be an integer constant expression that has a value
   9978           //   representable as an int.
   9979 
   9980           // Complain if the value is not representable in an int.
   9981           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
   9982             Diag(IdLoc, diag::ext_enum_value_not_int)
   9983               << EnumVal.toString(10) << Val->getSourceRange()
   9984               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
   9985           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
   9986             // Force the type of the expression to 'int'.
   9987             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
   9988           }
   9989           EltTy = Val->getType();
   9990         }
   9991       }
   9992     }
   9993   }
   9994 
   9995   if (!Val) {
   9996     if (Enum->isDependentType())
   9997       EltTy = Context.DependentTy;
   9998     else if (!LastEnumConst) {
   9999       // C++0x [dcl.enum]p5:
   10000       //   If the underlying type is not fixed, the type of each enumerator
   10001       //   is the type of its initializing value:
   10002       //     - If no initializer is specified for the first enumerator, the
   10003       //       initializing value has an unspecified integral type.
   10004       //
   10005       // GCC uses 'int' for its unspecified integral type, as does
   10006       // C99 6.7.2.2p3.
   10007       if (Enum->isFixed()) {
   10008         EltTy = Enum->getIntegerType();
   10009       }
   10010       else {
   10011         EltTy = Context.IntTy;
   10012       }
   10013     } else {
   10014       // Assign the last value + 1.
   10015       EnumVal = LastEnumConst->getInitVal();
   10016       ++EnumVal;
   10017       EltTy = LastEnumConst->getType();
   10018 
   10019       // Check for overflow on increment.
   10020       if (EnumVal < LastEnumConst->getInitVal()) {
   10021         // C++0x [dcl.enum]p5:
   10022         //   If the underlying type is not fixed, the type of each enumerator
   10023         //   is the type of its initializing value:
   10024         //
   10025         //     - Otherwise the type of the initializing value is the same as
   10026         //       the type of the initializing value of the preceding enumerator
   10027         //       unless the incremented value is not representable in that type,
   10028         //       in which case the type is an unspecified integral type
   10029         //       sufficient to contain the incremented value. If no such type
   10030         //       exists, the program is ill-formed.
   10031         QualType T = getNextLargerIntegralType(Context, EltTy);
   10032         if (T.isNull() || Enum->isFixed()) {
   10033           // There is no integral type larger enough to represent this
   10034           // value. Complain, then allow the value to wrap around.
   10035           EnumVal = LastEnumConst->getInitVal();
   10036           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
   10037           ++EnumVal;
   10038           if (Enum->isFixed())
   10039             // When the underlying type is fixed, this is ill-formed.
   10040             Diag(IdLoc, diag::err_enumerator_wrapped)
   10041               << EnumVal.toString(10)
   10042               << EltTy;
   10043           else
   10044             Diag(IdLoc, diag::warn_enumerator_too_large)
   10045               << EnumVal.toString(10);
   10046         } else {
   10047           EltTy = T;
   10048         }
   10049 
   10050         // Retrieve the last enumerator's value, extent that type to the
   10051         // type that is supposed to be large enough to represent the incremented
   10052         // value, then increment.
   10053         EnumVal = LastEnumConst->getInitVal();
   10054         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
   10055         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
   10056         ++EnumVal;
   10057 
   10058         // If we're not in C++, diagnose the overflow of enumerator values,
   10059         // which in C99 means that the enumerator value is not representable in
   10060         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
   10061         // permits enumerator values that are representable in some larger
   10062         // integral type.
   10063         if (!getLangOpts().CPlusPlus && !T.isNull())
   10064           Diag(IdLoc, diag::warn_enum_value_overflow);
   10065       } else if (!getLangOpts().CPlusPlus &&
   10066                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
   10067         // Enforce C99 6.7.2.2p2 even when we compute the next value.
   10068         Diag(IdLoc, diag::ext_enum_value_not_int)
   10069           << EnumVal.toString(10) << 1;
   10070       }
   10071     }
   10072   }
   10073 
   10074   if (!EltTy->isDependentType()) {
   10075     // Make the enumerator value match the signedness and size of the
   10076     // enumerator's type.
   10077     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
   10078     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
   10079   }
   10080 
   10081   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
   10082                                   Val, EnumVal);
   10083 }
   10084 
   10085 
   10086 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
   10087                               SourceLocation IdLoc, IdentifierInfo *Id,
   10088                               AttributeList *Attr,
   10089                               SourceLocation EqualLoc, Expr *Val) {
   10090   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
   10091   EnumConstantDecl *LastEnumConst =
   10092     cast_or_null<EnumConstantDecl>(lastEnumConst);
   10093 
   10094   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   10095   // we find one that is.
   10096   S = getNonFieldDeclScope(S);
   10097 
   10098   // Verify that there isn't already something declared with this name in this
   10099   // scope.
   10100   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
   10101                                          ForRedeclaration);
   10102   if (PrevDecl && PrevDecl->isTemplateParameter()) {
   10103     // Maybe we will complain about the shadowed template parameter.
   10104     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
   10105     // Just pretend that we didn't see the previous declaration.
   10106     PrevDecl = 0;
   10107   }
   10108 
   10109   if (PrevDecl) {
   10110     // When in C++, we may get a TagDecl with the same name; in this case the
   10111     // enum constant will 'hide' the tag.
   10112     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
   10113            "Received TagDecl when not in C++!");
   10114     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
   10115       if (isa<EnumConstantDecl>(PrevDecl))
   10116         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
   10117       else
   10118         Diag(IdLoc, diag::err_redefinition) << Id;
   10119       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   10120       return 0;
   10121     }
   10122   }
   10123 
   10124   // C++ [class.mem]p13:
   10125   //   If T is the name of a class, then each of the following shall have a
   10126   //   name different from T:
   10127   //     - every enumerator of every member of class T that is an enumerated
   10128   //       type
   10129   if (CXXRecordDecl *Record
   10130                       = dyn_cast<CXXRecordDecl>(
   10131                              TheEnumDecl->getDeclContext()->getRedeclContext()))
   10132     if (Record->getIdentifier() && Record->getIdentifier() == Id)
   10133       Diag(IdLoc, diag::err_member_name_of_class) << Id;
   10134 
   10135   EnumConstantDecl *New =
   10136     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
   10137 
   10138   if (New) {
   10139     // Process attributes.
   10140     if (Attr) ProcessDeclAttributeList(S, New, Attr);
   10141 
   10142     // Register this decl in the current scope stack.
   10143     New->setAccess(TheEnumDecl->getAccess());
   10144     PushOnScopeChains(New, S);
   10145   }
   10146 
   10147   return New;
   10148 }
   10149 
   10150 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
   10151                          SourceLocation RBraceLoc, Decl *EnumDeclX,
   10152                          Decl **Elements, unsigned NumElements,
   10153                          Scope *S, AttributeList *Attr) {
   10154   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
   10155   QualType EnumType = Context.getTypeDeclType(Enum);
   10156 
   10157   if (Attr)
   10158     ProcessDeclAttributeList(S, Enum, Attr);
   10159 
   10160   if (Enum->isDependentType()) {
   10161     for (unsigned i = 0; i != NumElements; ++i) {
   10162       EnumConstantDecl *ECD =
   10163         cast_or_null<EnumConstantDecl>(Elements[i]);
   10164       if (!ECD) continue;
   10165 
   10166       ECD->setType(EnumType);
   10167     }
   10168 
   10169     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
   10170     return;
   10171   }
   10172 
   10173   // TODO: If the result value doesn't fit in an int, it must be a long or long
   10174   // long value.  ISO C does not support this, but GCC does as an extension,
   10175   // emit a warning.
   10176   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
   10177   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
   10178   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
   10179 
   10180   // Verify that all the values are okay, compute the size of the values, and
   10181   // reverse the list.
   10182   unsigned NumNegativeBits = 0;
   10183   unsigned NumPositiveBits = 0;
   10184 
   10185   // Keep track of whether all elements have type int.
   10186   bool AllElementsInt = true;
   10187 
   10188   for (unsigned i = 0; i != NumElements; ++i) {
   10189     EnumConstantDecl *ECD =
   10190       cast_or_null<EnumConstantDecl>(Elements[i]);
   10191     if (!ECD) continue;  // Already issued a diagnostic.
   10192 
   10193     const llvm::APSInt &InitVal = ECD->getInitVal();
   10194 
   10195     // Keep track of the size of positive and negative values.
   10196     if (InitVal.isUnsigned() || InitVal.isNonNegative())
   10197       NumPositiveBits = std::max(NumPositiveBits,
   10198                                  (unsigned)InitVal.getActiveBits());
   10199     else
   10200       NumNegativeBits = std::max(NumNegativeBits,
   10201                                  (unsigned)InitVal.getMinSignedBits());
   10202 
   10203     // Keep track of whether every enum element has type int (very commmon).
   10204     if (AllElementsInt)
   10205       AllElementsInt = ECD->getType() == Context.IntTy;
   10206   }
   10207 
   10208   // Figure out the type that should be used for this enum.
   10209   QualType BestType;
   10210   unsigned BestWidth;
   10211 
   10212   // C++0x N3000 [conv.prom]p3:
   10213   //   An rvalue of an unscoped enumeration type whose underlying
   10214   //   type is not fixed can be converted to an rvalue of the first
   10215   //   of the following types that can represent all the values of
   10216   //   the enumeration: int, unsigned int, long int, unsigned long
   10217   //   int, long long int, or unsigned long long int.
   10218   // C99 6.4.4.3p2:
   10219   //   An identifier declared as an enumeration constant has type int.
   10220   // The C99 rule is modified by a gcc extension
   10221   QualType BestPromotionType;
   10222 
   10223   bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
   10224   // -fshort-enums is the equivalent to specifying the packed attribute on all
   10225   // enum definitions.
   10226   if (LangOpts.ShortEnums)
   10227     Packed = true;
   10228 
   10229   if (Enum->isFixed()) {
   10230     BestType = Enum->getIntegerType();
   10231     if (BestType->isPromotableIntegerType())
   10232       BestPromotionType = Context.getPromotedIntegerType(BestType);
   10233     else
   10234       BestPromotionType = BestType;
   10235     // We don't need to set BestWidth, because BestType is going to be the type
   10236     // of the enumerators, but we do anyway because otherwise some compilers
   10237     // warn that it might be used uninitialized.
   10238     BestWidth = CharWidth;
   10239   }
   10240   else if (NumNegativeBits) {
   10241     // If there is a negative value, figure out the smallest integer type (of
   10242     // int/long/longlong) that fits.
   10243     // If it's packed, check also if it fits a char or a short.
   10244     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
   10245       BestType = Context.SignedCharTy;
   10246       BestWidth = CharWidth;
   10247     } else if (Packed && NumNegativeBits <= ShortWidth &&
   10248                NumPositiveBits < ShortWidth) {
   10249       BestType = Context.ShortTy;
   10250       BestWidth = ShortWidth;
   10251     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
   10252       BestType = Context.IntTy;
   10253       BestWidth = IntWidth;
   10254     } else {
   10255       BestWidth = Context.getTargetInfo().getLongWidth();
   10256 
   10257       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
   10258         BestType = Context.LongTy;
   10259       } else {
   10260         BestWidth = Context.getTargetInfo().getLongLongWidth();
   10261 
   10262         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
   10263           Diag(Enum->getLocation(), diag::warn_enum_too_large);
   10264         BestType = Context.LongLongTy;
   10265       }
   10266     }
   10267     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
   10268   } else {
   10269     // If there is no negative value, figure out the smallest type that fits
   10270     // all of the enumerator values.
   10271     // If it's packed, check also if it fits a char or a short.
   10272     if (Packed && NumPositiveBits <= CharWidth) {
   10273       BestType = Context.UnsignedCharTy;
   10274       BestPromotionType = Context.IntTy;
   10275       BestWidth = CharWidth;
   10276     } else if (Packed && NumPositiveBits <= ShortWidth) {
   10277       BestType = Context.UnsignedShortTy;
   10278       BestPromotionType = Context.IntTy;
   10279       BestWidth = ShortWidth;
   10280     } else if (NumPositiveBits <= IntWidth) {
   10281       BestType = Context.UnsignedIntTy;
   10282       BestWidth = IntWidth;
   10283       BestPromotionType
   10284         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
   10285                            ? Context.UnsignedIntTy : Context.IntTy;
   10286     } else if (NumPositiveBits <=
   10287                (BestWidth = Context.getTargetInfo().getLongWidth())) {
   10288       BestType = Context.UnsignedLongTy;
   10289       BestPromotionType
   10290         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
   10291                            ? Context.UnsignedLongTy : Context.LongTy;
   10292     } else {
   10293       BestWidth = Context.getTargetInfo().getLongLongWidth();
   10294       assert(NumPositiveBits <= BestWidth &&
   10295              "How could an initializer get larger than ULL?");
   10296       BestType = Context.UnsignedLongLongTy;
   10297       BestPromotionType
   10298         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
   10299                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
   10300     }
   10301   }
   10302 
   10303   // Loop over all of the enumerator constants, changing their types to match
   10304   // the type of the enum if needed.
   10305   for (unsigned i = 0; i != NumElements; ++i) {
   10306     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
   10307     if (!ECD) continue;  // Already issued a diagnostic.
   10308 
   10309     // Standard C says the enumerators have int type, but we allow, as an
   10310     // extension, the enumerators to be larger than int size.  If each
   10311     // enumerator value fits in an int, type it as an int, otherwise type it the
   10312     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
   10313     // that X has type 'int', not 'unsigned'.
   10314 
   10315     // Determine whether the value fits into an int.
   10316     llvm::APSInt InitVal = ECD->getInitVal();
   10317 
   10318     // If it fits into an integer type, force it.  Otherwise force it to match
   10319     // the enum decl type.
   10320     QualType NewTy;
   10321     unsigned NewWidth;
   10322     bool NewSign;
   10323     if (!getLangOpts().CPlusPlus &&
   10324         !Enum->isFixed() &&
   10325         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
   10326       NewTy = Context.IntTy;
   10327       NewWidth = IntWidth;
   10328       NewSign = true;
   10329     } else if (ECD->getType() == BestType) {
   10330       // Already the right type!
   10331       if (getLangOpts().CPlusPlus)
   10332         // C++ [dcl.enum]p4: Following the closing brace of an
   10333         // enum-specifier, each enumerator has the type of its
   10334         // enumeration.
   10335         ECD->setType(EnumType);
   10336       continue;
   10337     } else {
   10338       NewTy = BestType;
   10339       NewWidth = BestWidth;
   10340       NewSign = BestType->isSignedIntegerOrEnumerationType();
   10341     }
   10342 
   10343     // Adjust the APSInt value.
   10344     InitVal = InitVal.extOrTrunc(NewWidth);
   10345     InitVal.setIsSigned(NewSign);
   10346     ECD->setInitVal(InitVal);
   10347 
   10348     // Adjust the Expr initializer and type.
   10349     if (ECD->getInitExpr() &&
   10350         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
   10351       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
   10352                                                 CK_IntegralCast,
   10353                                                 ECD->getInitExpr(),
   10354                                                 /*base paths*/ 0,
   10355                                                 VK_RValue));
   10356     if (getLangOpts().CPlusPlus)
   10357       // C++ [dcl.enum]p4: Following the closing brace of an
   10358       // enum-specifier, each enumerator has the type of its
   10359       // enumeration.
   10360       ECD->setType(EnumType);
   10361     else
   10362       ECD->setType(NewTy);
   10363   }
   10364 
   10365   Enum->completeDefinition(BestType, BestPromotionType,
   10366                            NumPositiveBits, NumNegativeBits);
   10367 
   10368   // If we're declaring a function, ensure this decl isn't forgotten about -
   10369   // it needs to go into the function scope.
   10370   if (InFunctionDeclarator)
   10371     DeclsInPrototypeScope.push_back(Enum);
   10372 
   10373 }
   10374 
   10375 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
   10376                                   SourceLocation StartLoc,
   10377                                   SourceLocation EndLoc) {
   10378   StringLiteral *AsmString = cast<StringLiteral>(expr);
   10379 
   10380   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
   10381                                                    AsmString, StartLoc,
   10382                                                    EndLoc);
   10383   CurContext->addDecl(New);
   10384   return New;
   10385 }
   10386 
   10387 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
   10388                                    SourceLocation ImportLoc,
   10389                                    ModuleIdPath Path) {
   10390   Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
   10391                                                 Module::AllVisible,
   10392                                                 /*IsIncludeDirective=*/false);
   10393   if (!Mod)
   10394     return true;
   10395 
   10396   llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
   10397   Module *ModCheck = Mod;
   10398   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
   10399     // If we've run out of module parents, just drop the remaining identifiers.
   10400     // We need the length to be consistent.
   10401     if (!ModCheck)
   10402       break;
   10403     ModCheck = ModCheck->Parent;
   10404 
   10405     IdentifierLocs.push_back(Path[I].second);
   10406   }
   10407 
   10408   ImportDecl *Import = ImportDecl::Create(Context,
   10409                                           Context.getTranslationUnitDecl(),
   10410                                           AtLoc.isValid()? AtLoc : ImportLoc,
   10411                                           Mod, IdentifierLocs);
   10412   Context.getTranslationUnitDecl()->addDecl(Import);
   10413   return Import;
   10414 }
   10415 
   10416 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
   10417                                       IdentifierInfo* AliasName,
   10418                                       SourceLocation PragmaLoc,
   10419                                       SourceLocation NameLoc,
   10420                                       SourceLocation AliasNameLoc) {
   10421   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
   10422                                     LookupOrdinaryName);
   10423   AsmLabelAttr *Attr =
   10424      ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
   10425 
   10426   if (PrevDecl)
   10427     PrevDecl->addAttr(Attr);
   10428   else
   10429     (void)ExtnameUndeclaredIdentifiers.insert(
   10430       std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
   10431 }
   10432 
   10433 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
   10434                              SourceLocation PragmaLoc,
   10435                              SourceLocation NameLoc) {
   10436   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
   10437 
   10438   if (PrevDecl) {
   10439     PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
   10440   } else {
   10441     (void)WeakUndeclaredIdentifiers.insert(
   10442       std::pair<IdentifierInfo*,WeakInfo>
   10443         (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
   10444   }
   10445 }
   10446 
   10447 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
   10448                                 IdentifierInfo* AliasName,
   10449                                 SourceLocation PragmaLoc,
   10450                                 SourceLocation NameLoc,
   10451                                 SourceLocation AliasNameLoc) {
   10452   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
   10453                                     LookupOrdinaryName);
   10454   WeakInfo W = WeakInfo(Name, NameLoc);
   10455 
   10456   if (PrevDecl) {
   10457     if (!PrevDecl->hasAttr<AliasAttr>())
   10458       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
   10459         DeclApplyPragmaWeak(TUScope, ND, W);
   10460   } else {
   10461     (void)WeakUndeclaredIdentifiers.insert(
   10462       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
   10463   }
   10464 }
   10465 
   10466 Decl *Sema::getObjCDeclContext() const {
   10467   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
   10468 }
   10469 
   10470 AvailabilityResult Sema::getCurContextAvailability() const {
   10471   const Decl *D = cast<Decl>(getCurLexicalContext());
   10472   // A category implicitly has the availability of the interface.
   10473   if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
   10474     D = CatD->getClassInterface();
   10475 
   10476   return D->getAvailability();
   10477 }
   10478