Home | History | Annotate | Download | only in Utils
      1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs several transformations to transform natural loops into a
     11 // simpler form, which makes subsequent analyses and transformations simpler and
     12 // more effective.
     13 //
     14 // Loop pre-header insertion guarantees that there is a single, non-critical
     15 // entry edge from outside of the loop to the loop header.  This simplifies a
     16 // number of analyses and transformations, such as LICM.
     17 //
     18 // Loop exit-block insertion guarantees that all exit blocks from the loop
     19 // (blocks which are outside of the loop that have predecessors inside of the
     20 // loop) only have predecessors from inside of the loop (and are thus dominated
     21 // by the loop header).  This simplifies transformations such as store-sinking
     22 // that are built into LICM.
     23 //
     24 // This pass also guarantees that loops will have exactly one backedge.
     25 //
     26 // Indirectbr instructions introduce several complications. If the loop
     27 // contains or is entered by an indirectbr instruction, it may not be possible
     28 // to transform the loop and make these guarantees. Client code should check
     29 // that these conditions are true before relying on them.
     30 //
     31 // Note that the simplifycfg pass will clean up blocks which are split out but
     32 // end up being unnecessary, so usage of this pass should not pessimize
     33 // generated code.
     34 //
     35 // This pass obviously modifies the CFG, but updates loop information and
     36 // dominator information.
     37 //
     38 //===----------------------------------------------------------------------===//
     39 
     40 #define DEBUG_TYPE "loop-simplify"
     41 #include "llvm/Transforms/Scalar.h"
     42 #include "llvm/Constants.h"
     43 #include "llvm/Instructions.h"
     44 #include "llvm/IntrinsicInst.h"
     45 #include "llvm/Function.h"
     46 #include "llvm/LLVMContext.h"
     47 #include "llvm/Type.h"
     48 #include "llvm/Analysis/AliasAnalysis.h"
     49 #include "llvm/Analysis/Dominators.h"
     50 #include "llvm/Analysis/InstructionSimplify.h"
     51 #include "llvm/Analysis/LoopPass.h"
     52 #include "llvm/Analysis/ScalarEvolution.h"
     53 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     54 #include "llvm/Transforms/Utils/Local.h"
     55 #include "llvm/Support/CFG.h"
     56 #include "llvm/Support/Debug.h"
     57 #include "llvm/ADT/SetOperations.h"
     58 #include "llvm/ADT/SetVector.h"
     59 #include "llvm/ADT/Statistic.h"
     60 #include "llvm/ADT/DepthFirstIterator.h"
     61 using namespace llvm;
     62 
     63 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
     64 STATISTIC(NumNested  , "Number of nested loops split out");
     65 
     66 namespace {
     67   struct LoopSimplify : public LoopPass {
     68     static char ID; // Pass identification, replacement for typeid
     69     LoopSimplify() : LoopPass(ID) {
     70       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
     71     }
     72 
     73     // AA - If we have an alias analysis object to update, this is it, otherwise
     74     // this is null.
     75     AliasAnalysis *AA;
     76     LoopInfo *LI;
     77     DominatorTree *DT;
     78     ScalarEvolution *SE;
     79     Loop *L;
     80     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
     81 
     82     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     83       // We need loop information to identify the loops...
     84       AU.addRequired<DominatorTree>();
     85       AU.addPreserved<DominatorTree>();
     86 
     87       AU.addRequired<LoopInfo>();
     88       AU.addPreserved<LoopInfo>();
     89 
     90       AU.addPreserved<AliasAnalysis>();
     91       AU.addPreserved<ScalarEvolution>();
     92       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
     93     }
     94 
     95     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
     96     void verifyAnalysis() const;
     97 
     98   private:
     99     bool ProcessLoop(Loop *L, LPPassManager &LPM);
    100     BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
    101     BasicBlock *InsertPreheaderForLoop(Loop *L);
    102     Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM,
    103                              BasicBlock *Preheader);
    104     BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
    105     void PlaceSplitBlockCarefully(BasicBlock *NewBB,
    106                                   SmallVectorImpl<BasicBlock*> &SplitPreds,
    107                                   Loop *L);
    108   };
    109 }
    110 
    111 char LoopSimplify::ID = 0;
    112 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
    113                 "Canonicalize natural loops", true, false)
    114 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    115 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    116 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
    117                 "Canonicalize natural loops", true, false)
    118 
    119 // Publicly exposed interface to pass...
    120 char &llvm::LoopSimplifyID = LoopSimplify::ID;
    121 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
    122 
    123 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do
    124 /// it in any convenient order) inserting preheaders...
    125 ///
    126 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
    127   L = l;
    128   bool Changed = false;
    129   LI = &getAnalysis<LoopInfo>();
    130   AA = getAnalysisIfAvailable<AliasAnalysis>();
    131   DT = &getAnalysis<DominatorTree>();
    132   SE = getAnalysisIfAvailable<ScalarEvolution>();
    133 
    134   Changed |= ProcessLoop(L, LPM);
    135 
    136   return Changed;
    137 }
    138 
    139 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that
    140 /// all loops have preheaders.
    141 ///
    142 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
    143   bool Changed = false;
    144 ReprocessLoop:
    145 
    146   // Check to see that no blocks (other than the header) in this loop have
    147   // predecessors that are not in the loop.  This is not valid for natural
    148   // loops, but can occur if the blocks are unreachable.  Since they are
    149   // unreachable we can just shamelessly delete those CFG edges!
    150   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
    151        BB != E; ++BB) {
    152     if (*BB == L->getHeader()) continue;
    153 
    154     SmallPtrSet<BasicBlock*, 4> BadPreds;
    155     for (pred_iterator PI = pred_begin(*BB),
    156          PE = pred_end(*BB); PI != PE; ++PI) {
    157       BasicBlock *P = *PI;
    158       if (!L->contains(P))
    159         BadPreds.insert(P);
    160     }
    161 
    162     // Delete each unique out-of-loop (and thus dead) predecessor.
    163     for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
    164          E = BadPreds.end(); I != E; ++I) {
    165 
    166       DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
    167                    << (*I)->getName() << "\n");
    168 
    169       // Inform each successor of each dead pred.
    170       for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
    171         (*SI)->removePredecessor(*I);
    172       // Zap the dead pred's terminator and replace it with unreachable.
    173       TerminatorInst *TI = (*I)->getTerminator();
    174        TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
    175       (*I)->getTerminator()->eraseFromParent();
    176       new UnreachableInst((*I)->getContext(), *I);
    177       Changed = true;
    178     }
    179   }
    180 
    181   // If there are exiting blocks with branches on undef, resolve the undef in
    182   // the direction which will exit the loop. This will help simplify loop
    183   // trip count computations.
    184   SmallVector<BasicBlock*, 8> ExitingBlocks;
    185   L->getExitingBlocks(ExitingBlocks);
    186   for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
    187        E = ExitingBlocks.end(); I != E; ++I)
    188     if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
    189       if (BI->isConditional()) {
    190         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
    191 
    192           DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
    193                        << (*I)->getName() << "\n");
    194 
    195           BI->setCondition(ConstantInt::get(Cond->getType(),
    196                                             !L->contains(BI->getSuccessor(0))));
    197           Changed = true;
    198         }
    199       }
    200 
    201   // Does the loop already have a preheader?  If so, don't insert one.
    202   BasicBlock *Preheader = L->getLoopPreheader();
    203   if (!Preheader) {
    204     Preheader = InsertPreheaderForLoop(L);
    205     if (Preheader) {
    206       ++NumInserted;
    207       Changed = true;
    208     }
    209   }
    210 
    211   // Next, check to make sure that all exit nodes of the loop only have
    212   // predecessors that are inside of the loop.  This check guarantees that the
    213   // loop preheader/header will dominate the exit blocks.  If the exit block has
    214   // predecessors from outside of the loop, split the edge now.
    215   SmallVector<BasicBlock*, 8> ExitBlocks;
    216   L->getExitBlocks(ExitBlocks);
    217 
    218   SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
    219                                                ExitBlocks.end());
    220   for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
    221          E = ExitBlockSet.end(); I != E; ++I) {
    222     BasicBlock *ExitBlock = *I;
    223     for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
    224          PI != PE; ++PI)
    225       // Must be exactly this loop: no subloops, parent loops, or non-loop preds
    226       // allowed.
    227       if (!L->contains(*PI)) {
    228         if (RewriteLoopExitBlock(L, ExitBlock)) {
    229           ++NumInserted;
    230           Changed = true;
    231         }
    232         break;
    233       }
    234   }
    235 
    236   // If the header has more than two predecessors at this point (from the
    237   // preheader and from multiple backedges), we must adjust the loop.
    238   BasicBlock *LoopLatch = L->getLoopLatch();
    239   if (!LoopLatch) {
    240     // If this is really a nested loop, rip it out into a child loop.  Don't do
    241     // this for loops with a giant number of backedges, just factor them into a
    242     // common backedge instead.
    243     if (L->getNumBackEdges() < 8) {
    244       if (SeparateNestedLoop(L, LPM, Preheader)) {
    245         ++NumNested;
    246         // This is a big restructuring change, reprocess the whole loop.
    247         Changed = true;
    248         // GCC doesn't tail recursion eliminate this.
    249         goto ReprocessLoop;
    250       }
    251     }
    252 
    253     // If we either couldn't, or didn't want to, identify nesting of the loops,
    254     // insert a new block that all backedges target, then make it jump to the
    255     // loop header.
    256     LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
    257     if (LoopLatch) {
    258       ++NumInserted;
    259       Changed = true;
    260     }
    261   }
    262 
    263   // Scan over the PHI nodes in the loop header.  Since they now have only two
    264   // incoming values (the loop is canonicalized), we may have simplified the PHI
    265   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
    266   PHINode *PN;
    267   for (BasicBlock::iterator I = L->getHeader()->begin();
    268        (PN = dyn_cast<PHINode>(I++)); )
    269     if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
    270       if (AA) AA->deleteValue(PN);
    271       if (SE) SE->forgetValue(PN);
    272       PN->replaceAllUsesWith(V);
    273       PN->eraseFromParent();
    274     }
    275 
    276   // If this loop has multiple exits and the exits all go to the same
    277   // block, attempt to merge the exits. This helps several passes, such
    278   // as LoopRotation, which do not support loops with multiple exits.
    279   // SimplifyCFG also does this (and this code uses the same utility
    280   // function), however this code is loop-aware, where SimplifyCFG is
    281   // not. That gives it the advantage of being able to hoist
    282   // loop-invariant instructions out of the way to open up more
    283   // opportunities, and the disadvantage of having the responsibility
    284   // to preserve dominator information.
    285   bool UniqueExit = true;
    286   if (!ExitBlocks.empty())
    287     for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
    288       if (ExitBlocks[i] != ExitBlocks[0]) {
    289         UniqueExit = false;
    290         break;
    291       }
    292   if (UniqueExit) {
    293     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    294       BasicBlock *ExitingBlock = ExitingBlocks[i];
    295       if (!ExitingBlock->getSinglePredecessor()) continue;
    296       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
    297       if (!BI || !BI->isConditional()) continue;
    298       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
    299       if (!CI || CI->getParent() != ExitingBlock) continue;
    300 
    301       // Attempt to hoist out all instructions except for the
    302       // comparison and the branch.
    303       bool AllInvariant = true;
    304       for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
    305         Instruction *Inst = I++;
    306         // Skip debug info intrinsics.
    307         if (isa<DbgInfoIntrinsic>(Inst))
    308           continue;
    309         if (Inst == CI)
    310           continue;
    311         if (!L->makeLoopInvariant(Inst, Changed,
    312                                   Preheader ? Preheader->getTerminator() : 0)) {
    313           AllInvariant = false;
    314           break;
    315         }
    316       }
    317       if (!AllInvariant) continue;
    318 
    319       // The block has now been cleared of all instructions except for
    320       // a comparison and a conditional branch. SimplifyCFG may be able
    321       // to fold it now.
    322       if (!FoldBranchToCommonDest(BI)) continue;
    323 
    324       // Success. The block is now dead, so remove it from the loop,
    325       // update the dominator tree and delete it.
    326       DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
    327                    << ExitingBlock->getName() << "\n");
    328 
    329       // If any reachable control flow within this loop has changed, notify
    330       // ScalarEvolution. Currently assume the parent loop doesn't change
    331       // (spliting edges doesn't count). If blocks, CFG edges, or other values
    332       // in the parent loop change, then we need call to forgetLoop() for the
    333       // parent instead.
    334       if (SE)
    335         SE->forgetLoop(L);
    336 
    337       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
    338       Changed = true;
    339       LI->removeBlock(ExitingBlock);
    340 
    341       DomTreeNode *Node = DT->getNode(ExitingBlock);
    342       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
    343         Node->getChildren();
    344       while (!Children.empty()) {
    345         DomTreeNode *Child = Children.front();
    346         DT->changeImmediateDominator(Child, Node->getIDom());
    347       }
    348       DT->eraseNode(ExitingBlock);
    349 
    350       BI->getSuccessor(0)->removePredecessor(ExitingBlock);
    351       BI->getSuccessor(1)->removePredecessor(ExitingBlock);
    352       ExitingBlock->eraseFromParent();
    353     }
    354   }
    355 
    356   return Changed;
    357 }
    358 
    359 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
    360 /// preheader, this method is called to insert one.  This method has two phases:
    361 /// preheader insertion and analysis updating.
    362 ///
    363 BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
    364   BasicBlock *Header = L->getHeader();
    365 
    366   // Compute the set of predecessors of the loop that are not in the loop.
    367   SmallVector<BasicBlock*, 8> OutsideBlocks;
    368   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
    369        PI != PE; ++PI) {
    370     BasicBlock *P = *PI;
    371     if (!L->contains(P)) {         // Coming in from outside the loop?
    372       // If the loop is branched to from an indirect branch, we won't
    373       // be able to fully transform the loop, because it prohibits
    374       // edge splitting.
    375       if (isa<IndirectBrInst>(P->getTerminator())) return 0;
    376 
    377       // Keep track of it.
    378       OutsideBlocks.push_back(P);
    379     }
    380   }
    381 
    382   // Split out the loop pre-header.
    383   BasicBlock *PreheaderBB;
    384   if (!Header->isLandingPad()) {
    385     PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
    386                                          this);
    387   } else {
    388     SmallVector<BasicBlock*, 2> NewBBs;
    389     SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader",
    390                                 ".split-lp", this, NewBBs);
    391     PreheaderBB = NewBBs[0];
    392   }
    393 
    394   PreheaderBB->getTerminator()->setDebugLoc(
    395                                       Header->getFirstNonPHI()->getDebugLoc());
    396   DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
    397                << PreheaderBB->getName() << "\n");
    398 
    399   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
    400   // code layout too horribly.
    401   PlaceSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
    402 
    403   return PreheaderBB;
    404 }
    405 
    406 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
    407 /// blocks.  This method is used to split exit blocks that have predecessors
    408 /// outside of the loop.
    409 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
    410   SmallVector<BasicBlock*, 8> LoopBlocks;
    411   for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
    412     BasicBlock *P = *I;
    413     if (L->contains(P)) {
    414       // Don't do this if the loop is exited via an indirect branch.
    415       if (isa<IndirectBrInst>(P->getTerminator())) return 0;
    416 
    417       LoopBlocks.push_back(P);
    418     }
    419   }
    420 
    421   assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
    422   BasicBlock *NewExitBB = 0;
    423 
    424   if (Exit->isLandingPad()) {
    425     SmallVector<BasicBlock*, 2> NewBBs;
    426     SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0],
    427                                                             LoopBlocks.size()),
    428                                 ".loopexit", ".nonloopexit",
    429                                 this, NewBBs);
    430     NewExitBB = NewBBs[0];
    431   } else {
    432     NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", this);
    433   }
    434 
    435   DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
    436                << NewExitBB->getName() << "\n");
    437   return NewExitBB;
    438 }
    439 
    440 /// AddBlockAndPredsToSet - Add the specified block, and all of its
    441 /// predecessors, to the specified set, if it's not already in there.  Stop
    442 /// predecessor traversal when we reach StopBlock.
    443 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
    444                                   std::set<BasicBlock*> &Blocks) {
    445   std::vector<BasicBlock *> WorkList;
    446   WorkList.push_back(InputBB);
    447   do {
    448     BasicBlock *BB = WorkList.back(); WorkList.pop_back();
    449     if (Blocks.insert(BB).second && BB != StopBlock)
    450       // If BB is not already processed and it is not a stop block then
    451       // insert its predecessor in the work list
    452       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
    453         BasicBlock *WBB = *I;
    454         WorkList.push_back(WBB);
    455       }
    456   } while(!WorkList.empty());
    457 }
    458 
    459 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
    460 /// PHI node that tells us how to partition the loops.
    461 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
    462                                         AliasAnalysis *AA, LoopInfo *LI) {
    463   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
    464     PHINode *PN = cast<PHINode>(I);
    465     ++I;
    466     if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
    467       // This is a degenerate PHI already, don't modify it!
    468       PN->replaceAllUsesWith(V);
    469       if (AA) AA->deleteValue(PN);
    470       PN->eraseFromParent();
    471       continue;
    472     }
    473 
    474     // Scan this PHI node looking for a use of the PHI node by itself.
    475     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    476       if (PN->getIncomingValue(i) == PN &&
    477           L->contains(PN->getIncomingBlock(i)))
    478         // We found something tasty to remove.
    479         return PN;
    480   }
    481   return 0;
    482 }
    483 
    484 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to
    485 // right after some 'outside block' block.  This prevents the preheader from
    486 // being placed inside the loop body, e.g. when the loop hasn't been rotated.
    487 void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
    488                                        SmallVectorImpl<BasicBlock*> &SplitPreds,
    489                                             Loop *L) {
    490   // Check to see if NewBB is already well placed.
    491   Function::iterator BBI = NewBB; --BBI;
    492   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
    493     if (&*BBI == SplitPreds[i])
    494       return;
    495   }
    496 
    497   // If it isn't already after an outside block, move it after one.  This is
    498   // always good as it makes the uncond branch from the outside block into a
    499   // fall-through.
    500 
    501   // Figure out *which* outside block to put this after.  Prefer an outside
    502   // block that neighbors a BB actually in the loop.
    503   BasicBlock *FoundBB = 0;
    504   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
    505     Function::iterator BBI = SplitPreds[i];
    506     if (++BBI != NewBB->getParent()->end() &&
    507         L->contains(BBI)) {
    508       FoundBB = SplitPreds[i];
    509       break;
    510     }
    511   }
    512 
    513   // If our heuristic for a *good* bb to place this after doesn't find
    514   // anything, just pick something.  It's likely better than leaving it within
    515   // the loop.
    516   if (!FoundBB)
    517     FoundBB = SplitPreds[0];
    518   NewBB->moveAfter(FoundBB);
    519 }
    520 
    521 
    522 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
    523 /// them out into a nested loop.  This is important for code that looks like
    524 /// this:
    525 ///
    526 ///  Loop:
    527 ///     ...
    528 ///     br cond, Loop, Next
    529 ///     ...
    530 ///     br cond2, Loop, Out
    531 ///
    532 /// To identify this common case, we look at the PHI nodes in the header of the
    533 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
    534 /// that change in the "outer" loop, but not in the "inner" loop.
    535 ///
    536 /// If we are able to separate out a loop, return the new outer loop that was
    537 /// created.
    538 ///
    539 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM,
    540                                        BasicBlock *Preheader) {
    541   // Don't try to separate loops without a preheader.
    542   if (!Preheader)
    543     return 0;
    544 
    545   // The header is not a landing pad; preheader insertion should ensure this.
    546   assert(!L->getHeader()->isLandingPad() &&
    547          "Can't insert backedge to landing pad");
    548 
    549   PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI);
    550   if (PN == 0) return 0;  // No known way to partition.
    551 
    552   // Pull out all predecessors that have varying values in the loop.  This
    553   // handles the case when a PHI node has multiple instances of itself as
    554   // arguments.
    555   SmallVector<BasicBlock*, 8> OuterLoopPreds;
    556   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    557     if (PN->getIncomingValue(i) != PN ||
    558         !L->contains(PN->getIncomingBlock(i))) {
    559       // We can't split indirectbr edges.
    560       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
    561         return 0;
    562       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
    563     }
    564   }
    565   DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
    566 
    567   // If ScalarEvolution is around and knows anything about values in
    568   // this loop, tell it to forget them, because we're about to
    569   // substantially change it.
    570   if (SE)
    571     SE->forgetLoop(L);
    572 
    573   BasicBlock *Header = L->getHeader();
    574   BasicBlock *NewBB =
    575     SplitBlockPredecessors(Header, OuterLoopPreds,  ".outer", this);
    576 
    577   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
    578   // code layout too horribly.
    579   PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
    580 
    581   // Create the new outer loop.
    582   Loop *NewOuter = new Loop();
    583 
    584   // Change the parent loop to use the outer loop as its child now.
    585   if (Loop *Parent = L->getParentLoop())
    586     Parent->replaceChildLoopWith(L, NewOuter);
    587   else
    588     LI->changeTopLevelLoop(L, NewOuter);
    589 
    590   // L is now a subloop of our outer loop.
    591   NewOuter->addChildLoop(L);
    592 
    593   // Add the new loop to the pass manager queue.
    594   LPM.insertLoopIntoQueue(NewOuter);
    595 
    596   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
    597        I != E; ++I)
    598     NewOuter->addBlockEntry(*I);
    599 
    600   // Now reset the header in L, which had been moved by
    601   // SplitBlockPredecessors for the outer loop.
    602   L->moveToHeader(Header);
    603 
    604   // Determine which blocks should stay in L and which should be moved out to
    605   // the Outer loop now.
    606   std::set<BasicBlock*> BlocksInL;
    607   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
    608     BasicBlock *P = *PI;
    609     if (DT->dominates(Header, P))
    610       AddBlockAndPredsToSet(P, Header, BlocksInL);
    611   }
    612 
    613   // Scan all of the loop children of L, moving them to OuterLoop if they are
    614   // not part of the inner loop.
    615   const std::vector<Loop*> &SubLoops = L->getSubLoops();
    616   for (size_t I = 0; I != SubLoops.size(); )
    617     if (BlocksInL.count(SubLoops[I]->getHeader()))
    618       ++I;   // Loop remains in L
    619     else
    620       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
    621 
    622   // Now that we know which blocks are in L and which need to be moved to
    623   // OuterLoop, move any blocks that need it.
    624   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
    625     BasicBlock *BB = L->getBlocks()[i];
    626     if (!BlocksInL.count(BB)) {
    627       // Move this block to the parent, updating the exit blocks sets
    628       L->removeBlockFromLoop(BB);
    629       if ((*LI)[BB] == L)
    630         LI->changeLoopFor(BB, NewOuter);
    631       --i;
    632     }
    633   }
    634 
    635   return NewOuter;
    636 }
    637 
    638 
    639 
    640 /// InsertUniqueBackedgeBlock - This method is called when the specified loop
    641 /// has more than one backedge in it.  If this occurs, revector all of these
    642 /// backedges to target a new basic block and have that block branch to the loop
    643 /// header.  This ensures that loops have exactly one backedge.
    644 ///
    645 BasicBlock *
    646 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
    647   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
    648 
    649   // Get information about the loop
    650   BasicBlock *Header = L->getHeader();
    651   Function *F = Header->getParent();
    652 
    653   // Unique backedge insertion currently depends on having a preheader.
    654   if (!Preheader)
    655     return 0;
    656 
    657   // The header is not a landing pad; preheader insertion should ensure this.
    658   assert(!Header->isLandingPad() && "Can't insert backedge to landing pad");
    659 
    660   // Figure out which basic blocks contain back-edges to the loop header.
    661   std::vector<BasicBlock*> BackedgeBlocks;
    662   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
    663     BasicBlock *P = *I;
    664 
    665     // Indirectbr edges cannot be split, so we must fail if we find one.
    666     if (isa<IndirectBrInst>(P->getTerminator()))
    667       return 0;
    668 
    669     if (P != Preheader) BackedgeBlocks.push_back(P);
    670   }
    671 
    672   // Create and insert the new backedge block...
    673   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
    674                                            Header->getName()+".backedge", F);
    675   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
    676 
    677   DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
    678                << BEBlock->getName() << "\n");
    679 
    680   // Move the new backedge block to right after the last backedge block.
    681   Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
    682   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
    683 
    684   // Now that the block has been inserted into the function, create PHI nodes in
    685   // the backedge block which correspond to any PHI nodes in the header block.
    686   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    687     PHINode *PN = cast<PHINode>(I);
    688     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
    689                                      PN->getName()+".be", BETerminator);
    690     if (AA) AA->copyValue(PN, NewPN);
    691 
    692     // Loop over the PHI node, moving all entries except the one for the
    693     // preheader over to the new PHI node.
    694     unsigned PreheaderIdx = ~0U;
    695     bool HasUniqueIncomingValue = true;
    696     Value *UniqueValue = 0;
    697     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    698       BasicBlock *IBB = PN->getIncomingBlock(i);
    699       Value *IV = PN->getIncomingValue(i);
    700       if (IBB == Preheader) {
    701         PreheaderIdx = i;
    702       } else {
    703         NewPN->addIncoming(IV, IBB);
    704         if (HasUniqueIncomingValue) {
    705           if (UniqueValue == 0)
    706             UniqueValue = IV;
    707           else if (UniqueValue != IV)
    708             HasUniqueIncomingValue = false;
    709         }
    710       }
    711     }
    712 
    713     // Delete all of the incoming values from the old PN except the preheader's
    714     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
    715     if (PreheaderIdx != 0) {
    716       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
    717       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
    718     }
    719     // Nuke all entries except the zero'th.
    720     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
    721       PN->removeIncomingValue(e-i, false);
    722 
    723     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
    724     PN->addIncoming(NewPN, BEBlock);
    725 
    726     // As an optimization, if all incoming values in the new PhiNode (which is a
    727     // subset of the incoming values of the old PHI node) have the same value,
    728     // eliminate the PHI Node.
    729     if (HasUniqueIncomingValue) {
    730       NewPN->replaceAllUsesWith(UniqueValue);
    731       if (AA) AA->deleteValue(NewPN);
    732       BEBlock->getInstList().erase(NewPN);
    733     }
    734   }
    735 
    736   // Now that all of the PHI nodes have been inserted and adjusted, modify the
    737   // backedge blocks to just to the BEBlock instead of the header.
    738   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
    739     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
    740     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
    741       if (TI->getSuccessor(Op) == Header)
    742         TI->setSuccessor(Op, BEBlock);
    743   }
    744 
    745   //===--- Update all analyses which we must preserve now -----------------===//
    746 
    747   // Update Loop Information - we know that this block is now in the current
    748   // loop and all parent loops.
    749   L->addBasicBlockToLoop(BEBlock, LI->getBase());
    750 
    751   // Update dominator information
    752   DT->splitBlock(BEBlock);
    753 
    754   return BEBlock;
    755 }
    756 
    757 void LoopSimplify::verifyAnalysis() const {
    758   // It used to be possible to just assert L->isLoopSimplifyForm(), however
    759   // with the introduction of indirectbr, there are now cases where it's
    760   // not possible to transform a loop as necessary. We can at least check
    761   // that there is an indirectbr near any time there's trouble.
    762 
    763   // Indirectbr can interfere with preheader and unique backedge insertion.
    764   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
    765     bool HasIndBrPred = false;
    766     for (pred_iterator PI = pred_begin(L->getHeader()),
    767          PE = pred_end(L->getHeader()); PI != PE; ++PI)
    768       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
    769         HasIndBrPred = true;
    770         break;
    771       }
    772     assert(HasIndBrPred &&
    773            "LoopSimplify has no excuse for missing loop header info!");
    774     (void)HasIndBrPred;
    775   }
    776 
    777   // Indirectbr can interfere with exit block canonicalization.
    778   if (!L->hasDedicatedExits()) {
    779     bool HasIndBrExiting = false;
    780     SmallVector<BasicBlock*, 8> ExitingBlocks;
    781     L->getExitingBlocks(ExitingBlocks);
    782     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    783       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
    784         HasIndBrExiting = true;
    785         break;
    786       }
    787     }
    788 
    789     assert(HasIndBrExiting &&
    790            "LoopSimplify has no excuse for missing exit block info!");
    791     (void)HasIndBrExiting;
    792   }
    793 }
    794