Home | History | Annotate | Download | only in Analysis
      1 //===- LazyValueInfo.cpp - Value constraint analysis ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interface for lazy computation of value constraint
     11 // information.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "lazy-value-info"
     16 #include "llvm/Analysis/LazyValueInfo.h"
     17 #include "llvm/Analysis/ValueTracking.h"
     18 #include "llvm/Constants.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/IntrinsicInst.h"
     21 #include "llvm/Analysis/ConstantFolding.h"
     22 #include "llvm/Target/TargetData.h"
     23 #include "llvm/Target/TargetLibraryInfo.h"
     24 #include "llvm/Support/CFG.h"
     25 #include "llvm/Support/ConstantRange.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Support/PatternMatch.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 #include "llvm/Support/ValueHandle.h"
     30 #include "llvm/ADT/DenseSet.h"
     31 #include "llvm/ADT/STLExtras.h"
     32 #include <map>
     33 #include <stack>
     34 using namespace llvm;
     35 using namespace PatternMatch;
     36 
     37 char LazyValueInfo::ID = 0;
     38 INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info",
     39                 "Lazy Value Information Analysis", false, true)
     40 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
     41 INITIALIZE_PASS_END(LazyValueInfo, "lazy-value-info",
     42                 "Lazy Value Information Analysis", false, true)
     43 
     44 namespace llvm {
     45   FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
     46 }
     47 
     48 
     49 //===----------------------------------------------------------------------===//
     50 //                               LVILatticeVal
     51 //===----------------------------------------------------------------------===//
     52 
     53 /// LVILatticeVal - This is the information tracked by LazyValueInfo for each
     54 /// value.
     55 ///
     56 /// FIXME: This is basically just for bringup, this can be made a lot more rich
     57 /// in the future.
     58 ///
     59 namespace {
     60 class LVILatticeVal {
     61   enum LatticeValueTy {
     62     /// undefined - This Value has no known value yet.
     63     undefined,
     64 
     65     /// constant - This Value has a specific constant value.
     66     constant,
     67     /// notconstant - This Value is known to not have the specified value.
     68     notconstant,
     69 
     70     /// constantrange - The Value falls within this range.
     71     constantrange,
     72 
     73     /// overdefined - This value is not known to be constant, and we know that
     74     /// it has a value.
     75     overdefined
     76   };
     77 
     78   /// Val: This stores the current lattice value along with the Constant* for
     79   /// the constant if this is a 'constant' or 'notconstant' value.
     80   LatticeValueTy Tag;
     81   Constant *Val;
     82   ConstantRange Range;
     83 
     84 public:
     85   LVILatticeVal() : Tag(undefined), Val(0), Range(1, true) {}
     86 
     87   static LVILatticeVal get(Constant *C) {
     88     LVILatticeVal Res;
     89     if (!isa<UndefValue>(C))
     90       Res.markConstant(C);
     91     return Res;
     92   }
     93   static LVILatticeVal getNot(Constant *C) {
     94     LVILatticeVal Res;
     95     if (!isa<UndefValue>(C))
     96       Res.markNotConstant(C);
     97     return Res;
     98   }
     99   static LVILatticeVal getRange(ConstantRange CR) {
    100     LVILatticeVal Res;
    101     Res.markConstantRange(CR);
    102     return Res;
    103   }
    104 
    105   bool isUndefined() const     { return Tag == undefined; }
    106   bool isConstant() const      { return Tag == constant; }
    107   bool isNotConstant() const   { return Tag == notconstant; }
    108   bool isConstantRange() const { return Tag == constantrange; }
    109   bool isOverdefined() const   { return Tag == overdefined; }
    110 
    111   Constant *getConstant() const {
    112     assert(isConstant() && "Cannot get the constant of a non-constant!");
    113     return Val;
    114   }
    115 
    116   Constant *getNotConstant() const {
    117     assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
    118     return Val;
    119   }
    120 
    121   ConstantRange getConstantRange() const {
    122     assert(isConstantRange() &&
    123            "Cannot get the constant-range of a non-constant-range!");
    124     return Range;
    125   }
    126 
    127   /// markOverdefined - Return true if this is a change in status.
    128   bool markOverdefined() {
    129     if (isOverdefined())
    130       return false;
    131     Tag = overdefined;
    132     return true;
    133   }
    134 
    135   /// markConstant - Return true if this is a change in status.
    136   bool markConstant(Constant *V) {
    137     assert(V && "Marking constant with NULL");
    138     if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
    139       return markConstantRange(ConstantRange(CI->getValue()));
    140     if (isa<UndefValue>(V))
    141       return false;
    142 
    143     assert((!isConstant() || getConstant() == V) &&
    144            "Marking constant with different value");
    145     assert(isUndefined());
    146     Tag = constant;
    147     Val = V;
    148     return true;
    149   }
    150 
    151   /// markNotConstant - Return true if this is a change in status.
    152   bool markNotConstant(Constant *V) {
    153     assert(V && "Marking constant with NULL");
    154     if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
    155       return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
    156     if (isa<UndefValue>(V))
    157       return false;
    158 
    159     assert((!isConstant() || getConstant() != V) &&
    160            "Marking constant !constant with same value");
    161     assert((!isNotConstant() || getNotConstant() == V) &&
    162            "Marking !constant with different value");
    163     assert(isUndefined() || isConstant());
    164     Tag = notconstant;
    165     Val = V;
    166     return true;
    167   }
    168 
    169   /// markConstantRange - Return true if this is a change in status.
    170   bool markConstantRange(const ConstantRange NewR) {
    171     if (isConstantRange()) {
    172       if (NewR.isEmptySet())
    173         return markOverdefined();
    174 
    175       bool changed = Range == NewR;
    176       Range = NewR;
    177       return changed;
    178     }
    179 
    180     assert(isUndefined());
    181     if (NewR.isEmptySet())
    182       return markOverdefined();
    183 
    184     Tag = constantrange;
    185     Range = NewR;
    186     return true;
    187   }
    188 
    189   /// mergeIn - Merge the specified lattice value into this one, updating this
    190   /// one and returning true if anything changed.
    191   bool mergeIn(const LVILatticeVal &RHS) {
    192     if (RHS.isUndefined() || isOverdefined()) return false;
    193     if (RHS.isOverdefined()) return markOverdefined();
    194 
    195     if (isUndefined()) {
    196       Tag = RHS.Tag;
    197       Val = RHS.Val;
    198       Range = RHS.Range;
    199       return true;
    200     }
    201 
    202     if (isConstant()) {
    203       if (RHS.isConstant()) {
    204         if (Val == RHS.Val)
    205           return false;
    206         return markOverdefined();
    207       }
    208 
    209       if (RHS.isNotConstant()) {
    210         if (Val == RHS.Val)
    211           return markOverdefined();
    212 
    213         // Unless we can prove that the two Constants are different, we must
    214         // move to overdefined.
    215         // FIXME: use TargetData/TargetLibraryInfo for smarter constant folding.
    216         if (ConstantInt *Res = dyn_cast<ConstantInt>(
    217                 ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
    218                                                 getConstant(),
    219                                                 RHS.getNotConstant())))
    220           if (Res->isOne())
    221             return markNotConstant(RHS.getNotConstant());
    222 
    223         return markOverdefined();
    224       }
    225 
    226       // RHS is a ConstantRange, LHS is a non-integer Constant.
    227 
    228       // FIXME: consider the case where RHS is a range [1, 0) and LHS is
    229       // a function. The correct result is to pick up RHS.
    230 
    231       return markOverdefined();
    232     }
    233 
    234     if (isNotConstant()) {
    235       if (RHS.isConstant()) {
    236         if (Val == RHS.Val)
    237           return markOverdefined();
    238 
    239         // Unless we can prove that the two Constants are different, we must
    240         // move to overdefined.
    241         // FIXME: use TargetData/TargetLibraryInfo for smarter constant folding.
    242         if (ConstantInt *Res = dyn_cast<ConstantInt>(
    243                 ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
    244                                                 getNotConstant(),
    245                                                 RHS.getConstant())))
    246           if (Res->isOne())
    247             return false;
    248 
    249         return markOverdefined();
    250       }
    251 
    252       if (RHS.isNotConstant()) {
    253         if (Val == RHS.Val)
    254           return false;
    255         return markOverdefined();
    256       }
    257 
    258       return markOverdefined();
    259     }
    260 
    261     assert(isConstantRange() && "New LVILattice type?");
    262     if (!RHS.isConstantRange())
    263       return markOverdefined();
    264 
    265     ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
    266     if (NewR.isFullSet())
    267       return markOverdefined();
    268     return markConstantRange(NewR);
    269   }
    270 };
    271 
    272 } // end anonymous namespace.
    273 
    274 namespace llvm {
    275 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
    276     LLVM_ATTRIBUTE_USED;
    277 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
    278   if (Val.isUndefined())
    279     return OS << "undefined";
    280   if (Val.isOverdefined())
    281     return OS << "overdefined";
    282 
    283   if (Val.isNotConstant())
    284     return OS << "notconstant<" << *Val.getNotConstant() << '>';
    285   else if (Val.isConstantRange())
    286     return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
    287               << Val.getConstantRange().getUpper() << '>';
    288   return OS << "constant<" << *Val.getConstant() << '>';
    289 }
    290 }
    291 
    292 //===----------------------------------------------------------------------===//
    293 //                          LazyValueInfoCache Decl
    294 //===----------------------------------------------------------------------===//
    295 
    296 namespace {
    297   /// LVIValueHandle - A callback value handle update the cache when
    298   /// values are erased.
    299   class LazyValueInfoCache;
    300   struct LVIValueHandle : public CallbackVH {
    301     LazyValueInfoCache *Parent;
    302 
    303     LVIValueHandle(Value *V, LazyValueInfoCache *P)
    304       : CallbackVH(V), Parent(P) { }
    305 
    306     void deleted();
    307     void allUsesReplacedWith(Value *V) {
    308       deleted();
    309     }
    310   };
    311 }
    312 
    313 namespace {
    314   /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which
    315   /// maintains information about queries across the clients' queries.
    316   class LazyValueInfoCache {
    317     /// ValueCacheEntryTy - This is all of the cached block information for
    318     /// exactly one Value*.  The entries are sorted by the BasicBlock* of the
    319     /// entries, allowing us to do a lookup with a binary search.
    320     typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy;
    321 
    322     /// ValueCache - This is all of the cached information for all values,
    323     /// mapped from Value* to key information.
    324     std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache;
    325 
    326     /// OverDefinedCache - This tracks, on a per-block basis, the set of
    327     /// values that are over-defined at the end of that block.  This is required
    328     /// for cache updating.
    329     typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
    330     DenseSet<OverDefinedPairTy> OverDefinedCache;
    331 
    332     /// SeenBlocks - Keep track of all blocks that we have ever seen, so we
    333     /// don't spend time removing unused blocks from our caches.
    334     DenseSet<AssertingVH<BasicBlock> > SeenBlocks;
    335 
    336     /// BlockValueStack - This stack holds the state of the value solver
    337     /// during a query.  It basically emulates the callstack of the naive
    338     /// recursive value lookup process.
    339     std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
    340 
    341     friend struct LVIValueHandle;
    342 
    343     /// OverDefinedCacheUpdater - A helper object that ensures that the
    344     /// OverDefinedCache is updated whenever solveBlockValue returns.
    345     struct OverDefinedCacheUpdater {
    346       LazyValueInfoCache *Parent;
    347       Value *Val;
    348       BasicBlock *BB;
    349       LVILatticeVal &BBLV;
    350 
    351       OverDefinedCacheUpdater(Value *V, BasicBlock *B, LVILatticeVal &LV,
    352                        LazyValueInfoCache *P)
    353         : Parent(P), Val(V), BB(B), BBLV(LV) { }
    354 
    355       bool markResult(bool changed) {
    356         if (changed && BBLV.isOverdefined())
    357           Parent->OverDefinedCache.insert(std::make_pair(BB, Val));
    358         return changed;
    359       }
    360     };
    361 
    362 
    363 
    364     LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
    365     bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
    366                       LVILatticeVal &Result);
    367     bool hasBlockValue(Value *Val, BasicBlock *BB);
    368 
    369     // These methods process one work item and may add more. A false value
    370     // returned means that the work item was not completely processed and must
    371     // be revisited after going through the new items.
    372     bool solveBlockValue(Value *Val, BasicBlock *BB);
    373     bool solveBlockValueNonLocal(LVILatticeVal &BBLV,
    374                                  Value *Val, BasicBlock *BB);
    375     bool solveBlockValuePHINode(LVILatticeVal &BBLV,
    376                                 PHINode *PN, BasicBlock *BB);
    377     bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
    378                                       Instruction *BBI, BasicBlock *BB);
    379 
    380     void solve();
    381 
    382     ValueCacheEntryTy &lookup(Value *V) {
    383       return ValueCache[LVIValueHandle(V, this)];
    384     }
    385 
    386   public:
    387     /// getValueInBlock - This is the query interface to determine the lattice
    388     /// value for the specified Value* at the end of the specified block.
    389     LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB);
    390 
    391     /// getValueOnEdge - This is the query interface to determine the lattice
    392     /// value for the specified Value* that is true on the specified edge.
    393     LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB);
    394 
    395     /// threadEdge - This is the update interface to inform the cache that an
    396     /// edge from PredBB to OldSucc has been threaded to be from PredBB to
    397     /// NewSucc.
    398     void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
    399 
    400     /// eraseBlock - This is part of the update interface to inform the cache
    401     /// that a block has been deleted.
    402     void eraseBlock(BasicBlock *BB);
    403 
    404     /// clear - Empty the cache.
    405     void clear() {
    406       SeenBlocks.clear();
    407       ValueCache.clear();
    408       OverDefinedCache.clear();
    409     }
    410   };
    411 } // end anonymous namespace
    412 
    413 void LVIValueHandle::deleted() {
    414   typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
    415 
    416   SmallVector<OverDefinedPairTy, 4> ToErase;
    417   for (DenseSet<OverDefinedPairTy>::iterator
    418        I = Parent->OverDefinedCache.begin(),
    419        E = Parent->OverDefinedCache.end();
    420        I != E; ++I) {
    421     if (I->second == getValPtr())
    422       ToErase.push_back(*I);
    423   }
    424 
    425   for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(),
    426        E = ToErase.end(); I != E; ++I)
    427     Parent->OverDefinedCache.erase(*I);
    428 
    429   // This erasure deallocates *this, so it MUST happen after we're done
    430   // using any and all members of *this.
    431   Parent->ValueCache.erase(*this);
    432 }
    433 
    434 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
    435   // Shortcut if we have never seen this block.
    436   DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
    437   if (I == SeenBlocks.end())
    438     return;
    439   SeenBlocks.erase(I);
    440 
    441   SmallVector<OverDefinedPairTy, 4> ToErase;
    442   for (DenseSet<OverDefinedPairTy>::iterator  I = OverDefinedCache.begin(),
    443        E = OverDefinedCache.end(); I != E; ++I) {
    444     if (I->first == BB)
    445       ToErase.push_back(*I);
    446   }
    447 
    448   for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(),
    449        E = ToErase.end(); I != E; ++I)
    450     OverDefinedCache.erase(*I);
    451 
    452   for (std::map<LVIValueHandle, ValueCacheEntryTy>::iterator
    453        I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
    454     I->second.erase(BB);
    455 }
    456 
    457 void LazyValueInfoCache::solve() {
    458   while (!BlockValueStack.empty()) {
    459     std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
    460     if (solveBlockValue(e.second, e.first))
    461       BlockValueStack.pop();
    462   }
    463 }
    464 
    465 bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) {
    466   // If already a constant, there is nothing to compute.
    467   if (isa<Constant>(Val))
    468     return true;
    469 
    470   LVIValueHandle ValHandle(Val, this);
    471   if (!ValueCache.count(ValHandle)) return false;
    472   return ValueCache[ValHandle].count(BB);
    473 }
    474 
    475 LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) {
    476   // If already a constant, there is nothing to compute.
    477   if (Constant *VC = dyn_cast<Constant>(Val))
    478     return LVILatticeVal::get(VC);
    479 
    480   SeenBlocks.insert(BB);
    481   return lookup(Val)[BB];
    482 }
    483 
    484 bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
    485   if (isa<Constant>(Val))
    486     return true;
    487 
    488   ValueCacheEntryTy &Cache = lookup(Val);
    489   SeenBlocks.insert(BB);
    490   LVILatticeVal &BBLV = Cache[BB];
    491 
    492   // OverDefinedCacheUpdater is a helper object that will update
    493   // the OverDefinedCache for us when this method exits.  Make sure to
    494   // call markResult on it as we exist, passing a bool to indicate if the
    495   // cache needs updating, i.e. if we have solve a new value or not.
    496   OverDefinedCacheUpdater ODCacheUpdater(Val, BB, BBLV, this);
    497 
    498   // If we've already computed this block's value, return it.
    499   if (!BBLV.isUndefined()) {
    500     DEBUG(dbgs() << "  reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n');
    501 
    502     // Since we're reusing a cached value here, we don't need to update the
    503     // OverDefinedCahce.  The cache will have been properly updated
    504     // whenever the cached value was inserted.
    505     ODCacheUpdater.markResult(false);
    506     return true;
    507   }
    508 
    509   // Otherwise, this is the first time we're seeing this block.  Reset the
    510   // lattice value to overdefined, so that cycles will terminate and be
    511   // conservatively correct.
    512   BBLV.markOverdefined();
    513 
    514   Instruction *BBI = dyn_cast<Instruction>(Val);
    515   if (BBI == 0 || BBI->getParent() != BB) {
    516     return ODCacheUpdater.markResult(solveBlockValueNonLocal(BBLV, Val, BB));
    517   }
    518 
    519   if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
    520     return ODCacheUpdater.markResult(solveBlockValuePHINode(BBLV, PN, BB));
    521   }
    522 
    523   if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) {
    524     BBLV = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType()));
    525     return ODCacheUpdater.markResult(true);
    526   }
    527 
    528   // We can only analyze the definitions of certain classes of instructions
    529   // (integral binops and casts at the moment), so bail if this isn't one.
    530   LVILatticeVal Result;
    531   if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) ||
    532      !BBI->getType()->isIntegerTy()) {
    533     DEBUG(dbgs() << " compute BB '" << BB->getName()
    534                  << "' - overdefined because inst def found.\n");
    535     BBLV.markOverdefined();
    536     return ODCacheUpdater.markResult(true);
    537   }
    538 
    539   // FIXME: We're currently limited to binops with a constant RHS.  This should
    540   // be improved.
    541   BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
    542   if (BO && !isa<ConstantInt>(BO->getOperand(1))) {
    543     DEBUG(dbgs() << " compute BB '" << BB->getName()
    544                  << "' - overdefined because inst def found.\n");
    545 
    546     BBLV.markOverdefined();
    547     return ODCacheUpdater.markResult(true);
    548   }
    549 
    550   return ODCacheUpdater.markResult(solveBlockValueConstantRange(BBLV, BBI, BB));
    551 }
    552 
    553 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
    554   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
    555     return L->getPointerAddressSpace() == 0 &&
    556         GetUnderlyingObject(L->getPointerOperand()) ==
    557         GetUnderlyingObject(Ptr);
    558   }
    559   if (StoreInst *S = dyn_cast<StoreInst>(I)) {
    560     return S->getPointerAddressSpace() == 0 &&
    561         GetUnderlyingObject(S->getPointerOperand()) ==
    562         GetUnderlyingObject(Ptr);
    563   }
    564   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
    565     if (MI->isVolatile()) return false;
    566 
    567     // FIXME: check whether it has a valuerange that excludes zero?
    568     ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
    569     if (!Len || Len->isZero()) return false;
    570 
    571     if (MI->getDestAddressSpace() == 0)
    572       if (MI->getRawDest() == Ptr || MI->getDest() == Ptr)
    573         return true;
    574     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
    575       if (MTI->getSourceAddressSpace() == 0)
    576         if (MTI->getRawSource() == Ptr || MTI->getSource() == Ptr)
    577           return true;
    578   }
    579   return false;
    580 }
    581 
    582 bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
    583                                                  Value *Val, BasicBlock *BB) {
    584   LVILatticeVal Result;  // Start Undefined.
    585 
    586   // If this is a pointer, and there's a load from that pointer in this BB,
    587   // then we know that the pointer can't be NULL.
    588   bool NotNull = false;
    589   if (Val->getType()->isPointerTy()) {
    590     if (isa<AllocaInst>(Val)) {
    591       NotNull = true;
    592     } else {
    593       for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();BI != BE;++BI){
    594         if (InstructionDereferencesPointer(BI, Val)) {
    595           NotNull = true;
    596           break;
    597         }
    598       }
    599     }
    600   }
    601 
    602   // If this is the entry block, we must be asking about an argument.  The
    603   // value is overdefined.
    604   if (BB == &BB->getParent()->getEntryBlock()) {
    605     assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
    606     if (NotNull) {
    607       PointerType *PTy = cast<PointerType>(Val->getType());
    608       Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
    609     } else {
    610       Result.markOverdefined();
    611     }
    612     BBLV = Result;
    613     return true;
    614   }
    615 
    616   // Loop over all of our predecessors, merging what we know from them into
    617   // result.
    618   bool EdgesMissing = false;
    619   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    620     LVILatticeVal EdgeResult;
    621     EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
    622     if (EdgesMissing)
    623       continue;
    624 
    625     Result.mergeIn(EdgeResult);
    626 
    627     // If we hit overdefined, exit early.  The BlockVals entry is already set
    628     // to overdefined.
    629     if (Result.isOverdefined()) {
    630       DEBUG(dbgs() << " compute BB '" << BB->getName()
    631             << "' - overdefined because of pred.\n");
    632       // If we previously determined that this is a pointer that can't be null
    633       // then return that rather than giving up entirely.
    634       if (NotNull) {
    635         PointerType *PTy = cast<PointerType>(Val->getType());
    636         Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
    637       }
    638 
    639       BBLV = Result;
    640       return true;
    641     }
    642   }
    643   if (EdgesMissing)
    644     return false;
    645 
    646   // Return the merged value, which is more precise than 'overdefined'.
    647   assert(!Result.isOverdefined());
    648   BBLV = Result;
    649   return true;
    650 }
    651 
    652 bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
    653                                                 PHINode *PN, BasicBlock *BB) {
    654   LVILatticeVal Result;  // Start Undefined.
    655 
    656   // Loop over all of our predecessors, merging what we know from them into
    657   // result.
    658   bool EdgesMissing = false;
    659   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    660     BasicBlock *PhiBB = PN->getIncomingBlock(i);
    661     Value *PhiVal = PN->getIncomingValue(i);
    662     LVILatticeVal EdgeResult;
    663     EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult);
    664     if (EdgesMissing)
    665       continue;
    666 
    667     Result.mergeIn(EdgeResult);
    668 
    669     // If we hit overdefined, exit early.  The BlockVals entry is already set
    670     // to overdefined.
    671     if (Result.isOverdefined()) {
    672       DEBUG(dbgs() << " compute BB '" << BB->getName()
    673             << "' - overdefined because of pred.\n");
    674 
    675       BBLV = Result;
    676       return true;
    677     }
    678   }
    679   if (EdgesMissing)
    680     return false;
    681 
    682   // Return the merged value, which is more precise than 'overdefined'.
    683   assert(!Result.isOverdefined() && "Possible PHI in entry block?");
    684   BBLV = Result;
    685   return true;
    686 }
    687 
    688 bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
    689                                                       Instruction *BBI,
    690                                                       BasicBlock *BB) {
    691   // Figure out the range of the LHS.  If that fails, bail.
    692   if (!hasBlockValue(BBI->getOperand(0), BB)) {
    693     BlockValueStack.push(std::make_pair(BB, BBI->getOperand(0)));
    694     return false;
    695   }
    696 
    697   LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
    698   if (!LHSVal.isConstantRange()) {
    699     BBLV.markOverdefined();
    700     return true;
    701   }
    702 
    703   ConstantRange LHSRange = LHSVal.getConstantRange();
    704   ConstantRange RHSRange(1);
    705   IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
    706   if (isa<BinaryOperator>(BBI)) {
    707     if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) {
    708       RHSRange = ConstantRange(RHS->getValue());
    709     } else {
    710       BBLV.markOverdefined();
    711       return true;
    712     }
    713   }
    714 
    715   // NOTE: We're currently limited by the set of operations that ConstantRange
    716   // can evaluate symbolically.  Enhancing that set will allows us to analyze
    717   // more definitions.
    718   LVILatticeVal Result;
    719   switch (BBI->getOpcode()) {
    720   case Instruction::Add:
    721     Result.markConstantRange(LHSRange.add(RHSRange));
    722     break;
    723   case Instruction::Sub:
    724     Result.markConstantRange(LHSRange.sub(RHSRange));
    725     break;
    726   case Instruction::Mul:
    727     Result.markConstantRange(LHSRange.multiply(RHSRange));
    728     break;
    729   case Instruction::UDiv:
    730     Result.markConstantRange(LHSRange.udiv(RHSRange));
    731     break;
    732   case Instruction::Shl:
    733     Result.markConstantRange(LHSRange.shl(RHSRange));
    734     break;
    735   case Instruction::LShr:
    736     Result.markConstantRange(LHSRange.lshr(RHSRange));
    737     break;
    738   case Instruction::Trunc:
    739     Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth()));
    740     break;
    741   case Instruction::SExt:
    742     Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth()));
    743     break;
    744   case Instruction::ZExt:
    745     Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth()));
    746     break;
    747   case Instruction::BitCast:
    748     Result.markConstantRange(LHSRange);
    749     break;
    750   case Instruction::And:
    751     Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
    752     break;
    753   case Instruction::Or:
    754     Result.markConstantRange(LHSRange.binaryOr(RHSRange));
    755     break;
    756 
    757   // Unhandled instructions are overdefined.
    758   default:
    759     DEBUG(dbgs() << " compute BB '" << BB->getName()
    760                  << "' - overdefined because inst def found.\n");
    761     Result.markOverdefined();
    762     break;
    763   }
    764 
    765   BBLV = Result;
    766   return true;
    767 }
    768 
    769 /// getEdgeValue - This method attempts to infer more complex
    770 bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
    771                                       BasicBlock *BBTo, LVILatticeVal &Result) {
    772   // If already a constant, there is nothing to compute.
    773   if (Constant *VC = dyn_cast<Constant>(Val)) {
    774     Result = LVILatticeVal::get(VC);
    775     return true;
    776   }
    777 
    778   // TODO: Handle more complex conditionals.  If (v == 0 || v2 < 1) is false, we
    779   // know that v != 0.
    780   if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
    781     // If this is a conditional branch and only one successor goes to BBTo, then
    782     // we maybe able to infer something from the condition.
    783     if (BI->isConditional() &&
    784         BI->getSuccessor(0) != BI->getSuccessor(1)) {
    785       bool isTrueDest = BI->getSuccessor(0) == BBTo;
    786       assert(BI->getSuccessor(!isTrueDest) == BBTo &&
    787              "BBTo isn't a successor of BBFrom");
    788 
    789       // If V is the condition of the branch itself, then we know exactly what
    790       // it is.
    791       if (BI->getCondition() == Val) {
    792         Result = LVILatticeVal::get(ConstantInt::get(
    793                               Type::getInt1Ty(Val->getContext()), isTrueDest));
    794         return true;
    795       }
    796 
    797       // If the condition of the branch is an equality comparison, we may be
    798       // able to infer the value.
    799       ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition());
    800       if (ICI && isa<Constant>(ICI->getOperand(1))) {
    801         if (ICI->isEquality() && ICI->getOperand(0) == Val) {
    802           // We know that V has the RHS constant if this is a true SETEQ or
    803           // false SETNE.
    804           if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
    805             Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
    806           else
    807             Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
    808           return true;
    809         }
    810 
    811         // Recognize the range checking idiom that InstCombine produces.
    812         // (X-C1) u< C2 --> [C1, C1+C2)
    813         ConstantInt *NegOffset = 0;
    814         if (ICI->getPredicate() == ICmpInst::ICMP_ULT)
    815           match(ICI->getOperand(0), m_Add(m_Specific(Val),
    816                                           m_ConstantInt(NegOffset)));
    817 
    818         ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1));
    819         if (CI && (ICI->getOperand(0) == Val || NegOffset)) {
    820           // Calculate the range of values that would satisfy the comparison.
    821           ConstantRange CmpRange(CI->getValue(), CI->getValue()+1);
    822           ConstantRange TrueValues =
    823             ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange);
    824 
    825           if (NegOffset) // Apply the offset from above.
    826             TrueValues = TrueValues.subtract(NegOffset->getValue());
    827 
    828           // If we're interested in the false dest, invert the condition.
    829           if (!isTrueDest) TrueValues = TrueValues.inverse();
    830 
    831           // Figure out the possible values of the query BEFORE this branch.
    832           if (!hasBlockValue(Val, BBFrom)) {
    833             BlockValueStack.push(std::make_pair(BBFrom, Val));
    834             return false;
    835           }
    836 
    837           LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
    838           if (!InBlock.isConstantRange()) {
    839             Result = LVILatticeVal::getRange(TrueValues);
    840             return true;
    841           }
    842 
    843           // Find all potential values that satisfy both the input and output
    844           // conditions.
    845           ConstantRange PossibleValues =
    846             TrueValues.intersectWith(InBlock.getConstantRange());
    847 
    848           Result = LVILatticeVal::getRange(PossibleValues);
    849           return true;
    850         }
    851       }
    852     }
    853   }
    854 
    855   // If the edge was formed by a switch on the value, then we may know exactly
    856   // what it is.
    857   if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
    858     if (SI->getCondition() == Val) {
    859       // We don't know anything in the default case.
    860       if (SI->getDefaultDest() == BBTo) {
    861         Result.markOverdefined();
    862         return true;
    863       }
    864 
    865       // We only know something if there is exactly one value that goes from
    866       // BBFrom to BBTo.
    867       unsigned NumEdges = 0;
    868       ConstantInt *EdgeVal = 0;
    869       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
    870            i != e; ++i) {
    871         if (i.getCaseSuccessor() != BBTo) continue;
    872         if (NumEdges++) break;
    873         EdgeVal = i.getCaseValue();
    874       }
    875       assert(EdgeVal && "Missing successor?");
    876       if (NumEdges == 1) {
    877         Result = LVILatticeVal::get(EdgeVal);
    878         return true;
    879       }
    880     }
    881   }
    882 
    883   // Otherwise see if the value is known in the block.
    884   if (hasBlockValue(Val, BBFrom)) {
    885     Result = getBlockValue(Val, BBFrom);
    886     return true;
    887   }
    888   BlockValueStack.push(std::make_pair(BBFrom, Val));
    889   return false;
    890 }
    891 
    892 LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) {
    893   DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
    894         << BB->getName() << "'\n");
    895 
    896   BlockValueStack.push(std::make_pair(BB, V));
    897   solve();
    898   LVILatticeVal Result = getBlockValue(V, BB);
    899 
    900   DEBUG(dbgs() << "  Result = " << Result << "\n");
    901   return Result;
    902 }
    903 
    904 LVILatticeVal LazyValueInfoCache::
    905 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) {
    906   DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
    907         << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
    908 
    909   LVILatticeVal Result;
    910   if (!getEdgeValue(V, FromBB, ToBB, Result)) {
    911     solve();
    912     bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result);
    913     (void)WasFastQuery;
    914     assert(WasFastQuery && "More work to do after problem solved?");
    915   }
    916 
    917   DEBUG(dbgs() << "  Result = " << Result << "\n");
    918   return Result;
    919 }
    920 
    921 void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
    922                                     BasicBlock *NewSucc) {
    923   // When an edge in the graph has been threaded, values that we could not
    924   // determine a value for before (i.e. were marked overdefined) may be possible
    925   // to solve now.  We do NOT try to proactively update these values.  Instead,
    926   // we clear their entries from the cache, and allow lazy updating to recompute
    927   // them when needed.
    928 
    929   // The updating process is fairly simple: we need to dropped cached info
    930   // for all values that were marked overdefined in OldSucc, and for those same
    931   // values in any successor of OldSucc (except NewSucc) in which they were
    932   // also marked overdefined.
    933   std::vector<BasicBlock*> worklist;
    934   worklist.push_back(OldSucc);
    935 
    936   DenseSet<Value*> ClearSet;
    937   for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(),
    938        E = OverDefinedCache.end(); I != E; ++I) {
    939     if (I->first == OldSucc)
    940       ClearSet.insert(I->second);
    941   }
    942 
    943   // Use a worklist to perform a depth-first search of OldSucc's successors.
    944   // NOTE: We do not need a visited list since any blocks we have already
    945   // visited will have had their overdefined markers cleared already, and we
    946   // thus won't loop to their successors.
    947   while (!worklist.empty()) {
    948     BasicBlock *ToUpdate = worklist.back();
    949     worklist.pop_back();
    950 
    951     // Skip blocks only accessible through NewSucc.
    952     if (ToUpdate == NewSucc) continue;
    953 
    954     bool changed = false;
    955     for (DenseSet<Value*>::iterator I = ClearSet.begin(), E = ClearSet.end();
    956          I != E; ++I) {
    957       // If a value was marked overdefined in OldSucc, and is here too...
    958       DenseSet<OverDefinedPairTy>::iterator OI =
    959         OverDefinedCache.find(std::make_pair(ToUpdate, *I));
    960       if (OI == OverDefinedCache.end()) continue;
    961 
    962       // Remove it from the caches.
    963       ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)];
    964       ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate);
    965 
    966       assert(CI != Entry.end() && "Couldn't find entry to update?");
    967       Entry.erase(CI);
    968       OverDefinedCache.erase(OI);
    969 
    970       // If we removed anything, then we potentially need to update
    971       // blocks successors too.
    972       changed = true;
    973     }
    974 
    975     if (!changed) continue;
    976 
    977     worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
    978   }
    979 }
    980 
    981 //===----------------------------------------------------------------------===//
    982 //                            LazyValueInfo Impl
    983 //===----------------------------------------------------------------------===//
    984 
    985 /// getCache - This lazily constructs the LazyValueInfoCache.
    986 static LazyValueInfoCache &getCache(void *&PImpl) {
    987   if (!PImpl)
    988     PImpl = new LazyValueInfoCache();
    989   return *static_cast<LazyValueInfoCache*>(PImpl);
    990 }
    991 
    992 bool LazyValueInfo::runOnFunction(Function &F) {
    993   if (PImpl)
    994     getCache(PImpl).clear();
    995 
    996   TD = getAnalysisIfAvailable<TargetData>();
    997   TLI = &getAnalysis<TargetLibraryInfo>();
    998 
    999   // Fully lazy.
   1000   return false;
   1001 }
   1002 
   1003 void LazyValueInfo::getAnalysisUsage(AnalysisUsage &AU) const {
   1004   AU.setPreservesAll();
   1005   AU.addRequired<TargetLibraryInfo>();
   1006 }
   1007 
   1008 void LazyValueInfo::releaseMemory() {
   1009   // If the cache was allocated, free it.
   1010   if (PImpl) {
   1011     delete &getCache(PImpl);
   1012     PImpl = 0;
   1013   }
   1014 }
   1015 
   1016 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) {
   1017   LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB);
   1018 
   1019   if (Result.isConstant())
   1020     return Result.getConstant();
   1021   if (Result.isConstantRange()) {
   1022     ConstantRange CR = Result.getConstantRange();
   1023     if (const APInt *SingleVal = CR.getSingleElement())
   1024       return ConstantInt::get(V->getContext(), *SingleVal);
   1025   }
   1026   return 0;
   1027 }
   1028 
   1029 /// getConstantOnEdge - Determine whether the specified value is known to be a
   1030 /// constant on the specified edge.  Return null if not.
   1031 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
   1032                                            BasicBlock *ToBB) {
   1033   LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
   1034 
   1035   if (Result.isConstant())
   1036     return Result.getConstant();
   1037   if (Result.isConstantRange()) {
   1038     ConstantRange CR = Result.getConstantRange();
   1039     if (const APInt *SingleVal = CR.getSingleElement())
   1040       return ConstantInt::get(V->getContext(), *SingleVal);
   1041   }
   1042   return 0;
   1043 }
   1044 
   1045 /// getPredicateOnEdge - Determine whether the specified value comparison
   1046 /// with a constant is known to be true or false on the specified CFG edge.
   1047 /// Pred is a CmpInst predicate.
   1048 LazyValueInfo::Tristate
   1049 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
   1050                                   BasicBlock *FromBB, BasicBlock *ToBB) {
   1051   LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
   1052 
   1053   // If we know the value is a constant, evaluate the conditional.
   1054   Constant *Res = 0;
   1055   if (Result.isConstant()) {
   1056     Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD,
   1057                                           TLI);
   1058     if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
   1059       return ResCI->isZero() ? False : True;
   1060     return Unknown;
   1061   }
   1062 
   1063   if (Result.isConstantRange()) {
   1064     ConstantInt *CI = dyn_cast<ConstantInt>(C);
   1065     if (!CI) return Unknown;
   1066 
   1067     ConstantRange CR = Result.getConstantRange();
   1068     if (Pred == ICmpInst::ICMP_EQ) {
   1069       if (!CR.contains(CI->getValue()))
   1070         return False;
   1071 
   1072       if (CR.isSingleElement() && CR.contains(CI->getValue()))
   1073         return True;
   1074     } else if (Pred == ICmpInst::ICMP_NE) {
   1075       if (!CR.contains(CI->getValue()))
   1076         return True;
   1077 
   1078       if (CR.isSingleElement() && CR.contains(CI->getValue()))
   1079         return False;
   1080     }
   1081 
   1082     // Handle more complex predicates.
   1083     ConstantRange TrueValues =
   1084         ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue());
   1085     if (TrueValues.contains(CR))
   1086       return True;
   1087     if (TrueValues.inverse().contains(CR))
   1088       return False;
   1089     return Unknown;
   1090   }
   1091 
   1092   if (Result.isNotConstant()) {
   1093     // If this is an equality comparison, we can try to fold it knowing that
   1094     // "V != C1".
   1095     if (Pred == ICmpInst::ICMP_EQ) {
   1096       // !C1 == C -> false iff C1 == C.
   1097       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
   1098                                             Result.getNotConstant(), C, TD,
   1099                                             TLI);
   1100       if (Res->isNullValue())
   1101         return False;
   1102     } else if (Pred == ICmpInst::ICMP_NE) {
   1103       // !C1 != C -> true iff C1 == C.
   1104       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
   1105                                             Result.getNotConstant(), C, TD,
   1106                                             TLI);
   1107       if (Res->isNullValue())
   1108         return True;
   1109     }
   1110     return Unknown;
   1111   }
   1112 
   1113   return Unknown;
   1114 }
   1115 
   1116 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
   1117                                BasicBlock *NewSucc) {
   1118   if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc);
   1119 }
   1120 
   1121 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
   1122   if (PImpl) getCache(PImpl).eraseBlock(BB);
   1123 }
   1124