Home | History | Annotate | Download | only in Core
      1 //== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defined the types Store and StoreManager.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
     15 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
     16 #include "clang/AST/CharUnits.h"
     17 #include "clang/AST/DeclObjC.h"
     18 
     19 using namespace clang;
     20 using namespace ento;
     21 
     22 StoreManager::StoreManager(ProgramStateManager &stateMgr)
     23   : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
     24     MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
     25 
     26 StoreRef StoreManager::enterStackFrame(ProgramStateRef state,
     27                                        const LocationContext *callerCtx,
     28                                        const StackFrameContext *calleeCtx) {
     29   return StoreRef(state->getStore(), *this);
     30 }
     31 
     32 const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base,
     33                                               QualType EleTy, uint64_t index) {
     34   NonLoc idx = svalBuilder.makeArrayIndex(index);
     35   return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
     36 }
     37 
     38 // FIXME: Merge with the implementation of the same method in MemRegion.cpp
     39 static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
     40   if (const RecordType *RT = Ty->getAs<RecordType>()) {
     41     const RecordDecl *D = RT->getDecl();
     42     if (!D->getDefinition())
     43       return false;
     44   }
     45 
     46   return true;
     47 }
     48 
     49 StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) {
     50   return StoreRef(store, *this);
     51 }
     52 
     53 const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R,
     54                                                         QualType T) {
     55   NonLoc idx = svalBuilder.makeZeroArrayIndex();
     56   assert(!T.isNull());
     57   return MRMgr.getElementRegion(T, idx, R, Ctx);
     58 }
     59 
     60 const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
     61 
     62   ASTContext &Ctx = StateMgr.getContext();
     63 
     64   // Handle casts to Objective-C objects.
     65   if (CastToTy->isObjCObjectPointerType())
     66     return R->StripCasts();
     67 
     68   if (CastToTy->isBlockPointerType()) {
     69     // FIXME: We may need different solutions, depending on the symbol
     70     // involved.  Blocks can be casted to/from 'id', as they can be treated
     71     // as Objective-C objects.  This could possibly be handled by enhancing
     72     // our reasoning of downcasts of symbolic objects.
     73     if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
     74       return R;
     75 
     76     // We don't know what to make of it.  Return a NULL region, which
     77     // will be interpretted as UnknownVal.
     78     return NULL;
     79   }
     80 
     81   // Now assume we are casting from pointer to pointer. Other cases should
     82   // already be handled.
     83   QualType PointeeTy = CastToTy->getPointeeType();
     84   QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
     85 
     86   // Handle casts to void*.  We just pass the region through.
     87   if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
     88     return R;
     89 
     90   // Handle casts from compatible types.
     91   if (R->isBoundable())
     92     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
     93       QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
     94       if (CanonPointeeTy == ObjTy)
     95         return R;
     96     }
     97 
     98   // Process region cast according to the kind of the region being cast.
     99   switch (R->getKind()) {
    100     case MemRegion::CXXThisRegionKind:
    101     case MemRegion::GenericMemSpaceRegionKind:
    102     case MemRegion::StackLocalsSpaceRegionKind:
    103     case MemRegion::StackArgumentsSpaceRegionKind:
    104     case MemRegion::HeapSpaceRegionKind:
    105     case MemRegion::UnknownSpaceRegionKind:
    106     case MemRegion::StaticGlobalSpaceRegionKind:
    107     case MemRegion::GlobalInternalSpaceRegionKind:
    108     case MemRegion::GlobalSystemSpaceRegionKind:
    109     case MemRegion::GlobalImmutableSpaceRegionKind: {
    110       llvm_unreachable("Invalid region cast");
    111     }
    112 
    113     case MemRegion::FunctionTextRegionKind:
    114     case MemRegion::BlockTextRegionKind:
    115     case MemRegion::BlockDataRegionKind:
    116     case MemRegion::StringRegionKind:
    117       // FIXME: Need to handle arbitrary downcasts.
    118     case MemRegion::SymbolicRegionKind:
    119     case MemRegion::AllocaRegionKind:
    120     case MemRegion::CompoundLiteralRegionKind:
    121     case MemRegion::FieldRegionKind:
    122     case MemRegion::ObjCIvarRegionKind:
    123     case MemRegion::ObjCStringRegionKind:
    124     case MemRegion::VarRegionKind:
    125     case MemRegion::CXXTempObjectRegionKind:
    126     case MemRegion::CXXBaseObjectRegionKind:
    127       return MakeElementRegion(R, PointeeTy);
    128 
    129     case MemRegion::ElementRegionKind: {
    130       // If we are casting from an ElementRegion to another type, the
    131       // algorithm is as follows:
    132       //
    133       // (1) Compute the "raw offset" of the ElementRegion from the
    134       //     base region.  This is done by calling 'getAsRawOffset()'.
    135       //
    136       // (2a) If we get a 'RegionRawOffset' after calling
    137       //      'getAsRawOffset()', determine if the absolute offset
    138       //      can be exactly divided into chunks of the size of the
    139       //      casted-pointee type.  If so, create a new ElementRegion with
    140       //      the pointee-cast type as the new ElementType and the index
    141       //      being the offset divded by the chunk size.  If not, create
    142       //      a new ElementRegion at offset 0 off the raw offset region.
    143       //
    144       // (2b) If we don't a get a 'RegionRawOffset' after calling
    145       //      'getAsRawOffset()', it means that we are at offset 0.
    146       //
    147       // FIXME: Handle symbolic raw offsets.
    148 
    149       const ElementRegion *elementR = cast<ElementRegion>(R);
    150       const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
    151       const MemRegion *baseR = rawOff.getRegion();
    152 
    153       // If we cannot compute a raw offset, throw up our hands and return
    154       // a NULL MemRegion*.
    155       if (!baseR)
    156         return NULL;
    157 
    158       CharUnits off = rawOff.getOffset();
    159 
    160       if (off.isZero()) {
    161         // Edge case: we are at 0 bytes off the beginning of baseR.  We
    162         // check to see if type we are casting to is the same as the base
    163         // region.  If so, just return the base region.
    164         if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(baseR)) {
    165           QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
    166           QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
    167           if (CanonPointeeTy == ObjTy)
    168             return baseR;
    169         }
    170 
    171         // Otherwise, create a new ElementRegion at offset 0.
    172         return MakeElementRegion(baseR, PointeeTy);
    173       }
    174 
    175       // We have a non-zero offset from the base region.  We want to determine
    176       // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
    177       // we create an ElementRegion whose index is that value.  Otherwise, we
    178       // create two ElementRegions, one that reflects a raw offset and the other
    179       // that reflects the cast.
    180 
    181       // Compute the index for the new ElementRegion.
    182       int64_t newIndex = 0;
    183       const MemRegion *newSuperR = 0;
    184 
    185       // We can only compute sizeof(PointeeTy) if it is a complete type.
    186       if (IsCompleteType(Ctx, PointeeTy)) {
    187         // Compute the size in **bytes**.
    188         CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
    189         if (!pointeeTySize.isZero()) {
    190           // Is the offset a multiple of the size?  If so, we can layer the
    191           // ElementRegion (with elementType == PointeeTy) directly on top of
    192           // the base region.
    193           if (off % pointeeTySize == 0) {
    194             newIndex = off / pointeeTySize;
    195             newSuperR = baseR;
    196           }
    197         }
    198       }
    199 
    200       if (!newSuperR) {
    201         // Create an intermediate ElementRegion to represent the raw byte.
    202         // This will be the super region of the final ElementRegion.
    203         newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity());
    204       }
    205 
    206       return MakeElementRegion(newSuperR, PointeeTy, newIndex);
    207     }
    208   }
    209 
    210   llvm_unreachable("unreachable");
    211 }
    212 
    213 
    214 /// CastRetrievedVal - Used by subclasses of StoreManager to implement
    215 ///  implicit casts that arise from loads from regions that are reinterpreted
    216 ///  as another region.
    217 SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
    218                                     QualType castTy, bool performTestOnly) {
    219 
    220   if (castTy.isNull() || V.isUnknownOrUndef())
    221     return V;
    222 
    223   ASTContext &Ctx = svalBuilder.getContext();
    224 
    225   if (performTestOnly) {
    226     // Automatically translate references to pointers.
    227     QualType T = R->getValueType();
    228     if (const ReferenceType *RT = T->getAs<ReferenceType>())
    229       T = Ctx.getPointerType(RT->getPointeeType());
    230 
    231     assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T));
    232     return V;
    233   }
    234 
    235   return svalBuilder.dispatchCast(V, castTy);
    236 }
    237 
    238 SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
    239   if (Base.isUnknownOrUndef())
    240     return Base;
    241 
    242   Loc BaseL = cast<Loc>(Base);
    243   const MemRegion* BaseR = 0;
    244 
    245   switch (BaseL.getSubKind()) {
    246   case loc::MemRegionKind:
    247     BaseR = cast<loc::MemRegionVal>(BaseL).getRegion();
    248     break;
    249 
    250   case loc::GotoLabelKind:
    251     // These are anormal cases. Flag an undefined value.
    252     return UndefinedVal();
    253 
    254   case loc::ConcreteIntKind:
    255     // While these seem funny, this can happen through casts.
    256     // FIXME: What we should return is the field offset.  For example,
    257     //  add the field offset to the integer value.  That way funny things
    258     //  like this work properly:  &(((struct foo *) 0xa)->f)
    259     return Base;
    260 
    261   default:
    262     llvm_unreachable("Unhandled Base.");
    263   }
    264 
    265   // NOTE: We must have this check first because ObjCIvarDecl is a subclass
    266   // of FieldDecl.
    267   if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
    268     return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
    269 
    270   return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
    271 }
    272 
    273 SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
    274   return getLValueFieldOrIvar(decl, base);
    275 }
    276 
    277 SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
    278                                     SVal Base) {
    279 
    280   // If the base is an unknown or undefined value, just return it back.
    281   // FIXME: For absolute pointer addresses, we just return that value back as
    282   //  well, although in reality we should return the offset added to that
    283   //  value.
    284   if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base))
    285     return Base;
    286 
    287   const MemRegion* BaseRegion = cast<loc::MemRegionVal>(Base).getRegion();
    288 
    289   // Pointer of any type can be cast and used as array base.
    290   const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
    291 
    292   // Convert the offset to the appropriate size and signedness.
    293   Offset = cast<NonLoc>(svalBuilder.convertToArrayIndex(Offset));
    294 
    295   if (!ElemR) {
    296     //
    297     // If the base region is not an ElementRegion, create one.
    298     // This can happen in the following example:
    299     //
    300     //   char *p = __builtin_alloc(10);
    301     //   p[1] = 8;
    302     //
    303     //  Observe that 'p' binds to an AllocaRegion.
    304     //
    305     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
    306                                                     BaseRegion, Ctx));
    307   }
    308 
    309   SVal BaseIdx = ElemR->getIndex();
    310 
    311   if (!isa<nonloc::ConcreteInt>(BaseIdx))
    312     return UnknownVal();
    313 
    314   const llvm::APSInt& BaseIdxI = cast<nonloc::ConcreteInt>(BaseIdx).getValue();
    315 
    316   // Only allow non-integer offsets if the base region has no offset itself.
    317   // FIXME: This is a somewhat arbitrary restriction. We should be using
    318   // SValBuilder here to add the two offsets without checking their types.
    319   if (!isa<nonloc::ConcreteInt>(Offset)) {
    320     if (isa<ElementRegion>(BaseRegion->StripCasts()))
    321       return UnknownVal();
    322 
    323     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
    324                                                     ElemR->getSuperRegion(),
    325                                                     Ctx));
    326   }
    327 
    328   const llvm::APSInt& OffI = cast<nonloc::ConcreteInt>(Offset).getValue();
    329   assert(BaseIdxI.isSigned());
    330 
    331   // Compute the new index.
    332   nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
    333                                                                     OffI));
    334 
    335   // Construct the new ElementRegion.
    336   const MemRegion *ArrayR = ElemR->getSuperRegion();
    337   return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
    338                                                   Ctx));
    339 }
    340 
    341 StoreManager::BindingsHandler::~BindingsHandler() {}
    342 
    343 bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
    344                                                     Store store,
    345                                                     const MemRegion* R,
    346                                                     SVal val) {
    347   SymbolRef SymV = val.getAsLocSymbol();
    348   if (!SymV || SymV != Sym)
    349     return true;
    350 
    351   if (Binding) {
    352     First = false;
    353     return false;
    354   }
    355   else
    356     Binding = R;
    357 
    358   return true;
    359 }
    360 
    361 void SubRegionMap::anchor() { }
    362 void SubRegionMap::Visitor::anchor() { }
    363