Home | History | Annotate | Download | only in Scalar
      1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This transformation implements the well known scalar replacement of
     11 // aggregates transformation.  This xform breaks up alloca instructions of
     12 // aggregate type (structure or array) into individual alloca instructions for
     13 // each member (if possible).  Then, if possible, it transforms the individual
     14 // alloca instructions into nice clean scalar SSA form.
     15 //
     16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because they
     17 // often interact, especially for C++ programs.  As such, iterating between
     18 // SRoA, then Mem2Reg until we run out of things to promote works well.
     19 //
     20 //===----------------------------------------------------------------------===//
     21 
     22 #define DEBUG_TYPE "scalarrepl"
     23 #include "llvm/Transforms/Scalar.h"
     24 #include "llvm/Constants.h"
     25 #include "llvm/DerivedTypes.h"
     26 #include "llvm/Function.h"
     27 #include "llvm/GlobalVariable.h"
     28 #include "llvm/Instructions.h"
     29 #include "llvm/IntrinsicInst.h"
     30 #include "llvm/LLVMContext.h"
     31 #include "llvm/Module.h"
     32 #include "llvm/Pass.h"
     33 #include "llvm/Analysis/DebugInfo.h"
     34 #include "llvm/Analysis/DIBuilder.h"
     35 #include "llvm/Analysis/Dominators.h"
     36 #include "llvm/Analysis/Loads.h"
     37 #include "llvm/Analysis/ValueTracking.h"
     38 #include "llvm/Target/TargetData.h"
     39 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
     40 #include "llvm/Transforms/Utils/Local.h"
     41 #include "llvm/Transforms/Utils/SSAUpdater.h"
     42 #include "llvm/Support/CallSite.h"
     43 #include "llvm/Support/Debug.h"
     44 #include "llvm/Support/ErrorHandling.h"
     45 #include "llvm/Support/GetElementPtrTypeIterator.h"
     46 #include "llvm/Support/IRBuilder.h"
     47 #include "llvm/Support/MathExtras.h"
     48 #include "llvm/Support/raw_ostream.h"
     49 #include "llvm/ADT/SetVector.h"
     50 #include "llvm/ADT/SmallVector.h"
     51 #include "llvm/ADT/Statistic.h"
     52 using namespace llvm;
     53 
     54 STATISTIC(NumReplaced,  "Number of allocas broken up");
     55 STATISTIC(NumPromoted,  "Number of allocas promoted");
     56 STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
     57 STATISTIC(NumConverted, "Number of aggregates converted to scalar");
     58 STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
     59 
     60 namespace {
     61   struct SROA : public FunctionPass {
     62     SROA(int T, bool hasDT, char &ID)
     63       : FunctionPass(ID), HasDomTree(hasDT) {
     64       if (T == -1)
     65         SRThreshold = 128;
     66       else
     67         SRThreshold = T;
     68     }
     69 
     70     bool runOnFunction(Function &F);
     71 
     72     bool performScalarRepl(Function &F);
     73     bool performPromotion(Function &F);
     74 
     75   private:
     76     bool HasDomTree;
     77     TargetData *TD;
     78 
     79     /// DeadInsts - Keep track of instructions we have made dead, so that
     80     /// we can remove them after we are done working.
     81     SmallVector<Value*, 32> DeadInsts;
     82 
     83     /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
     84     /// information about the uses.  All these fields are initialized to false
     85     /// and set to true when something is learned.
     86     struct AllocaInfo {
     87       /// The alloca to promote.
     88       AllocaInst *AI;
     89 
     90       /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
     91       /// looping and avoid redundant work.
     92       SmallPtrSet<PHINode*, 8> CheckedPHIs;
     93 
     94       /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
     95       bool isUnsafe : 1;
     96 
     97       /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
     98       bool isMemCpySrc : 1;
     99 
    100       /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
    101       bool isMemCpyDst : 1;
    102 
    103       /// hasSubelementAccess - This is true if a subelement of the alloca is
    104       /// ever accessed, or false if the alloca is only accessed with mem
    105       /// intrinsics or load/store that only access the entire alloca at once.
    106       bool hasSubelementAccess : 1;
    107 
    108       /// hasALoadOrStore - This is true if there are any loads or stores to it.
    109       /// The alloca may just be accessed with memcpy, for example, which would
    110       /// not set this.
    111       bool hasALoadOrStore : 1;
    112 
    113       explicit AllocaInfo(AllocaInst *ai)
    114         : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
    115           hasSubelementAccess(false), hasALoadOrStore(false) {}
    116     };
    117 
    118     unsigned SRThreshold;
    119 
    120     void MarkUnsafe(AllocaInfo &I, Instruction *User) {
    121       I.isUnsafe = true;
    122       DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
    123     }
    124 
    125     bool isSafeAllocaToScalarRepl(AllocaInst *AI);
    126 
    127     void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
    128     void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
    129                                          AllocaInfo &Info);
    130     void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
    131     void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
    132                          Type *MemOpType, bool isStore, AllocaInfo &Info,
    133                          Instruction *TheAccess, bool AllowWholeAccess);
    134     bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
    135     uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
    136                                   Type *&IdxTy);
    137 
    138     void DoScalarReplacement(AllocaInst *AI,
    139                              std::vector<AllocaInst*> &WorkList);
    140     void DeleteDeadInstructions();
    141 
    142     void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
    143                               SmallVector<AllocaInst*, 32> &NewElts);
    144     void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
    145                         SmallVector<AllocaInst*, 32> &NewElts);
    146     void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
    147                     SmallVector<AllocaInst*, 32> &NewElts);
    148     void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
    149                                   uint64_t Offset,
    150                                   SmallVector<AllocaInst*, 32> &NewElts);
    151     void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
    152                                       AllocaInst *AI,
    153                                       SmallVector<AllocaInst*, 32> &NewElts);
    154     void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
    155                                        SmallVector<AllocaInst*, 32> &NewElts);
    156     void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
    157                                       SmallVector<AllocaInst*, 32> &NewElts);
    158 
    159     static MemTransferInst *isOnlyCopiedFromConstantGlobal(
    160         AllocaInst *AI, SmallVector<Instruction*, 4> &ToDelete);
    161   };
    162 
    163   // SROA_DT - SROA that uses DominatorTree.
    164   struct SROA_DT : public SROA {
    165     static char ID;
    166   public:
    167     SROA_DT(int T = -1) : SROA(T, true, ID) {
    168       initializeSROA_DTPass(*PassRegistry::getPassRegistry());
    169     }
    170 
    171     // getAnalysisUsage - This pass does not require any passes, but we know it
    172     // will not alter the CFG, so say so.
    173     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    174       AU.addRequired<DominatorTree>();
    175       AU.setPreservesCFG();
    176     }
    177   };
    178 
    179   // SROA_SSAUp - SROA that uses SSAUpdater.
    180   struct SROA_SSAUp : public SROA {
    181     static char ID;
    182   public:
    183     SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
    184       initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
    185     }
    186 
    187     // getAnalysisUsage - This pass does not require any passes, but we know it
    188     // will not alter the CFG, so say so.
    189     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    190       AU.setPreservesCFG();
    191     }
    192   };
    193 
    194 }
    195 
    196 char SROA_DT::ID = 0;
    197 char SROA_SSAUp::ID = 0;
    198 
    199 INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
    200                 "Scalar Replacement of Aggregates (DT)", false, false)
    201 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    202 INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
    203                 "Scalar Replacement of Aggregates (DT)", false, false)
    204 
    205 INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
    206                       "Scalar Replacement of Aggregates (SSAUp)", false, false)
    207 INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
    208                     "Scalar Replacement of Aggregates (SSAUp)", false, false)
    209 
    210 // Public interface to the ScalarReplAggregates pass
    211 FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
    212                                                    bool UseDomTree) {
    213   if (UseDomTree)
    214     return new SROA_DT(Threshold);
    215   return new SROA_SSAUp(Threshold);
    216 }
    217 
    218 
    219 //===----------------------------------------------------------------------===//
    220 // Convert To Scalar Optimization.
    221 //===----------------------------------------------------------------------===//
    222 
    223 namespace {
    224 /// ConvertToScalarInfo - This class implements the "Convert To Scalar"
    225 /// optimization, which scans the uses of an alloca and determines if it can
    226 /// rewrite it in terms of a single new alloca that can be mem2reg'd.
    227 class ConvertToScalarInfo {
    228   /// AllocaSize - The size of the alloca being considered in bytes.
    229   unsigned AllocaSize;
    230   const TargetData &TD;
    231 
    232   /// IsNotTrivial - This is set to true if there is some access to the object
    233   /// which means that mem2reg can't promote it.
    234   bool IsNotTrivial;
    235 
    236   /// ScalarKind - Tracks the kind of alloca being considered for promotion,
    237   /// computed based on the uses of the alloca rather than the LLVM type system.
    238   enum {
    239     Unknown,
    240 
    241     // Accesses via GEPs that are consistent with element access of a vector
    242     // type. This will not be converted into a vector unless there is a later
    243     // access using an actual vector type.
    244     ImplicitVector,
    245 
    246     // Accesses via vector operations and GEPs that are consistent with the
    247     // layout of a vector type.
    248     Vector,
    249 
    250     // An integer bag-of-bits with bitwise operations for insertion and
    251     // extraction. Any combination of types can be converted into this kind
    252     // of scalar.
    253     Integer
    254   } ScalarKind;
    255 
    256   /// VectorTy - This tracks the type that we should promote the vector to if
    257   /// it is possible to turn it into a vector.  This starts out null, and if it
    258   /// isn't possible to turn into a vector type, it gets set to VoidTy.
    259   VectorType *VectorTy;
    260 
    261   /// HadNonMemTransferAccess - True if there is at least one access to the
    262   /// alloca that is not a MemTransferInst.  We don't want to turn structs into
    263   /// large integers unless there is some potential for optimization.
    264   bool HadNonMemTransferAccess;
    265 
    266 public:
    267   explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
    268     : AllocaSize(Size), TD(td), IsNotTrivial(false), ScalarKind(Unknown),
    269       VectorTy(0), HadNonMemTransferAccess(false) { }
    270 
    271   AllocaInst *TryConvert(AllocaInst *AI);
    272 
    273 private:
    274   bool CanConvertToScalar(Value *V, uint64_t Offset);
    275   void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
    276   bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
    277   void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
    278 
    279   Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
    280                                     uint64_t Offset, IRBuilder<> &Builder);
    281   Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
    282                                    uint64_t Offset, IRBuilder<> &Builder);
    283 };
    284 } // end anonymous namespace.
    285 
    286 
    287 /// TryConvert - Analyze the specified alloca, and if it is safe to do so,
    288 /// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
    289 /// alloca if possible or null if not.
    290 AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
    291   // If we can't convert this scalar, or if mem2reg can trivially do it, bail
    292   // out.
    293   if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
    294     return 0;
    295 
    296   // If an alloca has only memset / memcpy uses, it may still have an Unknown
    297   // ScalarKind. Treat it as an Integer below.
    298   if (ScalarKind == Unknown)
    299     ScalarKind = Integer;
    300 
    301   if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
    302     ScalarKind = Integer;
    303 
    304   // If we were able to find a vector type that can handle this with
    305   // insert/extract elements, and if there was at least one use that had
    306   // a vector type, promote this to a vector.  We don't want to promote
    307   // random stuff that doesn't use vectors (e.g. <9 x double>) because then
    308   // we just get a lot of insert/extracts.  If at least one vector is
    309   // involved, then we probably really do have a union of vector/array.
    310   Type *NewTy;
    311   if (ScalarKind == Vector) {
    312     assert(VectorTy && "Missing type for vector scalar.");
    313     DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
    314           << *VectorTy << '\n');
    315     NewTy = VectorTy;  // Use the vector type.
    316   } else {
    317     unsigned BitWidth = AllocaSize * 8;
    318     if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
    319         !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
    320       return 0;
    321 
    322     DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
    323     // Create and insert the integer alloca.
    324     NewTy = IntegerType::get(AI->getContext(), BitWidth);
    325   }
    326   AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
    327   ConvertUsesToScalar(AI, NewAI, 0);
    328   return NewAI;
    329 }
    330 
    331 /// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
    332 /// (VectorTy) so far at the offset specified by Offset (which is specified in
    333 /// bytes).
    334 ///
    335 /// There are two cases we handle here:
    336 ///   1) A union of vector types of the same size and potentially its elements.
    337 ///      Here we turn element accesses into insert/extract element operations.
    338 ///      This promotes a <4 x float> with a store of float to the third element
    339 ///      into a <4 x float> that uses insert element.
    340 ///   2) A fully general blob of memory, which we turn into some (potentially
    341 ///      large) integer type with extract and insert operations where the loads
    342 ///      and stores would mutate the memory.  We mark this by setting VectorTy
    343 ///      to VoidTy.
    344 void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
    345                                                     uint64_t Offset) {
    346   // If we already decided to turn this into a blob of integer memory, there is
    347   // nothing to be done.
    348   if (ScalarKind == Integer)
    349     return;
    350 
    351   // If this could be contributing to a vector, analyze it.
    352 
    353   // If the In type is a vector that is the same size as the alloca, see if it
    354   // matches the existing VecTy.
    355   if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
    356     if (MergeInVectorType(VInTy, Offset))
    357       return;
    358   } else if (In->isFloatTy() || In->isDoubleTy() ||
    359              (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
    360               isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
    361     // Full width accesses can be ignored, because they can always be turned
    362     // into bitcasts.
    363     unsigned EltSize = In->getPrimitiveSizeInBits()/8;
    364     if (EltSize == AllocaSize)
    365       return;
    366 
    367     // If we're accessing something that could be an element of a vector, see
    368     // if the implied vector agrees with what we already have and if Offset is
    369     // compatible with it.
    370     if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
    371         (!VectorTy || EltSize == VectorTy->getElementType()
    372                                          ->getPrimitiveSizeInBits()/8)) {
    373       if (!VectorTy) {
    374         ScalarKind = ImplicitVector;
    375         VectorTy = VectorType::get(In, AllocaSize/EltSize);
    376       }
    377       return;
    378     }
    379   }
    380 
    381   // Otherwise, we have a case that we can't handle with an optimized vector
    382   // form.  We can still turn this into a large integer.
    383   ScalarKind = Integer;
    384 }
    385 
    386 /// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
    387 /// returning true if the type was successfully merged and false otherwise.
    388 bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
    389                                             uint64_t Offset) {
    390   if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
    391     // If we're storing/loading a vector of the right size, allow it as a
    392     // vector.  If this the first vector we see, remember the type so that
    393     // we know the element size. If this is a subsequent access, ignore it
    394     // even if it is a differing type but the same size. Worst case we can
    395     // bitcast the resultant vectors.
    396     if (!VectorTy)
    397       VectorTy = VInTy;
    398     ScalarKind = Vector;
    399     return true;
    400   }
    401 
    402   return false;
    403 }
    404 
    405 /// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
    406 /// its accesses to a single vector type, return true and set VecTy to
    407 /// the new type.  If we could convert the alloca into a single promotable
    408 /// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
    409 /// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
    410 /// is the current offset from the base of the alloca being analyzed.
    411 ///
    412 /// If we see at least one access to the value that is as a vector type, set the
    413 /// SawVec flag.
    414 bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
    415   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
    416     Instruction *User = cast<Instruction>(*UI);
    417 
    418     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
    419       // Don't break volatile loads.
    420       if (!LI->isSimple())
    421         return false;
    422       // Don't touch MMX operations.
    423       if (LI->getType()->isX86_MMXTy())
    424         return false;
    425       HadNonMemTransferAccess = true;
    426       MergeInTypeForLoadOrStore(LI->getType(), Offset);
    427       continue;
    428     }
    429 
    430     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
    431       // Storing the pointer, not into the value?
    432       if (SI->getOperand(0) == V || !SI->isSimple()) return false;
    433       // Don't touch MMX operations.
    434       if (SI->getOperand(0)->getType()->isX86_MMXTy())
    435         return false;
    436       HadNonMemTransferAccess = true;
    437       MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
    438       continue;
    439     }
    440 
    441     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
    442       if (!onlyUsedByLifetimeMarkers(BCI))
    443         IsNotTrivial = true;  // Can't be mem2reg'd.
    444       if (!CanConvertToScalar(BCI, Offset))
    445         return false;
    446       continue;
    447     }
    448 
    449     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
    450       // If this is a GEP with a variable indices, we can't handle it.
    451       if (!GEP->hasAllConstantIndices())
    452         return false;
    453 
    454       // Compute the offset that this GEP adds to the pointer.
    455       SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
    456       if (!GEP->getPointerOperandType()->isPointerTy())
    457         return false;
    458       uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
    459                                                Indices);
    460       // See if all uses can be converted.
    461       if (!CanConvertToScalar(GEP, Offset+GEPOffset))
    462         return false;
    463       IsNotTrivial = true;  // Can't be mem2reg'd.
    464       HadNonMemTransferAccess = true;
    465       continue;
    466     }
    467 
    468     // If this is a constant sized memset of a constant value (e.g. 0) we can
    469     // handle it.
    470     if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
    471       // Store of constant value.
    472       if (!isa<ConstantInt>(MSI->getValue()))
    473         return false;
    474 
    475       // Store of constant size.
    476       ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
    477       if (!Len)
    478         return false;
    479 
    480       // If the size differs from the alloca, we can only convert the alloca to
    481       // an integer bag-of-bits.
    482       // FIXME: This should handle all of the cases that are currently accepted
    483       // as vector element insertions.
    484       if (Len->getZExtValue() != AllocaSize || Offset != 0)
    485         ScalarKind = Integer;
    486 
    487       IsNotTrivial = true;  // Can't be mem2reg'd.
    488       HadNonMemTransferAccess = true;
    489       continue;
    490     }
    491 
    492     // If this is a memcpy or memmove into or out of the whole allocation, we
    493     // can handle it like a load or store of the scalar type.
    494     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
    495       ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
    496       if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
    497         return false;
    498 
    499       IsNotTrivial = true;  // Can't be mem2reg'd.
    500       continue;
    501     }
    502 
    503     // If this is a lifetime intrinsic, we can handle it.
    504     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
    505       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
    506           II->getIntrinsicID() == Intrinsic::lifetime_end) {
    507         continue;
    508       }
    509     }
    510 
    511     // Otherwise, we cannot handle this!
    512     return false;
    513   }
    514 
    515   return true;
    516 }
    517 
    518 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
    519 /// directly.  This happens when we are converting an "integer union" to a
    520 /// single integer scalar, or when we are converting a "vector union" to a
    521 /// vector with insert/extractelement instructions.
    522 ///
    523 /// Offset is an offset from the original alloca, in bits that need to be
    524 /// shifted to the right.  By the end of this, there should be no uses of Ptr.
    525 void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
    526                                               uint64_t Offset) {
    527   while (!Ptr->use_empty()) {
    528     Instruction *User = cast<Instruction>(Ptr->use_back());
    529 
    530     if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
    531       ConvertUsesToScalar(CI, NewAI, Offset);
    532       CI->eraseFromParent();
    533       continue;
    534     }
    535 
    536     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
    537       // Compute the offset that this GEP adds to the pointer.
    538       SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
    539       uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
    540                                                Indices);
    541       ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
    542       GEP->eraseFromParent();
    543       continue;
    544     }
    545 
    546     IRBuilder<> Builder(User);
    547 
    548     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
    549       // The load is a bit extract from NewAI shifted right by Offset bits.
    550       Value *LoadedVal = Builder.CreateLoad(NewAI);
    551       Value *NewLoadVal
    552         = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
    553       LI->replaceAllUsesWith(NewLoadVal);
    554       LI->eraseFromParent();
    555       continue;
    556     }
    557 
    558     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
    559       assert(SI->getOperand(0) != Ptr && "Consistency error!");
    560       Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
    561       Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
    562                                              Builder);
    563       Builder.CreateStore(New, NewAI);
    564       SI->eraseFromParent();
    565 
    566       // If the load we just inserted is now dead, then the inserted store
    567       // overwrote the entire thing.
    568       if (Old->use_empty())
    569         Old->eraseFromParent();
    570       continue;
    571     }
    572 
    573     // If this is a constant sized memset of a constant value (e.g. 0) we can
    574     // transform it into a store of the expanded constant value.
    575     if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
    576       assert(MSI->getRawDest() == Ptr && "Consistency error!");
    577       int64_t SNumBytes = cast<ConstantInt>(MSI->getLength())->getSExtValue();
    578       if (SNumBytes > 0 && (SNumBytes >> 32) == 0) {
    579         unsigned NumBytes = static_cast<unsigned>(SNumBytes);
    580         unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
    581 
    582         // Compute the value replicated the right number of times.
    583         APInt APVal(NumBytes*8, Val);
    584 
    585         // Splat the value if non-zero.
    586         if (Val)
    587           for (unsigned i = 1; i != NumBytes; ++i)
    588             APVal |= APVal << 8;
    589 
    590         Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
    591         Value *New = ConvertScalar_InsertValue(
    592                                     ConstantInt::get(User->getContext(), APVal),
    593                                                Old, Offset, Builder);
    594         Builder.CreateStore(New, NewAI);
    595 
    596         // If the load we just inserted is now dead, then the memset overwrote
    597         // the entire thing.
    598         if (Old->use_empty())
    599           Old->eraseFromParent();
    600       }
    601       MSI->eraseFromParent();
    602       continue;
    603     }
    604 
    605     // If this is a memcpy or memmove into or out of the whole allocation, we
    606     // can handle it like a load or store of the scalar type.
    607     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
    608       assert(Offset == 0 && "must be store to start of alloca");
    609 
    610       // If the source and destination are both to the same alloca, then this is
    611       // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
    612       // as appropriate.
    613       AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
    614 
    615       if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
    616         // Dest must be OrigAI, change this to be a load from the original
    617         // pointer (bitcasted), then a store to our new alloca.
    618         assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
    619         Value *SrcPtr = MTI->getSource();
    620         PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
    621         PointerType* AIPTy = cast<PointerType>(NewAI->getType());
    622         if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
    623           AIPTy = PointerType::get(AIPTy->getElementType(),
    624                                    SPTy->getAddressSpace());
    625         }
    626         SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
    627 
    628         LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
    629         SrcVal->setAlignment(MTI->getAlignment());
    630         Builder.CreateStore(SrcVal, NewAI);
    631       } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
    632         // Src must be OrigAI, change this to be a load from NewAI then a store
    633         // through the original dest pointer (bitcasted).
    634         assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
    635         LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
    636 
    637         PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
    638         PointerType* AIPTy = cast<PointerType>(NewAI->getType());
    639         if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
    640           AIPTy = PointerType::get(AIPTy->getElementType(),
    641                                    DPTy->getAddressSpace());
    642         }
    643         Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
    644 
    645         StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
    646         NewStore->setAlignment(MTI->getAlignment());
    647       } else {
    648         // Noop transfer. Src == Dst
    649       }
    650 
    651       MTI->eraseFromParent();
    652       continue;
    653     }
    654 
    655     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
    656       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
    657           II->getIntrinsicID() == Intrinsic::lifetime_end) {
    658         // There's no need to preserve these, as the resulting alloca will be
    659         // converted to a register anyways.
    660         II->eraseFromParent();
    661         continue;
    662       }
    663     }
    664 
    665     llvm_unreachable("Unsupported operation!");
    666   }
    667 }
    668 
    669 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
    670 /// or vector value FromVal, extracting the bits from the offset specified by
    671 /// Offset.  This returns the value, which is of type ToType.
    672 ///
    673 /// This happens when we are converting an "integer union" to a single
    674 /// integer scalar, or when we are converting a "vector union" to a vector with
    675 /// insert/extractelement instructions.
    676 ///
    677 /// Offset is an offset from the original alloca, in bits that need to be
    678 /// shifted to the right.
    679 Value *ConvertToScalarInfo::
    680 ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
    681                            uint64_t Offset, IRBuilder<> &Builder) {
    682   // If the load is of the whole new alloca, no conversion is needed.
    683   Type *FromType = FromVal->getType();
    684   if (FromType == ToType && Offset == 0)
    685     return FromVal;
    686 
    687   // If the result alloca is a vector type, this is either an element
    688   // access or a bitcast to another vector type of the same size.
    689   if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
    690     unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
    691     unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
    692     if (FromTypeSize == ToTypeSize)
    693         return Builder.CreateBitCast(FromVal, ToType);
    694 
    695     // Otherwise it must be an element access.
    696     unsigned Elt = 0;
    697     if (Offset) {
    698       unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
    699       Elt = Offset/EltSize;
    700       assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
    701     }
    702     // Return the element extracted out of it.
    703     Value *V = Builder.CreateExtractElement(FromVal, Builder.getInt32(Elt));
    704     if (V->getType() != ToType)
    705       V = Builder.CreateBitCast(V, ToType);
    706     return V;
    707   }
    708 
    709   // If ToType is a first class aggregate, extract out each of the pieces and
    710   // use insertvalue's to form the FCA.
    711   if (StructType *ST = dyn_cast<StructType>(ToType)) {
    712     const StructLayout &Layout = *TD.getStructLayout(ST);
    713     Value *Res = UndefValue::get(ST);
    714     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
    715       Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
    716                                         Offset+Layout.getElementOffsetInBits(i),
    717                                               Builder);
    718       Res = Builder.CreateInsertValue(Res, Elt, i);
    719     }
    720     return Res;
    721   }
    722 
    723   if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
    724     uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
    725     Value *Res = UndefValue::get(AT);
    726     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
    727       Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
    728                                               Offset+i*EltSize, Builder);
    729       Res = Builder.CreateInsertValue(Res, Elt, i);
    730     }
    731     return Res;
    732   }
    733 
    734   // Otherwise, this must be a union that was converted to an integer value.
    735   IntegerType *NTy = cast<IntegerType>(FromVal->getType());
    736 
    737   // If this is a big-endian system and the load is narrower than the
    738   // full alloca type, we need to do a shift to get the right bits.
    739   int ShAmt = 0;
    740   if (TD.isBigEndian()) {
    741     // On big-endian machines, the lowest bit is stored at the bit offset
    742     // from the pointer given by getTypeStoreSizeInBits.  This matters for
    743     // integers with a bitwidth that is not a multiple of 8.
    744     ShAmt = TD.getTypeStoreSizeInBits(NTy) -
    745             TD.getTypeStoreSizeInBits(ToType) - Offset;
    746   } else {
    747     ShAmt = Offset;
    748   }
    749 
    750   // Note: we support negative bitwidths (with shl) which are not defined.
    751   // We do this to support (f.e.) loads off the end of a structure where
    752   // only some bits are used.
    753   if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
    754     FromVal = Builder.CreateLShr(FromVal,
    755                                  ConstantInt::get(FromVal->getType(), ShAmt));
    756   else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
    757     FromVal = Builder.CreateShl(FromVal,
    758                                 ConstantInt::get(FromVal->getType(), -ShAmt));
    759 
    760   // Finally, unconditionally truncate the integer to the right width.
    761   unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
    762   if (LIBitWidth < NTy->getBitWidth())
    763     FromVal =
    764       Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
    765                                                     LIBitWidth));
    766   else if (LIBitWidth > NTy->getBitWidth())
    767     FromVal =
    768        Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
    769                                                     LIBitWidth));
    770 
    771   // If the result is an integer, this is a trunc or bitcast.
    772   if (ToType->isIntegerTy()) {
    773     // Should be done.
    774   } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
    775     // Just do a bitcast, we know the sizes match up.
    776     FromVal = Builder.CreateBitCast(FromVal, ToType);
    777   } else {
    778     // Otherwise must be a pointer.
    779     FromVal = Builder.CreateIntToPtr(FromVal, ToType);
    780   }
    781   assert(FromVal->getType() == ToType && "Didn't convert right?");
    782   return FromVal;
    783 }
    784 
    785 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
    786 /// or vector value "Old" at the offset specified by Offset.
    787 ///
    788 /// This happens when we are converting an "integer union" to a
    789 /// single integer scalar, or when we are converting a "vector union" to a
    790 /// vector with insert/extractelement instructions.
    791 ///
    792 /// Offset is an offset from the original alloca, in bits that need to be
    793 /// shifted to the right.
    794 Value *ConvertToScalarInfo::
    795 ConvertScalar_InsertValue(Value *SV, Value *Old,
    796                           uint64_t Offset, IRBuilder<> &Builder) {
    797   // Convert the stored type to the actual type, shift it left to insert
    798   // then 'or' into place.
    799   Type *AllocaType = Old->getType();
    800   LLVMContext &Context = Old->getContext();
    801 
    802   if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
    803     uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
    804     uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
    805 
    806     // Changing the whole vector with memset or with an access of a different
    807     // vector type?
    808     if (ValSize == VecSize)
    809         return Builder.CreateBitCast(SV, AllocaType);
    810 
    811     // Must be an element insertion.
    812     Type *EltTy = VTy->getElementType();
    813     if (SV->getType() != EltTy)
    814       SV = Builder.CreateBitCast(SV, EltTy);
    815     uint64_t EltSize = TD.getTypeAllocSizeInBits(EltTy);
    816     unsigned Elt = Offset/EltSize;
    817     return Builder.CreateInsertElement(Old, SV, Builder.getInt32(Elt));
    818   }
    819 
    820   // If SV is a first-class aggregate value, insert each value recursively.
    821   if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
    822     const StructLayout &Layout = *TD.getStructLayout(ST);
    823     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
    824       Value *Elt = Builder.CreateExtractValue(SV, i);
    825       Old = ConvertScalar_InsertValue(Elt, Old,
    826                                       Offset+Layout.getElementOffsetInBits(i),
    827                                       Builder);
    828     }
    829     return Old;
    830   }
    831 
    832   if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
    833     uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
    834     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
    835       Value *Elt = Builder.CreateExtractValue(SV, i);
    836       Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
    837     }
    838     return Old;
    839   }
    840 
    841   // If SV is a float, convert it to the appropriate integer type.
    842   // If it is a pointer, do the same.
    843   unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
    844   unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
    845   unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
    846   unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
    847   if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
    848     SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
    849   else if (SV->getType()->isPointerTy())
    850     SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()));
    851 
    852   // Zero extend or truncate the value if needed.
    853   if (SV->getType() != AllocaType) {
    854     if (SV->getType()->getPrimitiveSizeInBits() <
    855              AllocaType->getPrimitiveSizeInBits())
    856       SV = Builder.CreateZExt(SV, AllocaType);
    857     else {
    858       // Truncation may be needed if storing more than the alloca can hold
    859       // (undefined behavior).
    860       SV = Builder.CreateTrunc(SV, AllocaType);
    861       SrcWidth = DestWidth;
    862       SrcStoreWidth = DestStoreWidth;
    863     }
    864   }
    865 
    866   // If this is a big-endian system and the store is narrower than the
    867   // full alloca type, we need to do a shift to get the right bits.
    868   int ShAmt = 0;
    869   if (TD.isBigEndian()) {
    870     // On big-endian machines, the lowest bit is stored at the bit offset
    871     // from the pointer given by getTypeStoreSizeInBits.  This matters for
    872     // integers with a bitwidth that is not a multiple of 8.
    873     ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
    874   } else {
    875     ShAmt = Offset;
    876   }
    877 
    878   // Note: we support negative bitwidths (with shr) which are not defined.
    879   // We do this to support (f.e.) stores off the end of a structure where
    880   // only some bits in the structure are set.
    881   APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
    882   if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
    883     SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt));
    884     Mask <<= ShAmt;
    885   } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
    886     SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt));
    887     Mask = Mask.lshr(-ShAmt);
    888   }
    889 
    890   // Mask out the bits we are about to insert from the old value, and or
    891   // in the new bits.
    892   if (SrcWidth != DestWidth) {
    893     assert(DestWidth > SrcWidth);
    894     Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
    895     SV = Builder.CreateOr(Old, SV, "ins");
    896   }
    897   return SV;
    898 }
    899 
    900 
    901 //===----------------------------------------------------------------------===//
    902 // SRoA Driver
    903 //===----------------------------------------------------------------------===//
    904 
    905 
    906 bool SROA::runOnFunction(Function &F) {
    907   TD = getAnalysisIfAvailable<TargetData>();
    908 
    909   bool Changed = performPromotion(F);
    910 
    911   // FIXME: ScalarRepl currently depends on TargetData more than it
    912   // theoretically needs to. It should be refactored in order to support
    913   // target-independent IR. Until this is done, just skip the actual
    914   // scalar-replacement portion of this pass.
    915   if (!TD) return Changed;
    916 
    917   while (1) {
    918     bool LocalChange = performScalarRepl(F);
    919     if (!LocalChange) break;   // No need to repromote if no scalarrepl
    920     Changed = true;
    921     LocalChange = performPromotion(F);
    922     if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
    923   }
    924 
    925   return Changed;
    926 }
    927 
    928 namespace {
    929 class AllocaPromoter : public LoadAndStorePromoter {
    930   AllocaInst *AI;
    931   DIBuilder *DIB;
    932   SmallVector<DbgDeclareInst *, 4> DDIs;
    933   SmallVector<DbgValueInst *, 4> DVIs;
    934 public:
    935   AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
    936                  DIBuilder *DB)
    937     : LoadAndStorePromoter(Insts, S), AI(0), DIB(DB) {}
    938 
    939   void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
    940     // Remember which alloca we're promoting (for isInstInList).
    941     this->AI = AI;
    942     if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI)) {
    943       for (Value::use_iterator UI = DebugNode->use_begin(),
    944              E = DebugNode->use_end(); UI != E; ++UI)
    945         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
    946           DDIs.push_back(DDI);
    947         else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
    948           DVIs.push_back(DVI);
    949     }
    950 
    951     LoadAndStorePromoter::run(Insts);
    952     AI->eraseFromParent();
    953     for (SmallVector<DbgDeclareInst *, 4>::iterator I = DDIs.begin(),
    954            E = DDIs.end(); I != E; ++I) {
    955       DbgDeclareInst *DDI = *I;
    956       DDI->eraseFromParent();
    957     }
    958     for (SmallVector<DbgValueInst *, 4>::iterator I = DVIs.begin(),
    959            E = DVIs.end(); I != E; ++I) {
    960       DbgValueInst *DVI = *I;
    961       DVI->eraseFromParent();
    962     }
    963   }
    964 
    965   virtual bool isInstInList(Instruction *I,
    966                             const SmallVectorImpl<Instruction*> &Insts) const {
    967     if (LoadInst *LI = dyn_cast<LoadInst>(I))
    968       return LI->getOperand(0) == AI;
    969     return cast<StoreInst>(I)->getPointerOperand() == AI;
    970   }
    971 
    972   virtual void updateDebugInfo(Instruction *Inst) const {
    973     for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
    974            E = DDIs.end(); I != E; ++I) {
    975       DbgDeclareInst *DDI = *I;
    976       if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
    977         ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
    978       else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
    979         ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
    980     }
    981     for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
    982            E = DVIs.end(); I != E; ++I) {
    983       DbgValueInst *DVI = *I;
    984       Value *Arg = NULL;
    985       if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    986         // If an argument is zero extended then use argument directly. The ZExt
    987         // may be zapped by an optimization pass in future.
    988         if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
    989           Arg = dyn_cast<Argument>(ZExt->getOperand(0));
    990         if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
    991           Arg = dyn_cast<Argument>(SExt->getOperand(0));
    992         if (!Arg)
    993           Arg = SI->getOperand(0);
    994       } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
    995         Arg = LI->getOperand(0);
    996       } else {
    997         continue;
    998       }
    999       Instruction *DbgVal =
   1000         DIB->insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
   1001                                      Inst);
   1002       DbgVal->setDebugLoc(DVI->getDebugLoc());
   1003     }
   1004   }
   1005 };
   1006 } // end anon namespace
   1007 
   1008 /// isSafeSelectToSpeculate - Select instructions that use an alloca and are
   1009 /// subsequently loaded can be rewritten to load both input pointers and then
   1010 /// select between the result, allowing the load of the alloca to be promoted.
   1011 /// From this:
   1012 ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
   1013 ///   %V = load i32* %P2
   1014 /// to:
   1015 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
   1016 ///   %V2 = load i32* %Other
   1017 ///   %V = select i1 %cond, i32 %V1, i32 %V2
   1018 ///
   1019 /// We can do this to a select if its only uses are loads and if the operand to
   1020 /// the select can be loaded unconditionally.
   1021 static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
   1022   bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
   1023   bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
   1024 
   1025   for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
   1026        UI != UE; ++UI) {
   1027     LoadInst *LI = dyn_cast<LoadInst>(*UI);
   1028     if (LI == 0 || !LI->isSimple()) return false;
   1029 
   1030     // Both operands to the select need to be dereferencable, either absolutely
   1031     // (e.g. allocas) or at this point because we can see other accesses to it.
   1032     if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
   1033                                                     LI->getAlignment(), TD))
   1034       return false;
   1035     if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
   1036                                                     LI->getAlignment(), TD))
   1037       return false;
   1038   }
   1039 
   1040   return true;
   1041 }
   1042 
   1043 /// isSafePHIToSpeculate - PHI instructions that use an alloca and are
   1044 /// subsequently loaded can be rewritten to load both input pointers in the pred
   1045 /// blocks and then PHI the results, allowing the load of the alloca to be
   1046 /// promoted.
   1047 /// From this:
   1048 ///   %P2 = phi [i32* %Alloca, i32* %Other]
   1049 ///   %V = load i32* %P2
   1050 /// to:
   1051 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
   1052 ///   ...
   1053 ///   %V2 = load i32* %Other
   1054 ///   ...
   1055 ///   %V = phi [i32 %V1, i32 %V2]
   1056 ///
   1057 /// We can do this to a select if its only uses are loads and if the operand to
   1058 /// the select can be loaded unconditionally.
   1059 static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
   1060   // For now, we can only do this promotion if the load is in the same block as
   1061   // the PHI, and if there are no stores between the phi and load.
   1062   // TODO: Allow recursive phi users.
   1063   // TODO: Allow stores.
   1064   BasicBlock *BB = PN->getParent();
   1065   unsigned MaxAlign = 0;
   1066   for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
   1067        UI != UE; ++UI) {
   1068     LoadInst *LI = dyn_cast<LoadInst>(*UI);
   1069     if (LI == 0 || !LI->isSimple()) return false;
   1070 
   1071     // For now we only allow loads in the same block as the PHI.  This is a
   1072     // common case that happens when instcombine merges two loads through a PHI.
   1073     if (LI->getParent() != BB) return false;
   1074 
   1075     // Ensure that there are no instructions between the PHI and the load that
   1076     // could store.
   1077     for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
   1078       if (BBI->mayWriteToMemory())
   1079         return false;
   1080 
   1081     MaxAlign = std::max(MaxAlign, LI->getAlignment());
   1082   }
   1083 
   1084   // Okay, we know that we have one or more loads in the same block as the PHI.
   1085   // We can transform this if it is safe to push the loads into the predecessor
   1086   // blocks.  The only thing to watch out for is that we can't put a possibly
   1087   // trapping load in the predecessor if it is a critical edge.
   1088   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1089     BasicBlock *Pred = PN->getIncomingBlock(i);
   1090     Value *InVal = PN->getIncomingValue(i);
   1091 
   1092     // If the terminator of the predecessor has side-effects (an invoke),
   1093     // there is no safe place to put a load in the predecessor.
   1094     if (Pred->getTerminator()->mayHaveSideEffects())
   1095       return false;
   1096 
   1097     // If the value is produced by the terminator of the predecessor
   1098     // (an invoke), there is no valid place to put a load in the predecessor.
   1099     if (Pred->getTerminator() == InVal)
   1100       return false;
   1101 
   1102     // If the predecessor has a single successor, then the edge isn't critical.
   1103     if (Pred->getTerminator()->getNumSuccessors() == 1)
   1104       continue;
   1105 
   1106     // If this pointer is always safe to load, or if we can prove that there is
   1107     // already a load in the block, then we can move the load to the pred block.
   1108     if (InVal->isDereferenceablePointer() ||
   1109         isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
   1110       continue;
   1111 
   1112     return false;
   1113   }
   1114 
   1115   return true;
   1116 }
   1117 
   1118 
   1119 /// tryToMakeAllocaBePromotable - This returns true if the alloca only has
   1120 /// direct (non-volatile) loads and stores to it.  If the alloca is close but
   1121 /// not quite there, this will transform the code to allow promotion.  As such,
   1122 /// it is a non-pure predicate.
   1123 static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
   1124   SetVector<Instruction*, SmallVector<Instruction*, 4>,
   1125             SmallPtrSet<Instruction*, 4> > InstsToRewrite;
   1126 
   1127   for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
   1128        UI != UE; ++UI) {
   1129     User *U = *UI;
   1130     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
   1131       if (!LI->isSimple())
   1132         return false;
   1133       continue;
   1134     }
   1135 
   1136     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
   1137       if (SI->getOperand(0) == AI || !SI->isSimple())
   1138         return false;   // Don't allow a store OF the AI, only INTO the AI.
   1139       continue;
   1140     }
   1141 
   1142     if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
   1143       // If the condition being selected on is a constant, fold the select, yes
   1144       // this does (rarely) happen early on.
   1145       if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
   1146         Value *Result = SI->getOperand(1+CI->isZero());
   1147         SI->replaceAllUsesWith(Result);
   1148         SI->eraseFromParent();
   1149 
   1150         // This is very rare and we just scrambled the use list of AI, start
   1151         // over completely.
   1152         return tryToMakeAllocaBePromotable(AI, TD);
   1153       }
   1154 
   1155       // If it is safe to turn "load (select c, AI, ptr)" into a select of two
   1156       // loads, then we can transform this by rewriting the select.
   1157       if (!isSafeSelectToSpeculate(SI, TD))
   1158         return false;
   1159 
   1160       InstsToRewrite.insert(SI);
   1161       continue;
   1162     }
   1163 
   1164     if (PHINode *PN = dyn_cast<PHINode>(U)) {
   1165       if (PN->use_empty()) {  // Dead PHIs can be stripped.
   1166         InstsToRewrite.insert(PN);
   1167         continue;
   1168       }
   1169 
   1170       // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
   1171       // in the pred blocks, then we can transform this by rewriting the PHI.
   1172       if (!isSafePHIToSpeculate(PN, TD))
   1173         return false;
   1174 
   1175       InstsToRewrite.insert(PN);
   1176       continue;
   1177     }
   1178 
   1179     if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
   1180       if (onlyUsedByLifetimeMarkers(BCI)) {
   1181         InstsToRewrite.insert(BCI);
   1182         continue;
   1183       }
   1184     }
   1185 
   1186     return false;
   1187   }
   1188 
   1189   // If there are no instructions to rewrite, then all uses are load/stores and
   1190   // we're done!
   1191   if (InstsToRewrite.empty())
   1192     return true;
   1193 
   1194   // If we have instructions that need to be rewritten for this to be promotable
   1195   // take care of it now.
   1196   for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
   1197     if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) {
   1198       // This could only be a bitcast used by nothing but lifetime intrinsics.
   1199       for (BitCastInst::use_iterator I = BCI->use_begin(), E = BCI->use_end();
   1200            I != E;) {
   1201         Use &U = I.getUse();
   1202         ++I;
   1203         cast<Instruction>(U.getUser())->eraseFromParent();
   1204       }
   1205       BCI->eraseFromParent();
   1206       continue;
   1207     }
   1208 
   1209     if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
   1210       // Selects in InstsToRewrite only have load uses.  Rewrite each as two
   1211       // loads with a new select.
   1212       while (!SI->use_empty()) {
   1213         LoadInst *LI = cast<LoadInst>(SI->use_back());
   1214 
   1215         IRBuilder<> Builder(LI);
   1216         LoadInst *TrueLoad =
   1217           Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
   1218         LoadInst *FalseLoad =
   1219           Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
   1220 
   1221         // Transfer alignment and TBAA info if present.
   1222         TrueLoad->setAlignment(LI->getAlignment());
   1223         FalseLoad->setAlignment(LI->getAlignment());
   1224         if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
   1225           TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
   1226           FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
   1227         }
   1228 
   1229         Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
   1230         V->takeName(LI);
   1231         LI->replaceAllUsesWith(V);
   1232         LI->eraseFromParent();
   1233       }
   1234 
   1235       // Now that all the loads are gone, the select is gone too.
   1236       SI->eraseFromParent();
   1237       continue;
   1238     }
   1239 
   1240     // Otherwise, we have a PHI node which allows us to push the loads into the
   1241     // predecessors.
   1242     PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
   1243     if (PN->use_empty()) {
   1244       PN->eraseFromParent();
   1245       continue;
   1246     }
   1247 
   1248     Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
   1249     PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
   1250                                      PN->getName()+".ld", PN);
   1251 
   1252     // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
   1253     // matter which one we get and if any differ, it doesn't matter.
   1254     LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
   1255     MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
   1256     unsigned Align = SomeLoad->getAlignment();
   1257 
   1258     // Rewrite all loads of the PN to use the new PHI.
   1259     while (!PN->use_empty()) {
   1260       LoadInst *LI = cast<LoadInst>(PN->use_back());
   1261       LI->replaceAllUsesWith(NewPN);
   1262       LI->eraseFromParent();
   1263     }
   1264 
   1265     // Inject loads into all of the pred blocks.  Keep track of which blocks we
   1266     // insert them into in case we have multiple edges from the same block.
   1267     DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
   1268 
   1269     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1270       BasicBlock *Pred = PN->getIncomingBlock(i);
   1271       LoadInst *&Load = InsertedLoads[Pred];
   1272       if (Load == 0) {
   1273         Load = new LoadInst(PN->getIncomingValue(i),
   1274                             PN->getName() + "." + Pred->getName(),
   1275                             Pred->getTerminator());
   1276         Load->setAlignment(Align);
   1277         if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
   1278       }
   1279 
   1280       NewPN->addIncoming(Load, Pred);
   1281     }
   1282 
   1283     PN->eraseFromParent();
   1284   }
   1285 
   1286   ++NumAdjusted;
   1287   return true;
   1288 }
   1289 
   1290 bool SROA::performPromotion(Function &F) {
   1291   std::vector<AllocaInst*> Allocas;
   1292   DominatorTree *DT = 0;
   1293   if (HasDomTree)
   1294     DT = &getAnalysis<DominatorTree>();
   1295 
   1296   BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
   1297   DIBuilder DIB(*F.getParent());
   1298   bool Changed = false;
   1299   SmallVector<Instruction*, 64> Insts;
   1300   while (1) {
   1301     Allocas.clear();
   1302 
   1303     // Find allocas that are safe to promote, by looking at all instructions in
   1304     // the entry node
   1305     for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
   1306       if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
   1307         if (tryToMakeAllocaBePromotable(AI, TD))
   1308           Allocas.push_back(AI);
   1309 
   1310     if (Allocas.empty()) break;
   1311 
   1312     if (HasDomTree)
   1313       PromoteMemToReg(Allocas, *DT);
   1314     else {
   1315       SSAUpdater SSA;
   1316       for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
   1317         AllocaInst *AI = Allocas[i];
   1318 
   1319         // Build list of instructions to promote.
   1320         for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
   1321              UI != E; ++UI)
   1322           Insts.push_back(cast<Instruction>(*UI));
   1323         AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
   1324         Insts.clear();
   1325       }
   1326     }
   1327     NumPromoted += Allocas.size();
   1328     Changed = true;
   1329   }
   1330 
   1331   return Changed;
   1332 }
   1333 
   1334 
   1335 /// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
   1336 /// SROA.  It must be a struct or array type with a small number of elements.
   1337 static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
   1338   Type *T = AI->getAllocatedType();
   1339   // Do not promote any struct into more than 32 separate vars.
   1340   if (StructType *ST = dyn_cast<StructType>(T))
   1341     return ST->getNumElements() <= 32;
   1342   // Arrays are much less likely to be safe for SROA; only consider
   1343   // them if they are very small.
   1344   if (ArrayType *AT = dyn_cast<ArrayType>(T))
   1345     return AT->getNumElements() <= 8;
   1346   return false;
   1347 }
   1348 
   1349 
   1350 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
   1351 // which runs on all of the alloca instructions in the function, removing them
   1352 // if they are only used by getelementptr instructions.
   1353 //
   1354 bool SROA::performScalarRepl(Function &F) {
   1355   std::vector<AllocaInst*> WorkList;
   1356 
   1357   // Scan the entry basic block, adding allocas to the worklist.
   1358   BasicBlock &BB = F.getEntryBlock();
   1359   for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
   1360     if (AllocaInst *A = dyn_cast<AllocaInst>(I))
   1361       WorkList.push_back(A);
   1362 
   1363   // Process the worklist
   1364   bool Changed = false;
   1365   while (!WorkList.empty()) {
   1366     AllocaInst *AI = WorkList.back();
   1367     WorkList.pop_back();
   1368 
   1369     // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
   1370     // with unused elements.
   1371     if (AI->use_empty()) {
   1372       AI->eraseFromParent();
   1373       Changed = true;
   1374       continue;
   1375     }
   1376 
   1377     // If this alloca is impossible for us to promote, reject it early.
   1378     if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
   1379       continue;
   1380 
   1381     // Check to see if this allocation is only modified by a memcpy/memmove from
   1382     // a constant global.  If this is the case, we can change all users to use
   1383     // the constant global instead.  This is commonly produced by the CFE by
   1384     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
   1385     // is only subsequently read.
   1386     SmallVector<Instruction *, 4> ToDelete;
   1387     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(AI, ToDelete)) {
   1388       DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
   1389       DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
   1390       for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
   1391         ToDelete[i]->eraseFromParent();
   1392       Constant *TheSrc = cast<Constant>(Copy->getSource());
   1393       AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
   1394       Copy->eraseFromParent();  // Don't mutate the global.
   1395       AI->eraseFromParent();
   1396       ++NumGlobals;
   1397       Changed = true;
   1398       continue;
   1399     }
   1400 
   1401     // Check to see if we can perform the core SROA transformation.  We cannot
   1402     // transform the allocation instruction if it is an array allocation
   1403     // (allocations OF arrays are ok though), and an allocation of a scalar
   1404     // value cannot be decomposed at all.
   1405     uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
   1406 
   1407     // Do not promote [0 x %struct].
   1408     if (AllocaSize == 0) continue;
   1409 
   1410     // Do not promote any struct whose size is too big.
   1411     if (AllocaSize > SRThreshold) continue;
   1412 
   1413     // If the alloca looks like a good candidate for scalar replacement, and if
   1414     // all its users can be transformed, then split up the aggregate into its
   1415     // separate elements.
   1416     if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
   1417       DoScalarReplacement(AI, WorkList);
   1418       Changed = true;
   1419       continue;
   1420     }
   1421 
   1422     // If we can turn this aggregate value (potentially with casts) into a
   1423     // simple scalar value that can be mem2reg'd into a register value.
   1424     // IsNotTrivial tracks whether this is something that mem2reg could have
   1425     // promoted itself.  If so, we don't want to transform it needlessly.  Note
   1426     // that we can't just check based on the type: the alloca may be of an i32
   1427     // but that has pointer arithmetic to set byte 3 of it or something.
   1428     if (AllocaInst *NewAI =
   1429           ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
   1430       NewAI->takeName(AI);
   1431       AI->eraseFromParent();
   1432       ++NumConverted;
   1433       Changed = true;
   1434       continue;
   1435     }
   1436 
   1437     // Otherwise, couldn't process this alloca.
   1438   }
   1439 
   1440   return Changed;
   1441 }
   1442 
   1443 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
   1444 /// predicate, do SROA now.
   1445 void SROA::DoScalarReplacement(AllocaInst *AI,
   1446                                std::vector<AllocaInst*> &WorkList) {
   1447   DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
   1448   SmallVector<AllocaInst*, 32> ElementAllocas;
   1449   if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
   1450     ElementAllocas.reserve(ST->getNumContainedTypes());
   1451     for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
   1452       AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
   1453                                       AI->getAlignment(),
   1454                                       AI->getName() + "." + Twine(i), AI);
   1455       ElementAllocas.push_back(NA);
   1456       WorkList.push_back(NA);  // Add to worklist for recursive processing
   1457     }
   1458   } else {
   1459     ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
   1460     ElementAllocas.reserve(AT->getNumElements());
   1461     Type *ElTy = AT->getElementType();
   1462     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
   1463       AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
   1464                                       AI->getName() + "." + Twine(i), AI);
   1465       ElementAllocas.push_back(NA);
   1466       WorkList.push_back(NA);  // Add to worklist for recursive processing
   1467     }
   1468   }
   1469 
   1470   // Now that we have created the new alloca instructions, rewrite all the
   1471   // uses of the old alloca.
   1472   RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
   1473 
   1474   // Now erase any instructions that were made dead while rewriting the alloca.
   1475   DeleteDeadInstructions();
   1476   AI->eraseFromParent();
   1477 
   1478   ++NumReplaced;
   1479 }
   1480 
   1481 /// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
   1482 /// recursively including all their operands that become trivially dead.
   1483 void SROA::DeleteDeadInstructions() {
   1484   while (!DeadInsts.empty()) {
   1485     Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
   1486 
   1487     for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
   1488       if (Instruction *U = dyn_cast<Instruction>(*OI)) {
   1489         // Zero out the operand and see if it becomes trivially dead.
   1490         // (But, don't add allocas to the dead instruction list -- they are
   1491         // already on the worklist and will be deleted separately.)
   1492         *OI = 0;
   1493         if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
   1494           DeadInsts.push_back(U);
   1495       }
   1496 
   1497     I->eraseFromParent();
   1498   }
   1499 }
   1500 
   1501 /// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
   1502 /// performing scalar replacement of alloca AI.  The results are flagged in
   1503 /// the Info parameter.  Offset indicates the position within AI that is
   1504 /// referenced by this instruction.
   1505 void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
   1506                                AllocaInfo &Info) {
   1507   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
   1508     Instruction *User = cast<Instruction>(*UI);
   1509 
   1510     if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
   1511       isSafeForScalarRepl(BC, Offset, Info);
   1512     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
   1513       uint64_t GEPOffset = Offset;
   1514       isSafeGEP(GEPI, GEPOffset, Info);
   1515       if (!Info.isUnsafe)
   1516         isSafeForScalarRepl(GEPI, GEPOffset, Info);
   1517     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
   1518       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
   1519       if (Length == 0)
   1520         return MarkUnsafe(Info, User);
   1521       if (Length->isNegative())
   1522         return MarkUnsafe(Info, User);
   1523 
   1524       isSafeMemAccess(Offset, Length->getZExtValue(), 0,
   1525                       UI.getOperandNo() == 0, Info, MI,
   1526                       true /*AllowWholeAccess*/);
   1527     } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
   1528       if (!LI->isSimple())
   1529         return MarkUnsafe(Info, User);
   1530       Type *LIType = LI->getType();
   1531       isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
   1532                       LIType, false, Info, LI, true /*AllowWholeAccess*/);
   1533       Info.hasALoadOrStore = true;
   1534 
   1535     } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
   1536       // Store is ok if storing INTO the pointer, not storing the pointer
   1537       if (!SI->isSimple() || SI->getOperand(0) == I)
   1538         return MarkUnsafe(Info, User);
   1539 
   1540       Type *SIType = SI->getOperand(0)->getType();
   1541       isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
   1542                       SIType, true, Info, SI, true /*AllowWholeAccess*/);
   1543       Info.hasALoadOrStore = true;
   1544     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
   1545       if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
   1546           II->getIntrinsicID() != Intrinsic::lifetime_end)
   1547         return MarkUnsafe(Info, User);
   1548     } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
   1549       isSafePHISelectUseForScalarRepl(User, Offset, Info);
   1550     } else {
   1551       return MarkUnsafe(Info, User);
   1552     }
   1553     if (Info.isUnsafe) return;
   1554   }
   1555 }
   1556 
   1557 
   1558 /// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
   1559 /// derived from the alloca, we can often still split the alloca into elements.
   1560 /// This is useful if we have a large alloca where one element is phi'd
   1561 /// together somewhere: we can SRoA and promote all the other elements even if
   1562 /// we end up not being able to promote this one.
   1563 ///
   1564 /// All we require is that the uses of the PHI do not index into other parts of
   1565 /// the alloca.  The most important use case for this is single load and stores
   1566 /// that are PHI'd together, which can happen due to code sinking.
   1567 void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
   1568                                            AllocaInfo &Info) {
   1569   // If we've already checked this PHI, don't do it again.
   1570   if (PHINode *PN = dyn_cast<PHINode>(I))
   1571     if (!Info.CheckedPHIs.insert(PN))
   1572       return;
   1573 
   1574   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
   1575     Instruction *User = cast<Instruction>(*UI);
   1576 
   1577     if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
   1578       isSafePHISelectUseForScalarRepl(BC, Offset, Info);
   1579     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
   1580       // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
   1581       // but would have to prove that we're staying inside of an element being
   1582       // promoted.
   1583       if (!GEPI->hasAllZeroIndices())
   1584         return MarkUnsafe(Info, User);
   1585       isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
   1586     } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
   1587       if (!LI->isSimple())
   1588         return MarkUnsafe(Info, User);
   1589       Type *LIType = LI->getType();
   1590       isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
   1591                       LIType, false, Info, LI, false /*AllowWholeAccess*/);
   1592       Info.hasALoadOrStore = true;
   1593 
   1594     } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
   1595       // Store is ok if storing INTO the pointer, not storing the pointer
   1596       if (!SI->isSimple() || SI->getOperand(0) == I)
   1597         return MarkUnsafe(Info, User);
   1598 
   1599       Type *SIType = SI->getOperand(0)->getType();
   1600       isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
   1601                       SIType, true, Info, SI, false /*AllowWholeAccess*/);
   1602       Info.hasALoadOrStore = true;
   1603     } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
   1604       isSafePHISelectUseForScalarRepl(User, Offset, Info);
   1605     } else {
   1606       return MarkUnsafe(Info, User);
   1607     }
   1608     if (Info.isUnsafe) return;
   1609   }
   1610 }
   1611 
   1612 /// isSafeGEP - Check if a GEP instruction can be handled for scalar
   1613 /// replacement.  It is safe when all the indices are constant, in-bounds
   1614 /// references, and when the resulting offset corresponds to an element within
   1615 /// the alloca type.  The results are flagged in the Info parameter.  Upon
   1616 /// return, Offset is adjusted as specified by the GEP indices.
   1617 void SROA::isSafeGEP(GetElementPtrInst *GEPI,
   1618                      uint64_t &Offset, AllocaInfo &Info) {
   1619   gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
   1620   if (GEPIt == E)
   1621     return;
   1622 
   1623   // Walk through the GEP type indices, checking the types that this indexes
   1624   // into.
   1625   for (; GEPIt != E; ++GEPIt) {
   1626     // Ignore struct elements, no extra checking needed for these.
   1627     if ((*GEPIt)->isStructTy())
   1628       continue;
   1629 
   1630     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
   1631     if (!IdxVal)
   1632       return MarkUnsafe(Info, GEPI);
   1633   }
   1634 
   1635   // Compute the offset due to this GEP and check if the alloca has a
   1636   // component element at that offset.
   1637   SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
   1638   Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
   1639   if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
   1640     MarkUnsafe(Info, GEPI);
   1641 }
   1642 
   1643 /// isHomogeneousAggregate - Check if type T is a struct or array containing
   1644 /// elements of the same type (which is always true for arrays).  If so,
   1645 /// return true with NumElts and EltTy set to the number of elements and the
   1646 /// element type, respectively.
   1647 static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
   1648                                    Type *&EltTy) {
   1649   if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
   1650     NumElts = AT->getNumElements();
   1651     EltTy = (NumElts == 0 ? 0 : AT->getElementType());
   1652     return true;
   1653   }
   1654   if (StructType *ST = dyn_cast<StructType>(T)) {
   1655     NumElts = ST->getNumContainedTypes();
   1656     EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
   1657     for (unsigned n = 1; n < NumElts; ++n) {
   1658       if (ST->getContainedType(n) != EltTy)
   1659         return false;
   1660     }
   1661     return true;
   1662   }
   1663   return false;
   1664 }
   1665 
   1666 /// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
   1667 /// "homogeneous" aggregates with the same element type and number of elements.
   1668 static bool isCompatibleAggregate(Type *T1, Type *T2) {
   1669   if (T1 == T2)
   1670     return true;
   1671 
   1672   unsigned NumElts1, NumElts2;
   1673   Type *EltTy1, *EltTy2;
   1674   if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
   1675       isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
   1676       NumElts1 == NumElts2 &&
   1677       EltTy1 == EltTy2)
   1678     return true;
   1679 
   1680   return false;
   1681 }
   1682 
   1683 /// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
   1684 /// alloca or has an offset and size that corresponds to a component element
   1685 /// within it.  The offset checked here may have been formed from a GEP with a
   1686 /// pointer bitcasted to a different type.
   1687 ///
   1688 /// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
   1689 /// unit.  If false, it only allows accesses known to be in a single element.
   1690 void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
   1691                            Type *MemOpType, bool isStore,
   1692                            AllocaInfo &Info, Instruction *TheAccess,
   1693                            bool AllowWholeAccess) {
   1694   // Check if this is a load/store of the entire alloca.
   1695   if (Offset == 0 && AllowWholeAccess &&
   1696       MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
   1697     // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
   1698     // loads/stores (which are essentially the same as the MemIntrinsics with
   1699     // regard to copying padding between elements).  But, if an alloca is
   1700     // flagged as both a source and destination of such operations, we'll need
   1701     // to check later for padding between elements.
   1702     if (!MemOpType || MemOpType->isIntegerTy()) {
   1703       if (isStore)
   1704         Info.isMemCpyDst = true;
   1705       else
   1706         Info.isMemCpySrc = true;
   1707       return;
   1708     }
   1709     // This is also safe for references using a type that is compatible with
   1710     // the type of the alloca, so that loads/stores can be rewritten using
   1711     // insertvalue/extractvalue.
   1712     if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
   1713       Info.hasSubelementAccess = true;
   1714       return;
   1715     }
   1716   }
   1717   // Check if the offset/size correspond to a component within the alloca type.
   1718   Type *T = Info.AI->getAllocatedType();
   1719   if (TypeHasComponent(T, Offset, MemSize)) {
   1720     Info.hasSubelementAccess = true;
   1721     return;
   1722   }
   1723 
   1724   return MarkUnsafe(Info, TheAccess);
   1725 }
   1726 
   1727 /// TypeHasComponent - Return true if T has a component type with the
   1728 /// specified offset and size.  If Size is zero, do not check the size.
   1729 bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
   1730   Type *EltTy;
   1731   uint64_t EltSize;
   1732   if (StructType *ST = dyn_cast<StructType>(T)) {
   1733     const StructLayout *Layout = TD->getStructLayout(ST);
   1734     unsigned EltIdx = Layout->getElementContainingOffset(Offset);
   1735     EltTy = ST->getContainedType(EltIdx);
   1736     EltSize = TD->getTypeAllocSize(EltTy);
   1737     Offset -= Layout->getElementOffset(EltIdx);
   1738   } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
   1739     EltTy = AT->getElementType();
   1740     EltSize = TD->getTypeAllocSize(EltTy);
   1741     if (Offset >= AT->getNumElements() * EltSize)
   1742       return false;
   1743     Offset %= EltSize;
   1744   } else {
   1745     return false;
   1746   }
   1747   if (Offset == 0 && (Size == 0 || EltSize == Size))
   1748     return true;
   1749   // Check if the component spans multiple elements.
   1750   if (Offset + Size > EltSize)
   1751     return false;
   1752   return TypeHasComponent(EltTy, Offset, Size);
   1753 }
   1754 
   1755 /// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
   1756 /// the instruction I, which references it, to use the separate elements.
   1757 /// Offset indicates the position within AI that is referenced by this
   1758 /// instruction.
   1759 void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
   1760                                 SmallVector<AllocaInst*, 32> &NewElts) {
   1761   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
   1762     Use &TheUse = UI.getUse();
   1763     Instruction *User = cast<Instruction>(*UI++);
   1764 
   1765     if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
   1766       RewriteBitCast(BC, AI, Offset, NewElts);
   1767       continue;
   1768     }
   1769 
   1770     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
   1771       RewriteGEP(GEPI, AI, Offset, NewElts);
   1772       continue;
   1773     }
   1774 
   1775     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
   1776       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
   1777       uint64_t MemSize = Length->getZExtValue();
   1778       if (Offset == 0 &&
   1779           MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
   1780         RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
   1781       // Otherwise the intrinsic can only touch a single element and the
   1782       // address operand will be updated, so nothing else needs to be done.
   1783       continue;
   1784     }
   1785 
   1786     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
   1787       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
   1788           II->getIntrinsicID() == Intrinsic::lifetime_end) {
   1789         RewriteLifetimeIntrinsic(II, AI, Offset, NewElts);
   1790       }
   1791       continue;
   1792     }
   1793 
   1794     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
   1795       Type *LIType = LI->getType();
   1796 
   1797       if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
   1798         // Replace:
   1799         //   %res = load { i32, i32 }* %alloc
   1800         // with:
   1801         //   %load.0 = load i32* %alloc.0
   1802         //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
   1803         //   %load.1 = load i32* %alloc.1
   1804         //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
   1805         // (Also works for arrays instead of structs)
   1806         Value *Insert = UndefValue::get(LIType);
   1807         IRBuilder<> Builder(LI);
   1808         for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
   1809           Value *Load = Builder.CreateLoad(NewElts[i], "load");
   1810           Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
   1811         }
   1812         LI->replaceAllUsesWith(Insert);
   1813         DeadInsts.push_back(LI);
   1814       } else if (LIType->isIntegerTy() &&
   1815                  TD->getTypeAllocSize(LIType) ==
   1816                  TD->getTypeAllocSize(AI->getAllocatedType())) {
   1817         // If this is a load of the entire alloca to an integer, rewrite it.
   1818         RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
   1819       }
   1820       continue;
   1821     }
   1822 
   1823     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
   1824       Value *Val = SI->getOperand(0);
   1825       Type *SIType = Val->getType();
   1826       if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
   1827         // Replace:
   1828         //   store { i32, i32 } %val, { i32, i32 }* %alloc
   1829         // with:
   1830         //   %val.0 = extractvalue { i32, i32 } %val, 0
   1831         //   store i32 %val.0, i32* %alloc.0
   1832         //   %val.1 = extractvalue { i32, i32 } %val, 1
   1833         //   store i32 %val.1, i32* %alloc.1
   1834         // (Also works for arrays instead of structs)
   1835         IRBuilder<> Builder(SI);
   1836         for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
   1837           Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
   1838           Builder.CreateStore(Extract, NewElts[i]);
   1839         }
   1840         DeadInsts.push_back(SI);
   1841       } else if (SIType->isIntegerTy() &&
   1842                  TD->getTypeAllocSize(SIType) ==
   1843                  TD->getTypeAllocSize(AI->getAllocatedType())) {
   1844         // If this is a store of the entire alloca from an integer, rewrite it.
   1845         RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
   1846       }
   1847       continue;
   1848     }
   1849 
   1850     if (isa<SelectInst>(User) || isa<PHINode>(User)) {
   1851       // If we have a PHI user of the alloca itself (as opposed to a GEP or
   1852       // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
   1853       // the new pointer.
   1854       if (!isa<AllocaInst>(I)) continue;
   1855 
   1856       assert(Offset == 0 && NewElts[0] &&
   1857              "Direct alloca use should have a zero offset");
   1858 
   1859       // If we have a use of the alloca, we know the derived uses will be
   1860       // utilizing just the first element of the scalarized result.  Insert a
   1861       // bitcast of the first alloca before the user as required.
   1862       AllocaInst *NewAI = NewElts[0];
   1863       BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
   1864       NewAI->moveBefore(BCI);
   1865       TheUse = BCI;
   1866       continue;
   1867     }
   1868   }
   1869 }
   1870 
   1871 /// RewriteBitCast - Update a bitcast reference to the alloca being replaced
   1872 /// and recursively continue updating all of its uses.
   1873 void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
   1874                           SmallVector<AllocaInst*, 32> &NewElts) {
   1875   RewriteForScalarRepl(BC, AI, Offset, NewElts);
   1876   if (BC->getOperand(0) != AI)
   1877     return;
   1878 
   1879   // The bitcast references the original alloca.  Replace its uses with
   1880   // references to the alloca containing offset zero (which is normally at
   1881   // index zero, but might not be in cases involving structs with elements
   1882   // of size zero).
   1883   Type *T = AI->getAllocatedType();
   1884   uint64_t EltOffset = 0;
   1885   Type *IdxTy;
   1886   uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
   1887   Instruction *Val = NewElts[Idx];
   1888   if (Val->getType() != BC->getDestTy()) {
   1889     Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
   1890     Val->takeName(BC);
   1891   }
   1892   BC->replaceAllUsesWith(Val);
   1893   DeadInsts.push_back(BC);
   1894 }
   1895 
   1896 /// FindElementAndOffset - Return the index of the element containing Offset
   1897 /// within the specified type, which must be either a struct or an array.
   1898 /// Sets T to the type of the element and Offset to the offset within that
   1899 /// element.  IdxTy is set to the type of the index result to be used in a
   1900 /// GEP instruction.
   1901 uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
   1902                                     Type *&IdxTy) {
   1903   uint64_t Idx = 0;
   1904   if (StructType *ST = dyn_cast<StructType>(T)) {
   1905     const StructLayout *Layout = TD->getStructLayout(ST);
   1906     Idx = Layout->getElementContainingOffset(Offset);
   1907     T = ST->getContainedType(Idx);
   1908     Offset -= Layout->getElementOffset(Idx);
   1909     IdxTy = Type::getInt32Ty(T->getContext());
   1910     return Idx;
   1911   }
   1912   ArrayType *AT = cast<ArrayType>(T);
   1913   T = AT->getElementType();
   1914   uint64_t EltSize = TD->getTypeAllocSize(T);
   1915   Idx = Offset / EltSize;
   1916   Offset -= Idx * EltSize;
   1917   IdxTy = Type::getInt64Ty(T->getContext());
   1918   return Idx;
   1919 }
   1920 
   1921 /// RewriteGEP - Check if this GEP instruction moves the pointer across
   1922 /// elements of the alloca that are being split apart, and if so, rewrite
   1923 /// the GEP to be relative to the new element.
   1924 void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
   1925                       SmallVector<AllocaInst*, 32> &NewElts) {
   1926   uint64_t OldOffset = Offset;
   1927   SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
   1928   Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
   1929 
   1930   RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
   1931 
   1932   Type *T = AI->getAllocatedType();
   1933   Type *IdxTy;
   1934   uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
   1935   if (GEPI->getOperand(0) == AI)
   1936     OldIdx = ~0ULL; // Force the GEP to be rewritten.
   1937 
   1938   T = AI->getAllocatedType();
   1939   uint64_t EltOffset = Offset;
   1940   uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
   1941 
   1942   // If this GEP does not move the pointer across elements of the alloca
   1943   // being split, then it does not needs to be rewritten.
   1944   if (Idx == OldIdx)
   1945     return;
   1946 
   1947   Type *i32Ty = Type::getInt32Ty(AI->getContext());
   1948   SmallVector<Value*, 8> NewArgs;
   1949   NewArgs.push_back(Constant::getNullValue(i32Ty));
   1950   while (EltOffset != 0) {
   1951     uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
   1952     NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
   1953   }
   1954   Instruction *Val = NewElts[Idx];
   1955   if (NewArgs.size() > 1) {
   1956     Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI);
   1957     Val->takeName(GEPI);
   1958   }
   1959   if (Val->getType() != GEPI->getType())
   1960     Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
   1961   GEPI->replaceAllUsesWith(Val);
   1962   DeadInsts.push_back(GEPI);
   1963 }
   1964 
   1965 /// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it
   1966 /// to mark the lifetime of the scalarized memory.
   1967 void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
   1968                                     uint64_t Offset,
   1969                                     SmallVector<AllocaInst*, 32> &NewElts) {
   1970   ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0));
   1971   // Put matching lifetime markers on everything from Offset up to
   1972   // Offset+OldSize.
   1973   Type *AIType = AI->getAllocatedType();
   1974   uint64_t NewOffset = Offset;
   1975   Type *IdxTy;
   1976   uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy);
   1977 
   1978   IRBuilder<> Builder(II);
   1979   uint64_t Size = OldSize->getLimitedValue();
   1980 
   1981   if (NewOffset) {
   1982     // Splice the first element and index 'NewOffset' bytes in.  SROA will
   1983     // split the alloca again later.
   1984     Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy());
   1985     V = Builder.CreateGEP(V, Builder.getInt64(NewOffset));
   1986 
   1987     IdxTy = NewElts[Idx]->getAllocatedType();
   1988     uint64_t EltSize = TD->getTypeAllocSize(IdxTy) - NewOffset;
   1989     if (EltSize > Size) {
   1990       EltSize = Size;
   1991       Size = 0;
   1992     } else {
   1993       Size -= EltSize;
   1994     }
   1995     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
   1996       Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize));
   1997     else
   1998       Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize));
   1999     ++Idx;
   2000   }
   2001 
   2002   for (; Idx != NewElts.size() && Size; ++Idx) {
   2003     IdxTy = NewElts[Idx]->getAllocatedType();
   2004     uint64_t EltSize = TD->getTypeAllocSize(IdxTy);
   2005     if (EltSize > Size) {
   2006       EltSize = Size;
   2007       Size = 0;
   2008     } else {
   2009       Size -= EltSize;
   2010     }
   2011     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
   2012       Builder.CreateLifetimeStart(NewElts[Idx],
   2013                                   Builder.getInt64(EltSize));
   2014     else
   2015       Builder.CreateLifetimeEnd(NewElts[Idx],
   2016                                 Builder.getInt64(EltSize));
   2017   }
   2018   DeadInsts.push_back(II);
   2019 }
   2020 
   2021 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
   2022 /// Rewrite it to copy or set the elements of the scalarized memory.
   2023 void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
   2024                                         AllocaInst *AI,
   2025                                         SmallVector<AllocaInst*, 32> &NewElts) {
   2026   // If this is a memcpy/memmove, construct the other pointer as the
   2027   // appropriate type.  The "Other" pointer is the pointer that goes to memory
   2028   // that doesn't have anything to do with the alloca that we are promoting. For
   2029   // memset, this Value* stays null.
   2030   Value *OtherPtr = 0;
   2031   unsigned MemAlignment = MI->getAlignment();
   2032   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
   2033     if (Inst == MTI->getRawDest())
   2034       OtherPtr = MTI->getRawSource();
   2035     else {
   2036       assert(Inst == MTI->getRawSource());
   2037       OtherPtr = MTI->getRawDest();
   2038     }
   2039   }
   2040 
   2041   // If there is an other pointer, we want to convert it to the same pointer
   2042   // type as AI has, so we can GEP through it safely.
   2043   if (OtherPtr) {
   2044     unsigned AddrSpace =
   2045       cast<PointerType>(OtherPtr->getType())->getAddressSpace();
   2046 
   2047     // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
   2048     // optimization, but it's also required to detect the corner case where
   2049     // both pointer operands are referencing the same memory, and where
   2050     // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
   2051     // function is only called for mem intrinsics that access the whole
   2052     // aggregate, so non-zero GEPs are not an issue here.)
   2053     OtherPtr = OtherPtr->stripPointerCasts();
   2054 
   2055     // Copying the alloca to itself is a no-op: just delete it.
   2056     if (OtherPtr == AI || OtherPtr == NewElts[0]) {
   2057       // This code will run twice for a no-op memcpy -- once for each operand.
   2058       // Put only one reference to MI on the DeadInsts list.
   2059       for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
   2060              E = DeadInsts.end(); I != E; ++I)
   2061         if (*I == MI) return;
   2062       DeadInsts.push_back(MI);
   2063       return;
   2064     }
   2065 
   2066     // If the pointer is not the right type, insert a bitcast to the right
   2067     // type.
   2068     Type *NewTy =
   2069       PointerType::get(AI->getType()->getElementType(), AddrSpace);
   2070 
   2071     if (OtherPtr->getType() != NewTy)
   2072       OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
   2073   }
   2074 
   2075   // Process each element of the aggregate.
   2076   bool SROADest = MI->getRawDest() == Inst;
   2077 
   2078   Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
   2079 
   2080   for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
   2081     // If this is a memcpy/memmove, emit a GEP of the other element address.
   2082     Value *OtherElt = 0;
   2083     unsigned OtherEltAlign = MemAlignment;
   2084 
   2085     if (OtherPtr) {
   2086       Value *Idx[2] = { Zero,
   2087                       ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
   2088       OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx,
   2089                                               OtherPtr->getName()+"."+Twine(i),
   2090                                                    MI);
   2091       uint64_t EltOffset;
   2092       PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
   2093       Type *OtherTy = OtherPtrTy->getElementType();
   2094       if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
   2095         EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
   2096       } else {
   2097         Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
   2098         EltOffset = TD->getTypeAllocSize(EltTy)*i;
   2099       }
   2100 
   2101       // The alignment of the other pointer is the guaranteed alignment of the
   2102       // element, which is affected by both the known alignment of the whole
   2103       // mem intrinsic and the alignment of the element.  If the alignment of
   2104       // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
   2105       // known alignment is just 4 bytes.
   2106       OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
   2107     }
   2108 
   2109     Value *EltPtr = NewElts[i];
   2110     Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
   2111 
   2112     // If we got down to a scalar, insert a load or store as appropriate.
   2113     if (EltTy->isSingleValueType()) {
   2114       if (isa<MemTransferInst>(MI)) {
   2115         if (SROADest) {
   2116           // From Other to Alloca.
   2117           Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
   2118           new StoreInst(Elt, EltPtr, MI);
   2119         } else {
   2120           // From Alloca to Other.
   2121           Value *Elt = new LoadInst(EltPtr, "tmp", MI);
   2122           new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
   2123         }
   2124         continue;
   2125       }
   2126       assert(isa<MemSetInst>(MI));
   2127 
   2128       // If the stored element is zero (common case), just store a null
   2129       // constant.
   2130       Constant *StoreVal;
   2131       if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
   2132         if (CI->isZero()) {
   2133           StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
   2134         } else {
   2135           // If EltTy is a vector type, get the element type.
   2136           Type *ValTy = EltTy->getScalarType();
   2137 
   2138           // Construct an integer with the right value.
   2139           unsigned EltSize = TD->getTypeSizeInBits(ValTy);
   2140           APInt OneVal(EltSize, CI->getZExtValue());
   2141           APInt TotalVal(OneVal);
   2142           // Set each byte.
   2143           for (unsigned i = 0; 8*i < EltSize; ++i) {
   2144             TotalVal = TotalVal.shl(8);
   2145             TotalVal |= OneVal;
   2146           }
   2147 
   2148           // Convert the integer value to the appropriate type.
   2149           StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
   2150           if (ValTy->isPointerTy())
   2151             StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
   2152           else if (ValTy->isFloatingPointTy())
   2153             StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
   2154           assert(StoreVal->getType() == ValTy && "Type mismatch!");
   2155 
   2156           // If the requested value was a vector constant, create it.
   2157           if (EltTy->isVectorTy()) {
   2158             unsigned NumElts = cast<VectorType>(EltTy)->getNumElements();
   2159             StoreVal = ConstantVector::getSplat(NumElts, StoreVal);
   2160           }
   2161         }
   2162         new StoreInst(StoreVal, EltPtr, MI);
   2163         continue;
   2164       }
   2165       // Otherwise, if we're storing a byte variable, use a memset call for
   2166       // this element.
   2167     }
   2168 
   2169     unsigned EltSize = TD->getTypeAllocSize(EltTy);
   2170     if (!EltSize)
   2171       continue;
   2172 
   2173     IRBuilder<> Builder(MI);
   2174 
   2175     // Finally, insert the meminst for this element.
   2176     if (isa<MemSetInst>(MI)) {
   2177       Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
   2178                            MI->isVolatile());
   2179     } else {
   2180       assert(isa<MemTransferInst>(MI));
   2181       Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
   2182       Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
   2183 
   2184       if (isa<MemCpyInst>(MI))
   2185         Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
   2186       else
   2187         Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
   2188     }
   2189   }
   2190   DeadInsts.push_back(MI);
   2191 }
   2192 
   2193 /// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
   2194 /// overwrites the entire allocation.  Extract out the pieces of the stored
   2195 /// integer and store them individually.
   2196 void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
   2197                                          SmallVector<AllocaInst*, 32> &NewElts){
   2198   // Extract each element out of the integer according to its structure offset
   2199   // and store the element value to the individual alloca.
   2200   Value *SrcVal = SI->getOperand(0);
   2201   Type *AllocaEltTy = AI->getAllocatedType();
   2202   uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
   2203 
   2204   IRBuilder<> Builder(SI);
   2205 
   2206   // Handle tail padding by extending the operand
   2207   if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
   2208     SrcVal = Builder.CreateZExt(SrcVal,
   2209                             IntegerType::get(SI->getContext(), AllocaSizeBits));
   2210 
   2211   DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
   2212                << '\n');
   2213 
   2214   // There are two forms here: AI could be an array or struct.  Both cases
   2215   // have different ways to compute the element offset.
   2216   if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
   2217     const StructLayout *Layout = TD->getStructLayout(EltSTy);
   2218 
   2219     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
   2220       // Get the number of bits to shift SrcVal to get the value.
   2221       Type *FieldTy = EltSTy->getElementType(i);
   2222       uint64_t Shift = Layout->getElementOffsetInBits(i);
   2223 
   2224       if (TD->isBigEndian())
   2225         Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
   2226 
   2227       Value *EltVal = SrcVal;
   2228       if (Shift) {
   2229         Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
   2230         EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
   2231       }
   2232 
   2233       // Truncate down to an integer of the right size.
   2234       uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
   2235 
   2236       // Ignore zero sized fields like {}, they obviously contain no data.
   2237       if (FieldSizeBits == 0) continue;
   2238 
   2239       if (FieldSizeBits != AllocaSizeBits)
   2240         EltVal = Builder.CreateTrunc(EltVal,
   2241                              IntegerType::get(SI->getContext(), FieldSizeBits));
   2242       Value *DestField = NewElts[i];
   2243       if (EltVal->getType() == FieldTy) {
   2244         // Storing to an integer field of this size, just do it.
   2245       } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
   2246         // Bitcast to the right element type (for fp/vector values).
   2247         EltVal = Builder.CreateBitCast(EltVal, FieldTy);
   2248       } else {
   2249         // Otherwise, bitcast the dest pointer (for aggregates).
   2250         DestField = Builder.CreateBitCast(DestField,
   2251                                      PointerType::getUnqual(EltVal->getType()));
   2252       }
   2253       new StoreInst(EltVal, DestField, SI);
   2254     }
   2255 
   2256   } else {
   2257     ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
   2258     Type *ArrayEltTy = ATy->getElementType();
   2259     uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
   2260     uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
   2261 
   2262     uint64_t Shift;
   2263 
   2264     if (TD->isBigEndian())
   2265       Shift = AllocaSizeBits-ElementOffset;
   2266     else
   2267       Shift = 0;
   2268 
   2269     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
   2270       // Ignore zero sized fields like {}, they obviously contain no data.
   2271       if (ElementSizeBits == 0) continue;
   2272 
   2273       Value *EltVal = SrcVal;
   2274       if (Shift) {
   2275         Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
   2276         EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
   2277       }
   2278 
   2279       // Truncate down to an integer of the right size.
   2280       if (ElementSizeBits != AllocaSizeBits)
   2281         EltVal = Builder.CreateTrunc(EltVal,
   2282                                      IntegerType::get(SI->getContext(),
   2283                                                       ElementSizeBits));
   2284       Value *DestField = NewElts[i];
   2285       if (EltVal->getType() == ArrayEltTy) {
   2286         // Storing to an integer field of this size, just do it.
   2287       } else if (ArrayEltTy->isFloatingPointTy() ||
   2288                  ArrayEltTy->isVectorTy()) {
   2289         // Bitcast to the right element type (for fp/vector values).
   2290         EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
   2291       } else {
   2292         // Otherwise, bitcast the dest pointer (for aggregates).
   2293         DestField = Builder.CreateBitCast(DestField,
   2294                                      PointerType::getUnqual(EltVal->getType()));
   2295       }
   2296       new StoreInst(EltVal, DestField, SI);
   2297 
   2298       if (TD->isBigEndian())
   2299         Shift -= ElementOffset;
   2300       else
   2301         Shift += ElementOffset;
   2302     }
   2303   }
   2304 
   2305   DeadInsts.push_back(SI);
   2306 }
   2307 
   2308 /// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
   2309 /// an integer.  Load the individual pieces to form the aggregate value.
   2310 void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
   2311                                         SmallVector<AllocaInst*, 32> &NewElts) {
   2312   // Extract each element out of the NewElts according to its structure offset
   2313   // and form the result value.
   2314   Type *AllocaEltTy = AI->getAllocatedType();
   2315   uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
   2316 
   2317   DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
   2318                << '\n');
   2319 
   2320   // There are two forms here: AI could be an array or struct.  Both cases
   2321   // have different ways to compute the element offset.
   2322   const StructLayout *Layout = 0;
   2323   uint64_t ArrayEltBitOffset = 0;
   2324   if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
   2325     Layout = TD->getStructLayout(EltSTy);
   2326   } else {
   2327     Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
   2328     ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
   2329   }
   2330 
   2331   Value *ResultVal =
   2332     Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
   2333 
   2334   for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
   2335     // Load the value from the alloca.  If the NewElt is an aggregate, cast
   2336     // the pointer to an integer of the same size before doing the load.
   2337     Value *SrcField = NewElts[i];
   2338     Type *FieldTy =
   2339       cast<PointerType>(SrcField->getType())->getElementType();
   2340     uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
   2341 
   2342     // Ignore zero sized fields like {}, they obviously contain no data.
   2343     if (FieldSizeBits == 0) continue;
   2344 
   2345     IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
   2346                                                      FieldSizeBits);
   2347     if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
   2348         !FieldTy->isVectorTy())
   2349       SrcField = new BitCastInst(SrcField,
   2350                                  PointerType::getUnqual(FieldIntTy),
   2351                                  "", LI);
   2352     SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
   2353 
   2354     // If SrcField is a fp or vector of the right size but that isn't an
   2355     // integer type, bitcast to an integer so we can shift it.
   2356     if (SrcField->getType() != FieldIntTy)
   2357       SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
   2358 
   2359     // Zero extend the field to be the same size as the final alloca so that
   2360     // we can shift and insert it.
   2361     if (SrcField->getType() != ResultVal->getType())
   2362       SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
   2363 
   2364     // Determine the number of bits to shift SrcField.
   2365     uint64_t Shift;
   2366     if (Layout) // Struct case.
   2367       Shift = Layout->getElementOffsetInBits(i);
   2368     else  // Array case.
   2369       Shift = i*ArrayEltBitOffset;
   2370 
   2371     if (TD->isBigEndian())
   2372       Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
   2373 
   2374     if (Shift) {
   2375       Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
   2376       SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
   2377     }
   2378 
   2379     // Don't create an 'or x, 0' on the first iteration.
   2380     if (!isa<Constant>(ResultVal) ||
   2381         !cast<Constant>(ResultVal)->isNullValue())
   2382       ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
   2383     else
   2384       ResultVal = SrcField;
   2385   }
   2386 
   2387   // Handle tail padding by truncating the result
   2388   if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
   2389     ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
   2390 
   2391   LI->replaceAllUsesWith(ResultVal);
   2392   DeadInsts.push_back(LI);
   2393 }
   2394 
   2395 /// HasPadding - Return true if the specified type has any structure or
   2396 /// alignment padding in between the elements that would be split apart
   2397 /// by SROA; return false otherwise.
   2398 static bool HasPadding(Type *Ty, const TargetData &TD) {
   2399   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
   2400     Ty = ATy->getElementType();
   2401     return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
   2402   }
   2403 
   2404   // SROA currently handles only Arrays and Structs.
   2405   StructType *STy = cast<StructType>(Ty);
   2406   const StructLayout *SL = TD.getStructLayout(STy);
   2407   unsigned PrevFieldBitOffset = 0;
   2408   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   2409     unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
   2410 
   2411     // Check to see if there is any padding between this element and the
   2412     // previous one.
   2413     if (i) {
   2414       unsigned PrevFieldEnd =
   2415         PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
   2416       if (PrevFieldEnd < FieldBitOffset)
   2417         return true;
   2418     }
   2419     PrevFieldBitOffset = FieldBitOffset;
   2420   }
   2421   // Check for tail padding.
   2422   if (unsigned EltCount = STy->getNumElements()) {
   2423     unsigned PrevFieldEnd = PrevFieldBitOffset +
   2424       TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
   2425     if (PrevFieldEnd < SL->getSizeInBits())
   2426       return true;
   2427   }
   2428   return false;
   2429 }
   2430 
   2431 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
   2432 /// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
   2433 /// or 1 if safe after canonicalization has been performed.
   2434 bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
   2435   // Loop over the use list of the alloca.  We can only transform it if all of
   2436   // the users are safe to transform.
   2437   AllocaInfo Info(AI);
   2438 
   2439   isSafeForScalarRepl(AI, 0, Info);
   2440   if (Info.isUnsafe) {
   2441     DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
   2442     return false;
   2443   }
   2444 
   2445   // Okay, we know all the users are promotable.  If the aggregate is a memcpy
   2446   // source and destination, we have to be careful.  In particular, the memcpy
   2447   // could be moving around elements that live in structure padding of the LLVM
   2448   // types, but may actually be used.  In these cases, we refuse to promote the
   2449   // struct.
   2450   if (Info.isMemCpySrc && Info.isMemCpyDst &&
   2451       HasPadding(AI->getAllocatedType(), *TD))
   2452     return false;
   2453 
   2454   // If the alloca never has an access to just *part* of it, but is accessed
   2455   // via loads and stores, then we should use ConvertToScalarInfo to promote
   2456   // the alloca instead of promoting each piece at a time and inserting fission
   2457   // and fusion code.
   2458   if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
   2459     // If the struct/array just has one element, use basic SRoA.
   2460     if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
   2461       if (ST->getNumElements() > 1) return false;
   2462     } else {
   2463       if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
   2464         return false;
   2465     }
   2466   }
   2467 
   2468   return true;
   2469 }
   2470 
   2471 
   2472 
   2473 /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
   2474 /// some part of a constant global variable.  This intentionally only accepts
   2475 /// constant expressions because we don't can't rewrite arbitrary instructions.
   2476 static bool PointsToConstantGlobal(Value *V) {
   2477   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
   2478     return GV->isConstant();
   2479   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
   2480     if (CE->getOpcode() == Instruction::BitCast ||
   2481         CE->getOpcode() == Instruction::GetElementPtr)
   2482       return PointsToConstantGlobal(CE->getOperand(0));
   2483   return false;
   2484 }
   2485 
   2486 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
   2487 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
   2488 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
   2489 /// track of whether it moves the pointer (with isOffset) but otherwise traverse
   2490 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
   2491 /// the alloca, and if the source pointer is a pointer to a constant global, we
   2492 /// can optimize this.
   2493 static bool
   2494 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
   2495                                bool isOffset,
   2496                                SmallVector<Instruction *, 4> &LifetimeMarkers) {
   2497   // We track lifetime intrinsics as we encounter them.  If we decide to go
   2498   // ahead and replace the value with the global, this lets the caller quickly
   2499   // eliminate the markers.
   2500 
   2501   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
   2502     User *U = cast<Instruction>(*UI);
   2503 
   2504     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
   2505       // Ignore non-volatile loads, they are always ok.
   2506       if (!LI->isSimple()) return false;
   2507       continue;
   2508     }
   2509 
   2510     if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
   2511       // If uses of the bitcast are ok, we are ok.
   2512       if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset,
   2513                                           LifetimeMarkers))
   2514         return false;
   2515       continue;
   2516     }
   2517     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
   2518       // If the GEP has all zero indices, it doesn't offset the pointer.  If it
   2519       // doesn't, it does.
   2520       if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
   2521                                           isOffset || !GEP->hasAllZeroIndices(),
   2522                                           LifetimeMarkers))
   2523         return false;
   2524       continue;
   2525     }
   2526 
   2527     if (CallSite CS = U) {
   2528       // If this is the function being called then we treat it like a load and
   2529       // ignore it.
   2530       if (CS.isCallee(UI))
   2531         continue;
   2532 
   2533       // If this is a readonly/readnone call site, then we know it is just a
   2534       // load (but one that potentially returns the value itself), so we can
   2535       // ignore it if we know that the value isn't captured.
   2536       unsigned ArgNo = CS.getArgumentNo(UI);
   2537       if (CS.onlyReadsMemory() &&
   2538           (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
   2539         continue;
   2540 
   2541       // If this is being passed as a byval argument, the caller is making a
   2542       // copy, so it is only a read of the alloca.
   2543       if (CS.isByValArgument(ArgNo))
   2544         continue;
   2545     }
   2546 
   2547     // Lifetime intrinsics can be handled by the caller.
   2548     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
   2549       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
   2550           II->getIntrinsicID() == Intrinsic::lifetime_end) {
   2551         assert(II->use_empty() && "Lifetime markers have no result to use!");
   2552         LifetimeMarkers.push_back(II);
   2553         continue;
   2554       }
   2555     }
   2556 
   2557     // If this is isn't our memcpy/memmove, reject it as something we can't
   2558     // handle.
   2559     MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
   2560     if (MI == 0)
   2561       return false;
   2562 
   2563     // If the transfer is using the alloca as a source of the transfer, then
   2564     // ignore it since it is a load (unless the transfer is volatile).
   2565     if (UI.getOperandNo() == 1) {
   2566       if (MI->isVolatile()) return false;
   2567       continue;
   2568     }
   2569 
   2570     // If we already have seen a copy, reject the second one.
   2571     if (TheCopy) return false;
   2572 
   2573     // If the pointer has been offset from the start of the alloca, we can't
   2574     // safely handle this.
   2575     if (isOffset) return false;
   2576 
   2577     // If the memintrinsic isn't using the alloca as the dest, reject it.
   2578     if (UI.getOperandNo() != 0) return false;
   2579 
   2580     // If the source of the memcpy/move is not a constant global, reject it.
   2581     if (!PointsToConstantGlobal(MI->getSource()))
   2582       return false;
   2583 
   2584     // Otherwise, the transform is safe.  Remember the copy instruction.
   2585     TheCopy = MI;
   2586   }
   2587   return true;
   2588 }
   2589 
   2590 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
   2591 /// modified by a copy from a constant global.  If we can prove this, we can
   2592 /// replace any uses of the alloca with uses of the global directly.
   2593 MemTransferInst *
   2594 SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
   2595                                      SmallVector<Instruction*, 4> &ToDelete) {
   2596   MemTransferInst *TheCopy = 0;
   2597   if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false, ToDelete))
   2598     return TheCopy;
   2599   return 0;
   2600 }
   2601