Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Frontend/CodeGenOptions.h"
     15 #include "CodeGenFunction.h"
     16 #include "CGCXXABI.h"
     17 #include "CGObjCRuntime.h"
     18 #include "CodeGenModule.h"
     19 #include "CGDebugInfo.h"
     20 #include "clang/AST/ASTContext.h"
     21 #include "clang/AST/DeclObjC.h"
     22 #include "clang/AST/RecordLayout.h"
     23 #include "clang/AST/StmtVisitor.h"
     24 #include "clang/Basic/TargetInfo.h"
     25 #include "llvm/Constants.h"
     26 #include "llvm/Function.h"
     27 #include "llvm/GlobalVariable.h"
     28 #include "llvm/Intrinsics.h"
     29 #include "llvm/Module.h"
     30 #include "llvm/Support/CFG.h"
     31 #include "llvm/Target/TargetData.h"
     32 #include <cstdarg>
     33 
     34 using namespace clang;
     35 using namespace CodeGen;
     36 using llvm::Value;
     37 
     38 //===----------------------------------------------------------------------===//
     39 //                         Scalar Expression Emitter
     40 //===----------------------------------------------------------------------===//
     41 
     42 namespace {
     43 struct BinOpInfo {
     44   Value *LHS;
     45   Value *RHS;
     46   QualType Ty;  // Computation Type.
     47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
     48   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
     49 };
     50 
     51 static bool MustVisitNullValue(const Expr *E) {
     52   // If a null pointer expression's type is the C++0x nullptr_t, then
     53   // it's not necessarily a simple constant and it must be evaluated
     54   // for its potential side effects.
     55   return E->getType()->isNullPtrType();
     56 }
     57 
     58 class ScalarExprEmitter
     59   : public StmtVisitor<ScalarExprEmitter, Value*> {
     60   CodeGenFunction &CGF;
     61   CGBuilderTy &Builder;
     62   bool IgnoreResultAssign;
     63   llvm::LLVMContext &VMContext;
     64 public:
     65 
     66   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
     67     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
     68       VMContext(cgf.getLLVMContext()) {
     69   }
     70 
     71   //===--------------------------------------------------------------------===//
     72   //                               Utilities
     73   //===--------------------------------------------------------------------===//
     74 
     75   bool TestAndClearIgnoreResultAssign() {
     76     bool I = IgnoreResultAssign;
     77     IgnoreResultAssign = false;
     78     return I;
     79   }
     80 
     81   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
     82   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
     83   LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
     84 
     85   Value *EmitLoadOfLValue(LValue LV) {
     86     return CGF.EmitLoadOfLValue(LV).getScalarVal();
     87   }
     88 
     89   /// EmitLoadOfLValue - Given an expression with complex type that represents a
     90   /// value l-value, this method emits the address of the l-value, then loads
     91   /// and returns the result.
     92   Value *EmitLoadOfLValue(const Expr *E) {
     93     return EmitLoadOfLValue(EmitCheckedLValue(E));
     94   }
     95 
     96   /// EmitConversionToBool - Convert the specified expression value to a
     97   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
     98   Value *EmitConversionToBool(Value *Src, QualType DstTy);
     99 
    100   /// EmitScalarConversion - Emit a conversion from the specified type to the
    101   /// specified destination type, both of which are LLVM scalar types.
    102   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
    103 
    104   /// EmitComplexToScalarConversion - Emit a conversion from the specified
    105   /// complex type to the specified destination type, where the destination type
    106   /// is an LLVM scalar type.
    107   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
    108                                        QualType SrcTy, QualType DstTy);
    109 
    110   /// EmitNullValue - Emit a value that corresponds to null for the given type.
    111   Value *EmitNullValue(QualType Ty);
    112 
    113   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
    114   Value *EmitFloatToBoolConversion(Value *V) {
    115     // Compare against 0.0 for fp scalars.
    116     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
    117     return Builder.CreateFCmpUNE(V, Zero, "tobool");
    118   }
    119 
    120   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
    121   Value *EmitPointerToBoolConversion(Value *V) {
    122     Value *Zero = llvm::ConstantPointerNull::get(
    123                                       cast<llvm::PointerType>(V->getType()));
    124     return Builder.CreateICmpNE(V, Zero, "tobool");
    125   }
    126 
    127   Value *EmitIntToBoolConversion(Value *V) {
    128     // Because of the type rules of C, we often end up computing a
    129     // logical value, then zero extending it to int, then wanting it
    130     // as a logical value again.  Optimize this common case.
    131     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
    132       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
    133         Value *Result = ZI->getOperand(0);
    134         // If there aren't any more uses, zap the instruction to save space.
    135         // Note that there can be more uses, for example if this
    136         // is the result of an assignment.
    137         if (ZI->use_empty())
    138           ZI->eraseFromParent();
    139         return Result;
    140       }
    141     }
    142 
    143     return Builder.CreateIsNotNull(V, "tobool");
    144   }
    145 
    146   //===--------------------------------------------------------------------===//
    147   //                            Visitor Methods
    148   //===--------------------------------------------------------------------===//
    149 
    150   Value *Visit(Expr *E) {
    151     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
    152   }
    153 
    154   Value *VisitStmt(Stmt *S) {
    155     S->dump(CGF.getContext().getSourceManager());
    156     llvm_unreachable("Stmt can't have complex result type!");
    157   }
    158   Value *VisitExpr(Expr *S);
    159 
    160   Value *VisitParenExpr(ParenExpr *PE) {
    161     return Visit(PE->getSubExpr());
    162   }
    163   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
    164     return Visit(E->getReplacement());
    165   }
    166   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
    167     return Visit(GE->getResultExpr());
    168   }
    169 
    170   // Leaves.
    171   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
    172     return Builder.getInt(E->getValue());
    173   }
    174   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
    175     return llvm::ConstantFP::get(VMContext, E->getValue());
    176   }
    177   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
    178     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    179   }
    180   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
    181     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    182   }
    183   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
    184     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    185   }
    186   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
    187     return EmitNullValue(E->getType());
    188   }
    189   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
    190     return EmitNullValue(E->getType());
    191   }
    192   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
    193   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
    194   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
    195     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
    196     return Builder.CreateBitCast(V, ConvertType(E->getType()));
    197   }
    198 
    199   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
    200     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
    201   }
    202 
    203   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
    204     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
    205   }
    206 
    207   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
    208     if (E->isGLValue())
    209       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
    210 
    211     // Otherwise, assume the mapping is the scalar directly.
    212     return CGF.getOpaqueRValueMapping(E).getScalarVal();
    213   }
    214 
    215   // l-values.
    216   Value *VisitDeclRefExpr(DeclRefExpr *E) {
    217     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
    218       if (result.isReference())
    219         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E));
    220       return result.getValue();
    221     }
    222     return EmitLoadOfLValue(E);
    223   }
    224 
    225   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
    226     return CGF.EmitObjCSelectorExpr(E);
    227   }
    228   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
    229     return CGF.EmitObjCProtocolExpr(E);
    230   }
    231   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
    232     return EmitLoadOfLValue(E);
    233   }
    234   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
    235     if (E->getMethodDecl() &&
    236         E->getMethodDecl()->getResultType()->isReferenceType())
    237       return EmitLoadOfLValue(E);
    238     return CGF.EmitObjCMessageExpr(E).getScalarVal();
    239   }
    240 
    241   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
    242     LValue LV = CGF.EmitObjCIsaExpr(E);
    243     Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
    244     return V;
    245   }
    246 
    247   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
    248   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
    249   Value *VisitMemberExpr(MemberExpr *E);
    250   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
    251   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
    252     return EmitLoadOfLValue(E);
    253   }
    254 
    255   Value *VisitInitListExpr(InitListExpr *E);
    256 
    257   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
    258     return CGF.CGM.EmitNullConstant(E->getType());
    259   }
    260   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
    261     if (E->getType()->isVariablyModifiedType())
    262       CGF.EmitVariablyModifiedType(E->getType());
    263     return VisitCastExpr(E);
    264   }
    265   Value *VisitCastExpr(CastExpr *E);
    266 
    267   Value *VisitCallExpr(const CallExpr *E) {
    268     if (E->getCallReturnType()->isReferenceType())
    269       return EmitLoadOfLValue(E);
    270 
    271     return CGF.EmitCallExpr(E).getScalarVal();
    272   }
    273 
    274   Value *VisitStmtExpr(const StmtExpr *E);
    275 
    276   // Unary Operators.
    277   Value *VisitUnaryPostDec(const UnaryOperator *E) {
    278     LValue LV = EmitLValue(E->getSubExpr());
    279     return EmitScalarPrePostIncDec(E, LV, false, false);
    280   }
    281   Value *VisitUnaryPostInc(const UnaryOperator *E) {
    282     LValue LV = EmitLValue(E->getSubExpr());
    283     return EmitScalarPrePostIncDec(E, LV, true, false);
    284   }
    285   Value *VisitUnaryPreDec(const UnaryOperator *E) {
    286     LValue LV = EmitLValue(E->getSubExpr());
    287     return EmitScalarPrePostIncDec(E, LV, false, true);
    288   }
    289   Value *VisitUnaryPreInc(const UnaryOperator *E) {
    290     LValue LV = EmitLValue(E->getSubExpr());
    291     return EmitScalarPrePostIncDec(E, LV, true, true);
    292   }
    293 
    294   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
    295                                                llvm::Value *InVal,
    296                                                llvm::Value *NextVal,
    297                                                bool IsInc);
    298 
    299   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
    300                                        bool isInc, bool isPre);
    301 
    302 
    303   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
    304     if (isa<MemberPointerType>(E->getType())) // never sugared
    305       return CGF.CGM.getMemberPointerConstant(E);
    306 
    307     return EmitLValue(E->getSubExpr()).getAddress();
    308   }
    309   Value *VisitUnaryDeref(const UnaryOperator *E) {
    310     if (E->getType()->isVoidType())
    311       return Visit(E->getSubExpr()); // the actual value should be unused
    312     return EmitLoadOfLValue(E);
    313   }
    314   Value *VisitUnaryPlus(const UnaryOperator *E) {
    315     // This differs from gcc, though, most likely due to a bug in gcc.
    316     TestAndClearIgnoreResultAssign();
    317     return Visit(E->getSubExpr());
    318   }
    319   Value *VisitUnaryMinus    (const UnaryOperator *E);
    320   Value *VisitUnaryNot      (const UnaryOperator *E);
    321   Value *VisitUnaryLNot     (const UnaryOperator *E);
    322   Value *VisitUnaryReal     (const UnaryOperator *E);
    323   Value *VisitUnaryImag     (const UnaryOperator *E);
    324   Value *VisitUnaryExtension(const UnaryOperator *E) {
    325     return Visit(E->getSubExpr());
    326   }
    327 
    328   // C++
    329   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
    330     return EmitLoadOfLValue(E);
    331   }
    332 
    333   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
    334     return Visit(DAE->getExpr());
    335   }
    336   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
    337     return CGF.LoadCXXThis();
    338   }
    339 
    340   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
    341     CGF.enterFullExpression(E);
    342     CodeGenFunction::RunCleanupsScope Scope(CGF);
    343     return Visit(E->getSubExpr());
    344   }
    345   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
    346     return CGF.EmitCXXNewExpr(E);
    347   }
    348   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
    349     CGF.EmitCXXDeleteExpr(E);
    350     return 0;
    351   }
    352   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
    353     return Builder.getInt1(E->getValue());
    354   }
    355 
    356   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
    357     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    358   }
    359 
    360   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
    361     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
    362   }
    363 
    364   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
    365     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
    366   }
    367 
    368   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
    369     // C++ [expr.pseudo]p1:
    370     //   The result shall only be used as the operand for the function call
    371     //   operator (), and the result of such a call has type void. The only
    372     //   effect is the evaluation of the postfix-expression before the dot or
    373     //   arrow.
    374     CGF.EmitScalarExpr(E->getBase());
    375     return 0;
    376   }
    377 
    378   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
    379     return EmitNullValue(E->getType());
    380   }
    381 
    382   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
    383     CGF.EmitCXXThrowExpr(E);
    384     return 0;
    385   }
    386 
    387   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
    388     return Builder.getInt1(E->getValue());
    389   }
    390 
    391   // Binary Operators.
    392   Value *EmitMul(const BinOpInfo &Ops) {
    393     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
    394       switch (CGF.getContext().getLangOpts().getSignedOverflowBehavior()) {
    395       case LangOptions::SOB_Undefined:
    396         return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
    397       case LangOptions::SOB_Defined:
    398         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
    399       case LangOptions::SOB_Trapping:
    400         return EmitOverflowCheckedBinOp(Ops);
    401       }
    402     }
    403 
    404     if (Ops.LHS->getType()->isFPOrFPVectorTy())
    405       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
    406     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
    407   }
    408   bool isTrapvOverflowBehavior() {
    409     return CGF.getContext().getLangOpts().getSignedOverflowBehavior()
    410                == LangOptions::SOB_Trapping;
    411   }
    412   /// Create a binary op that checks for overflow.
    413   /// Currently only supports +, - and *.
    414   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
    415   // Emit the overflow BB when -ftrapv option is activated.
    416   void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
    417     Builder.SetInsertPoint(overflowBB);
    418     llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
    419     Builder.CreateCall(Trap);
    420     Builder.CreateUnreachable();
    421   }
    422   // Check for undefined division and modulus behaviors.
    423   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
    424                                                   llvm::Value *Zero,bool isDiv);
    425   Value *EmitDiv(const BinOpInfo &Ops);
    426   Value *EmitRem(const BinOpInfo &Ops);
    427   Value *EmitAdd(const BinOpInfo &Ops);
    428   Value *EmitSub(const BinOpInfo &Ops);
    429   Value *EmitShl(const BinOpInfo &Ops);
    430   Value *EmitShr(const BinOpInfo &Ops);
    431   Value *EmitAnd(const BinOpInfo &Ops) {
    432     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
    433   }
    434   Value *EmitXor(const BinOpInfo &Ops) {
    435     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
    436   }
    437   Value *EmitOr (const BinOpInfo &Ops) {
    438     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
    439   }
    440 
    441   BinOpInfo EmitBinOps(const BinaryOperator *E);
    442   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
    443                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
    444                                   Value *&Result);
    445 
    446   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
    447                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
    448 
    449   // Binary operators and binary compound assignment operators.
    450 #define HANDLEBINOP(OP) \
    451   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
    452     return Emit ## OP(EmitBinOps(E));                                      \
    453   }                                                                        \
    454   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
    455     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
    456   }
    457   HANDLEBINOP(Mul)
    458   HANDLEBINOP(Div)
    459   HANDLEBINOP(Rem)
    460   HANDLEBINOP(Add)
    461   HANDLEBINOP(Sub)
    462   HANDLEBINOP(Shl)
    463   HANDLEBINOP(Shr)
    464   HANDLEBINOP(And)
    465   HANDLEBINOP(Xor)
    466   HANDLEBINOP(Or)
    467 #undef HANDLEBINOP
    468 
    469   // Comparisons.
    470   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
    471                      unsigned SICmpOpc, unsigned FCmpOpc);
    472 #define VISITCOMP(CODE, UI, SI, FP) \
    473     Value *VisitBin##CODE(const BinaryOperator *E) { \
    474       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
    475                          llvm::FCmpInst::FP); }
    476   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
    477   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
    478   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
    479   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
    480   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
    481   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
    482 #undef VISITCOMP
    483 
    484   Value *VisitBinAssign     (const BinaryOperator *E);
    485 
    486   Value *VisitBinLAnd       (const BinaryOperator *E);
    487   Value *VisitBinLOr        (const BinaryOperator *E);
    488   Value *VisitBinComma      (const BinaryOperator *E);
    489 
    490   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
    491   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
    492 
    493   // Other Operators.
    494   Value *VisitBlockExpr(const BlockExpr *BE);
    495   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
    496   Value *VisitChooseExpr(ChooseExpr *CE);
    497   Value *VisitVAArgExpr(VAArgExpr *VE);
    498   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
    499     return CGF.EmitObjCStringLiteral(E);
    500   }
    501   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
    502     return CGF.EmitObjCBoxedExpr(E);
    503   }
    504   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
    505     return CGF.EmitObjCArrayLiteral(E);
    506   }
    507   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
    508     return CGF.EmitObjCDictionaryLiteral(E);
    509   }
    510   Value *VisitAsTypeExpr(AsTypeExpr *CE);
    511   Value *VisitAtomicExpr(AtomicExpr *AE);
    512 };
    513 }  // end anonymous namespace.
    514 
    515 //===----------------------------------------------------------------------===//
    516 //                                Utilities
    517 //===----------------------------------------------------------------------===//
    518 
    519 /// EmitConversionToBool - Convert the specified expression value to a
    520 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
    521 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
    522   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
    523 
    524   if (SrcType->isRealFloatingType())
    525     return EmitFloatToBoolConversion(Src);
    526 
    527   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
    528     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
    529 
    530   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
    531          "Unknown scalar type to convert");
    532 
    533   if (isa<llvm::IntegerType>(Src->getType()))
    534     return EmitIntToBoolConversion(Src);
    535 
    536   assert(isa<llvm::PointerType>(Src->getType()));
    537   return EmitPointerToBoolConversion(Src);
    538 }
    539 
    540 /// EmitScalarConversion - Emit a conversion from the specified type to the
    541 /// specified destination type, both of which are LLVM scalar types.
    542 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
    543                                                QualType DstType) {
    544   SrcType = CGF.getContext().getCanonicalType(SrcType);
    545   DstType = CGF.getContext().getCanonicalType(DstType);
    546   if (SrcType == DstType) return Src;
    547 
    548   if (DstType->isVoidType()) return 0;
    549 
    550   llvm::Type *SrcTy = Src->getType();
    551 
    552   // Floating casts might be a bit special: if we're doing casts to / from half
    553   // FP, we should go via special intrinsics.
    554   if (SrcType->isHalfType()) {
    555     Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
    556     SrcType = CGF.getContext().FloatTy;
    557     SrcTy = CGF.FloatTy;
    558   }
    559 
    560   // Handle conversions to bool first, they are special: comparisons against 0.
    561   if (DstType->isBooleanType())
    562     return EmitConversionToBool(Src, SrcType);
    563 
    564   llvm::Type *DstTy = ConvertType(DstType);
    565 
    566   // Ignore conversions like int -> uint.
    567   if (SrcTy == DstTy)
    568     return Src;
    569 
    570   // Handle pointer conversions next: pointers can only be converted to/from
    571   // other pointers and integers. Check for pointer types in terms of LLVM, as
    572   // some native types (like Obj-C id) may map to a pointer type.
    573   if (isa<llvm::PointerType>(DstTy)) {
    574     // The source value may be an integer, or a pointer.
    575     if (isa<llvm::PointerType>(SrcTy))
    576       return Builder.CreateBitCast(Src, DstTy, "conv");
    577 
    578     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
    579     // First, convert to the correct width so that we control the kind of
    580     // extension.
    581     llvm::Type *MiddleTy = CGF.IntPtrTy;
    582     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
    583     llvm::Value* IntResult =
    584         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
    585     // Then, cast to pointer.
    586     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
    587   }
    588 
    589   if (isa<llvm::PointerType>(SrcTy)) {
    590     // Must be an ptr to int cast.
    591     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
    592     return Builder.CreatePtrToInt(Src, DstTy, "conv");
    593   }
    594 
    595   // A scalar can be splatted to an extended vector of the same element type
    596   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
    597     // Cast the scalar to element type
    598     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
    599     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
    600 
    601     // Insert the element in element zero of an undef vector
    602     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
    603     llvm::Value *Idx = Builder.getInt32(0);
    604     UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
    605 
    606     // Splat the element across to all elements
    607     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
    608     llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements,
    609                                                           Builder.getInt32(0));
    610     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
    611     return Yay;
    612   }
    613 
    614   // Allow bitcast from vector to integer/fp of the same size.
    615   if (isa<llvm::VectorType>(SrcTy) ||
    616       isa<llvm::VectorType>(DstTy))
    617     return Builder.CreateBitCast(Src, DstTy, "conv");
    618 
    619   // Finally, we have the arithmetic types: real int/float.
    620   Value *Res = NULL;
    621   llvm::Type *ResTy = DstTy;
    622 
    623   // Cast to half via float
    624   if (DstType->isHalfType())
    625     DstTy = CGF.FloatTy;
    626 
    627   if (isa<llvm::IntegerType>(SrcTy)) {
    628     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
    629     if (isa<llvm::IntegerType>(DstTy))
    630       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
    631     else if (InputSigned)
    632       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
    633     else
    634       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
    635   } else if (isa<llvm::IntegerType>(DstTy)) {
    636     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
    637     if (DstType->isSignedIntegerOrEnumerationType())
    638       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
    639     else
    640       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
    641   } else {
    642     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
    643            "Unknown real conversion");
    644     if (DstTy->getTypeID() < SrcTy->getTypeID())
    645       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
    646     else
    647       Res = Builder.CreateFPExt(Src, DstTy, "conv");
    648   }
    649 
    650   if (DstTy != ResTy) {
    651     assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
    652     Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
    653   }
    654 
    655   return Res;
    656 }
    657 
    658 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
    659 /// type to the specified destination type, where the destination type is an
    660 /// LLVM scalar type.
    661 Value *ScalarExprEmitter::
    662 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
    663                               QualType SrcTy, QualType DstTy) {
    664   // Get the source element type.
    665   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
    666 
    667   // Handle conversions to bool first, they are special: comparisons against 0.
    668   if (DstTy->isBooleanType()) {
    669     //  Complex != 0  -> (Real != 0) | (Imag != 0)
    670     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
    671     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
    672     return Builder.CreateOr(Src.first, Src.second, "tobool");
    673   }
    674 
    675   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
    676   // the imaginary part of the complex value is discarded and the value of the
    677   // real part is converted according to the conversion rules for the
    678   // corresponding real type.
    679   return EmitScalarConversion(Src.first, SrcTy, DstTy);
    680 }
    681 
    682 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
    683   if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
    684     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
    685 
    686   return llvm::Constant::getNullValue(ConvertType(Ty));
    687 }
    688 
    689 //===----------------------------------------------------------------------===//
    690 //                            Visitor Methods
    691 //===----------------------------------------------------------------------===//
    692 
    693 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
    694   CGF.ErrorUnsupported(E, "scalar expression");
    695   if (E->getType()->isVoidType())
    696     return 0;
    697   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
    698 }
    699 
    700 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
    701   // Vector Mask Case
    702   if (E->getNumSubExprs() == 2 ||
    703       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
    704     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
    705     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
    706     Value *Mask;
    707 
    708     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
    709     unsigned LHSElts = LTy->getNumElements();
    710 
    711     if (E->getNumSubExprs() == 3) {
    712       Mask = CGF.EmitScalarExpr(E->getExpr(2));
    713 
    714       // Shuffle LHS & RHS into one input vector.
    715       SmallVector<llvm::Constant*, 32> concat;
    716       for (unsigned i = 0; i != LHSElts; ++i) {
    717         concat.push_back(Builder.getInt32(2*i));
    718         concat.push_back(Builder.getInt32(2*i+1));
    719       }
    720 
    721       Value* CV = llvm::ConstantVector::get(concat);
    722       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
    723       LHSElts *= 2;
    724     } else {
    725       Mask = RHS;
    726     }
    727 
    728     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
    729     llvm::Constant* EltMask;
    730 
    731     // Treat vec3 like vec4.
    732     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
    733       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
    734                                        (1 << llvm::Log2_32(LHSElts+2))-1);
    735     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
    736       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
    737                                        (1 << llvm::Log2_32(LHSElts+1))-1);
    738     else
    739       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
    740                                        (1 << llvm::Log2_32(LHSElts))-1);
    741 
    742     // Mask off the high bits of each shuffle index.
    743     Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
    744                                                      EltMask);
    745     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
    746 
    747     // newv = undef
    748     // mask = mask & maskbits
    749     // for each elt
    750     //   n = extract mask i
    751     //   x = extract val n
    752     //   newv = insert newv, x, i
    753     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
    754                                                         MTy->getNumElements());
    755     Value* NewV = llvm::UndefValue::get(RTy);
    756     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
    757       Value *IIndx = Builder.getInt32(i);
    758       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
    759       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
    760 
    761       // Handle vec3 special since the index will be off by one for the RHS.
    762       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
    763         Value *cmpIndx, *newIndx;
    764         cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
    765                                         "cmp_shuf_idx");
    766         newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
    767         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
    768       }
    769       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
    770       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
    771     }
    772     return NewV;
    773   }
    774 
    775   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
    776   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
    777 
    778   // Handle vec3 special since the index will be off by one for the RHS.
    779   llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
    780   SmallVector<llvm::Constant*, 32> indices;
    781   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
    782     unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
    783     if (VTy->getNumElements() == 3 && Idx > 3)
    784       Idx -= 1;
    785     indices.push_back(Builder.getInt32(Idx));
    786   }
    787 
    788   Value *SV = llvm::ConstantVector::get(indices);
    789   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
    790 }
    791 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
    792   llvm::APSInt Value;
    793   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
    794     if (E->isArrow())
    795       CGF.EmitScalarExpr(E->getBase());
    796     else
    797       EmitLValue(E->getBase());
    798     return Builder.getInt(Value);
    799   }
    800 
    801   // Emit debug info for aggregate now, if it was delayed to reduce
    802   // debug info size.
    803   CGDebugInfo *DI = CGF.getDebugInfo();
    804   if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
    805     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
    806     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
    807       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
    808         DI->getOrCreateRecordType(PTy->getPointeeType(),
    809                                   M->getParent()->getLocation());
    810   }
    811   return EmitLoadOfLValue(E);
    812 }
    813 
    814 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
    815   TestAndClearIgnoreResultAssign();
    816 
    817   // Emit subscript expressions in rvalue context's.  For most cases, this just
    818   // loads the lvalue formed by the subscript expr.  However, we have to be
    819   // careful, because the base of a vector subscript is occasionally an rvalue,
    820   // so we can't get it as an lvalue.
    821   if (!E->getBase()->getType()->isVectorType())
    822     return EmitLoadOfLValue(E);
    823 
    824   // Handle the vector case.  The base must be a vector, the index must be an
    825   // integer value.
    826   Value *Base = Visit(E->getBase());
    827   Value *Idx  = Visit(E->getIdx());
    828   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
    829   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
    830   return Builder.CreateExtractElement(Base, Idx, "vecext");
    831 }
    832 
    833 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
    834                                   unsigned Off, llvm::Type *I32Ty) {
    835   int MV = SVI->getMaskValue(Idx);
    836   if (MV == -1)
    837     return llvm::UndefValue::get(I32Ty);
    838   return llvm::ConstantInt::get(I32Ty, Off+MV);
    839 }
    840 
    841 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
    842   bool Ignore = TestAndClearIgnoreResultAssign();
    843   (void)Ignore;
    844   assert (Ignore == false && "init list ignored");
    845   unsigned NumInitElements = E->getNumInits();
    846 
    847   if (E->hadArrayRangeDesignator())
    848     CGF.ErrorUnsupported(E, "GNU array range designator extension");
    849 
    850   llvm::VectorType *VType =
    851     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
    852 
    853   if (!VType) {
    854     if (NumInitElements == 0) {
    855       // C++11 value-initialization for the scalar.
    856       return EmitNullValue(E->getType());
    857     }
    858     // We have a scalar in braces. Just use the first element.
    859     return Visit(E->getInit(0));
    860   }
    861 
    862   unsigned ResElts = VType->getNumElements();
    863 
    864   // Loop over initializers collecting the Value for each, and remembering
    865   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
    866   // us to fold the shuffle for the swizzle into the shuffle for the vector
    867   // initializer, since LLVM optimizers generally do not want to touch
    868   // shuffles.
    869   unsigned CurIdx = 0;
    870   bool VIsUndefShuffle = false;
    871   llvm::Value *V = llvm::UndefValue::get(VType);
    872   for (unsigned i = 0; i != NumInitElements; ++i) {
    873     Expr *IE = E->getInit(i);
    874     Value *Init = Visit(IE);
    875     SmallVector<llvm::Constant*, 16> Args;
    876 
    877     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
    878 
    879     // Handle scalar elements.  If the scalar initializer is actually one
    880     // element of a different vector of the same width, use shuffle instead of
    881     // extract+insert.
    882     if (!VVT) {
    883       if (isa<ExtVectorElementExpr>(IE)) {
    884         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
    885 
    886         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
    887           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
    888           Value *LHS = 0, *RHS = 0;
    889           if (CurIdx == 0) {
    890             // insert into undef -> shuffle (src, undef)
    891             Args.push_back(C);
    892             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
    893 
    894             LHS = EI->getVectorOperand();
    895             RHS = V;
    896             VIsUndefShuffle = true;
    897           } else if (VIsUndefShuffle) {
    898             // insert into undefshuffle && size match -> shuffle (v, src)
    899             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
    900             for (unsigned j = 0; j != CurIdx; ++j)
    901               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
    902             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
    903             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
    904 
    905             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
    906             RHS = EI->getVectorOperand();
    907             VIsUndefShuffle = false;
    908           }
    909           if (!Args.empty()) {
    910             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
    911             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
    912             ++CurIdx;
    913             continue;
    914           }
    915         }
    916       }
    917       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
    918                                       "vecinit");
    919       VIsUndefShuffle = false;
    920       ++CurIdx;
    921       continue;
    922     }
    923 
    924     unsigned InitElts = VVT->getNumElements();
    925 
    926     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
    927     // input is the same width as the vector being constructed, generate an
    928     // optimized shuffle of the swizzle input into the result.
    929     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
    930     if (isa<ExtVectorElementExpr>(IE)) {
    931       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
    932       Value *SVOp = SVI->getOperand(0);
    933       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
    934 
    935       if (OpTy->getNumElements() == ResElts) {
    936         for (unsigned j = 0; j != CurIdx; ++j) {
    937           // If the current vector initializer is a shuffle with undef, merge
    938           // this shuffle directly into it.
    939           if (VIsUndefShuffle) {
    940             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
    941                                       CGF.Int32Ty));
    942           } else {
    943             Args.push_back(Builder.getInt32(j));
    944           }
    945         }
    946         for (unsigned j = 0, je = InitElts; j != je; ++j)
    947           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
    948         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
    949 
    950         if (VIsUndefShuffle)
    951           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
    952 
    953         Init = SVOp;
    954       }
    955     }
    956 
    957     // Extend init to result vector length, and then shuffle its contribution
    958     // to the vector initializer into V.
    959     if (Args.empty()) {
    960       for (unsigned j = 0; j != InitElts; ++j)
    961         Args.push_back(Builder.getInt32(j));
    962       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
    963       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
    964       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
    965                                          Mask, "vext");
    966 
    967       Args.clear();
    968       for (unsigned j = 0; j != CurIdx; ++j)
    969         Args.push_back(Builder.getInt32(j));
    970       for (unsigned j = 0; j != InitElts; ++j)
    971         Args.push_back(Builder.getInt32(j+Offset));
    972       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
    973     }
    974 
    975     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
    976     // merging subsequent shuffles into this one.
    977     if (CurIdx == 0)
    978       std::swap(V, Init);
    979     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
    980     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
    981     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
    982     CurIdx += InitElts;
    983   }
    984 
    985   // FIXME: evaluate codegen vs. shuffling against constant null vector.
    986   // Emit remaining default initializers.
    987   llvm::Type *EltTy = VType->getElementType();
    988 
    989   // Emit remaining default initializers
    990   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
    991     Value *Idx = Builder.getInt32(CurIdx);
    992     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
    993     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
    994   }
    995   return V;
    996 }
    997 
    998 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
    999   const Expr *E = CE->getSubExpr();
   1000 
   1001   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
   1002     return false;
   1003 
   1004   if (isa<CXXThisExpr>(E)) {
   1005     // We always assume that 'this' is never null.
   1006     return false;
   1007   }
   1008 
   1009   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
   1010     // And that glvalue casts are never null.
   1011     if (ICE->getValueKind() != VK_RValue)
   1012       return false;
   1013   }
   1014 
   1015   return true;
   1016 }
   1017 
   1018 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
   1019 // have to handle a more broad range of conversions than explicit casts, as they
   1020 // handle things like function to ptr-to-function decay etc.
   1021 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
   1022   Expr *E = CE->getSubExpr();
   1023   QualType DestTy = CE->getType();
   1024   CastKind Kind = CE->getCastKind();
   1025 
   1026   if (!DestTy->isVoidType())
   1027     TestAndClearIgnoreResultAssign();
   1028 
   1029   // Since almost all cast kinds apply to scalars, this switch doesn't have
   1030   // a default case, so the compiler will warn on a missing case.  The cases
   1031   // are in the same order as in the CastKind enum.
   1032   switch (Kind) {
   1033   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
   1034 
   1035   case CK_LValueBitCast:
   1036   case CK_ObjCObjectLValueCast: {
   1037     Value *V = EmitLValue(E).getAddress();
   1038     V = Builder.CreateBitCast(V,
   1039                           ConvertType(CGF.getContext().getPointerType(DestTy)));
   1040     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy));
   1041   }
   1042 
   1043   case CK_CPointerToObjCPointerCast:
   1044   case CK_BlockPointerToObjCPointerCast:
   1045   case CK_AnyPointerToBlockPointerCast:
   1046   case CK_BitCast: {
   1047     Value *Src = Visit(const_cast<Expr*>(E));
   1048     return Builder.CreateBitCast(Src, ConvertType(DestTy));
   1049   }
   1050   case CK_AtomicToNonAtomic:
   1051   case CK_NonAtomicToAtomic:
   1052   case CK_NoOp:
   1053   case CK_UserDefinedConversion:
   1054     return Visit(const_cast<Expr*>(E));
   1055 
   1056   case CK_BaseToDerived: {
   1057     const CXXRecordDecl *DerivedClassDecl =
   1058       DestTy->getCXXRecordDeclForPointerType();
   1059 
   1060     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
   1061                                         CE->path_begin(), CE->path_end(),
   1062                                         ShouldNullCheckClassCastValue(CE));
   1063   }
   1064   case CK_UncheckedDerivedToBase:
   1065   case CK_DerivedToBase: {
   1066     const RecordType *DerivedClassTy =
   1067       E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
   1068     CXXRecordDecl *DerivedClassDecl =
   1069       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
   1070 
   1071     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
   1072                                      CE->path_begin(), CE->path_end(),
   1073                                      ShouldNullCheckClassCastValue(CE));
   1074   }
   1075   case CK_Dynamic: {
   1076     Value *V = Visit(const_cast<Expr*>(E));
   1077     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
   1078     return CGF.EmitDynamicCast(V, DCE);
   1079   }
   1080 
   1081   case CK_ArrayToPointerDecay: {
   1082     assert(E->getType()->isArrayType() &&
   1083            "Array to pointer decay must have array source type!");
   1084 
   1085     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
   1086 
   1087     // Note that VLA pointers are always decayed, so we don't need to do
   1088     // anything here.
   1089     if (!E->getType()->isVariableArrayType()) {
   1090       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
   1091       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
   1092                                  ->getElementType()) &&
   1093              "Expected pointer to array");
   1094       V = Builder.CreateStructGEP(V, 0, "arraydecay");
   1095     }
   1096 
   1097     // Make sure the array decay ends up being the right type.  This matters if
   1098     // the array type was of an incomplete type.
   1099     return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
   1100   }
   1101   case CK_FunctionToPointerDecay:
   1102     return EmitLValue(E).getAddress();
   1103 
   1104   case CK_NullToPointer:
   1105     if (MustVisitNullValue(E))
   1106       (void) Visit(E);
   1107 
   1108     return llvm::ConstantPointerNull::get(
   1109                                cast<llvm::PointerType>(ConvertType(DestTy)));
   1110 
   1111   case CK_NullToMemberPointer: {
   1112     if (MustVisitNullValue(E))
   1113       (void) Visit(E);
   1114 
   1115     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
   1116     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
   1117   }
   1118 
   1119   case CK_ReinterpretMemberPointer:
   1120   case CK_BaseToDerivedMemberPointer:
   1121   case CK_DerivedToBaseMemberPointer: {
   1122     Value *Src = Visit(E);
   1123 
   1124     // Note that the AST doesn't distinguish between checked and
   1125     // unchecked member pointer conversions, so we always have to
   1126     // implement checked conversions here.  This is inefficient when
   1127     // actual control flow may be required in order to perform the
   1128     // check, which it is for data member pointers (but not member
   1129     // function pointers on Itanium and ARM).
   1130     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
   1131   }
   1132 
   1133   case CK_ARCProduceObject:
   1134     return CGF.EmitARCRetainScalarExpr(E);
   1135   case CK_ARCConsumeObject:
   1136     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
   1137   case CK_ARCReclaimReturnedObject: {
   1138     llvm::Value *value = Visit(E);
   1139     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
   1140     return CGF.EmitObjCConsumeObject(E->getType(), value);
   1141   }
   1142   case CK_ARCExtendBlockObject:
   1143     return CGF.EmitARCExtendBlockObject(E);
   1144 
   1145   case CK_CopyAndAutoreleaseBlockObject:
   1146     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
   1147 
   1148   case CK_FloatingRealToComplex:
   1149   case CK_FloatingComplexCast:
   1150   case CK_IntegralRealToComplex:
   1151   case CK_IntegralComplexCast:
   1152   case CK_IntegralComplexToFloatingComplex:
   1153   case CK_FloatingComplexToIntegralComplex:
   1154   case CK_ConstructorConversion:
   1155   case CK_ToUnion:
   1156     llvm_unreachable("scalar cast to non-scalar value");
   1157 
   1158   case CK_LValueToRValue:
   1159     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
   1160     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
   1161     return Visit(const_cast<Expr*>(E));
   1162 
   1163   case CK_IntegralToPointer: {
   1164     Value *Src = Visit(const_cast<Expr*>(E));
   1165 
   1166     // First, convert to the correct width so that we control the kind of
   1167     // extension.
   1168     llvm::Type *MiddleTy = CGF.IntPtrTy;
   1169     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
   1170     llvm::Value* IntResult =
   1171       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
   1172 
   1173     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
   1174   }
   1175   case CK_PointerToIntegral:
   1176     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
   1177     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
   1178 
   1179   case CK_ToVoid: {
   1180     CGF.EmitIgnoredExpr(E);
   1181     return 0;
   1182   }
   1183   case CK_VectorSplat: {
   1184     llvm::Type *DstTy = ConvertType(DestTy);
   1185     Value *Elt = Visit(const_cast<Expr*>(E));
   1186     Elt = EmitScalarConversion(Elt, E->getType(),
   1187                                DestTy->getAs<VectorType>()->getElementType());
   1188 
   1189     // Insert the element in element zero of an undef vector
   1190     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
   1191     llvm::Value *Idx = Builder.getInt32(0);
   1192     UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
   1193 
   1194     // Splat the element across to all elements
   1195     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
   1196     llvm::Constant *Zero = Builder.getInt32(0);
   1197     llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements, Zero);
   1198     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
   1199     return Yay;
   1200   }
   1201 
   1202   case CK_IntegralCast:
   1203   case CK_IntegralToFloating:
   1204   case CK_FloatingToIntegral:
   1205   case CK_FloatingCast:
   1206     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
   1207   case CK_IntegralToBoolean:
   1208     return EmitIntToBoolConversion(Visit(E));
   1209   case CK_PointerToBoolean:
   1210     return EmitPointerToBoolConversion(Visit(E));
   1211   case CK_FloatingToBoolean:
   1212     return EmitFloatToBoolConversion(Visit(E));
   1213   case CK_MemberPointerToBoolean: {
   1214     llvm::Value *MemPtr = Visit(E);
   1215     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
   1216     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
   1217   }
   1218 
   1219   case CK_FloatingComplexToReal:
   1220   case CK_IntegralComplexToReal:
   1221     return CGF.EmitComplexExpr(E, false, true).first;
   1222 
   1223   case CK_FloatingComplexToBoolean:
   1224   case CK_IntegralComplexToBoolean: {
   1225     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
   1226 
   1227     // TODO: kill this function off, inline appropriate case here
   1228     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
   1229   }
   1230 
   1231   }
   1232 
   1233   llvm_unreachable("unknown scalar cast");
   1234 }
   1235 
   1236 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
   1237   CodeGenFunction::StmtExprEvaluation eval(CGF);
   1238   return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
   1239     .getScalarVal();
   1240 }
   1241 
   1242 //===----------------------------------------------------------------------===//
   1243 //                             Unary Operators
   1244 //===----------------------------------------------------------------------===//
   1245 
   1246 llvm::Value *ScalarExprEmitter::
   1247 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
   1248                                 llvm::Value *InVal,
   1249                                 llvm::Value *NextVal, bool IsInc) {
   1250   switch (CGF.getContext().getLangOpts().getSignedOverflowBehavior()) {
   1251   case LangOptions::SOB_Undefined:
   1252     return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
   1253   case LangOptions::SOB_Defined:
   1254     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
   1255   case LangOptions::SOB_Trapping:
   1256     BinOpInfo BinOp;
   1257     BinOp.LHS = InVal;
   1258     BinOp.RHS = NextVal;
   1259     BinOp.Ty = E->getType();
   1260     BinOp.Opcode = BO_Add;
   1261     BinOp.E = E;
   1262     return EmitOverflowCheckedBinOp(BinOp);
   1263   }
   1264   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
   1265 }
   1266 
   1267 llvm::Value *
   1268 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
   1269                                            bool isInc, bool isPre) {
   1270 
   1271   QualType type = E->getSubExpr()->getType();
   1272   llvm::Value *value = EmitLoadOfLValue(LV);
   1273   llvm::Value *input = value;
   1274   llvm::PHINode *atomicPHI = 0;
   1275 
   1276   int amount = (isInc ? 1 : -1);
   1277 
   1278   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
   1279     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
   1280     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
   1281     Builder.CreateBr(opBB);
   1282     Builder.SetInsertPoint(opBB);
   1283     atomicPHI = Builder.CreatePHI(value->getType(), 2);
   1284     atomicPHI->addIncoming(value, startBB);
   1285     type = atomicTy->getValueType();
   1286     value = atomicPHI;
   1287   }
   1288 
   1289   // Special case of integer increment that we have to check first: bool++.
   1290   // Due to promotion rules, we get:
   1291   //   bool++ -> bool = bool + 1
   1292   //          -> bool = (int)bool + 1
   1293   //          -> bool = ((int)bool + 1 != 0)
   1294   // An interesting aspect of this is that increment is always true.
   1295   // Decrement does not have this property.
   1296   if (isInc && type->isBooleanType()) {
   1297     value = Builder.getTrue();
   1298 
   1299   // Most common case by far: integer increment.
   1300   } else if (type->isIntegerType()) {
   1301 
   1302     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
   1303 
   1304     // Note that signed integer inc/dec with width less than int can't
   1305     // overflow because of promotion rules; we're just eliding a few steps here.
   1306     if (type->isSignedIntegerOrEnumerationType() &&
   1307         value->getType()->getPrimitiveSizeInBits() >=
   1308             CGF.IntTy->getBitWidth())
   1309       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
   1310     else
   1311       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
   1312 
   1313   // Next most common: pointer increment.
   1314   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
   1315     QualType type = ptr->getPointeeType();
   1316 
   1317     // VLA types don't have constant size.
   1318     if (const VariableArrayType *vla
   1319           = CGF.getContext().getAsVariableArrayType(type)) {
   1320       llvm::Value *numElts = CGF.getVLASize(vla).first;
   1321       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
   1322       if (CGF.getContext().getLangOpts().isSignedOverflowDefined())
   1323         value = Builder.CreateGEP(value, numElts, "vla.inc");
   1324       else
   1325         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
   1326 
   1327     // Arithmetic on function pointers (!) is just +-1.
   1328     } else if (type->isFunctionType()) {
   1329       llvm::Value *amt = Builder.getInt32(amount);
   1330 
   1331       value = CGF.EmitCastToVoidPtr(value);
   1332       if (CGF.getContext().getLangOpts().isSignedOverflowDefined())
   1333         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
   1334       else
   1335         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
   1336       value = Builder.CreateBitCast(value, input->getType());
   1337 
   1338     // For everything else, we can just do a simple increment.
   1339     } else {
   1340       llvm::Value *amt = Builder.getInt32(amount);
   1341       if (CGF.getContext().getLangOpts().isSignedOverflowDefined())
   1342         value = Builder.CreateGEP(value, amt, "incdec.ptr");
   1343       else
   1344         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
   1345     }
   1346 
   1347   // Vector increment/decrement.
   1348   } else if (type->isVectorType()) {
   1349     if (type->hasIntegerRepresentation()) {
   1350       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
   1351 
   1352       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
   1353     } else {
   1354       value = Builder.CreateFAdd(
   1355                   value,
   1356                   llvm::ConstantFP::get(value->getType(), amount),
   1357                   isInc ? "inc" : "dec");
   1358     }
   1359 
   1360   // Floating point.
   1361   } else if (type->isRealFloatingType()) {
   1362     // Add the inc/dec to the real part.
   1363     llvm::Value *amt;
   1364 
   1365     if (type->isHalfType()) {
   1366       // Another special case: half FP increment should be done via float
   1367       value =
   1368     Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
   1369                        input);
   1370     }
   1371 
   1372     if (value->getType()->isFloatTy())
   1373       amt = llvm::ConstantFP::get(VMContext,
   1374                                   llvm::APFloat(static_cast<float>(amount)));
   1375     else if (value->getType()->isDoubleTy())
   1376       amt = llvm::ConstantFP::get(VMContext,
   1377                                   llvm::APFloat(static_cast<double>(amount)));
   1378     else {
   1379       llvm::APFloat F(static_cast<float>(amount));
   1380       bool ignored;
   1381       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
   1382                 &ignored);
   1383       amt = llvm::ConstantFP::get(VMContext, F);
   1384     }
   1385     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
   1386 
   1387     if (type->isHalfType())
   1388       value =
   1389        Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
   1390                           value);
   1391 
   1392   // Objective-C pointer types.
   1393   } else {
   1394     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
   1395     value = CGF.EmitCastToVoidPtr(value);
   1396 
   1397     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
   1398     if (!isInc) size = -size;
   1399     llvm::Value *sizeValue =
   1400       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
   1401 
   1402     if (CGF.getContext().getLangOpts().isSignedOverflowDefined())
   1403       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
   1404     else
   1405       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
   1406     value = Builder.CreateBitCast(value, input->getType());
   1407   }
   1408 
   1409   if (atomicPHI) {
   1410     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
   1411     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
   1412     llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI,
   1413         value, llvm::SequentiallyConsistent);
   1414     atomicPHI->addIncoming(old, opBB);
   1415     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
   1416     Builder.CreateCondBr(success, contBB, opBB);
   1417     Builder.SetInsertPoint(contBB);
   1418     return isPre ? value : input;
   1419   }
   1420 
   1421   // Store the updated result through the lvalue.
   1422   if (LV.isBitField())
   1423     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
   1424   else
   1425     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
   1426 
   1427   // If this is a postinc, return the value read from memory, otherwise use the
   1428   // updated value.
   1429   return isPre ? value : input;
   1430 }
   1431 
   1432 
   1433 
   1434 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
   1435   TestAndClearIgnoreResultAssign();
   1436   // Emit unary minus with EmitSub so we handle overflow cases etc.
   1437   BinOpInfo BinOp;
   1438   BinOp.RHS = Visit(E->getSubExpr());
   1439 
   1440   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
   1441     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
   1442   else
   1443     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
   1444   BinOp.Ty = E->getType();
   1445   BinOp.Opcode = BO_Sub;
   1446   BinOp.E = E;
   1447   return EmitSub(BinOp);
   1448 }
   1449 
   1450 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
   1451   TestAndClearIgnoreResultAssign();
   1452   Value *Op = Visit(E->getSubExpr());
   1453   return Builder.CreateNot(Op, "neg");
   1454 }
   1455 
   1456 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
   1457 
   1458   // Perform vector logical not on comparison with zero vector.
   1459   if (E->getType()->isExtVectorType()) {
   1460     Value *Oper = Visit(E->getSubExpr());
   1461     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
   1462     Value *Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
   1463     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
   1464   }
   1465 
   1466   // Compare operand to zero.
   1467   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
   1468 
   1469   // Invert value.
   1470   // TODO: Could dynamically modify easy computations here.  For example, if
   1471   // the operand is an icmp ne, turn into icmp eq.
   1472   BoolVal = Builder.CreateNot(BoolVal, "lnot");
   1473 
   1474   // ZExt result to the expr type.
   1475   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
   1476 }
   1477 
   1478 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
   1479   // Try folding the offsetof to a constant.
   1480   llvm::APSInt Value;
   1481   if (E->EvaluateAsInt(Value, CGF.getContext()))
   1482     return Builder.getInt(Value);
   1483 
   1484   // Loop over the components of the offsetof to compute the value.
   1485   unsigned n = E->getNumComponents();
   1486   llvm::Type* ResultType = ConvertType(E->getType());
   1487   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
   1488   QualType CurrentType = E->getTypeSourceInfo()->getType();
   1489   for (unsigned i = 0; i != n; ++i) {
   1490     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
   1491     llvm::Value *Offset = 0;
   1492     switch (ON.getKind()) {
   1493     case OffsetOfExpr::OffsetOfNode::Array: {
   1494       // Compute the index
   1495       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
   1496       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
   1497       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
   1498       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
   1499 
   1500       // Save the element type
   1501       CurrentType =
   1502           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
   1503 
   1504       // Compute the element size
   1505       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
   1506           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
   1507 
   1508       // Multiply out to compute the result
   1509       Offset = Builder.CreateMul(Idx, ElemSize);
   1510       break;
   1511     }
   1512 
   1513     case OffsetOfExpr::OffsetOfNode::Field: {
   1514       FieldDecl *MemberDecl = ON.getField();
   1515       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
   1516       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
   1517 
   1518       // Compute the index of the field in its parent.
   1519       unsigned i = 0;
   1520       // FIXME: It would be nice if we didn't have to loop here!
   1521       for (RecordDecl::field_iterator Field = RD->field_begin(),
   1522                                       FieldEnd = RD->field_end();
   1523            Field != FieldEnd; (void)++Field, ++i) {
   1524         if (*Field == MemberDecl)
   1525           break;
   1526       }
   1527       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
   1528 
   1529       // Compute the offset to the field
   1530       int64_t OffsetInt = RL.getFieldOffset(i) /
   1531                           CGF.getContext().getCharWidth();
   1532       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
   1533 
   1534       // Save the element type.
   1535       CurrentType = MemberDecl->getType();
   1536       break;
   1537     }
   1538 
   1539     case OffsetOfExpr::OffsetOfNode::Identifier:
   1540       llvm_unreachable("dependent __builtin_offsetof");
   1541 
   1542     case OffsetOfExpr::OffsetOfNode::Base: {
   1543       if (ON.getBase()->isVirtual()) {
   1544         CGF.ErrorUnsupported(E, "virtual base in offsetof");
   1545         continue;
   1546       }
   1547 
   1548       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
   1549       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
   1550 
   1551       // Save the element type.
   1552       CurrentType = ON.getBase()->getType();
   1553 
   1554       // Compute the offset to the base.
   1555       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
   1556       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
   1557       int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
   1558                           CGF.getContext().getCharWidth();
   1559       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
   1560       break;
   1561     }
   1562     }
   1563     Result = Builder.CreateAdd(Result, Offset);
   1564   }
   1565   return Result;
   1566 }
   1567 
   1568 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
   1569 /// argument of the sizeof expression as an integer.
   1570 Value *
   1571 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
   1572                               const UnaryExprOrTypeTraitExpr *E) {
   1573   QualType TypeToSize = E->getTypeOfArgument();
   1574   if (E->getKind() == UETT_SizeOf) {
   1575     if (const VariableArrayType *VAT =
   1576           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
   1577       if (E->isArgumentType()) {
   1578         // sizeof(type) - make sure to emit the VLA size.
   1579         CGF.EmitVariablyModifiedType(TypeToSize);
   1580       } else {
   1581         // C99 6.5.3.4p2: If the argument is an expression of type
   1582         // VLA, it is evaluated.
   1583         CGF.EmitIgnoredExpr(E->getArgumentExpr());
   1584       }
   1585 
   1586       QualType eltType;
   1587       llvm::Value *numElts;
   1588       llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
   1589 
   1590       llvm::Value *size = numElts;
   1591 
   1592       // Scale the number of non-VLA elements by the non-VLA element size.
   1593       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
   1594       if (!eltSize.isOne())
   1595         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
   1596 
   1597       return size;
   1598     }
   1599   }
   1600 
   1601   // If this isn't sizeof(vla), the result must be constant; use the constant
   1602   // folding logic so we don't have to duplicate it here.
   1603   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
   1604 }
   1605 
   1606 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
   1607   Expr *Op = E->getSubExpr();
   1608   if (Op->getType()->isAnyComplexType()) {
   1609     // If it's an l-value, load through the appropriate subobject l-value.
   1610     // Note that we have to ask E because Op might be an l-value that
   1611     // this won't work for, e.g. an Obj-C property.
   1612     if (E->isGLValue())
   1613       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
   1614 
   1615     // Otherwise, calculate and project.
   1616     return CGF.EmitComplexExpr(Op, false, true).first;
   1617   }
   1618 
   1619   return Visit(Op);
   1620 }
   1621 
   1622 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
   1623   Expr *Op = E->getSubExpr();
   1624   if (Op->getType()->isAnyComplexType()) {
   1625     // If it's an l-value, load through the appropriate subobject l-value.
   1626     // Note that we have to ask E because Op might be an l-value that
   1627     // this won't work for, e.g. an Obj-C property.
   1628     if (Op->isGLValue())
   1629       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
   1630 
   1631     // Otherwise, calculate and project.
   1632     return CGF.EmitComplexExpr(Op, true, false).second;
   1633   }
   1634 
   1635   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
   1636   // effects are evaluated, but not the actual value.
   1637   if (Op->isGLValue())
   1638     CGF.EmitLValue(Op);
   1639   else
   1640     CGF.EmitScalarExpr(Op, true);
   1641   return llvm::Constant::getNullValue(ConvertType(E->getType()));
   1642 }
   1643 
   1644 //===----------------------------------------------------------------------===//
   1645 //                           Binary Operators
   1646 //===----------------------------------------------------------------------===//
   1647 
   1648 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
   1649   TestAndClearIgnoreResultAssign();
   1650   BinOpInfo Result;
   1651   Result.LHS = Visit(E->getLHS());
   1652   Result.RHS = Visit(E->getRHS());
   1653   Result.Ty  = E->getType();
   1654   Result.Opcode = E->getOpcode();
   1655   Result.E = E;
   1656   return Result;
   1657 }
   1658 
   1659 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
   1660                                               const CompoundAssignOperator *E,
   1661                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
   1662                                                    Value *&Result) {
   1663   QualType LHSTy = E->getLHS()->getType();
   1664   BinOpInfo OpInfo;
   1665 
   1666   if (E->getComputationResultType()->isAnyComplexType()) {
   1667     // This needs to go through the complex expression emitter, but it's a tad
   1668     // complicated to do that... I'm leaving it out for now.  (Note that we do
   1669     // actually need the imaginary part of the RHS for multiplication and
   1670     // division.)
   1671     CGF.ErrorUnsupported(E, "complex compound assignment");
   1672     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
   1673     return LValue();
   1674   }
   1675 
   1676   // Emit the RHS first.  __block variables need to have the rhs evaluated
   1677   // first, plus this should improve codegen a little.
   1678   OpInfo.RHS = Visit(E->getRHS());
   1679   OpInfo.Ty = E->getComputationResultType();
   1680   OpInfo.Opcode = E->getOpcode();
   1681   OpInfo.E = E;
   1682   // Load/convert the LHS.
   1683   LValue LHSLV = EmitCheckedLValue(E->getLHS());
   1684   OpInfo.LHS = EmitLoadOfLValue(LHSLV);
   1685   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
   1686                                     E->getComputationLHSType());
   1687 
   1688   llvm::PHINode *atomicPHI = 0;
   1689   if (const AtomicType *atomicTy = OpInfo.Ty->getAs<AtomicType>()) {
   1690     // FIXME: For floating point types, we should be saving and restoring the
   1691     // floating point environment in the loop.
   1692     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
   1693     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
   1694     Builder.CreateBr(opBB);
   1695     Builder.SetInsertPoint(opBB);
   1696     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
   1697     atomicPHI->addIncoming(OpInfo.LHS, startBB);
   1698     OpInfo.Ty = atomicTy->getValueType();
   1699     OpInfo.LHS = atomicPHI;
   1700   }
   1701 
   1702   // Expand the binary operator.
   1703   Result = (this->*Func)(OpInfo);
   1704 
   1705   // Convert the result back to the LHS type.
   1706   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
   1707 
   1708   if (atomicPHI) {
   1709     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
   1710     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
   1711     llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI,
   1712         Result, llvm::SequentiallyConsistent);
   1713     atomicPHI->addIncoming(old, opBB);
   1714     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
   1715     Builder.CreateCondBr(success, contBB, opBB);
   1716     Builder.SetInsertPoint(contBB);
   1717     return LHSLV;
   1718   }
   1719 
   1720   // Store the result value into the LHS lvalue. Bit-fields are handled
   1721   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
   1722   // 'An assignment expression has the value of the left operand after the
   1723   // assignment...'.
   1724   if (LHSLV.isBitField())
   1725     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
   1726   else
   1727     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
   1728 
   1729   return LHSLV;
   1730 }
   1731 
   1732 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
   1733                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
   1734   bool Ignore = TestAndClearIgnoreResultAssign();
   1735   Value *RHS;
   1736   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
   1737 
   1738   // If the result is clearly ignored, return now.
   1739   if (Ignore)
   1740     return 0;
   1741 
   1742   // The result of an assignment in C is the assigned r-value.
   1743   if (!CGF.getContext().getLangOpts().CPlusPlus)
   1744     return RHS;
   1745 
   1746   // If the lvalue is non-volatile, return the computed value of the assignment.
   1747   if (!LHS.isVolatileQualified())
   1748     return RHS;
   1749 
   1750   // Otherwise, reload the value.
   1751   return EmitLoadOfLValue(LHS);
   1752 }
   1753 
   1754 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
   1755      					    const BinOpInfo &Ops,
   1756 				     	    llvm::Value *Zero, bool isDiv) {
   1757   llvm::Function::iterator insertPt = Builder.GetInsertBlock();
   1758   llvm::BasicBlock *contBB =
   1759     CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
   1760                          llvm::next(insertPt));
   1761   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
   1762 
   1763   llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
   1764 
   1765   if (Ops.Ty->hasSignedIntegerRepresentation()) {
   1766     llvm::Value *IntMin =
   1767       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
   1768     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
   1769 
   1770     llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
   1771     llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
   1772     llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
   1773     llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
   1774     Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
   1775                          overflowBB, contBB);
   1776   } else {
   1777     CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
   1778                              overflowBB, contBB);
   1779   }
   1780   EmitOverflowBB(overflowBB);
   1781   Builder.SetInsertPoint(contBB);
   1782 }
   1783 
   1784 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
   1785   if (isTrapvOverflowBehavior()) {
   1786     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
   1787 
   1788     if (Ops.Ty->isIntegerType())
   1789       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
   1790     else if (Ops.Ty->isRealFloatingType()) {
   1791       llvm::Function::iterator insertPt = Builder.GetInsertBlock();
   1792       llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
   1793                                                        llvm::next(insertPt));
   1794       llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
   1795                                                           CGF.CurFn);
   1796       CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
   1797                                overflowBB, DivCont);
   1798       EmitOverflowBB(overflowBB);
   1799       Builder.SetInsertPoint(DivCont);
   1800     }
   1801   }
   1802   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
   1803     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
   1804     if (CGF.getContext().getLangOpts().OpenCL) {
   1805       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
   1806       llvm::Type *ValTy = Val->getType();
   1807       if (ValTy->isFloatTy() ||
   1808           (isa<llvm::VectorType>(ValTy) &&
   1809            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
   1810         CGF.SetFPAccuracy(Val, 2.5);
   1811     }
   1812     return Val;
   1813   }
   1814   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
   1815     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
   1816   else
   1817     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
   1818 }
   1819 
   1820 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
   1821   // Rem in C can't be a floating point type: C99 6.5.5p2.
   1822   if (isTrapvOverflowBehavior()) {
   1823     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
   1824 
   1825     if (Ops.Ty->isIntegerType())
   1826       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
   1827   }
   1828 
   1829   if (Ops.Ty->hasUnsignedIntegerRepresentation())
   1830     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
   1831   else
   1832     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
   1833 }
   1834 
   1835 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
   1836   unsigned IID;
   1837   unsigned OpID = 0;
   1838 
   1839   switch (Ops.Opcode) {
   1840   case BO_Add:
   1841   case BO_AddAssign:
   1842     OpID = 1;
   1843     IID = llvm::Intrinsic::sadd_with_overflow;
   1844     break;
   1845   case BO_Sub:
   1846   case BO_SubAssign:
   1847     OpID = 2;
   1848     IID = llvm::Intrinsic::ssub_with_overflow;
   1849     break;
   1850   case BO_Mul:
   1851   case BO_MulAssign:
   1852     OpID = 3;
   1853     IID = llvm::Intrinsic::smul_with_overflow;
   1854     break;
   1855   default:
   1856     llvm_unreachable("Unsupported operation for overflow detection");
   1857   }
   1858   OpID <<= 1;
   1859   OpID |= 1;
   1860 
   1861   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
   1862 
   1863   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
   1864 
   1865   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
   1866   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
   1867   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
   1868 
   1869   // Branch in case of overflow.
   1870   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
   1871   llvm::Function::iterator insertPt = initialBB;
   1872   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
   1873                                                       llvm::next(insertPt));
   1874   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
   1875 
   1876   Builder.CreateCondBr(overflow, overflowBB, continueBB);
   1877 
   1878   // Handle overflow with llvm.trap.
   1879   const std::string *handlerName =
   1880     &CGF.getContext().getLangOpts().OverflowHandler;
   1881   if (handlerName->empty()) {
   1882     EmitOverflowBB(overflowBB);
   1883     Builder.SetInsertPoint(continueBB);
   1884     return result;
   1885   }
   1886 
   1887   // If an overflow handler is set, then we want to call it and then use its
   1888   // result, if it returns.
   1889   Builder.SetInsertPoint(overflowBB);
   1890 
   1891   // Get the overflow handler.
   1892   llvm::Type *Int8Ty = CGF.Int8Ty;
   1893   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
   1894   llvm::FunctionType *handlerTy =
   1895       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
   1896   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
   1897 
   1898   // Sign extend the args to 64-bit, so that we can use the same handler for
   1899   // all types of overflow.
   1900   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
   1901   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
   1902 
   1903   // Call the handler with the two arguments, the operation, and the size of
   1904   // the result.
   1905   llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
   1906       Builder.getInt8(OpID),
   1907       Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
   1908 
   1909   // Truncate the result back to the desired size.
   1910   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
   1911   Builder.CreateBr(continueBB);
   1912 
   1913   Builder.SetInsertPoint(continueBB);
   1914   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
   1915   phi->addIncoming(result, initialBB);
   1916   phi->addIncoming(handlerResult, overflowBB);
   1917 
   1918   return phi;
   1919 }
   1920 
   1921 /// Emit pointer + index arithmetic.
   1922 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
   1923                                     const BinOpInfo &op,
   1924                                     bool isSubtraction) {
   1925   // Must have binary (not unary) expr here.  Unary pointer
   1926   // increment/decrement doesn't use this path.
   1927   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
   1928 
   1929   Value *pointer = op.LHS;
   1930   Expr *pointerOperand = expr->getLHS();
   1931   Value *index = op.RHS;
   1932   Expr *indexOperand = expr->getRHS();
   1933 
   1934   // In a subtraction, the LHS is always the pointer.
   1935   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
   1936     std::swap(pointer, index);
   1937     std::swap(pointerOperand, indexOperand);
   1938   }
   1939 
   1940   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
   1941   if (width != CGF.PointerWidthInBits) {
   1942     // Zero-extend or sign-extend the pointer value according to
   1943     // whether the index is signed or not.
   1944     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
   1945     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
   1946                                       "idx.ext");
   1947   }
   1948 
   1949   // If this is subtraction, negate the index.
   1950   if (isSubtraction)
   1951     index = CGF.Builder.CreateNeg(index, "idx.neg");
   1952 
   1953   const PointerType *pointerType
   1954     = pointerOperand->getType()->getAs<PointerType>();
   1955   if (!pointerType) {
   1956     QualType objectType = pointerOperand->getType()
   1957                                         ->castAs<ObjCObjectPointerType>()
   1958                                         ->getPointeeType();
   1959     llvm::Value *objectSize
   1960       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
   1961 
   1962     index = CGF.Builder.CreateMul(index, objectSize);
   1963 
   1964     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
   1965     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
   1966     return CGF.Builder.CreateBitCast(result, pointer->getType());
   1967   }
   1968 
   1969   QualType elementType = pointerType->getPointeeType();
   1970   if (const VariableArrayType *vla
   1971         = CGF.getContext().getAsVariableArrayType(elementType)) {
   1972     // The element count here is the total number of non-VLA elements.
   1973     llvm::Value *numElements = CGF.getVLASize(vla).first;
   1974 
   1975     // Effectively, the multiply by the VLA size is part of the GEP.
   1976     // GEP indexes are signed, and scaling an index isn't permitted to
   1977     // signed-overflow, so we use the same semantics for our explicit
   1978     // multiply.  We suppress this if overflow is not undefined behavior.
   1979     if (CGF.getLangOpts().isSignedOverflowDefined()) {
   1980       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
   1981       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
   1982     } else {
   1983       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
   1984       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
   1985     }
   1986     return pointer;
   1987   }
   1988 
   1989   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
   1990   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
   1991   // future proof.
   1992   if (elementType->isVoidType() || elementType->isFunctionType()) {
   1993     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
   1994     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
   1995     return CGF.Builder.CreateBitCast(result, pointer->getType());
   1996   }
   1997 
   1998   if (CGF.getLangOpts().isSignedOverflowDefined())
   1999     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
   2000 
   2001   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
   2002 }
   2003 
   2004 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
   2005   if (op.LHS->getType()->isPointerTy() ||
   2006       op.RHS->getType()->isPointerTy())
   2007     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
   2008 
   2009   if (op.Ty->isSignedIntegerOrEnumerationType()) {
   2010     switch (CGF.getContext().getLangOpts().getSignedOverflowBehavior()) {
   2011     case LangOptions::SOB_Undefined:
   2012       return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
   2013     case LangOptions::SOB_Defined:
   2014       return Builder.CreateAdd(op.LHS, op.RHS, "add");
   2015     case LangOptions::SOB_Trapping:
   2016       return EmitOverflowCheckedBinOp(op);
   2017     }
   2018   }
   2019 
   2020   if (op.LHS->getType()->isFPOrFPVectorTy())
   2021     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
   2022 
   2023   return Builder.CreateAdd(op.LHS, op.RHS, "add");
   2024 }
   2025 
   2026 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
   2027   // The LHS is always a pointer if either side is.
   2028   if (!op.LHS->getType()->isPointerTy()) {
   2029     if (op.Ty->isSignedIntegerOrEnumerationType()) {
   2030       switch (CGF.getContext().getLangOpts().getSignedOverflowBehavior()) {
   2031       case LangOptions::SOB_Undefined:
   2032         return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
   2033       case LangOptions::SOB_Defined:
   2034         return Builder.CreateSub(op.LHS, op.RHS, "sub");
   2035       case LangOptions::SOB_Trapping:
   2036         return EmitOverflowCheckedBinOp(op);
   2037       }
   2038     }
   2039 
   2040     if (op.LHS->getType()->isFPOrFPVectorTy())
   2041       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
   2042 
   2043     return Builder.CreateSub(op.LHS, op.RHS, "sub");
   2044   }
   2045 
   2046   // If the RHS is not a pointer, then we have normal pointer
   2047   // arithmetic.
   2048   if (!op.RHS->getType()->isPointerTy())
   2049     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
   2050 
   2051   // Otherwise, this is a pointer subtraction.
   2052 
   2053   // Do the raw subtraction part.
   2054   llvm::Value *LHS
   2055     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
   2056   llvm::Value *RHS
   2057     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
   2058   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
   2059 
   2060   // Okay, figure out the element size.
   2061   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
   2062   QualType elementType = expr->getLHS()->getType()->getPointeeType();
   2063 
   2064   llvm::Value *divisor = 0;
   2065 
   2066   // For a variable-length array, this is going to be non-constant.
   2067   if (const VariableArrayType *vla
   2068         = CGF.getContext().getAsVariableArrayType(elementType)) {
   2069     llvm::Value *numElements;
   2070     llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
   2071 
   2072     divisor = numElements;
   2073 
   2074     // Scale the number of non-VLA elements by the non-VLA element size.
   2075     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
   2076     if (!eltSize.isOne())
   2077       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
   2078 
   2079   // For everything elese, we can just compute it, safe in the
   2080   // assumption that Sema won't let anything through that we can't
   2081   // safely compute the size of.
   2082   } else {
   2083     CharUnits elementSize;
   2084     // Handle GCC extension for pointer arithmetic on void* and
   2085     // function pointer types.
   2086     if (elementType->isVoidType() || elementType->isFunctionType())
   2087       elementSize = CharUnits::One();
   2088     else
   2089       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
   2090 
   2091     // Don't even emit the divide for element size of 1.
   2092     if (elementSize.isOne())
   2093       return diffInChars;
   2094 
   2095     divisor = CGF.CGM.getSize(elementSize);
   2096   }
   2097 
   2098   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
   2099   // pointer difference in C is only defined in the case where both operands
   2100   // are pointing to elements of an array.
   2101   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
   2102 }
   2103 
   2104 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
   2105   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
   2106   // RHS to the same size as the LHS.
   2107   Value *RHS = Ops.RHS;
   2108   if (Ops.LHS->getType() != RHS->getType())
   2109     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
   2110 
   2111   if (CGF.CatchUndefined
   2112       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
   2113     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
   2114     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
   2115     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
   2116                                  llvm::ConstantInt::get(RHS->getType(), Width)),
   2117                              Cont, CGF.getTrapBB());
   2118     CGF.EmitBlock(Cont);
   2119   }
   2120 
   2121   return Builder.CreateShl(Ops.LHS, RHS, "shl");
   2122 }
   2123 
   2124 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
   2125   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
   2126   // RHS to the same size as the LHS.
   2127   Value *RHS = Ops.RHS;
   2128   if (Ops.LHS->getType() != RHS->getType())
   2129     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
   2130 
   2131   if (CGF.CatchUndefined
   2132       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
   2133     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
   2134     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
   2135     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
   2136                                  llvm::ConstantInt::get(RHS->getType(), Width)),
   2137                              Cont, CGF.getTrapBB());
   2138     CGF.EmitBlock(Cont);
   2139   }
   2140 
   2141   if (Ops.Ty->hasUnsignedIntegerRepresentation())
   2142     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
   2143   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
   2144 }
   2145 
   2146 enum IntrinsicType { VCMPEQ, VCMPGT };
   2147 // return corresponding comparison intrinsic for given vector type
   2148 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
   2149                                         BuiltinType::Kind ElemKind) {
   2150   switch (ElemKind) {
   2151   default: llvm_unreachable("unexpected element type");
   2152   case BuiltinType::Char_U:
   2153   case BuiltinType::UChar:
   2154     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
   2155                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
   2156   case BuiltinType::Char_S:
   2157   case BuiltinType::SChar:
   2158     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
   2159                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
   2160   case BuiltinType::UShort:
   2161     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
   2162                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
   2163   case BuiltinType::Short:
   2164     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
   2165                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
   2166   case BuiltinType::UInt:
   2167   case BuiltinType::ULong:
   2168     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
   2169                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
   2170   case BuiltinType::Int:
   2171   case BuiltinType::Long:
   2172     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
   2173                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
   2174   case BuiltinType::Float:
   2175     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
   2176                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
   2177   }
   2178 }
   2179 
   2180 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
   2181                                       unsigned SICmpOpc, unsigned FCmpOpc) {
   2182   TestAndClearIgnoreResultAssign();
   2183   Value *Result;
   2184   QualType LHSTy = E->getLHS()->getType();
   2185   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
   2186     assert(E->getOpcode() == BO_EQ ||
   2187            E->getOpcode() == BO_NE);
   2188     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
   2189     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
   2190     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
   2191                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
   2192   } else if (!LHSTy->isAnyComplexType()) {
   2193     Value *LHS = Visit(E->getLHS());
   2194     Value *RHS = Visit(E->getRHS());
   2195 
   2196     // If AltiVec, the comparison results in a numeric type, so we use
   2197     // intrinsics comparing vectors and giving 0 or 1 as a result
   2198     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
   2199       // constants for mapping CR6 register bits to predicate result
   2200       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
   2201 
   2202       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
   2203 
   2204       // in several cases vector arguments order will be reversed
   2205       Value *FirstVecArg = LHS,
   2206             *SecondVecArg = RHS;
   2207 
   2208       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
   2209       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
   2210       BuiltinType::Kind ElementKind = BTy->getKind();
   2211 
   2212       switch(E->getOpcode()) {
   2213       default: llvm_unreachable("is not a comparison operation");
   2214       case BO_EQ:
   2215         CR6 = CR6_LT;
   2216         ID = GetIntrinsic(VCMPEQ, ElementKind);
   2217         break;
   2218       case BO_NE:
   2219         CR6 = CR6_EQ;
   2220         ID = GetIntrinsic(VCMPEQ, ElementKind);
   2221         break;
   2222       case BO_LT:
   2223         CR6 = CR6_LT;
   2224         ID = GetIntrinsic(VCMPGT, ElementKind);
   2225         std::swap(FirstVecArg, SecondVecArg);
   2226         break;
   2227       case BO_GT:
   2228         CR6 = CR6_LT;
   2229         ID = GetIntrinsic(VCMPGT, ElementKind);
   2230         break;
   2231       case BO_LE:
   2232         if (ElementKind == BuiltinType::Float) {
   2233           CR6 = CR6_LT;
   2234           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
   2235           std::swap(FirstVecArg, SecondVecArg);
   2236         }
   2237         else {
   2238           CR6 = CR6_EQ;
   2239           ID = GetIntrinsic(VCMPGT, ElementKind);
   2240         }
   2241         break;
   2242       case BO_GE:
   2243         if (ElementKind == BuiltinType::Float) {
   2244           CR6 = CR6_LT;
   2245           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
   2246         }
   2247         else {
   2248           CR6 = CR6_EQ;
   2249           ID = GetIntrinsic(VCMPGT, ElementKind);
   2250           std::swap(FirstVecArg, SecondVecArg);
   2251         }
   2252         break;
   2253       }
   2254 
   2255       Value *CR6Param = Builder.getInt32(CR6);
   2256       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
   2257       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
   2258       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
   2259     }
   2260 
   2261     if (LHS->getType()->isFPOrFPVectorTy()) {
   2262       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
   2263                                   LHS, RHS, "cmp");
   2264     } else if (LHSTy->hasSignedIntegerRepresentation()) {
   2265       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
   2266                                   LHS, RHS, "cmp");
   2267     } else {
   2268       // Unsigned integers and pointers.
   2269       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
   2270                                   LHS, RHS, "cmp");
   2271     }
   2272 
   2273     // If this is a vector comparison, sign extend the result to the appropriate
   2274     // vector integer type and return it (don't convert to bool).
   2275     if (LHSTy->isVectorType())
   2276       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
   2277 
   2278   } else {
   2279     // Complex Comparison: can only be an equality comparison.
   2280     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
   2281     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
   2282 
   2283     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
   2284 
   2285     Value *ResultR, *ResultI;
   2286     if (CETy->isRealFloatingType()) {
   2287       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
   2288                                    LHS.first, RHS.first, "cmp.r");
   2289       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
   2290                                    LHS.second, RHS.second, "cmp.i");
   2291     } else {
   2292       // Complex comparisons can only be equality comparisons.  As such, signed
   2293       // and unsigned opcodes are the same.
   2294       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
   2295                                    LHS.first, RHS.first, "cmp.r");
   2296       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
   2297                                    LHS.second, RHS.second, "cmp.i");
   2298     }
   2299 
   2300     if (E->getOpcode() == BO_EQ) {
   2301       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
   2302     } else {
   2303       assert(E->getOpcode() == BO_NE &&
   2304              "Complex comparison other than == or != ?");
   2305       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
   2306     }
   2307   }
   2308 
   2309   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
   2310 }
   2311 
   2312 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
   2313   bool Ignore = TestAndClearIgnoreResultAssign();
   2314 
   2315   Value *RHS;
   2316   LValue LHS;
   2317 
   2318   switch (E->getLHS()->getType().getObjCLifetime()) {
   2319   case Qualifiers::OCL_Strong:
   2320     llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
   2321     break;
   2322 
   2323   case Qualifiers::OCL_Autoreleasing:
   2324     llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
   2325     break;
   2326 
   2327   case Qualifiers::OCL_Weak:
   2328     RHS = Visit(E->getRHS());
   2329     LHS = EmitCheckedLValue(E->getLHS());
   2330     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
   2331     break;
   2332 
   2333   // No reason to do any of these differently.
   2334   case Qualifiers::OCL_None:
   2335   case Qualifiers::OCL_ExplicitNone:
   2336     // __block variables need to have the rhs evaluated first, plus
   2337     // this should improve codegen just a little.
   2338     RHS = Visit(E->getRHS());
   2339     LHS = EmitCheckedLValue(E->getLHS());
   2340 
   2341     // Store the value into the LHS.  Bit-fields are handled specially
   2342     // because the result is altered by the store, i.e., [C99 6.5.16p1]
   2343     // 'An assignment expression has the value of the left operand after
   2344     // the assignment...'.
   2345     if (LHS.isBitField())
   2346       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
   2347     else
   2348       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
   2349   }
   2350 
   2351   // If the result is clearly ignored, return now.
   2352   if (Ignore)
   2353     return 0;
   2354 
   2355   // The result of an assignment in C is the assigned r-value.
   2356   if (!CGF.getContext().getLangOpts().CPlusPlus)
   2357     return RHS;
   2358 
   2359   // If the lvalue is non-volatile, return the computed value of the assignment.
   2360   if (!LHS.isVolatileQualified())
   2361     return RHS;
   2362 
   2363   // Otherwise, reload the value.
   2364   return EmitLoadOfLValue(LHS);
   2365 }
   2366 
   2367 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
   2368 
   2369   // Perform vector logical and on comparisons with zero vectors.
   2370   if (E->getType()->isVectorType()) {
   2371     Value *LHS = Visit(E->getLHS());
   2372     Value *RHS = Visit(E->getRHS());
   2373     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
   2374     LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
   2375     RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
   2376     Value *And = Builder.CreateAnd(LHS, RHS);
   2377     return Builder.CreateSExt(And, Zero->getType(), "sext");
   2378   }
   2379 
   2380   llvm::Type *ResTy = ConvertType(E->getType());
   2381 
   2382   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
   2383   // If we have 1 && X, just emit X without inserting the control flow.
   2384   bool LHSCondVal;
   2385   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
   2386     if (LHSCondVal) { // If we have 1 && X, just emit X.
   2387       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   2388       // ZExt result to int or bool.
   2389       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
   2390     }
   2391 
   2392     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
   2393     if (!CGF.ContainsLabel(E->getRHS()))
   2394       return llvm::Constant::getNullValue(ResTy);
   2395   }
   2396 
   2397   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
   2398   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
   2399 
   2400   CodeGenFunction::ConditionalEvaluation eval(CGF);
   2401 
   2402   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
   2403   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
   2404 
   2405   // Any edges into the ContBlock are now from an (indeterminate number of)
   2406   // edges from this first condition.  All of these values will be false.  Start
   2407   // setting up the PHI node in the Cont Block for this.
   2408   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
   2409                                             "", ContBlock);
   2410   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
   2411        PI != PE; ++PI)
   2412     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
   2413 
   2414   eval.begin(CGF);
   2415   CGF.EmitBlock(RHSBlock);
   2416   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   2417   eval.end(CGF);
   2418 
   2419   // Reaquire the RHS block, as there may be subblocks inserted.
   2420   RHSBlock = Builder.GetInsertBlock();
   2421 
   2422   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
   2423   // into the phi node for the edge with the value of RHSCond.
   2424   if (CGF.getDebugInfo())
   2425     // There is no need to emit line number for unconditional branch.
   2426     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
   2427   CGF.EmitBlock(ContBlock);
   2428   PN->addIncoming(RHSCond, RHSBlock);
   2429 
   2430   // ZExt result to int.
   2431   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
   2432 }
   2433 
   2434 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
   2435 
   2436   // Perform vector logical or on comparisons with zero vectors.
   2437   if (E->getType()->isVectorType()) {
   2438     Value *LHS = Visit(E->getLHS());
   2439     Value *RHS = Visit(E->getRHS());
   2440     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
   2441     LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
   2442     RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
   2443     Value *Or = Builder.CreateOr(LHS, RHS);
   2444     return Builder.CreateSExt(Or, Zero->getType(), "sext");
   2445   }
   2446 
   2447   llvm::Type *ResTy = ConvertType(E->getType());
   2448 
   2449   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
   2450   // If we have 0 || X, just emit X without inserting the control flow.
   2451   bool LHSCondVal;
   2452   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
   2453     if (!LHSCondVal) { // If we have 0 || X, just emit X.
   2454       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   2455       // ZExt result to int or bool.
   2456       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
   2457     }
   2458 
   2459     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
   2460     if (!CGF.ContainsLabel(E->getRHS()))
   2461       return llvm::ConstantInt::get(ResTy, 1);
   2462   }
   2463 
   2464   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
   2465   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
   2466 
   2467   CodeGenFunction::ConditionalEvaluation eval(CGF);
   2468 
   2469   // Branch on the LHS first.  If it is true, go to the success (cont) block.
   2470   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
   2471 
   2472   // Any edges into the ContBlock are now from an (indeterminate number of)
   2473   // edges from this first condition.  All of these values will be true.  Start
   2474   // setting up the PHI node in the Cont Block for this.
   2475   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
   2476                                             "", ContBlock);
   2477   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
   2478        PI != PE; ++PI)
   2479     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
   2480 
   2481   eval.begin(CGF);
   2482 
   2483   // Emit the RHS condition as a bool value.
   2484   CGF.EmitBlock(RHSBlock);
   2485   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   2486 
   2487   eval.end(CGF);
   2488 
   2489   // Reaquire the RHS block, as there may be subblocks inserted.
   2490   RHSBlock = Builder.GetInsertBlock();
   2491 
   2492   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
   2493   // into the phi node for the edge with the value of RHSCond.
   2494   CGF.EmitBlock(ContBlock);
   2495   PN->addIncoming(RHSCond, RHSBlock);
   2496 
   2497   // ZExt result to int.
   2498   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
   2499 }
   2500 
   2501 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
   2502   CGF.EmitIgnoredExpr(E->getLHS());
   2503   CGF.EnsureInsertPoint();
   2504   return Visit(E->getRHS());
   2505 }
   2506 
   2507 //===----------------------------------------------------------------------===//
   2508 //                             Other Operators
   2509 //===----------------------------------------------------------------------===//
   2510 
   2511 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
   2512 /// expression is cheap enough and side-effect-free enough to evaluate
   2513 /// unconditionally instead of conditionally.  This is used to convert control
   2514 /// flow into selects in some cases.
   2515 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
   2516                                                    CodeGenFunction &CGF) {
   2517   E = E->IgnoreParens();
   2518 
   2519   // Anything that is an integer or floating point constant is fine.
   2520   if (E->isConstantInitializer(CGF.getContext(), false))
   2521     return true;
   2522 
   2523   // Non-volatile automatic variables too, to get "cond ? X : Y" where
   2524   // X and Y are local variables.
   2525   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
   2526     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
   2527       if (VD->hasLocalStorage() && !(CGF.getContext()
   2528                                      .getCanonicalType(VD->getType())
   2529                                      .isVolatileQualified()))
   2530         return true;
   2531 
   2532   return false;
   2533 }
   2534 
   2535 
   2536 Value *ScalarExprEmitter::
   2537 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
   2538   TestAndClearIgnoreResultAssign();
   2539 
   2540   // Bind the common expression if necessary.
   2541   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
   2542 
   2543   Expr *condExpr = E->getCond();
   2544   Expr *lhsExpr = E->getTrueExpr();
   2545   Expr *rhsExpr = E->getFalseExpr();
   2546 
   2547   // If the condition constant folds and can be elided, try to avoid emitting
   2548   // the condition and the dead arm.
   2549   bool CondExprBool;
   2550   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
   2551     Expr *live = lhsExpr, *dead = rhsExpr;
   2552     if (!CondExprBool) std::swap(live, dead);
   2553 
   2554     // If the dead side doesn't have labels we need, just emit the Live part.
   2555     if (!CGF.ContainsLabel(dead)) {
   2556       Value *Result = Visit(live);
   2557 
   2558       // If the live part is a throw expression, it acts like it has a void
   2559       // type, so evaluating it returns a null Value*.  However, a conditional
   2560       // with non-void type must return a non-null Value*.
   2561       if (!Result && !E->getType()->isVoidType())
   2562         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
   2563 
   2564       return Result;
   2565     }
   2566   }
   2567 
   2568   // OpenCL: If the condition is a vector, we can treat this condition like
   2569   // the select function.
   2570   if (CGF.getContext().getLangOpts().OpenCL
   2571       && condExpr->getType()->isVectorType()) {
   2572     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
   2573     llvm::Value *LHS = Visit(lhsExpr);
   2574     llvm::Value *RHS = Visit(rhsExpr);
   2575 
   2576     llvm::Type *condType = ConvertType(condExpr->getType());
   2577     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
   2578 
   2579     unsigned numElem = vecTy->getNumElements();
   2580     llvm::Type *elemType = vecTy->getElementType();
   2581 
   2582     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
   2583     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
   2584     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
   2585                                           llvm::VectorType::get(elemType,
   2586                                                                 numElem),
   2587                                           "sext");
   2588     llvm::Value *tmp2 = Builder.CreateNot(tmp);
   2589 
   2590     // Cast float to int to perform ANDs if necessary.
   2591     llvm::Value *RHSTmp = RHS;
   2592     llvm::Value *LHSTmp = LHS;
   2593     bool wasCast = false;
   2594     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
   2595     if (rhsVTy->getElementType()->isFloatTy()) {
   2596       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
   2597       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
   2598       wasCast = true;
   2599     }
   2600 
   2601     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
   2602     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
   2603     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
   2604     if (wasCast)
   2605       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
   2606 
   2607     return tmp5;
   2608   }
   2609 
   2610   // If this is a really simple expression (like x ? 4 : 5), emit this as a
   2611   // select instead of as control flow.  We can only do this if it is cheap and
   2612   // safe to evaluate the LHS and RHS unconditionally.
   2613   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
   2614       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
   2615     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
   2616     llvm::Value *LHS = Visit(lhsExpr);
   2617     llvm::Value *RHS = Visit(rhsExpr);
   2618     if (!LHS) {
   2619       // If the conditional has void type, make sure we return a null Value*.
   2620       assert(!RHS && "LHS and RHS types must match");
   2621       return 0;
   2622     }
   2623     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
   2624   }
   2625 
   2626   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
   2627   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
   2628   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
   2629 
   2630   CodeGenFunction::ConditionalEvaluation eval(CGF);
   2631   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
   2632 
   2633   CGF.EmitBlock(LHSBlock);
   2634   eval.begin(CGF);
   2635   Value *LHS = Visit(lhsExpr);
   2636   eval.end(CGF);
   2637 
   2638   LHSBlock = Builder.GetInsertBlock();
   2639   Builder.CreateBr(ContBlock);
   2640 
   2641   CGF.EmitBlock(RHSBlock);
   2642   eval.begin(CGF);
   2643   Value *RHS = Visit(rhsExpr);
   2644   eval.end(CGF);
   2645 
   2646   RHSBlock = Builder.GetInsertBlock();
   2647   CGF.EmitBlock(ContBlock);
   2648 
   2649   // If the LHS or RHS is a throw expression, it will be legitimately null.
   2650   if (!LHS)
   2651     return RHS;
   2652   if (!RHS)
   2653     return LHS;
   2654 
   2655   // Create a PHI node for the real part.
   2656   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
   2657   PN->addIncoming(LHS, LHSBlock);
   2658   PN->addIncoming(RHS, RHSBlock);
   2659   return PN;
   2660 }
   2661 
   2662 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
   2663   return Visit(E->getChosenSubExpr(CGF.getContext()));
   2664 }
   2665 
   2666 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
   2667   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
   2668   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
   2669 
   2670   // If EmitVAArg fails, we fall back to the LLVM instruction.
   2671   if (!ArgPtr)
   2672     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
   2673 
   2674   // FIXME Volatility.
   2675   return Builder.CreateLoad(ArgPtr);
   2676 }
   2677 
   2678 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
   2679   return CGF.EmitBlockLiteral(block);
   2680 }
   2681 
   2682 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
   2683   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
   2684   llvm::Type *DstTy = ConvertType(E->getType());
   2685 
   2686   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
   2687   // a shuffle vector instead of a bitcast.
   2688   llvm::Type *SrcTy = Src->getType();
   2689   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
   2690     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
   2691     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
   2692     if ((numElementsDst == 3 && numElementsSrc == 4)
   2693         || (numElementsDst == 4 && numElementsSrc == 3)) {
   2694 
   2695 
   2696       // In the case of going from int4->float3, a bitcast is needed before
   2697       // doing a shuffle.
   2698       llvm::Type *srcElemTy =
   2699       cast<llvm::VectorType>(SrcTy)->getElementType();
   2700       llvm::Type *dstElemTy =
   2701       cast<llvm::VectorType>(DstTy)->getElementType();
   2702 
   2703       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
   2704           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
   2705         // Create a float type of the same size as the source or destination.
   2706         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
   2707                                                                  numElementsSrc);
   2708 
   2709         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
   2710       }
   2711 
   2712       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
   2713 
   2714       SmallVector<llvm::Constant*, 3> Args;
   2715       Args.push_back(Builder.getInt32(0));
   2716       Args.push_back(Builder.getInt32(1));
   2717       Args.push_back(Builder.getInt32(2));
   2718 
   2719       if (numElementsDst == 4)
   2720         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
   2721 
   2722       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
   2723 
   2724       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
   2725     }
   2726   }
   2727 
   2728   return Builder.CreateBitCast(Src, DstTy, "astype");
   2729 }
   2730 
   2731 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
   2732   return CGF.EmitAtomicExpr(E).getScalarVal();
   2733 }
   2734 
   2735 //===----------------------------------------------------------------------===//
   2736 //                         Entry Point into this File
   2737 //===----------------------------------------------------------------------===//
   2738 
   2739 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
   2740 /// type, ignoring the result.
   2741 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
   2742   assert(E && !hasAggregateLLVMType(E->getType()) &&
   2743          "Invalid scalar expression to emit");
   2744 
   2745   if (isa<CXXDefaultArgExpr>(E))
   2746     disableDebugInfo();
   2747   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
   2748     .Visit(const_cast<Expr*>(E));
   2749   if (isa<CXXDefaultArgExpr>(E))
   2750     enableDebugInfo();
   2751   return V;
   2752 }
   2753 
   2754 /// EmitScalarConversion - Emit a conversion from the specified type to the
   2755 /// specified destination type, both of which are LLVM scalar types.
   2756 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
   2757                                              QualType DstTy) {
   2758   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
   2759          "Invalid scalar expression to emit");
   2760   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
   2761 }
   2762 
   2763 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
   2764 /// type to the specified destination type, where the destination type is an
   2765 /// LLVM scalar type.
   2766 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
   2767                                                       QualType SrcTy,
   2768                                                       QualType DstTy) {
   2769   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
   2770          "Invalid complex -> scalar conversion");
   2771   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
   2772                                                                 DstTy);
   2773 }
   2774 
   2775 
   2776 llvm::Value *CodeGenFunction::
   2777 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
   2778                         bool isInc, bool isPre) {
   2779   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
   2780 }
   2781 
   2782 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
   2783   llvm::Value *V;
   2784   // object->isa or (*object).isa
   2785   // Generate code as for: *(Class*)object
   2786   // build Class* type
   2787   llvm::Type *ClassPtrTy = ConvertType(E->getType());
   2788 
   2789   Expr *BaseExpr = E->getBase();
   2790   if (BaseExpr->isRValue()) {
   2791     V = CreateMemTemp(E->getType(), "resval");
   2792     llvm::Value *Src = EmitScalarExpr(BaseExpr);
   2793     Builder.CreateStore(Src, V);
   2794     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
   2795       MakeNaturalAlignAddrLValue(V, E->getType()));
   2796   } else {
   2797     if (E->isArrow())
   2798       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
   2799     else
   2800       V = EmitLValue(BaseExpr).getAddress();
   2801   }
   2802 
   2803   // build Class* type
   2804   ClassPtrTy = ClassPtrTy->getPointerTo();
   2805   V = Builder.CreateBitCast(V, ClassPtrTy);
   2806   return MakeNaturalAlignAddrLValue(V, E->getType());
   2807 }
   2808 
   2809 
   2810 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
   2811                                             const CompoundAssignOperator *E) {
   2812   ScalarExprEmitter Scalar(*this);
   2813   Value *Result = 0;
   2814   switch (E->getOpcode()) {
   2815 #define COMPOUND_OP(Op)                                                       \
   2816     case BO_##Op##Assign:                                                     \
   2817       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
   2818                                              Result)
   2819   COMPOUND_OP(Mul);
   2820   COMPOUND_OP(Div);
   2821   COMPOUND_OP(Rem);
   2822   COMPOUND_OP(Add);
   2823   COMPOUND_OP(Sub);
   2824   COMPOUND_OP(Shl);
   2825   COMPOUND_OP(Shr);
   2826   COMPOUND_OP(And);
   2827   COMPOUND_OP(Xor);
   2828   COMPOUND_OP(Or);
   2829 #undef COMPOUND_OP
   2830 
   2831   case BO_PtrMemD:
   2832   case BO_PtrMemI:
   2833   case BO_Mul:
   2834   case BO_Div:
   2835   case BO_Rem:
   2836   case BO_Add:
   2837   case BO_Sub:
   2838   case BO_Shl:
   2839   case BO_Shr:
   2840   case BO_LT:
   2841   case BO_GT:
   2842   case BO_LE:
   2843   case BO_GE:
   2844   case BO_EQ:
   2845   case BO_NE:
   2846   case BO_And:
   2847   case BO_Xor:
   2848   case BO_Or:
   2849   case BO_LAnd:
   2850   case BO_LOr:
   2851   case BO_Assign:
   2852   case BO_Comma:
   2853     llvm_unreachable("Not valid compound assignment operators");
   2854   }
   2855 
   2856   llvm_unreachable("Unhandled compound assignment operator");
   2857 }
   2858