Home | History | Annotate | Download | only in Sema
      1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //===----------------------------------------------------------------------===/
      8 //
      9 //  This file implements C++ template argument deduction.
     10 //
     11 //===----------------------------------------------------------------------===/
     12 
     13 #include "clang/Sema/Sema.h"
     14 #include "clang/Sema/DeclSpec.h"
     15 #include "clang/Sema/Template.h"
     16 #include "clang/Sema/TemplateDeduction.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/DeclTemplate.h"
     20 #include "clang/AST/StmtVisitor.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "llvm/ADT/SmallBitVector.h"
     24 #include "TreeTransform.h"
     25 #include <algorithm>
     26 
     27 namespace clang {
     28   using namespace sema;
     29 
     30   /// \brief Various flags that control template argument deduction.
     31   ///
     32   /// These flags can be bitwise-OR'd together.
     33   enum TemplateDeductionFlags {
     34     /// \brief No template argument deduction flags, which indicates the
     35     /// strictest results for template argument deduction (as used for, e.g.,
     36     /// matching class template partial specializations).
     37     TDF_None = 0,
     38     /// \brief Within template argument deduction from a function call, we are
     39     /// matching with a parameter type for which the original parameter was
     40     /// a reference.
     41     TDF_ParamWithReferenceType = 0x1,
     42     /// \brief Within template argument deduction from a function call, we
     43     /// are matching in a case where we ignore cv-qualifiers.
     44     TDF_IgnoreQualifiers = 0x02,
     45     /// \brief Within template argument deduction from a function call,
     46     /// we are matching in a case where we can perform template argument
     47     /// deduction from a template-id of a derived class of the argument type.
     48     TDF_DerivedClass = 0x04,
     49     /// \brief Allow non-dependent types to differ, e.g., when performing
     50     /// template argument deduction from a function call where conversions
     51     /// may apply.
     52     TDF_SkipNonDependent = 0x08,
     53     /// \brief Whether we are performing template argument deduction for
     54     /// parameters and arguments in a top-level template argument
     55     TDF_TopLevelParameterTypeList = 0x10
     56   };
     57 }
     58 
     59 using namespace clang;
     60 
     61 /// \brief Compare two APSInts, extending and switching the sign as
     62 /// necessary to compare their values regardless of underlying type.
     63 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
     64   if (Y.getBitWidth() > X.getBitWidth())
     65     X = X.extend(Y.getBitWidth());
     66   else if (Y.getBitWidth() < X.getBitWidth())
     67     Y = Y.extend(X.getBitWidth());
     68 
     69   // If there is a signedness mismatch, correct it.
     70   if (X.isSigned() != Y.isSigned()) {
     71     // If the signed value is negative, then the values cannot be the same.
     72     if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
     73       return false;
     74 
     75     Y.setIsSigned(true);
     76     X.setIsSigned(true);
     77   }
     78 
     79   return X == Y;
     80 }
     81 
     82 static Sema::TemplateDeductionResult
     83 DeduceTemplateArguments(Sema &S,
     84                         TemplateParameterList *TemplateParams,
     85                         const TemplateArgument &Param,
     86                         TemplateArgument Arg,
     87                         TemplateDeductionInfo &Info,
     88                       SmallVectorImpl<DeducedTemplateArgument> &Deduced);
     89 
     90 /// \brief Whether template argument deduction for two reference parameters
     91 /// resulted in the argument type, parameter type, or neither type being more
     92 /// qualified than the other.
     93 enum DeductionQualifierComparison {
     94   NeitherMoreQualified = 0,
     95   ParamMoreQualified,
     96   ArgMoreQualified
     97 };
     98 
     99 /// \brief Stores the result of comparing two reference parameters while
    100 /// performing template argument deduction for partial ordering of function
    101 /// templates.
    102 struct RefParamPartialOrderingComparison {
    103   /// \brief Whether the parameter type is an rvalue reference type.
    104   bool ParamIsRvalueRef;
    105   /// \brief Whether the argument type is an rvalue reference type.
    106   bool ArgIsRvalueRef;
    107 
    108   /// \brief Whether the parameter or argument (or neither) is more qualified.
    109   DeductionQualifierComparison Qualifiers;
    110 };
    111 
    112 
    113 
    114 static Sema::TemplateDeductionResult
    115 DeduceTemplateArgumentsByTypeMatch(Sema &S,
    116                                    TemplateParameterList *TemplateParams,
    117                                    QualType Param,
    118                                    QualType Arg,
    119                                    TemplateDeductionInfo &Info,
    120                                    SmallVectorImpl<DeducedTemplateArgument> &
    121                                                       Deduced,
    122                                    unsigned TDF,
    123                                    bool PartialOrdering = false,
    124                             SmallVectorImpl<RefParamPartialOrderingComparison> *
    125                                                       RefParamComparisons = 0);
    126 
    127 static Sema::TemplateDeductionResult
    128 DeduceTemplateArguments(Sema &S,
    129                         TemplateParameterList *TemplateParams,
    130                         const TemplateArgument *Params, unsigned NumParams,
    131                         const TemplateArgument *Args, unsigned NumArgs,
    132                         TemplateDeductionInfo &Info,
    133                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    134                         bool NumberOfArgumentsMustMatch = true);
    135 
    136 /// \brief If the given expression is of a form that permits the deduction
    137 /// of a non-type template parameter, return the declaration of that
    138 /// non-type template parameter.
    139 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
    140   if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
    141     E = IC->getSubExpr();
    142 
    143   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
    144     return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
    145 
    146   return 0;
    147 }
    148 
    149 /// \brief Determine whether two declaration pointers refer to the same
    150 /// declaration.
    151 static bool isSameDeclaration(Decl *X, Decl *Y) {
    152   if (!X || !Y)
    153     return !X && !Y;
    154 
    155   if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
    156     X = NX->getUnderlyingDecl();
    157   if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
    158     Y = NY->getUnderlyingDecl();
    159 
    160   return X->getCanonicalDecl() == Y->getCanonicalDecl();
    161 }
    162 
    163 /// \brief Verify that the given, deduced template arguments are compatible.
    164 ///
    165 /// \returns The deduced template argument, or a NULL template argument if
    166 /// the deduced template arguments were incompatible.
    167 static DeducedTemplateArgument
    168 checkDeducedTemplateArguments(ASTContext &Context,
    169                               const DeducedTemplateArgument &X,
    170                               const DeducedTemplateArgument &Y) {
    171   // We have no deduction for one or both of the arguments; they're compatible.
    172   if (X.isNull())
    173     return Y;
    174   if (Y.isNull())
    175     return X;
    176 
    177   switch (X.getKind()) {
    178   case TemplateArgument::Null:
    179     llvm_unreachable("Non-deduced template arguments handled above");
    180 
    181   case TemplateArgument::Type:
    182     // If two template type arguments have the same type, they're compatible.
    183     if (Y.getKind() == TemplateArgument::Type &&
    184         Context.hasSameType(X.getAsType(), Y.getAsType()))
    185       return X;
    186 
    187     return DeducedTemplateArgument();
    188 
    189   case TemplateArgument::Integral:
    190     // If we deduced a constant in one case and either a dependent expression or
    191     // declaration in another case, keep the integral constant.
    192     // If both are integral constants with the same value, keep that value.
    193     if (Y.getKind() == TemplateArgument::Expression ||
    194         Y.getKind() == TemplateArgument::Declaration ||
    195         (Y.getKind() == TemplateArgument::Integral &&
    196          hasSameExtendedValue(*X.getAsIntegral(), *Y.getAsIntegral())))
    197       return DeducedTemplateArgument(X,
    198                                      X.wasDeducedFromArrayBound() &&
    199                                      Y.wasDeducedFromArrayBound());
    200 
    201     // All other combinations are incompatible.
    202     return DeducedTemplateArgument();
    203 
    204   case TemplateArgument::Template:
    205     if (Y.getKind() == TemplateArgument::Template &&
    206         Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
    207       return X;
    208 
    209     // All other combinations are incompatible.
    210     return DeducedTemplateArgument();
    211 
    212   case TemplateArgument::TemplateExpansion:
    213     if (Y.getKind() == TemplateArgument::TemplateExpansion &&
    214         Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
    215                                     Y.getAsTemplateOrTemplatePattern()))
    216       return X;
    217 
    218     // All other combinations are incompatible.
    219     return DeducedTemplateArgument();
    220 
    221   case TemplateArgument::Expression:
    222     // If we deduced a dependent expression in one case and either an integral
    223     // constant or a declaration in another case, keep the integral constant
    224     // or declaration.
    225     if (Y.getKind() == TemplateArgument::Integral ||
    226         Y.getKind() == TemplateArgument::Declaration)
    227       return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
    228                                      Y.wasDeducedFromArrayBound());
    229 
    230     if (Y.getKind() == TemplateArgument::Expression) {
    231       // Compare the expressions for equality
    232       llvm::FoldingSetNodeID ID1, ID2;
    233       X.getAsExpr()->Profile(ID1, Context, true);
    234       Y.getAsExpr()->Profile(ID2, Context, true);
    235       if (ID1 == ID2)
    236         return X;
    237     }
    238 
    239     // All other combinations are incompatible.
    240     return DeducedTemplateArgument();
    241 
    242   case TemplateArgument::Declaration:
    243     // If we deduced a declaration and a dependent expression, keep the
    244     // declaration.
    245     if (Y.getKind() == TemplateArgument::Expression)
    246       return X;
    247 
    248     // If we deduced a declaration and an integral constant, keep the
    249     // integral constant.
    250     if (Y.getKind() == TemplateArgument::Integral)
    251       return Y;
    252 
    253     // If we deduced two declarations, make sure they they refer to the
    254     // same declaration.
    255     if (Y.getKind() == TemplateArgument::Declaration &&
    256         isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
    257       return X;
    258 
    259     // All other combinations are incompatible.
    260     return DeducedTemplateArgument();
    261 
    262   case TemplateArgument::Pack:
    263     if (Y.getKind() != TemplateArgument::Pack ||
    264         X.pack_size() != Y.pack_size())
    265       return DeducedTemplateArgument();
    266 
    267     for (TemplateArgument::pack_iterator XA = X.pack_begin(),
    268                                       XAEnd = X.pack_end(),
    269                                          YA = Y.pack_begin();
    270          XA != XAEnd; ++XA, ++YA) {
    271       if (checkDeducedTemplateArguments(Context,
    272                     DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
    273                     DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
    274             .isNull())
    275         return DeducedTemplateArgument();
    276     }
    277 
    278     return X;
    279   }
    280 
    281   llvm_unreachable("Invalid TemplateArgument Kind!");
    282 }
    283 
    284 /// \brief Deduce the value of the given non-type template parameter
    285 /// from the given constant.
    286 static Sema::TemplateDeductionResult
    287 DeduceNonTypeTemplateArgument(Sema &S,
    288                               NonTypeTemplateParmDecl *NTTP,
    289                               llvm::APSInt Value, QualType ValueType,
    290                               bool DeducedFromArrayBound,
    291                               TemplateDeductionInfo &Info,
    292                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    293   assert(NTTP->getDepth() == 0 &&
    294          "Cannot deduce non-type template argument with depth > 0");
    295 
    296   DeducedTemplateArgument NewDeduced(Value, ValueType, DeducedFromArrayBound);
    297   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    298                                                      Deduced[NTTP->getIndex()],
    299                                                                  NewDeduced);
    300   if (Result.isNull()) {
    301     Info.Param = NTTP;
    302     Info.FirstArg = Deduced[NTTP->getIndex()];
    303     Info.SecondArg = NewDeduced;
    304     return Sema::TDK_Inconsistent;
    305   }
    306 
    307   Deduced[NTTP->getIndex()] = Result;
    308   return Sema::TDK_Success;
    309 }
    310 
    311 /// \brief Deduce the value of the given non-type template parameter
    312 /// from the given type- or value-dependent expression.
    313 ///
    314 /// \returns true if deduction succeeded, false otherwise.
    315 static Sema::TemplateDeductionResult
    316 DeduceNonTypeTemplateArgument(Sema &S,
    317                               NonTypeTemplateParmDecl *NTTP,
    318                               Expr *Value,
    319                               TemplateDeductionInfo &Info,
    320                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    321   assert(NTTP->getDepth() == 0 &&
    322          "Cannot deduce non-type template argument with depth > 0");
    323   assert((Value->isTypeDependent() || Value->isValueDependent()) &&
    324          "Expression template argument must be type- or value-dependent.");
    325 
    326   DeducedTemplateArgument NewDeduced(Value);
    327   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    328                                                      Deduced[NTTP->getIndex()],
    329                                                                  NewDeduced);
    330 
    331   if (Result.isNull()) {
    332     Info.Param = NTTP;
    333     Info.FirstArg = Deduced[NTTP->getIndex()];
    334     Info.SecondArg = NewDeduced;
    335     return Sema::TDK_Inconsistent;
    336   }
    337 
    338   Deduced[NTTP->getIndex()] = Result;
    339   return Sema::TDK_Success;
    340 }
    341 
    342 /// \brief Deduce the value of the given non-type template parameter
    343 /// from the given declaration.
    344 ///
    345 /// \returns true if deduction succeeded, false otherwise.
    346 static Sema::TemplateDeductionResult
    347 DeduceNonTypeTemplateArgument(Sema &S,
    348                               NonTypeTemplateParmDecl *NTTP,
    349                               Decl *D,
    350                               TemplateDeductionInfo &Info,
    351                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    352   assert(NTTP->getDepth() == 0 &&
    353          "Cannot deduce non-type template argument with depth > 0");
    354 
    355   DeducedTemplateArgument NewDeduced(D? D->getCanonicalDecl() : 0);
    356   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    357                                                      Deduced[NTTP->getIndex()],
    358                                                                  NewDeduced);
    359   if (Result.isNull()) {
    360     Info.Param = NTTP;
    361     Info.FirstArg = Deduced[NTTP->getIndex()];
    362     Info.SecondArg = NewDeduced;
    363     return Sema::TDK_Inconsistent;
    364   }
    365 
    366   Deduced[NTTP->getIndex()] = Result;
    367   return Sema::TDK_Success;
    368 }
    369 
    370 static Sema::TemplateDeductionResult
    371 DeduceTemplateArguments(Sema &S,
    372                         TemplateParameterList *TemplateParams,
    373                         TemplateName Param,
    374                         TemplateName Arg,
    375                         TemplateDeductionInfo &Info,
    376                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    377   TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
    378   if (!ParamDecl) {
    379     // The parameter type is dependent and is not a template template parameter,
    380     // so there is nothing that we can deduce.
    381     return Sema::TDK_Success;
    382   }
    383 
    384   if (TemplateTemplateParmDecl *TempParam
    385         = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
    386     DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
    387     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    388                                                  Deduced[TempParam->getIndex()],
    389                                                                    NewDeduced);
    390     if (Result.isNull()) {
    391       Info.Param = TempParam;
    392       Info.FirstArg = Deduced[TempParam->getIndex()];
    393       Info.SecondArg = NewDeduced;
    394       return Sema::TDK_Inconsistent;
    395     }
    396 
    397     Deduced[TempParam->getIndex()] = Result;
    398     return Sema::TDK_Success;
    399   }
    400 
    401   // Verify that the two template names are equivalent.
    402   if (S.Context.hasSameTemplateName(Param, Arg))
    403     return Sema::TDK_Success;
    404 
    405   // Mismatch of non-dependent template parameter to argument.
    406   Info.FirstArg = TemplateArgument(Param);
    407   Info.SecondArg = TemplateArgument(Arg);
    408   return Sema::TDK_NonDeducedMismatch;
    409 }
    410 
    411 /// \brief Deduce the template arguments by comparing the template parameter
    412 /// type (which is a template-id) with the template argument type.
    413 ///
    414 /// \param S the Sema
    415 ///
    416 /// \param TemplateParams the template parameters that we are deducing
    417 ///
    418 /// \param Param the parameter type
    419 ///
    420 /// \param Arg the argument type
    421 ///
    422 /// \param Info information about the template argument deduction itself
    423 ///
    424 /// \param Deduced the deduced template arguments
    425 ///
    426 /// \returns the result of template argument deduction so far. Note that a
    427 /// "success" result means that template argument deduction has not yet failed,
    428 /// but it may still fail, later, for other reasons.
    429 static Sema::TemplateDeductionResult
    430 DeduceTemplateArguments(Sema &S,
    431                         TemplateParameterList *TemplateParams,
    432                         const TemplateSpecializationType *Param,
    433                         QualType Arg,
    434                         TemplateDeductionInfo &Info,
    435                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    436   assert(Arg.isCanonical() && "Argument type must be canonical");
    437 
    438   // Check whether the template argument is a dependent template-id.
    439   if (const TemplateSpecializationType *SpecArg
    440         = dyn_cast<TemplateSpecializationType>(Arg)) {
    441     // Perform template argument deduction for the template name.
    442     if (Sema::TemplateDeductionResult Result
    443           = DeduceTemplateArguments(S, TemplateParams,
    444                                     Param->getTemplateName(),
    445                                     SpecArg->getTemplateName(),
    446                                     Info, Deduced))
    447       return Result;
    448 
    449 
    450     // Perform template argument deduction on each template
    451     // argument. Ignore any missing/extra arguments, since they could be
    452     // filled in by default arguments.
    453     return DeduceTemplateArguments(S, TemplateParams,
    454                                    Param->getArgs(), Param->getNumArgs(),
    455                                    SpecArg->getArgs(), SpecArg->getNumArgs(),
    456                                    Info, Deduced,
    457                                    /*NumberOfArgumentsMustMatch=*/false);
    458   }
    459 
    460   // If the argument type is a class template specialization, we
    461   // perform template argument deduction using its template
    462   // arguments.
    463   const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
    464   if (!RecordArg)
    465     return Sema::TDK_NonDeducedMismatch;
    466 
    467   ClassTemplateSpecializationDecl *SpecArg
    468     = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
    469   if (!SpecArg)
    470     return Sema::TDK_NonDeducedMismatch;
    471 
    472   // Perform template argument deduction for the template name.
    473   if (Sema::TemplateDeductionResult Result
    474         = DeduceTemplateArguments(S,
    475                                   TemplateParams,
    476                                   Param->getTemplateName(),
    477                                TemplateName(SpecArg->getSpecializedTemplate()),
    478                                   Info, Deduced))
    479     return Result;
    480 
    481   // Perform template argument deduction for the template arguments.
    482   return DeduceTemplateArguments(S, TemplateParams,
    483                                  Param->getArgs(), Param->getNumArgs(),
    484                                  SpecArg->getTemplateArgs().data(),
    485                                  SpecArg->getTemplateArgs().size(),
    486                                  Info, Deduced);
    487 }
    488 
    489 /// \brief Determines whether the given type is an opaque type that
    490 /// might be more qualified when instantiated.
    491 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
    492   switch (T->getTypeClass()) {
    493   case Type::TypeOfExpr:
    494   case Type::TypeOf:
    495   case Type::DependentName:
    496   case Type::Decltype:
    497   case Type::UnresolvedUsing:
    498   case Type::TemplateTypeParm:
    499     return true;
    500 
    501   case Type::ConstantArray:
    502   case Type::IncompleteArray:
    503   case Type::VariableArray:
    504   case Type::DependentSizedArray:
    505     return IsPossiblyOpaquelyQualifiedType(
    506                                       cast<ArrayType>(T)->getElementType());
    507 
    508   default:
    509     return false;
    510   }
    511 }
    512 
    513 /// \brief Retrieve the depth and index of a template parameter.
    514 static std::pair<unsigned, unsigned>
    515 getDepthAndIndex(NamedDecl *ND) {
    516   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
    517     return std::make_pair(TTP->getDepth(), TTP->getIndex());
    518 
    519   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
    520     return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
    521 
    522   TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
    523   return std::make_pair(TTP->getDepth(), TTP->getIndex());
    524 }
    525 
    526 /// \brief Retrieve the depth and index of an unexpanded parameter pack.
    527 static std::pair<unsigned, unsigned>
    528 getDepthAndIndex(UnexpandedParameterPack UPP) {
    529   if (const TemplateTypeParmType *TTP
    530                           = UPP.first.dyn_cast<const TemplateTypeParmType *>())
    531     return std::make_pair(TTP->getDepth(), TTP->getIndex());
    532 
    533   return getDepthAndIndex(UPP.first.get<NamedDecl *>());
    534 }
    535 
    536 /// \brief Helper function to build a TemplateParameter when we don't
    537 /// know its type statically.
    538 static TemplateParameter makeTemplateParameter(Decl *D) {
    539   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
    540     return TemplateParameter(TTP);
    541   else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
    542     return TemplateParameter(NTTP);
    543 
    544   return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
    545 }
    546 
    547 /// \brief Prepare to perform template argument deduction for all of the
    548 /// arguments in a set of argument packs.
    549 static void PrepareArgumentPackDeduction(Sema &S,
    550                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    551                                            ArrayRef<unsigned> PackIndices,
    552                      SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
    553          SmallVectorImpl<
    554            SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks) {
    555   // Save the deduced template arguments for each parameter pack expanded
    556   // by this pack expansion, then clear out the deduction.
    557   for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
    558     // Save the previously-deduced argument pack, then clear it out so that we
    559     // can deduce a new argument pack.
    560     SavedPacks[I] = Deduced[PackIndices[I]];
    561     Deduced[PackIndices[I]] = TemplateArgument();
    562 
    563     // If the template arugment pack was explicitly specified, add that to
    564     // the set of deduced arguments.
    565     const TemplateArgument *ExplicitArgs;
    566     unsigned NumExplicitArgs;
    567     if (NamedDecl *PartiallySubstitutedPack
    568         = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
    569                                                            &ExplicitArgs,
    570                                                            &NumExplicitArgs)) {
    571       if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
    572         NewlyDeducedPacks[I].append(ExplicitArgs,
    573                                     ExplicitArgs + NumExplicitArgs);
    574     }
    575   }
    576 }
    577 
    578 /// \brief Finish template argument deduction for a set of argument packs,
    579 /// producing the argument packs and checking for consistency with prior
    580 /// deductions.
    581 static Sema::TemplateDeductionResult
    582 FinishArgumentPackDeduction(Sema &S,
    583                             TemplateParameterList *TemplateParams,
    584                             bool HasAnyArguments,
    585                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    586                             ArrayRef<unsigned> PackIndices,
    587                     SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
    588         SmallVectorImpl<
    589           SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks,
    590                             TemplateDeductionInfo &Info) {
    591   // Build argument packs for each of the parameter packs expanded by this
    592   // pack expansion.
    593   for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
    594     if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
    595       // We were not able to deduce anything for this parameter pack,
    596       // so just restore the saved argument pack.
    597       Deduced[PackIndices[I]] = SavedPacks[I];
    598       continue;
    599     }
    600 
    601     DeducedTemplateArgument NewPack;
    602 
    603     if (NewlyDeducedPacks[I].empty()) {
    604       // If we deduced an empty argument pack, create it now.
    605       NewPack = DeducedTemplateArgument(TemplateArgument(0, 0));
    606     } else {
    607       TemplateArgument *ArgumentPack
    608         = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
    609       std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
    610                 ArgumentPack);
    611       NewPack
    612         = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
    613                                                    NewlyDeducedPacks[I].size()),
    614                             NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
    615     }
    616 
    617     DeducedTemplateArgument Result
    618       = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
    619     if (Result.isNull()) {
    620       Info.Param
    621         = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
    622       Info.FirstArg = SavedPacks[I];
    623       Info.SecondArg = NewPack;
    624       return Sema::TDK_Inconsistent;
    625     }
    626 
    627     Deduced[PackIndices[I]] = Result;
    628   }
    629 
    630   return Sema::TDK_Success;
    631 }
    632 
    633 /// \brief Deduce the template arguments by comparing the list of parameter
    634 /// types to the list of argument types, as in the parameter-type-lists of
    635 /// function types (C++ [temp.deduct.type]p10).
    636 ///
    637 /// \param S The semantic analysis object within which we are deducing
    638 ///
    639 /// \param TemplateParams The template parameters that we are deducing
    640 ///
    641 /// \param Params The list of parameter types
    642 ///
    643 /// \param NumParams The number of types in \c Params
    644 ///
    645 /// \param Args The list of argument types
    646 ///
    647 /// \param NumArgs The number of types in \c Args
    648 ///
    649 /// \param Info information about the template argument deduction itself
    650 ///
    651 /// \param Deduced the deduced template arguments
    652 ///
    653 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
    654 /// how template argument deduction is performed.
    655 ///
    656 /// \param PartialOrdering If true, we are performing template argument
    657 /// deduction for during partial ordering for a call
    658 /// (C++0x [temp.deduct.partial]).
    659 ///
    660 /// \param RefParamComparisons If we're performing template argument deduction
    661 /// in the context of partial ordering, the set of qualifier comparisons.
    662 ///
    663 /// \returns the result of template argument deduction so far. Note that a
    664 /// "success" result means that template argument deduction has not yet failed,
    665 /// but it may still fail, later, for other reasons.
    666 static Sema::TemplateDeductionResult
    667 DeduceTemplateArguments(Sema &S,
    668                         TemplateParameterList *TemplateParams,
    669                         const QualType *Params, unsigned NumParams,
    670                         const QualType *Args, unsigned NumArgs,
    671                         TemplateDeductionInfo &Info,
    672                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    673                         unsigned TDF,
    674                         bool PartialOrdering = false,
    675                         SmallVectorImpl<RefParamPartialOrderingComparison> *
    676                                                      RefParamComparisons = 0) {
    677   // Fast-path check to see if we have too many/too few arguments.
    678   if (NumParams != NumArgs &&
    679       !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
    680       !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
    681     return Sema::TDK_NonDeducedMismatch;
    682 
    683   // C++0x [temp.deduct.type]p10:
    684   //   Similarly, if P has a form that contains (T), then each parameter type
    685   //   Pi of the respective parameter-type- list of P is compared with the
    686   //   corresponding parameter type Ai of the corresponding parameter-type-list
    687   //   of A. [...]
    688   unsigned ArgIdx = 0, ParamIdx = 0;
    689   for (; ParamIdx != NumParams; ++ParamIdx) {
    690     // Check argument types.
    691     const PackExpansionType *Expansion
    692                                 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
    693     if (!Expansion) {
    694       // Simple case: compare the parameter and argument types at this point.
    695 
    696       // Make sure we have an argument.
    697       if (ArgIdx >= NumArgs)
    698         return Sema::TDK_NonDeducedMismatch;
    699 
    700       if (isa<PackExpansionType>(Args[ArgIdx])) {
    701         // C++0x [temp.deduct.type]p22:
    702         //   If the original function parameter associated with A is a function
    703         //   parameter pack and the function parameter associated with P is not
    704         //   a function parameter pack, then template argument deduction fails.
    705         return Sema::TDK_NonDeducedMismatch;
    706       }
    707 
    708       if (Sema::TemplateDeductionResult Result
    709             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
    710                                                  Params[ParamIdx], Args[ArgIdx],
    711                                                  Info, Deduced, TDF,
    712                                                  PartialOrdering,
    713                                                  RefParamComparisons))
    714         return Result;
    715 
    716       ++ArgIdx;
    717       continue;
    718     }
    719 
    720     // C++0x [temp.deduct.type]p5:
    721     //   The non-deduced contexts are:
    722     //     - A function parameter pack that does not occur at the end of the
    723     //       parameter-declaration-clause.
    724     if (ParamIdx + 1 < NumParams)
    725       return Sema::TDK_Success;
    726 
    727     // C++0x [temp.deduct.type]p10:
    728     //   If the parameter-declaration corresponding to Pi is a function
    729     //   parameter pack, then the type of its declarator- id is compared with
    730     //   each remaining parameter type in the parameter-type-list of A. Each
    731     //   comparison deduces template arguments for subsequent positions in the
    732     //   template parameter packs expanded by the function parameter pack.
    733 
    734     // Compute the set of template parameter indices that correspond to
    735     // parameter packs expanded by the pack expansion.
    736     SmallVector<unsigned, 2> PackIndices;
    737     QualType Pattern = Expansion->getPattern();
    738     {
    739       llvm::SmallBitVector SawIndices(TemplateParams->size());
    740       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
    741       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
    742       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
    743         unsigned Depth, Index;
    744         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
    745         if (Depth == 0 && !SawIndices[Index]) {
    746           SawIndices[Index] = true;
    747           PackIndices.push_back(Index);
    748         }
    749       }
    750     }
    751     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
    752 
    753     // Keep track of the deduced template arguments for each parameter pack
    754     // expanded by this pack expansion (the outer index) and for each
    755     // template argument (the inner SmallVectors).
    756     SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
    757       NewlyDeducedPacks(PackIndices.size());
    758     SmallVector<DeducedTemplateArgument, 2>
    759       SavedPacks(PackIndices.size());
    760     PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
    761                                  NewlyDeducedPacks);
    762 
    763     bool HasAnyArguments = false;
    764     for (; ArgIdx < NumArgs; ++ArgIdx) {
    765       HasAnyArguments = true;
    766 
    767       // Deduce template arguments from the pattern.
    768       if (Sema::TemplateDeductionResult Result
    769             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
    770                                                  Args[ArgIdx], Info, Deduced,
    771                                                  TDF, PartialOrdering,
    772                                                  RefParamComparisons))
    773         return Result;
    774 
    775       // Capture the deduced template arguments for each parameter pack expanded
    776       // by this pack expansion, add them to the list of arguments we've deduced
    777       // for that pack, then clear out the deduced argument.
    778       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
    779         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
    780         if (!DeducedArg.isNull()) {
    781           NewlyDeducedPacks[I].push_back(DeducedArg);
    782           DeducedArg = DeducedTemplateArgument();
    783         }
    784       }
    785     }
    786 
    787     // Build argument packs for each of the parameter packs expanded by this
    788     // pack expansion.
    789     if (Sema::TemplateDeductionResult Result
    790           = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
    791                                         Deduced, PackIndices, SavedPacks,
    792                                         NewlyDeducedPacks, Info))
    793       return Result;
    794   }
    795 
    796   // Make sure we don't have any extra arguments.
    797   if (ArgIdx < NumArgs)
    798     return Sema::TDK_NonDeducedMismatch;
    799 
    800   return Sema::TDK_Success;
    801 }
    802 
    803 /// \brief Determine whether the parameter has qualifiers that are either
    804 /// inconsistent with or a superset of the argument's qualifiers.
    805 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
    806                                                   QualType ArgType) {
    807   Qualifiers ParamQs = ParamType.getQualifiers();
    808   Qualifiers ArgQs = ArgType.getQualifiers();
    809 
    810   if (ParamQs == ArgQs)
    811     return false;
    812 
    813   // Mismatched (but not missing) Objective-C GC attributes.
    814   if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
    815       ParamQs.hasObjCGCAttr())
    816     return true;
    817 
    818   // Mismatched (but not missing) address spaces.
    819   if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
    820       ParamQs.hasAddressSpace())
    821     return true;
    822 
    823   // Mismatched (but not missing) Objective-C lifetime qualifiers.
    824   if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
    825       ParamQs.hasObjCLifetime())
    826     return true;
    827 
    828   // CVR qualifier superset.
    829   return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
    830       ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
    831                                                 == ParamQs.getCVRQualifiers());
    832 }
    833 
    834 /// \brief Deduce the template arguments by comparing the parameter type and
    835 /// the argument type (C++ [temp.deduct.type]).
    836 ///
    837 /// \param S the semantic analysis object within which we are deducing
    838 ///
    839 /// \param TemplateParams the template parameters that we are deducing
    840 ///
    841 /// \param ParamIn the parameter type
    842 ///
    843 /// \param ArgIn the argument type
    844 ///
    845 /// \param Info information about the template argument deduction itself
    846 ///
    847 /// \param Deduced the deduced template arguments
    848 ///
    849 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
    850 /// how template argument deduction is performed.
    851 ///
    852 /// \param PartialOrdering Whether we're performing template argument deduction
    853 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
    854 ///
    855 /// \param RefParamComparisons If we're performing template argument deduction
    856 /// in the context of partial ordering, the set of qualifier comparisons.
    857 ///
    858 /// \returns the result of template argument deduction so far. Note that a
    859 /// "success" result means that template argument deduction has not yet failed,
    860 /// but it may still fail, later, for other reasons.
    861 static Sema::TemplateDeductionResult
    862 DeduceTemplateArgumentsByTypeMatch(Sema &S,
    863                                    TemplateParameterList *TemplateParams,
    864                                    QualType ParamIn, QualType ArgIn,
    865                                    TemplateDeductionInfo &Info,
    866                             SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    867                                    unsigned TDF,
    868                                    bool PartialOrdering,
    869                             SmallVectorImpl<RefParamPartialOrderingComparison> *
    870                                                           RefParamComparisons) {
    871   // We only want to look at the canonical types, since typedefs and
    872   // sugar are not part of template argument deduction.
    873   QualType Param = S.Context.getCanonicalType(ParamIn);
    874   QualType Arg = S.Context.getCanonicalType(ArgIn);
    875 
    876   // If the argument type is a pack expansion, look at its pattern.
    877   // This isn't explicitly called out
    878   if (const PackExpansionType *ArgExpansion
    879                                             = dyn_cast<PackExpansionType>(Arg))
    880     Arg = ArgExpansion->getPattern();
    881 
    882   if (PartialOrdering) {
    883     // C++0x [temp.deduct.partial]p5:
    884     //   Before the partial ordering is done, certain transformations are
    885     //   performed on the types used for partial ordering:
    886     //     - If P is a reference type, P is replaced by the type referred to.
    887     const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
    888     if (ParamRef)
    889       Param = ParamRef->getPointeeType();
    890 
    891     //     - If A is a reference type, A is replaced by the type referred to.
    892     const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
    893     if (ArgRef)
    894       Arg = ArgRef->getPointeeType();
    895 
    896     if (RefParamComparisons && ParamRef && ArgRef) {
    897       // C++0x [temp.deduct.partial]p6:
    898       //   If both P and A were reference types (before being replaced with the
    899       //   type referred to above), determine which of the two types (if any) is
    900       //   more cv-qualified than the other; otherwise the types are considered
    901       //   to be equally cv-qualified for partial ordering purposes. The result
    902       //   of this determination will be used below.
    903       //
    904       // We save this information for later, using it only when deduction
    905       // succeeds in both directions.
    906       RefParamPartialOrderingComparison Comparison;
    907       Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
    908       Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
    909       Comparison.Qualifiers = NeitherMoreQualified;
    910 
    911       Qualifiers ParamQuals = Param.getQualifiers();
    912       Qualifiers ArgQuals = Arg.getQualifiers();
    913       if (ParamQuals.isStrictSupersetOf(ArgQuals))
    914         Comparison.Qualifiers = ParamMoreQualified;
    915       else if (ArgQuals.isStrictSupersetOf(ParamQuals))
    916         Comparison.Qualifiers = ArgMoreQualified;
    917       RefParamComparisons->push_back(Comparison);
    918     }
    919 
    920     // C++0x [temp.deduct.partial]p7:
    921     //   Remove any top-level cv-qualifiers:
    922     //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
    923     //       version of P.
    924     Param = Param.getUnqualifiedType();
    925     //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
    926     //       version of A.
    927     Arg = Arg.getUnqualifiedType();
    928   } else {
    929     // C++0x [temp.deduct.call]p4 bullet 1:
    930     //   - If the original P is a reference type, the deduced A (i.e., the type
    931     //     referred to by the reference) can be more cv-qualified than the
    932     //     transformed A.
    933     if (TDF & TDF_ParamWithReferenceType) {
    934       Qualifiers Quals;
    935       QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
    936       Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
    937                              Arg.getCVRQualifiers());
    938       Param = S.Context.getQualifiedType(UnqualParam, Quals);
    939     }
    940 
    941     if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
    942       // C++0x [temp.deduct.type]p10:
    943       //   If P and A are function types that originated from deduction when
    944       //   taking the address of a function template (14.8.2.2) or when deducing
    945       //   template arguments from a function declaration (14.8.2.6) and Pi and
    946       //   Ai are parameters of the top-level parameter-type-list of P and A,
    947       //   respectively, Pi is adjusted if it is an rvalue reference to a
    948       //   cv-unqualified template parameter and Ai is an lvalue reference, in
    949       //   which case the type of Pi is changed to be the template parameter
    950       //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
    951       //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
    952       //   deduced as X&. - end note ]
    953       TDF &= ~TDF_TopLevelParameterTypeList;
    954 
    955       if (const RValueReferenceType *ParamRef
    956                                         = Param->getAs<RValueReferenceType>()) {
    957         if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
    958             !ParamRef->getPointeeType().getQualifiers())
    959           if (Arg->isLValueReferenceType())
    960             Param = ParamRef->getPointeeType();
    961       }
    962     }
    963   }
    964 
    965   // C++ [temp.deduct.type]p9:
    966   //   A template type argument T, a template template argument TT or a
    967   //   template non-type argument i can be deduced if P and A have one of
    968   //   the following forms:
    969   //
    970   //     T
    971   //     cv-list T
    972   if (const TemplateTypeParmType *TemplateTypeParm
    973         = Param->getAs<TemplateTypeParmType>()) {
    974     // Just skip any attempts to deduce from a placeholder type.
    975     if (Arg->isPlaceholderType())
    976       return Sema::TDK_Success;
    977 
    978     unsigned Index = TemplateTypeParm->getIndex();
    979     bool RecanonicalizeArg = false;
    980 
    981     // If the argument type is an array type, move the qualifiers up to the
    982     // top level, so they can be matched with the qualifiers on the parameter.
    983     if (isa<ArrayType>(Arg)) {
    984       Qualifiers Quals;
    985       Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
    986       if (Quals) {
    987         Arg = S.Context.getQualifiedType(Arg, Quals);
    988         RecanonicalizeArg = true;
    989       }
    990     }
    991 
    992     // The argument type can not be less qualified than the parameter
    993     // type.
    994     if (!(TDF & TDF_IgnoreQualifiers) &&
    995         hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
    996       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
    997       Info.FirstArg = TemplateArgument(Param);
    998       Info.SecondArg = TemplateArgument(Arg);
    999       return Sema::TDK_Underqualified;
   1000     }
   1001 
   1002     assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
   1003     assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
   1004     QualType DeducedType = Arg;
   1005 
   1006     // Remove any qualifiers on the parameter from the deduced type.
   1007     // We checked the qualifiers for consistency above.
   1008     Qualifiers DeducedQs = DeducedType.getQualifiers();
   1009     Qualifiers ParamQs = Param.getQualifiers();
   1010     DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
   1011     if (ParamQs.hasObjCGCAttr())
   1012       DeducedQs.removeObjCGCAttr();
   1013     if (ParamQs.hasAddressSpace())
   1014       DeducedQs.removeAddressSpace();
   1015     if (ParamQs.hasObjCLifetime())
   1016       DeducedQs.removeObjCLifetime();
   1017 
   1018     // Objective-C ARC:
   1019     //   If template deduction would produce a lifetime qualifier on a type
   1020     //   that is not a lifetime type, template argument deduction fails.
   1021     if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
   1022         !DeducedType->isDependentType()) {
   1023       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1024       Info.FirstArg = TemplateArgument(Param);
   1025       Info.SecondArg = TemplateArgument(Arg);
   1026       return Sema::TDK_Underqualified;
   1027     }
   1028 
   1029     // Objective-C ARC:
   1030     //   If template deduction would produce an argument type with lifetime type
   1031     //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
   1032     if (S.getLangOpts().ObjCAutoRefCount &&
   1033         DeducedType->isObjCLifetimeType() &&
   1034         !DeducedQs.hasObjCLifetime())
   1035       DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
   1036 
   1037     DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
   1038                                              DeducedQs);
   1039 
   1040     if (RecanonicalizeArg)
   1041       DeducedType = S.Context.getCanonicalType(DeducedType);
   1042 
   1043     DeducedTemplateArgument NewDeduced(DeducedType);
   1044     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
   1045                                                                  Deduced[Index],
   1046                                                                    NewDeduced);
   1047     if (Result.isNull()) {
   1048       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1049       Info.FirstArg = Deduced[Index];
   1050       Info.SecondArg = NewDeduced;
   1051       return Sema::TDK_Inconsistent;
   1052     }
   1053 
   1054     Deduced[Index] = Result;
   1055     return Sema::TDK_Success;
   1056   }
   1057 
   1058   // Set up the template argument deduction information for a failure.
   1059   Info.FirstArg = TemplateArgument(ParamIn);
   1060   Info.SecondArg = TemplateArgument(ArgIn);
   1061 
   1062   // If the parameter is an already-substituted template parameter
   1063   // pack, do nothing: we don't know which of its arguments to look
   1064   // at, so we have to wait until all of the parameter packs in this
   1065   // expansion have arguments.
   1066   if (isa<SubstTemplateTypeParmPackType>(Param))
   1067     return Sema::TDK_Success;
   1068 
   1069   // Check the cv-qualifiers on the parameter and argument types.
   1070   if (!(TDF & TDF_IgnoreQualifiers)) {
   1071     if (TDF & TDF_ParamWithReferenceType) {
   1072       if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
   1073         return Sema::TDK_NonDeducedMismatch;
   1074     } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
   1075       if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
   1076         return Sema::TDK_NonDeducedMismatch;
   1077     }
   1078 
   1079     // If the parameter type is not dependent, there is nothing to deduce.
   1080     if (!Param->isDependentType()) {
   1081       if (!(TDF & TDF_SkipNonDependent) && Param != Arg)
   1082         return Sema::TDK_NonDeducedMismatch;
   1083 
   1084       return Sema::TDK_Success;
   1085     }
   1086   } else if (!Param->isDependentType() &&
   1087              Param.getUnqualifiedType() == Arg.getUnqualifiedType()) {
   1088     return Sema::TDK_Success;
   1089   }
   1090 
   1091   switch (Param->getTypeClass()) {
   1092     // Non-canonical types cannot appear here.
   1093 #define NON_CANONICAL_TYPE(Class, Base) \
   1094   case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
   1095 #define TYPE(Class, Base)
   1096 #include "clang/AST/TypeNodes.def"
   1097 
   1098     case Type::TemplateTypeParm:
   1099     case Type::SubstTemplateTypeParmPack:
   1100       llvm_unreachable("Type nodes handled above");
   1101 
   1102     // These types cannot be dependent, so simply check whether the types are
   1103     // the same.
   1104     case Type::Builtin:
   1105     case Type::VariableArray:
   1106     case Type::Vector:
   1107     case Type::FunctionNoProto:
   1108     case Type::Record:
   1109     case Type::Enum:
   1110     case Type::ObjCObject:
   1111     case Type::ObjCInterface:
   1112     case Type::ObjCObjectPointer: {
   1113       if (TDF & TDF_SkipNonDependent)
   1114         return Sema::TDK_Success;
   1115 
   1116       if (TDF & TDF_IgnoreQualifiers) {
   1117         Param = Param.getUnqualifiedType();
   1118         Arg = Arg.getUnqualifiedType();
   1119       }
   1120 
   1121       return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
   1122     }
   1123 
   1124     //     _Complex T   [placeholder extension]
   1125     case Type::Complex:
   1126       if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
   1127         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1128                                     cast<ComplexType>(Param)->getElementType(),
   1129                                     ComplexArg->getElementType(),
   1130                                     Info, Deduced, TDF);
   1131 
   1132       return Sema::TDK_NonDeducedMismatch;
   1133 
   1134     //     _Atomic T   [extension]
   1135     case Type::Atomic:
   1136       if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
   1137         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1138                                        cast<AtomicType>(Param)->getValueType(),
   1139                                        AtomicArg->getValueType(),
   1140                                        Info, Deduced, TDF);
   1141 
   1142       return Sema::TDK_NonDeducedMismatch;
   1143 
   1144     //     T *
   1145     case Type::Pointer: {
   1146       QualType PointeeType;
   1147       if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
   1148         PointeeType = PointerArg->getPointeeType();
   1149       } else if (const ObjCObjectPointerType *PointerArg
   1150                    = Arg->getAs<ObjCObjectPointerType>()) {
   1151         PointeeType = PointerArg->getPointeeType();
   1152       } else {
   1153         return Sema::TDK_NonDeducedMismatch;
   1154       }
   1155 
   1156       unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
   1157       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1158                                      cast<PointerType>(Param)->getPointeeType(),
   1159                                      PointeeType,
   1160                                      Info, Deduced, SubTDF);
   1161     }
   1162 
   1163     //     T &
   1164     case Type::LValueReference: {
   1165       const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
   1166       if (!ReferenceArg)
   1167         return Sema::TDK_NonDeducedMismatch;
   1168 
   1169       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1170                            cast<LValueReferenceType>(Param)->getPointeeType(),
   1171                            ReferenceArg->getPointeeType(), Info, Deduced, 0);
   1172     }
   1173 
   1174     //     T && [C++0x]
   1175     case Type::RValueReference: {
   1176       const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
   1177       if (!ReferenceArg)
   1178         return Sema::TDK_NonDeducedMismatch;
   1179 
   1180       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1181                              cast<RValueReferenceType>(Param)->getPointeeType(),
   1182                              ReferenceArg->getPointeeType(),
   1183                              Info, Deduced, 0);
   1184     }
   1185 
   1186     //     T [] (implied, but not stated explicitly)
   1187     case Type::IncompleteArray: {
   1188       const IncompleteArrayType *IncompleteArrayArg =
   1189         S.Context.getAsIncompleteArrayType(Arg);
   1190       if (!IncompleteArrayArg)
   1191         return Sema::TDK_NonDeducedMismatch;
   1192 
   1193       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1194       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1195                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
   1196                     IncompleteArrayArg->getElementType(),
   1197                     Info, Deduced, SubTDF);
   1198     }
   1199 
   1200     //     T [integer-constant]
   1201     case Type::ConstantArray: {
   1202       const ConstantArrayType *ConstantArrayArg =
   1203         S.Context.getAsConstantArrayType(Arg);
   1204       if (!ConstantArrayArg)
   1205         return Sema::TDK_NonDeducedMismatch;
   1206 
   1207       const ConstantArrayType *ConstantArrayParm =
   1208         S.Context.getAsConstantArrayType(Param);
   1209       if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
   1210         return Sema::TDK_NonDeducedMismatch;
   1211 
   1212       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1213       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1214                                            ConstantArrayParm->getElementType(),
   1215                                            ConstantArrayArg->getElementType(),
   1216                                            Info, Deduced, SubTDF);
   1217     }
   1218 
   1219     //     type [i]
   1220     case Type::DependentSizedArray: {
   1221       const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
   1222       if (!ArrayArg)
   1223         return Sema::TDK_NonDeducedMismatch;
   1224 
   1225       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1226 
   1227       // Check the element type of the arrays
   1228       const DependentSizedArrayType *DependentArrayParm
   1229         = S.Context.getAsDependentSizedArrayType(Param);
   1230       if (Sema::TemplateDeductionResult Result
   1231             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1232                                           DependentArrayParm->getElementType(),
   1233                                           ArrayArg->getElementType(),
   1234                                           Info, Deduced, SubTDF))
   1235         return Result;
   1236 
   1237       // Determine the array bound is something we can deduce.
   1238       NonTypeTemplateParmDecl *NTTP
   1239         = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
   1240       if (!NTTP)
   1241         return Sema::TDK_Success;
   1242 
   1243       // We can perform template argument deduction for the given non-type
   1244       // template parameter.
   1245       assert(NTTP->getDepth() == 0 &&
   1246              "Cannot deduce non-type template argument at depth > 0");
   1247       if (const ConstantArrayType *ConstantArrayArg
   1248             = dyn_cast<ConstantArrayType>(ArrayArg)) {
   1249         llvm::APSInt Size(ConstantArrayArg->getSize());
   1250         return DeduceNonTypeTemplateArgument(S, NTTP, Size,
   1251                                              S.Context.getSizeType(),
   1252                                              /*ArrayBound=*/true,
   1253                                              Info, Deduced);
   1254       }
   1255       if (const DependentSizedArrayType *DependentArrayArg
   1256             = dyn_cast<DependentSizedArrayType>(ArrayArg))
   1257         if (DependentArrayArg->getSizeExpr())
   1258           return DeduceNonTypeTemplateArgument(S, NTTP,
   1259                                                DependentArrayArg->getSizeExpr(),
   1260                                                Info, Deduced);
   1261 
   1262       // Incomplete type does not match a dependently-sized array type
   1263       return Sema::TDK_NonDeducedMismatch;
   1264     }
   1265 
   1266     //     type(*)(T)
   1267     //     T(*)()
   1268     //     T(*)(T)
   1269     case Type::FunctionProto: {
   1270       unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
   1271       const FunctionProtoType *FunctionProtoArg =
   1272         dyn_cast<FunctionProtoType>(Arg);
   1273       if (!FunctionProtoArg)
   1274         return Sema::TDK_NonDeducedMismatch;
   1275 
   1276       const FunctionProtoType *FunctionProtoParam =
   1277         cast<FunctionProtoType>(Param);
   1278 
   1279       if (FunctionProtoParam->getTypeQuals()
   1280             != FunctionProtoArg->getTypeQuals() ||
   1281           FunctionProtoParam->getRefQualifier()
   1282             != FunctionProtoArg->getRefQualifier() ||
   1283           FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
   1284         return Sema::TDK_NonDeducedMismatch;
   1285 
   1286       // Check return types.
   1287       if (Sema::TemplateDeductionResult Result
   1288             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1289                                             FunctionProtoParam->getResultType(),
   1290                                             FunctionProtoArg->getResultType(),
   1291                                             Info, Deduced, 0))
   1292         return Result;
   1293 
   1294       return DeduceTemplateArguments(S, TemplateParams,
   1295                                      FunctionProtoParam->arg_type_begin(),
   1296                                      FunctionProtoParam->getNumArgs(),
   1297                                      FunctionProtoArg->arg_type_begin(),
   1298                                      FunctionProtoArg->getNumArgs(),
   1299                                      Info, Deduced, SubTDF);
   1300     }
   1301 
   1302     case Type::InjectedClassName: {
   1303       // Treat a template's injected-class-name as if the template
   1304       // specialization type had been used.
   1305       Param = cast<InjectedClassNameType>(Param)
   1306         ->getInjectedSpecializationType();
   1307       assert(isa<TemplateSpecializationType>(Param) &&
   1308              "injected class name is not a template specialization type");
   1309       // fall through
   1310     }
   1311 
   1312     //     template-name<T> (where template-name refers to a class template)
   1313     //     template-name<i>
   1314     //     TT<T>
   1315     //     TT<i>
   1316     //     TT<>
   1317     case Type::TemplateSpecialization: {
   1318       const TemplateSpecializationType *SpecParam
   1319         = cast<TemplateSpecializationType>(Param);
   1320 
   1321       // Try to deduce template arguments from the template-id.
   1322       Sema::TemplateDeductionResult Result
   1323         = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
   1324                                   Info, Deduced);
   1325 
   1326       if (Result && (TDF & TDF_DerivedClass)) {
   1327         // C++ [temp.deduct.call]p3b3:
   1328         //   If P is a class, and P has the form template-id, then A can be a
   1329         //   derived class of the deduced A. Likewise, if P is a pointer to a
   1330         //   class of the form template-id, A can be a pointer to a derived
   1331         //   class pointed to by the deduced A.
   1332         //
   1333         // More importantly:
   1334         //   These alternatives are considered only if type deduction would
   1335         //   otherwise fail.
   1336         if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
   1337           // We cannot inspect base classes as part of deduction when the type
   1338           // is incomplete, so either instantiate any templates necessary to
   1339           // complete the type, or skip over it if it cannot be completed.
   1340           if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
   1341             return Result;
   1342 
   1343           // Use data recursion to crawl through the list of base classes.
   1344           // Visited contains the set of nodes we have already visited, while
   1345           // ToVisit is our stack of records that we still need to visit.
   1346           llvm::SmallPtrSet<const RecordType *, 8> Visited;
   1347           SmallVector<const RecordType *, 8> ToVisit;
   1348           ToVisit.push_back(RecordT);
   1349           bool Successful = false;
   1350           SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
   1351                                                               Deduced.end());
   1352           while (!ToVisit.empty()) {
   1353             // Retrieve the next class in the inheritance hierarchy.
   1354             const RecordType *NextT = ToVisit.back();
   1355             ToVisit.pop_back();
   1356 
   1357             // If we have already seen this type, skip it.
   1358             if (!Visited.insert(NextT))
   1359               continue;
   1360 
   1361             // If this is a base class, try to perform template argument
   1362             // deduction from it.
   1363             if (NextT != RecordT) {
   1364               Sema::TemplateDeductionResult BaseResult
   1365                 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
   1366                                           QualType(NextT, 0), Info, Deduced);
   1367 
   1368               // If template argument deduction for this base was successful,
   1369               // note that we had some success. Otherwise, ignore any deductions
   1370               // from this base class.
   1371               if (BaseResult == Sema::TDK_Success) {
   1372                 Successful = true;
   1373                 DeducedOrig.clear();
   1374                 DeducedOrig.append(Deduced.begin(), Deduced.end());
   1375               }
   1376               else
   1377                 Deduced = DeducedOrig;
   1378             }
   1379 
   1380             // Visit base classes
   1381             CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
   1382             for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
   1383                                                  BaseEnd = Next->bases_end();
   1384                  Base != BaseEnd; ++Base) {
   1385               assert(Base->getType()->isRecordType() &&
   1386                      "Base class that isn't a record?");
   1387               ToVisit.push_back(Base->getType()->getAs<RecordType>());
   1388             }
   1389           }
   1390 
   1391           if (Successful)
   1392             return Sema::TDK_Success;
   1393         }
   1394 
   1395       }
   1396 
   1397       return Result;
   1398     }
   1399 
   1400     //     T type::*
   1401     //     T T::*
   1402     //     T (type::*)()
   1403     //     type (T::*)()
   1404     //     type (type::*)(T)
   1405     //     type (T::*)(T)
   1406     //     T (type::*)(T)
   1407     //     T (T::*)()
   1408     //     T (T::*)(T)
   1409     case Type::MemberPointer: {
   1410       const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
   1411       const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
   1412       if (!MemPtrArg)
   1413         return Sema::TDK_NonDeducedMismatch;
   1414 
   1415       if (Sema::TemplateDeductionResult Result
   1416             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1417                                                  MemPtrParam->getPointeeType(),
   1418                                                  MemPtrArg->getPointeeType(),
   1419                                                  Info, Deduced,
   1420                                                  TDF & TDF_IgnoreQualifiers))
   1421         return Result;
   1422 
   1423       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1424                                            QualType(MemPtrParam->getClass(), 0),
   1425                                            QualType(MemPtrArg->getClass(), 0),
   1426                                            Info, Deduced,
   1427                                            TDF & TDF_IgnoreQualifiers);
   1428     }
   1429 
   1430     //     (clang extension)
   1431     //
   1432     //     type(^)(T)
   1433     //     T(^)()
   1434     //     T(^)(T)
   1435     case Type::BlockPointer: {
   1436       const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
   1437       const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
   1438 
   1439       if (!BlockPtrArg)
   1440         return Sema::TDK_NonDeducedMismatch;
   1441 
   1442       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1443                                                 BlockPtrParam->getPointeeType(),
   1444                                                 BlockPtrArg->getPointeeType(),
   1445                                                 Info, Deduced, 0);
   1446     }
   1447 
   1448     //     (clang extension)
   1449     //
   1450     //     T __attribute__(((ext_vector_type(<integral constant>))))
   1451     case Type::ExtVector: {
   1452       const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
   1453       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
   1454         // Make sure that the vectors have the same number of elements.
   1455         if (VectorParam->getNumElements() != VectorArg->getNumElements())
   1456           return Sema::TDK_NonDeducedMismatch;
   1457 
   1458         // Perform deduction on the element types.
   1459         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1460                                                   VectorParam->getElementType(),
   1461                                                   VectorArg->getElementType(),
   1462                                                   Info, Deduced, TDF);
   1463       }
   1464 
   1465       if (const DependentSizedExtVectorType *VectorArg
   1466                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
   1467         // We can't check the number of elements, since the argument has a
   1468         // dependent number of elements. This can only occur during partial
   1469         // ordering.
   1470 
   1471         // Perform deduction on the element types.
   1472         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1473                                                   VectorParam->getElementType(),
   1474                                                   VectorArg->getElementType(),
   1475                                                   Info, Deduced, TDF);
   1476       }
   1477 
   1478       return Sema::TDK_NonDeducedMismatch;
   1479     }
   1480 
   1481     //     (clang extension)
   1482     //
   1483     //     T __attribute__(((ext_vector_type(N))))
   1484     case Type::DependentSizedExtVector: {
   1485       const DependentSizedExtVectorType *VectorParam
   1486         = cast<DependentSizedExtVectorType>(Param);
   1487 
   1488       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
   1489         // Perform deduction on the element types.
   1490         if (Sema::TemplateDeductionResult Result
   1491               = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1492                                                   VectorParam->getElementType(),
   1493                                                    VectorArg->getElementType(),
   1494                                                    Info, Deduced, TDF))
   1495           return Result;
   1496 
   1497         // Perform deduction on the vector size, if we can.
   1498         NonTypeTemplateParmDecl *NTTP
   1499           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
   1500         if (!NTTP)
   1501           return Sema::TDK_Success;
   1502 
   1503         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
   1504         ArgSize = VectorArg->getNumElements();
   1505         return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
   1506                                              false, Info, Deduced);
   1507       }
   1508 
   1509       if (const DependentSizedExtVectorType *VectorArg
   1510                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
   1511         // Perform deduction on the element types.
   1512         if (Sema::TemplateDeductionResult Result
   1513             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1514                                                  VectorParam->getElementType(),
   1515                                                  VectorArg->getElementType(),
   1516                                                  Info, Deduced, TDF))
   1517           return Result;
   1518 
   1519         // Perform deduction on the vector size, if we can.
   1520         NonTypeTemplateParmDecl *NTTP
   1521           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
   1522         if (!NTTP)
   1523           return Sema::TDK_Success;
   1524 
   1525         return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
   1526                                              Info, Deduced);
   1527       }
   1528 
   1529       return Sema::TDK_NonDeducedMismatch;
   1530     }
   1531 
   1532     case Type::TypeOfExpr:
   1533     case Type::TypeOf:
   1534     case Type::DependentName:
   1535     case Type::UnresolvedUsing:
   1536     case Type::Decltype:
   1537     case Type::UnaryTransform:
   1538     case Type::Auto:
   1539     case Type::DependentTemplateSpecialization:
   1540     case Type::PackExpansion:
   1541       // No template argument deduction for these types
   1542       return Sema::TDK_Success;
   1543   }
   1544 
   1545   llvm_unreachable("Invalid Type Class!");
   1546 }
   1547 
   1548 static Sema::TemplateDeductionResult
   1549 DeduceTemplateArguments(Sema &S,
   1550                         TemplateParameterList *TemplateParams,
   1551                         const TemplateArgument &Param,
   1552                         TemplateArgument Arg,
   1553                         TemplateDeductionInfo &Info,
   1554                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1555   // If the template argument is a pack expansion, perform template argument
   1556   // deduction against the pattern of that expansion. This only occurs during
   1557   // partial ordering.
   1558   if (Arg.isPackExpansion())
   1559     Arg = Arg.getPackExpansionPattern();
   1560 
   1561   switch (Param.getKind()) {
   1562   case TemplateArgument::Null:
   1563     llvm_unreachable("Null template argument in parameter list");
   1564 
   1565   case TemplateArgument::Type:
   1566     if (Arg.getKind() == TemplateArgument::Type)
   1567       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1568                                                 Param.getAsType(),
   1569                                                 Arg.getAsType(),
   1570                                                 Info, Deduced, 0);
   1571     Info.FirstArg = Param;
   1572     Info.SecondArg = Arg;
   1573     return Sema::TDK_NonDeducedMismatch;
   1574 
   1575   case TemplateArgument::Template:
   1576     if (Arg.getKind() == TemplateArgument::Template)
   1577       return DeduceTemplateArguments(S, TemplateParams,
   1578                                      Param.getAsTemplate(),
   1579                                      Arg.getAsTemplate(), Info, Deduced);
   1580     Info.FirstArg = Param;
   1581     Info.SecondArg = Arg;
   1582     return Sema::TDK_NonDeducedMismatch;
   1583 
   1584   case TemplateArgument::TemplateExpansion:
   1585     llvm_unreachable("caller should handle pack expansions");
   1586 
   1587   case TemplateArgument::Declaration:
   1588     if (Arg.getKind() == TemplateArgument::Declaration &&
   1589         isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
   1590       return Sema::TDK_Success;
   1591 
   1592     Info.FirstArg = Param;
   1593     Info.SecondArg = Arg;
   1594     return Sema::TDK_NonDeducedMismatch;
   1595 
   1596   case TemplateArgument::Integral:
   1597     if (Arg.getKind() == TemplateArgument::Integral) {
   1598       if (hasSameExtendedValue(*Param.getAsIntegral(), *Arg.getAsIntegral()))
   1599         return Sema::TDK_Success;
   1600 
   1601       Info.FirstArg = Param;
   1602       Info.SecondArg = Arg;
   1603       return Sema::TDK_NonDeducedMismatch;
   1604     }
   1605 
   1606     if (Arg.getKind() == TemplateArgument::Expression) {
   1607       Info.FirstArg = Param;
   1608       Info.SecondArg = Arg;
   1609       return Sema::TDK_NonDeducedMismatch;
   1610     }
   1611 
   1612     Info.FirstArg = Param;
   1613     Info.SecondArg = Arg;
   1614     return Sema::TDK_NonDeducedMismatch;
   1615 
   1616   case TemplateArgument::Expression: {
   1617     if (NonTypeTemplateParmDecl *NTTP
   1618           = getDeducedParameterFromExpr(Param.getAsExpr())) {
   1619       if (Arg.getKind() == TemplateArgument::Integral)
   1620         return DeduceNonTypeTemplateArgument(S, NTTP,
   1621                                              *Arg.getAsIntegral(),
   1622                                              Arg.getIntegralType(),
   1623                                              /*ArrayBound=*/false,
   1624                                              Info, Deduced);
   1625       if (Arg.getKind() == TemplateArgument::Expression)
   1626         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
   1627                                              Info, Deduced);
   1628       if (Arg.getKind() == TemplateArgument::Declaration)
   1629         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
   1630                                              Info, Deduced);
   1631 
   1632       Info.FirstArg = Param;
   1633       Info.SecondArg = Arg;
   1634       return Sema::TDK_NonDeducedMismatch;
   1635     }
   1636 
   1637     // Can't deduce anything, but that's okay.
   1638     return Sema::TDK_Success;
   1639   }
   1640   case TemplateArgument::Pack:
   1641     llvm_unreachable("Argument packs should be expanded by the caller!");
   1642   }
   1643 
   1644   llvm_unreachable("Invalid TemplateArgument Kind!");
   1645 }
   1646 
   1647 /// \brief Determine whether there is a template argument to be used for
   1648 /// deduction.
   1649 ///
   1650 /// This routine "expands" argument packs in-place, overriding its input
   1651 /// parameters so that \c Args[ArgIdx] will be the available template argument.
   1652 ///
   1653 /// \returns true if there is another template argument (which will be at
   1654 /// \c Args[ArgIdx]), false otherwise.
   1655 static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
   1656                                             unsigned &ArgIdx,
   1657                                             unsigned &NumArgs) {
   1658   if (ArgIdx == NumArgs)
   1659     return false;
   1660 
   1661   const TemplateArgument &Arg = Args[ArgIdx];
   1662   if (Arg.getKind() != TemplateArgument::Pack)
   1663     return true;
   1664 
   1665   assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
   1666   Args = Arg.pack_begin();
   1667   NumArgs = Arg.pack_size();
   1668   ArgIdx = 0;
   1669   return ArgIdx < NumArgs;
   1670 }
   1671 
   1672 /// \brief Determine whether the given set of template arguments has a pack
   1673 /// expansion that is not the last template argument.
   1674 static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
   1675                                       unsigned NumArgs) {
   1676   unsigned ArgIdx = 0;
   1677   while (ArgIdx < NumArgs) {
   1678     const TemplateArgument &Arg = Args[ArgIdx];
   1679 
   1680     // Unwrap argument packs.
   1681     if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
   1682       Args = Arg.pack_begin();
   1683       NumArgs = Arg.pack_size();
   1684       ArgIdx = 0;
   1685       continue;
   1686     }
   1687 
   1688     ++ArgIdx;
   1689     if (ArgIdx == NumArgs)
   1690       return false;
   1691 
   1692     if (Arg.isPackExpansion())
   1693       return true;
   1694   }
   1695 
   1696   return false;
   1697 }
   1698 
   1699 static Sema::TemplateDeductionResult
   1700 DeduceTemplateArguments(Sema &S,
   1701                         TemplateParameterList *TemplateParams,
   1702                         const TemplateArgument *Params, unsigned NumParams,
   1703                         const TemplateArgument *Args, unsigned NumArgs,
   1704                         TemplateDeductionInfo &Info,
   1705                     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   1706                         bool NumberOfArgumentsMustMatch) {
   1707   // C++0x [temp.deduct.type]p9:
   1708   //   If the template argument list of P contains a pack expansion that is not
   1709   //   the last template argument, the entire template argument list is a
   1710   //   non-deduced context.
   1711   if (hasPackExpansionBeforeEnd(Params, NumParams))
   1712     return Sema::TDK_Success;
   1713 
   1714   // C++0x [temp.deduct.type]p9:
   1715   //   If P has a form that contains <T> or <i>, then each argument Pi of the
   1716   //   respective template argument list P is compared with the corresponding
   1717   //   argument Ai of the corresponding template argument list of A.
   1718   unsigned ArgIdx = 0, ParamIdx = 0;
   1719   for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
   1720        ++ParamIdx) {
   1721     if (!Params[ParamIdx].isPackExpansion()) {
   1722       // The simple case: deduce template arguments by matching Pi and Ai.
   1723 
   1724       // Check whether we have enough arguments.
   1725       if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
   1726         return NumberOfArgumentsMustMatch? Sema::TDK_NonDeducedMismatch
   1727                                          : Sema::TDK_Success;
   1728 
   1729       if (Args[ArgIdx].isPackExpansion()) {
   1730         // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
   1731         // but applied to pack expansions that are template arguments.
   1732         return Sema::TDK_NonDeducedMismatch;
   1733       }
   1734 
   1735       // Perform deduction for this Pi/Ai pair.
   1736       if (Sema::TemplateDeductionResult Result
   1737             = DeduceTemplateArguments(S, TemplateParams,
   1738                                       Params[ParamIdx], Args[ArgIdx],
   1739                                       Info, Deduced))
   1740         return Result;
   1741 
   1742       // Move to the next argument.
   1743       ++ArgIdx;
   1744       continue;
   1745     }
   1746 
   1747     // The parameter is a pack expansion.
   1748 
   1749     // C++0x [temp.deduct.type]p9:
   1750     //   If Pi is a pack expansion, then the pattern of Pi is compared with
   1751     //   each remaining argument in the template argument list of A. Each
   1752     //   comparison deduces template arguments for subsequent positions in the
   1753     //   template parameter packs expanded by Pi.
   1754     TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
   1755 
   1756     // Compute the set of template parameter indices that correspond to
   1757     // parameter packs expanded by the pack expansion.
   1758     SmallVector<unsigned, 2> PackIndices;
   1759     {
   1760       llvm::SmallBitVector SawIndices(TemplateParams->size());
   1761       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
   1762       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
   1763       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
   1764         unsigned Depth, Index;
   1765         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
   1766         if (Depth == 0 && !SawIndices[Index]) {
   1767           SawIndices[Index] = true;
   1768           PackIndices.push_back(Index);
   1769         }
   1770       }
   1771     }
   1772     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
   1773 
   1774     // FIXME: If there are no remaining arguments, we can bail out early
   1775     // and set any deduced parameter packs to an empty argument pack.
   1776     // The latter part of this is a (minor) correctness issue.
   1777 
   1778     // Save the deduced template arguments for each parameter pack expanded
   1779     // by this pack expansion, then clear out the deduction.
   1780     SmallVector<DeducedTemplateArgument, 2>
   1781       SavedPacks(PackIndices.size());
   1782     SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
   1783       NewlyDeducedPacks(PackIndices.size());
   1784     PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
   1785                                  NewlyDeducedPacks);
   1786 
   1787     // Keep track of the deduced template arguments for each parameter pack
   1788     // expanded by this pack expansion (the outer index) and for each
   1789     // template argument (the inner SmallVectors).
   1790     bool HasAnyArguments = false;
   1791     while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
   1792       HasAnyArguments = true;
   1793 
   1794       // Deduce template arguments from the pattern.
   1795       if (Sema::TemplateDeductionResult Result
   1796             = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
   1797                                       Info, Deduced))
   1798         return Result;
   1799 
   1800       // Capture the deduced template arguments for each parameter pack expanded
   1801       // by this pack expansion, add them to the list of arguments we've deduced
   1802       // for that pack, then clear out the deduced argument.
   1803       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
   1804         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
   1805         if (!DeducedArg.isNull()) {
   1806           NewlyDeducedPacks[I].push_back(DeducedArg);
   1807           DeducedArg = DeducedTemplateArgument();
   1808         }
   1809       }
   1810 
   1811       ++ArgIdx;
   1812     }
   1813 
   1814     // Build argument packs for each of the parameter packs expanded by this
   1815     // pack expansion.
   1816     if (Sema::TemplateDeductionResult Result
   1817           = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
   1818                                         Deduced, PackIndices, SavedPacks,
   1819                                         NewlyDeducedPacks, Info))
   1820       return Result;
   1821   }
   1822 
   1823   // If there is an argument remaining, then we had too many arguments.
   1824   if (NumberOfArgumentsMustMatch &&
   1825       hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
   1826     return Sema::TDK_NonDeducedMismatch;
   1827 
   1828   return Sema::TDK_Success;
   1829 }
   1830 
   1831 static Sema::TemplateDeductionResult
   1832 DeduceTemplateArguments(Sema &S,
   1833                         TemplateParameterList *TemplateParams,
   1834                         const TemplateArgumentList &ParamList,
   1835                         const TemplateArgumentList &ArgList,
   1836                         TemplateDeductionInfo &Info,
   1837                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1838   return DeduceTemplateArguments(S, TemplateParams,
   1839                                  ParamList.data(), ParamList.size(),
   1840                                  ArgList.data(), ArgList.size(),
   1841                                  Info, Deduced);
   1842 }
   1843 
   1844 /// \brief Determine whether two template arguments are the same.
   1845 static bool isSameTemplateArg(ASTContext &Context,
   1846                               const TemplateArgument &X,
   1847                               const TemplateArgument &Y) {
   1848   if (X.getKind() != Y.getKind())
   1849     return false;
   1850 
   1851   switch (X.getKind()) {
   1852     case TemplateArgument::Null:
   1853       llvm_unreachable("Comparing NULL template argument");
   1854 
   1855     case TemplateArgument::Type:
   1856       return Context.getCanonicalType(X.getAsType()) ==
   1857              Context.getCanonicalType(Y.getAsType());
   1858 
   1859     case TemplateArgument::Declaration:
   1860       return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
   1861 
   1862     case TemplateArgument::Template:
   1863     case TemplateArgument::TemplateExpansion:
   1864       return Context.getCanonicalTemplateName(
   1865                     X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
   1866              Context.getCanonicalTemplateName(
   1867                     Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
   1868 
   1869     case TemplateArgument::Integral:
   1870       return *X.getAsIntegral() == *Y.getAsIntegral();
   1871 
   1872     case TemplateArgument::Expression: {
   1873       llvm::FoldingSetNodeID XID, YID;
   1874       X.getAsExpr()->Profile(XID, Context, true);
   1875       Y.getAsExpr()->Profile(YID, Context, true);
   1876       return XID == YID;
   1877     }
   1878 
   1879     case TemplateArgument::Pack:
   1880       if (X.pack_size() != Y.pack_size())
   1881         return false;
   1882 
   1883       for (TemplateArgument::pack_iterator XP = X.pack_begin(),
   1884                                         XPEnd = X.pack_end(),
   1885                                            YP = Y.pack_begin();
   1886            XP != XPEnd; ++XP, ++YP)
   1887         if (!isSameTemplateArg(Context, *XP, *YP))
   1888           return false;
   1889 
   1890       return true;
   1891   }
   1892 
   1893   llvm_unreachable("Invalid TemplateArgument Kind!");
   1894 }
   1895 
   1896 /// \brief Allocate a TemplateArgumentLoc where all locations have
   1897 /// been initialized to the given location.
   1898 ///
   1899 /// \param S The semantic analysis object.
   1900 ///
   1901 /// \param The template argument we are producing template argument
   1902 /// location information for.
   1903 ///
   1904 /// \param NTTPType For a declaration template argument, the type of
   1905 /// the non-type template parameter that corresponds to this template
   1906 /// argument.
   1907 ///
   1908 /// \param Loc The source location to use for the resulting template
   1909 /// argument.
   1910 static TemplateArgumentLoc
   1911 getTrivialTemplateArgumentLoc(Sema &S,
   1912                               const TemplateArgument &Arg,
   1913                               QualType NTTPType,
   1914                               SourceLocation Loc) {
   1915   switch (Arg.getKind()) {
   1916   case TemplateArgument::Null:
   1917     llvm_unreachable("Can't get a NULL template argument here");
   1918 
   1919   case TemplateArgument::Type:
   1920     return TemplateArgumentLoc(Arg,
   1921                      S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
   1922 
   1923   case TemplateArgument::Declaration: {
   1924     Expr *E
   1925       = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
   1926           .takeAs<Expr>();
   1927     return TemplateArgumentLoc(TemplateArgument(E), E);
   1928   }
   1929 
   1930   case TemplateArgument::Integral: {
   1931     Expr *E
   1932       = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
   1933     return TemplateArgumentLoc(TemplateArgument(E), E);
   1934   }
   1935 
   1936     case TemplateArgument::Template:
   1937     case TemplateArgument::TemplateExpansion: {
   1938       NestedNameSpecifierLocBuilder Builder;
   1939       TemplateName Template = Arg.getAsTemplate();
   1940       if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
   1941         Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
   1942       else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
   1943         Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
   1944 
   1945       if (Arg.getKind() == TemplateArgument::Template)
   1946         return TemplateArgumentLoc(Arg,
   1947                                    Builder.getWithLocInContext(S.Context),
   1948                                    Loc);
   1949 
   1950 
   1951       return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
   1952                                  Loc, Loc);
   1953     }
   1954 
   1955   case TemplateArgument::Expression:
   1956     return TemplateArgumentLoc(Arg, Arg.getAsExpr());
   1957 
   1958   case TemplateArgument::Pack:
   1959     return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
   1960   }
   1961 
   1962   llvm_unreachable("Invalid TemplateArgument Kind!");
   1963 }
   1964 
   1965 
   1966 /// \brief Convert the given deduced template argument and add it to the set of
   1967 /// fully-converted template arguments.
   1968 static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
   1969                                            DeducedTemplateArgument Arg,
   1970                                            NamedDecl *Template,
   1971                                            QualType NTTPType,
   1972                                            unsigned ArgumentPackIndex,
   1973                                            TemplateDeductionInfo &Info,
   1974                                            bool InFunctionTemplate,
   1975                              SmallVectorImpl<TemplateArgument> &Output) {
   1976   if (Arg.getKind() == TemplateArgument::Pack) {
   1977     // This is a template argument pack, so check each of its arguments against
   1978     // the template parameter.
   1979     SmallVector<TemplateArgument, 2> PackedArgsBuilder;
   1980     for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
   1981                                       PAEnd = Arg.pack_end();
   1982          PA != PAEnd; ++PA) {
   1983       // When converting the deduced template argument, append it to the
   1984       // general output list. We need to do this so that the template argument
   1985       // checking logic has all of the prior template arguments available.
   1986       DeducedTemplateArgument InnerArg(*PA);
   1987       InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
   1988       if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
   1989                                          NTTPType, PackedArgsBuilder.size(),
   1990                                          Info, InFunctionTemplate, Output))
   1991         return true;
   1992 
   1993       // Move the converted template argument into our argument pack.
   1994       PackedArgsBuilder.push_back(Output.back());
   1995       Output.pop_back();
   1996     }
   1997 
   1998     // Create the resulting argument pack.
   1999     Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
   2000                                                       PackedArgsBuilder.data(),
   2001                                                      PackedArgsBuilder.size()));
   2002     return false;
   2003   }
   2004 
   2005   // Convert the deduced template argument into a template
   2006   // argument that we can check, almost as if the user had written
   2007   // the template argument explicitly.
   2008   TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
   2009                                                              Info.getLocation());
   2010 
   2011   // Check the template argument, converting it as necessary.
   2012   return S.CheckTemplateArgument(Param, ArgLoc,
   2013                                  Template,
   2014                                  Template->getLocation(),
   2015                                  Template->getSourceRange().getEnd(),
   2016                                  ArgumentPackIndex,
   2017                                  Output,
   2018                                  InFunctionTemplate
   2019                                   ? (Arg.wasDeducedFromArrayBound()
   2020                                        ? Sema::CTAK_DeducedFromArrayBound
   2021                                        : Sema::CTAK_Deduced)
   2022                                  : Sema::CTAK_Specified);
   2023 }
   2024 
   2025 /// Complete template argument deduction for a class template partial
   2026 /// specialization.
   2027 static Sema::TemplateDeductionResult
   2028 FinishTemplateArgumentDeduction(Sema &S,
   2029                                 ClassTemplatePartialSpecializationDecl *Partial,
   2030                                 const TemplateArgumentList &TemplateArgs,
   2031                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2032                                 TemplateDeductionInfo &Info) {
   2033   // Unevaluated SFINAE context.
   2034   EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
   2035   Sema::SFINAETrap Trap(S);
   2036 
   2037   Sema::ContextRAII SavedContext(S, Partial);
   2038 
   2039   // C++ [temp.deduct.type]p2:
   2040   //   [...] or if any template argument remains neither deduced nor
   2041   //   explicitly specified, template argument deduction fails.
   2042   SmallVector<TemplateArgument, 4> Builder;
   2043   TemplateParameterList *PartialParams = Partial->getTemplateParameters();
   2044   for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
   2045     NamedDecl *Param = PartialParams->getParam(I);
   2046     if (Deduced[I].isNull()) {
   2047       Info.Param = makeTemplateParameter(Param);
   2048       return Sema::TDK_Incomplete;
   2049     }
   2050 
   2051     // We have deduced this argument, so it still needs to be
   2052     // checked and converted.
   2053 
   2054     // First, for a non-type template parameter type that is
   2055     // initialized by a declaration, we need the type of the
   2056     // corresponding non-type template parameter.
   2057     QualType NTTPType;
   2058     if (NonTypeTemplateParmDecl *NTTP
   2059                                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2060       NTTPType = NTTP->getType();
   2061       if (NTTPType->isDependentType()) {
   2062         TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2063                                           Builder.data(), Builder.size());
   2064         NTTPType = S.SubstType(NTTPType,
   2065                                MultiLevelTemplateArgumentList(TemplateArgs),
   2066                                NTTP->getLocation(),
   2067                                NTTP->getDeclName());
   2068         if (NTTPType.isNull()) {
   2069           Info.Param = makeTemplateParameter(Param);
   2070           // FIXME: These template arguments are temporary. Free them!
   2071           Info.reset(TemplateArgumentList::CreateCopy(S.Context,
   2072                                                       Builder.data(),
   2073                                                       Builder.size()));
   2074           return Sema::TDK_SubstitutionFailure;
   2075         }
   2076       }
   2077     }
   2078 
   2079     if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
   2080                                        Partial, NTTPType, 0, Info, false,
   2081                                        Builder)) {
   2082       Info.Param = makeTemplateParameter(Param);
   2083       // FIXME: These template arguments are temporary. Free them!
   2084       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2085                                                   Builder.size()));
   2086       return Sema::TDK_SubstitutionFailure;
   2087     }
   2088   }
   2089 
   2090   // Form the template argument list from the deduced template arguments.
   2091   TemplateArgumentList *DeducedArgumentList
   2092     = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2093                                        Builder.size());
   2094 
   2095   Info.reset(DeducedArgumentList);
   2096 
   2097   // Substitute the deduced template arguments into the template
   2098   // arguments of the class template partial specialization, and
   2099   // verify that the instantiated template arguments are both valid
   2100   // and are equivalent to the template arguments originally provided
   2101   // to the class template.
   2102   LocalInstantiationScope InstScope(S);
   2103   ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
   2104   const TemplateArgumentLoc *PartialTemplateArgs
   2105     = Partial->getTemplateArgsAsWritten();
   2106 
   2107   // Note that we don't provide the langle and rangle locations.
   2108   TemplateArgumentListInfo InstArgs;
   2109 
   2110   if (S.Subst(PartialTemplateArgs,
   2111               Partial->getNumTemplateArgsAsWritten(),
   2112               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
   2113     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
   2114     if (ParamIdx >= Partial->getTemplateParameters()->size())
   2115       ParamIdx = Partial->getTemplateParameters()->size() - 1;
   2116 
   2117     Decl *Param
   2118       = const_cast<NamedDecl *>(
   2119                           Partial->getTemplateParameters()->getParam(ParamIdx));
   2120     Info.Param = makeTemplateParameter(Param);
   2121     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
   2122     return Sema::TDK_SubstitutionFailure;
   2123   }
   2124 
   2125   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
   2126   if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
   2127                                   InstArgs, false, ConvertedInstArgs))
   2128     return Sema::TDK_SubstitutionFailure;
   2129 
   2130   TemplateParameterList *TemplateParams
   2131     = ClassTemplate->getTemplateParameters();
   2132   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
   2133     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
   2134     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
   2135       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
   2136       Info.FirstArg = TemplateArgs[I];
   2137       Info.SecondArg = InstArg;
   2138       return Sema::TDK_NonDeducedMismatch;
   2139     }
   2140   }
   2141 
   2142   if (Trap.hasErrorOccurred())
   2143     return Sema::TDK_SubstitutionFailure;
   2144 
   2145   return Sema::TDK_Success;
   2146 }
   2147 
   2148 /// \brief Perform template argument deduction to determine whether
   2149 /// the given template arguments match the given class template
   2150 /// partial specialization per C++ [temp.class.spec.match].
   2151 Sema::TemplateDeductionResult
   2152 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
   2153                               const TemplateArgumentList &TemplateArgs,
   2154                               TemplateDeductionInfo &Info) {
   2155   // C++ [temp.class.spec.match]p2:
   2156   //   A partial specialization matches a given actual template
   2157   //   argument list if the template arguments of the partial
   2158   //   specialization can be deduced from the actual template argument
   2159   //   list (14.8.2).
   2160 
   2161   // Unevaluated SFINAE context.
   2162   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2163   SFINAETrap Trap(*this);
   2164 
   2165   SmallVector<DeducedTemplateArgument, 4> Deduced;
   2166   Deduced.resize(Partial->getTemplateParameters()->size());
   2167   if (TemplateDeductionResult Result
   2168         = ::DeduceTemplateArguments(*this,
   2169                                     Partial->getTemplateParameters(),
   2170                                     Partial->getTemplateArgs(),
   2171                                     TemplateArgs, Info, Deduced))
   2172     return Result;
   2173 
   2174   InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
   2175                              Deduced.data(), Deduced.size(), Info);
   2176   if (Inst)
   2177     return TDK_InstantiationDepth;
   2178 
   2179   if (Trap.hasErrorOccurred())
   2180     return Sema::TDK_SubstitutionFailure;
   2181 
   2182   return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
   2183                                            Deduced, Info);
   2184 }
   2185 
   2186 /// \brief Determine whether the given type T is a simple-template-id type.
   2187 static bool isSimpleTemplateIdType(QualType T) {
   2188   if (const TemplateSpecializationType *Spec
   2189         = T->getAs<TemplateSpecializationType>())
   2190     return Spec->getTemplateName().getAsTemplateDecl() != 0;
   2191 
   2192   return false;
   2193 }
   2194 
   2195 /// \brief Substitute the explicitly-provided template arguments into the
   2196 /// given function template according to C++ [temp.arg.explicit].
   2197 ///
   2198 /// \param FunctionTemplate the function template into which the explicit
   2199 /// template arguments will be substituted.
   2200 ///
   2201 /// \param ExplicitTemplateArguments the explicitly-specified template
   2202 /// arguments.
   2203 ///
   2204 /// \param Deduced the deduced template arguments, which will be populated
   2205 /// with the converted and checked explicit template arguments.
   2206 ///
   2207 /// \param ParamTypes will be populated with the instantiated function
   2208 /// parameters.
   2209 ///
   2210 /// \param FunctionType if non-NULL, the result type of the function template
   2211 /// will also be instantiated and the pointed-to value will be updated with
   2212 /// the instantiated function type.
   2213 ///
   2214 /// \param Info if substitution fails for any reason, this object will be
   2215 /// populated with more information about the failure.
   2216 ///
   2217 /// \returns TDK_Success if substitution was successful, or some failure
   2218 /// condition.
   2219 Sema::TemplateDeductionResult
   2220 Sema::SubstituteExplicitTemplateArguments(
   2221                                       FunctionTemplateDecl *FunctionTemplate,
   2222                                TemplateArgumentListInfo &ExplicitTemplateArgs,
   2223                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2224                                  SmallVectorImpl<QualType> &ParamTypes,
   2225                                           QualType *FunctionType,
   2226                                           TemplateDeductionInfo &Info) {
   2227   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   2228   TemplateParameterList *TemplateParams
   2229     = FunctionTemplate->getTemplateParameters();
   2230 
   2231   if (ExplicitTemplateArgs.size() == 0) {
   2232     // No arguments to substitute; just copy over the parameter types and
   2233     // fill in the function type.
   2234     for (FunctionDecl::param_iterator P = Function->param_begin(),
   2235                                    PEnd = Function->param_end();
   2236          P != PEnd;
   2237          ++P)
   2238       ParamTypes.push_back((*P)->getType());
   2239 
   2240     if (FunctionType)
   2241       *FunctionType = Function->getType();
   2242     return TDK_Success;
   2243   }
   2244 
   2245   // Unevaluated SFINAE context.
   2246   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2247   SFINAETrap Trap(*this);
   2248 
   2249   // C++ [temp.arg.explicit]p3:
   2250   //   Template arguments that are present shall be specified in the
   2251   //   declaration order of their corresponding template-parameters. The
   2252   //   template argument list shall not specify more template-arguments than
   2253   //   there are corresponding template-parameters.
   2254   SmallVector<TemplateArgument, 4> Builder;
   2255 
   2256   // Enter a new template instantiation context where we check the
   2257   // explicitly-specified template arguments against this function template,
   2258   // and then substitute them into the function parameter types.
   2259   InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
   2260                              FunctionTemplate, Deduced.data(), Deduced.size(),
   2261            ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
   2262                              Info);
   2263   if (Inst)
   2264     return TDK_InstantiationDepth;
   2265 
   2266   if (CheckTemplateArgumentList(FunctionTemplate,
   2267                                 SourceLocation(),
   2268                                 ExplicitTemplateArgs,
   2269                                 true,
   2270                                 Builder) || Trap.hasErrorOccurred()) {
   2271     unsigned Index = Builder.size();
   2272     if (Index >= TemplateParams->size())
   2273       Index = TemplateParams->size() - 1;
   2274     Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
   2275     return TDK_InvalidExplicitArguments;
   2276   }
   2277 
   2278   // Form the template argument list from the explicitly-specified
   2279   // template arguments.
   2280   TemplateArgumentList *ExplicitArgumentList
   2281     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
   2282   Info.reset(ExplicitArgumentList);
   2283 
   2284   // Template argument deduction and the final substitution should be
   2285   // done in the context of the templated declaration.  Explicit
   2286   // argument substitution, on the other hand, needs to happen in the
   2287   // calling context.
   2288   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
   2289 
   2290   // If we deduced template arguments for a template parameter pack,
   2291   // note that the template argument pack is partially substituted and record
   2292   // the explicit template arguments. They'll be used as part of deduction
   2293   // for this template parameter pack.
   2294   for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
   2295     const TemplateArgument &Arg = Builder[I];
   2296     if (Arg.getKind() == TemplateArgument::Pack) {
   2297       CurrentInstantiationScope->SetPartiallySubstitutedPack(
   2298                                                  TemplateParams->getParam(I),
   2299                                                              Arg.pack_begin(),
   2300                                                              Arg.pack_size());
   2301       break;
   2302     }
   2303   }
   2304 
   2305   const FunctionProtoType *Proto
   2306     = Function->getType()->getAs<FunctionProtoType>();
   2307   assert(Proto && "Function template does not have a prototype?");
   2308 
   2309   // Instantiate the types of each of the function parameters given the
   2310   // explicitly-specified template arguments. If the function has a trailing
   2311   // return type, substitute it after the arguments to ensure we substitute
   2312   // in lexical order.
   2313   if (Proto->hasTrailingReturn()) {
   2314     if (SubstParmTypes(Function->getLocation(),
   2315                        Function->param_begin(), Function->getNumParams(),
   2316                        MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2317                        ParamTypes))
   2318       return TDK_SubstitutionFailure;
   2319   }
   2320 
   2321   // Instantiate the return type.
   2322   // FIXME: exception-specifications?
   2323   QualType ResultType;
   2324   {
   2325     // C++11 [expr.prim.general]p3:
   2326     //   If a declaration declares a member function or member function
   2327     //   template of a class X, the expression this is a prvalue of type
   2328     //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
   2329     //   and the end of the function-definition, member-declarator, or
   2330     //   declarator.
   2331     unsigned ThisTypeQuals = 0;
   2332     CXXRecordDecl *ThisContext = 0;
   2333     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
   2334       ThisContext = Method->getParent();
   2335       ThisTypeQuals = Method->getTypeQualifiers();
   2336     }
   2337 
   2338     CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
   2339                                getLangOpts().CPlusPlus0x);
   2340 
   2341     ResultType = SubstType(Proto->getResultType(),
   2342                    MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2343                    Function->getTypeSpecStartLoc(),
   2344                    Function->getDeclName());
   2345     if (ResultType.isNull() || Trap.hasErrorOccurred())
   2346       return TDK_SubstitutionFailure;
   2347   }
   2348 
   2349   // Instantiate the types of each of the function parameters given the
   2350   // explicitly-specified template arguments if we didn't do so earlier.
   2351   if (!Proto->hasTrailingReturn() &&
   2352       SubstParmTypes(Function->getLocation(),
   2353                      Function->param_begin(), Function->getNumParams(),
   2354                      MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2355                      ParamTypes))
   2356     return TDK_SubstitutionFailure;
   2357 
   2358   if (FunctionType) {
   2359     *FunctionType = BuildFunctionType(ResultType,
   2360                                       ParamTypes.data(), ParamTypes.size(),
   2361                                       Proto->isVariadic(),
   2362                                       Proto->hasTrailingReturn(),
   2363                                       Proto->getTypeQuals(),
   2364                                       Proto->getRefQualifier(),
   2365                                       Function->getLocation(),
   2366                                       Function->getDeclName(),
   2367                                       Proto->getExtInfo());
   2368     if (FunctionType->isNull() || Trap.hasErrorOccurred())
   2369       return TDK_SubstitutionFailure;
   2370   }
   2371 
   2372   // C++ [temp.arg.explicit]p2:
   2373   //   Trailing template arguments that can be deduced (14.8.2) may be
   2374   //   omitted from the list of explicit template-arguments. If all of the
   2375   //   template arguments can be deduced, they may all be omitted; in this
   2376   //   case, the empty template argument list <> itself may also be omitted.
   2377   //
   2378   // Take all of the explicitly-specified arguments and put them into
   2379   // the set of deduced template arguments. Explicitly-specified
   2380   // parameter packs, however, will be set to NULL since the deduction
   2381   // mechanisms handle explicitly-specified argument packs directly.
   2382   Deduced.reserve(TemplateParams->size());
   2383   for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
   2384     const TemplateArgument &Arg = ExplicitArgumentList->get(I);
   2385     if (Arg.getKind() == TemplateArgument::Pack)
   2386       Deduced.push_back(DeducedTemplateArgument());
   2387     else
   2388       Deduced.push_back(Arg);
   2389   }
   2390 
   2391   return TDK_Success;
   2392 }
   2393 
   2394 /// \brief Check whether the deduced argument type for a call to a function
   2395 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
   2396 static bool
   2397 CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
   2398                               QualType DeducedA) {
   2399   ASTContext &Context = S.Context;
   2400 
   2401   QualType A = OriginalArg.OriginalArgType;
   2402   QualType OriginalParamType = OriginalArg.OriginalParamType;
   2403 
   2404   // Check for type equality (top-level cv-qualifiers are ignored).
   2405   if (Context.hasSameUnqualifiedType(A, DeducedA))
   2406     return false;
   2407 
   2408   // Strip off references on the argument types; they aren't needed for
   2409   // the following checks.
   2410   if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
   2411     DeducedA = DeducedARef->getPointeeType();
   2412   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
   2413     A = ARef->getPointeeType();
   2414 
   2415   // C++ [temp.deduct.call]p4:
   2416   //   [...] However, there are three cases that allow a difference:
   2417   //     - If the original P is a reference type, the deduced A (i.e., the
   2418   //       type referred to by the reference) can be more cv-qualified than
   2419   //       the transformed A.
   2420   if (const ReferenceType *OriginalParamRef
   2421       = OriginalParamType->getAs<ReferenceType>()) {
   2422     // We don't want to keep the reference around any more.
   2423     OriginalParamType = OriginalParamRef->getPointeeType();
   2424 
   2425     Qualifiers AQuals = A.getQualifiers();
   2426     Qualifiers DeducedAQuals = DeducedA.getQualifiers();
   2427     if (AQuals == DeducedAQuals) {
   2428       // Qualifiers match; there's nothing to do.
   2429     } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
   2430       return true;
   2431     } else {
   2432       // Qualifiers are compatible, so have the argument type adopt the
   2433       // deduced argument type's qualifiers as if we had performed the
   2434       // qualification conversion.
   2435       A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
   2436     }
   2437   }
   2438 
   2439   //    - The transformed A can be another pointer or pointer to member
   2440   //      type that can be converted to the deduced A via a qualification
   2441   //      conversion.
   2442   //
   2443   // Also allow conversions which merely strip [[noreturn]] from function types
   2444   // (recursively) as an extension.
   2445   // FIXME: Currently, this doesn't place nicely with qualfication conversions.
   2446   bool ObjCLifetimeConversion = false;
   2447   QualType ResultTy;
   2448   if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
   2449       (S.IsQualificationConversion(A, DeducedA, false,
   2450                                    ObjCLifetimeConversion) ||
   2451        S.IsNoReturnConversion(A, DeducedA, ResultTy)))
   2452     return false;
   2453 
   2454 
   2455   //    - If P is a class and P has the form simple-template-id, then the
   2456   //      transformed A can be a derived class of the deduced A. [...]
   2457   //     [...] Likewise, if P is a pointer to a class of the form
   2458   //      simple-template-id, the transformed A can be a pointer to a
   2459   //      derived class pointed to by the deduced A.
   2460   if (const PointerType *OriginalParamPtr
   2461       = OriginalParamType->getAs<PointerType>()) {
   2462     if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
   2463       if (const PointerType *APtr = A->getAs<PointerType>()) {
   2464         if (A->getPointeeType()->isRecordType()) {
   2465           OriginalParamType = OriginalParamPtr->getPointeeType();
   2466           DeducedA = DeducedAPtr->getPointeeType();
   2467           A = APtr->getPointeeType();
   2468         }
   2469       }
   2470     }
   2471   }
   2472 
   2473   if (Context.hasSameUnqualifiedType(A, DeducedA))
   2474     return false;
   2475 
   2476   if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
   2477       S.IsDerivedFrom(A, DeducedA))
   2478     return false;
   2479 
   2480   return true;
   2481 }
   2482 
   2483 /// \brief Finish template argument deduction for a function template,
   2484 /// checking the deduced template arguments for completeness and forming
   2485 /// the function template specialization.
   2486 ///
   2487 /// \param OriginalCallArgs If non-NULL, the original call arguments against
   2488 /// which the deduced argument types should be compared.
   2489 Sema::TemplateDeductionResult
   2490 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
   2491                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2492                                       unsigned NumExplicitlySpecified,
   2493                                       FunctionDecl *&Specialization,
   2494                                       TemplateDeductionInfo &Info,
   2495         SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
   2496   TemplateParameterList *TemplateParams
   2497     = FunctionTemplate->getTemplateParameters();
   2498 
   2499   // Unevaluated SFINAE context.
   2500   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2501   SFINAETrap Trap(*this);
   2502 
   2503   // Enter a new template instantiation context while we instantiate the
   2504   // actual function declaration.
   2505   InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
   2506                              FunctionTemplate, Deduced.data(), Deduced.size(),
   2507               ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
   2508                              Info);
   2509   if (Inst)
   2510     return TDK_InstantiationDepth;
   2511 
   2512   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
   2513 
   2514   // C++ [temp.deduct.type]p2:
   2515   //   [...] or if any template argument remains neither deduced nor
   2516   //   explicitly specified, template argument deduction fails.
   2517   SmallVector<TemplateArgument, 4> Builder;
   2518   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
   2519     NamedDecl *Param = TemplateParams->getParam(I);
   2520 
   2521     if (!Deduced[I].isNull()) {
   2522       if (I < NumExplicitlySpecified) {
   2523         // We have already fully type-checked and converted this
   2524         // argument, because it was explicitly-specified. Just record the
   2525         // presence of this argument.
   2526         Builder.push_back(Deduced[I]);
   2527         continue;
   2528       }
   2529 
   2530       // We have deduced this argument, so it still needs to be
   2531       // checked and converted.
   2532 
   2533       // First, for a non-type template parameter type that is
   2534       // initialized by a declaration, we need the type of the
   2535       // corresponding non-type template parameter.
   2536       QualType NTTPType;
   2537       if (NonTypeTemplateParmDecl *NTTP
   2538                                 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2539         NTTPType = NTTP->getType();
   2540         if (NTTPType->isDependentType()) {
   2541           TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2542                                             Builder.data(), Builder.size());
   2543           NTTPType = SubstType(NTTPType,
   2544                                MultiLevelTemplateArgumentList(TemplateArgs),
   2545                                NTTP->getLocation(),
   2546                                NTTP->getDeclName());
   2547           if (NTTPType.isNull()) {
   2548             Info.Param = makeTemplateParameter(Param);
   2549             // FIXME: These template arguments are temporary. Free them!
   2550             Info.reset(TemplateArgumentList::CreateCopy(Context,
   2551                                                         Builder.data(),
   2552                                                         Builder.size()));
   2553             return TDK_SubstitutionFailure;
   2554           }
   2555         }
   2556       }
   2557 
   2558       if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
   2559                                          FunctionTemplate, NTTPType, 0, Info,
   2560                                          true, Builder)) {
   2561         Info.Param = makeTemplateParameter(Param);
   2562         // FIXME: These template arguments are temporary. Free them!
   2563         Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2564                                                     Builder.size()));
   2565         return TDK_SubstitutionFailure;
   2566       }
   2567 
   2568       continue;
   2569     }
   2570 
   2571     // C++0x [temp.arg.explicit]p3:
   2572     //    A trailing template parameter pack (14.5.3) not otherwise deduced will
   2573     //    be deduced to an empty sequence of template arguments.
   2574     // FIXME: Where did the word "trailing" come from?
   2575     if (Param->isTemplateParameterPack()) {
   2576       // We may have had explicitly-specified template arguments for this
   2577       // template parameter pack. If so, our empty deduction extends the
   2578       // explicitly-specified set (C++0x [temp.arg.explicit]p9).
   2579       const TemplateArgument *ExplicitArgs;
   2580       unsigned NumExplicitArgs;
   2581       if (CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
   2582                                                              &NumExplicitArgs)
   2583           == Param)
   2584         Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
   2585       else
   2586         Builder.push_back(TemplateArgument(0, 0));
   2587 
   2588       continue;
   2589     }
   2590 
   2591     // Substitute into the default template argument, if available.
   2592     TemplateArgumentLoc DefArg
   2593       = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
   2594                                               FunctionTemplate->getLocation(),
   2595                                   FunctionTemplate->getSourceRange().getEnd(),
   2596                                                 Param,
   2597                                                 Builder);
   2598 
   2599     // If there was no default argument, deduction is incomplete.
   2600     if (DefArg.getArgument().isNull()) {
   2601       Info.Param = makeTemplateParameter(
   2602                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
   2603       return TDK_Incomplete;
   2604     }
   2605 
   2606     // Check whether we can actually use the default argument.
   2607     if (CheckTemplateArgument(Param, DefArg,
   2608                               FunctionTemplate,
   2609                               FunctionTemplate->getLocation(),
   2610                               FunctionTemplate->getSourceRange().getEnd(),
   2611                               0, Builder,
   2612                               CTAK_Specified)) {
   2613       Info.Param = makeTemplateParameter(
   2614                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
   2615       // FIXME: These template arguments are temporary. Free them!
   2616       Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2617                                                   Builder.size()));
   2618       return TDK_SubstitutionFailure;
   2619     }
   2620 
   2621     // If we get here, we successfully used the default template argument.
   2622   }
   2623 
   2624   // Form the template argument list from the deduced template arguments.
   2625   TemplateArgumentList *DeducedArgumentList
   2626     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
   2627   Info.reset(DeducedArgumentList);
   2628 
   2629   // Substitute the deduced template arguments into the function template
   2630   // declaration to produce the function template specialization.
   2631   DeclContext *Owner = FunctionTemplate->getDeclContext();
   2632   if (FunctionTemplate->getFriendObjectKind())
   2633     Owner = FunctionTemplate->getLexicalDeclContext();
   2634   Specialization = cast_or_null<FunctionDecl>(
   2635                       SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
   2636                          MultiLevelTemplateArgumentList(*DeducedArgumentList)));
   2637   if (!Specialization || Specialization->isInvalidDecl())
   2638     return TDK_SubstitutionFailure;
   2639 
   2640   assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
   2641          FunctionTemplate->getCanonicalDecl());
   2642 
   2643   // If the template argument list is owned by the function template
   2644   // specialization, release it.
   2645   if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
   2646       !Trap.hasErrorOccurred())
   2647     Info.take();
   2648 
   2649   // There may have been an error that did not prevent us from constructing a
   2650   // declaration. Mark the declaration invalid and return with a substitution
   2651   // failure.
   2652   if (Trap.hasErrorOccurred()) {
   2653     Specialization->setInvalidDecl(true);
   2654     return TDK_SubstitutionFailure;
   2655   }
   2656 
   2657   if (OriginalCallArgs) {
   2658     // C++ [temp.deduct.call]p4:
   2659     //   In general, the deduction process attempts to find template argument
   2660     //   values that will make the deduced A identical to A (after the type A
   2661     //   is transformed as described above). [...]
   2662     for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
   2663       OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
   2664       unsigned ParamIdx = OriginalArg.ArgIdx;
   2665 
   2666       if (ParamIdx >= Specialization->getNumParams())
   2667         continue;
   2668 
   2669       QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
   2670       if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
   2671         return Sema::TDK_SubstitutionFailure;
   2672     }
   2673   }
   2674 
   2675   // If we suppressed any diagnostics while performing template argument
   2676   // deduction, and if we haven't already instantiated this declaration,
   2677   // keep track of these diagnostics. They'll be emitted if this specialization
   2678   // is actually used.
   2679   if (Info.diag_begin() != Info.diag_end()) {
   2680     llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
   2681       Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
   2682     if (Pos == SuppressedDiagnostics.end())
   2683         SuppressedDiagnostics[Specialization->getCanonicalDecl()]
   2684           .append(Info.diag_begin(), Info.diag_end());
   2685   }
   2686 
   2687   return TDK_Success;
   2688 }
   2689 
   2690 /// Gets the type of a function for template-argument-deducton
   2691 /// purposes when it's considered as part of an overload set.
   2692 static QualType GetTypeOfFunction(ASTContext &Context,
   2693                                   const OverloadExpr::FindResult &R,
   2694                                   FunctionDecl *Fn) {
   2695   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
   2696     if (Method->isInstance()) {
   2697       // An instance method that's referenced in a form that doesn't
   2698       // look like a member pointer is just invalid.
   2699       if (!R.HasFormOfMemberPointer) return QualType();
   2700 
   2701       return Context.getMemberPointerType(Fn->getType(),
   2702                Context.getTypeDeclType(Method->getParent()).getTypePtr());
   2703     }
   2704 
   2705   if (!R.IsAddressOfOperand) return Fn->getType();
   2706   return Context.getPointerType(Fn->getType());
   2707 }
   2708 
   2709 /// Apply the deduction rules for overload sets.
   2710 ///
   2711 /// \return the null type if this argument should be treated as an
   2712 /// undeduced context
   2713 static QualType
   2714 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
   2715                             Expr *Arg, QualType ParamType,
   2716                             bool ParamWasReference) {
   2717 
   2718   OverloadExpr::FindResult R = OverloadExpr::find(Arg);
   2719 
   2720   OverloadExpr *Ovl = R.Expression;
   2721 
   2722   // C++0x [temp.deduct.call]p4
   2723   unsigned TDF = 0;
   2724   if (ParamWasReference)
   2725     TDF |= TDF_ParamWithReferenceType;
   2726   if (R.IsAddressOfOperand)
   2727     TDF |= TDF_IgnoreQualifiers;
   2728 
   2729   // C++0x [temp.deduct.call]p6:
   2730   //   When P is a function type, pointer to function type, or pointer
   2731   //   to member function type:
   2732 
   2733   if (!ParamType->isFunctionType() &&
   2734       !ParamType->isFunctionPointerType() &&
   2735       !ParamType->isMemberFunctionPointerType()) {
   2736     if (Ovl->hasExplicitTemplateArgs()) {
   2737       // But we can still look for an explicit specialization.
   2738       if (FunctionDecl *ExplicitSpec
   2739             = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
   2740         return GetTypeOfFunction(S.Context, R, ExplicitSpec);
   2741     }
   2742 
   2743     return QualType();
   2744   }
   2745 
   2746   // Gather the explicit template arguments, if any.
   2747   TemplateArgumentListInfo ExplicitTemplateArgs;
   2748   if (Ovl->hasExplicitTemplateArgs())
   2749     Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
   2750   QualType Match;
   2751   for (UnresolvedSetIterator I = Ovl->decls_begin(),
   2752          E = Ovl->decls_end(); I != E; ++I) {
   2753     NamedDecl *D = (*I)->getUnderlyingDecl();
   2754 
   2755     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
   2756       //   - If the argument is an overload set containing one or more
   2757       //     function templates, the parameter is treated as a
   2758       //     non-deduced context.
   2759       if (!Ovl->hasExplicitTemplateArgs())
   2760         return QualType();
   2761 
   2762       // Otherwise, see if we can resolve a function type
   2763       FunctionDecl *Specialization = 0;
   2764       TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
   2765       if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
   2766                                     Specialization, Info))
   2767         continue;
   2768 
   2769       D = Specialization;
   2770     }
   2771 
   2772     FunctionDecl *Fn = cast<FunctionDecl>(D);
   2773     QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
   2774     if (ArgType.isNull()) continue;
   2775 
   2776     // Function-to-pointer conversion.
   2777     if (!ParamWasReference && ParamType->isPointerType() &&
   2778         ArgType->isFunctionType())
   2779       ArgType = S.Context.getPointerType(ArgType);
   2780 
   2781     //   - If the argument is an overload set (not containing function
   2782     //     templates), trial argument deduction is attempted using each
   2783     //     of the members of the set. If deduction succeeds for only one
   2784     //     of the overload set members, that member is used as the
   2785     //     argument value for the deduction. If deduction succeeds for
   2786     //     more than one member of the overload set the parameter is
   2787     //     treated as a non-deduced context.
   2788 
   2789     // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
   2790     //   Type deduction is done independently for each P/A pair, and
   2791     //   the deduced template argument values are then combined.
   2792     // So we do not reject deductions which were made elsewhere.
   2793     SmallVector<DeducedTemplateArgument, 8>
   2794       Deduced(TemplateParams->size());
   2795     TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
   2796     Sema::TemplateDeductionResult Result
   2797       = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
   2798                                            ArgType, Info, Deduced, TDF);
   2799     if (Result) continue;
   2800     if (!Match.isNull()) return QualType();
   2801     Match = ArgType;
   2802   }
   2803 
   2804   return Match;
   2805 }
   2806 
   2807 /// \brief Perform the adjustments to the parameter and argument types
   2808 /// described in C++ [temp.deduct.call].
   2809 ///
   2810 /// \returns true if the caller should not attempt to perform any template
   2811 /// argument deduction based on this P/A pair.
   2812 static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
   2813                                           TemplateParameterList *TemplateParams,
   2814                                                       QualType &ParamType,
   2815                                                       QualType &ArgType,
   2816                                                       Expr *Arg,
   2817                                                       unsigned &TDF) {
   2818   // C++0x [temp.deduct.call]p3:
   2819   //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
   2820   //   are ignored for type deduction.
   2821   if (ParamType.hasQualifiers())
   2822     ParamType = ParamType.getUnqualifiedType();
   2823   const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
   2824   if (ParamRefType) {
   2825     QualType PointeeType = ParamRefType->getPointeeType();
   2826 
   2827     // If the argument has incomplete array type, try to complete it's type.
   2828     if (ArgType->isIncompleteArrayType() &&
   2829         !S.RequireCompleteExprType(Arg, S.PDiag(),
   2830                                    std::make_pair(SourceLocation(), S.PDiag())))
   2831       ArgType = Arg->getType();
   2832 
   2833     //   [C++0x] If P is an rvalue reference to a cv-unqualified
   2834     //   template parameter and the argument is an lvalue, the type
   2835     //   "lvalue reference to A" is used in place of A for type
   2836     //   deduction.
   2837     if (isa<RValueReferenceType>(ParamType)) {
   2838       if (!PointeeType.getQualifiers() &&
   2839           isa<TemplateTypeParmType>(PointeeType) &&
   2840           Arg->Classify(S.Context).isLValue() &&
   2841           Arg->getType() != S.Context.OverloadTy &&
   2842           Arg->getType() != S.Context.BoundMemberTy)
   2843         ArgType = S.Context.getLValueReferenceType(ArgType);
   2844     }
   2845 
   2846     //   [...] If P is a reference type, the type referred to by P is used
   2847     //   for type deduction.
   2848     ParamType = PointeeType;
   2849   }
   2850 
   2851   // Overload sets usually make this parameter an undeduced
   2852   // context, but there are sometimes special circumstances.
   2853   if (ArgType == S.Context.OverloadTy) {
   2854     ArgType = ResolveOverloadForDeduction(S, TemplateParams,
   2855                                           Arg, ParamType,
   2856                                           ParamRefType != 0);
   2857     if (ArgType.isNull())
   2858       return true;
   2859   }
   2860 
   2861   if (ParamRefType) {
   2862     // C++0x [temp.deduct.call]p3:
   2863     //   [...] If P is of the form T&&, where T is a template parameter, and
   2864     //   the argument is an lvalue, the type A& is used in place of A for
   2865     //   type deduction.
   2866     if (ParamRefType->isRValueReferenceType() &&
   2867         ParamRefType->getAs<TemplateTypeParmType>() &&
   2868         Arg->isLValue())
   2869       ArgType = S.Context.getLValueReferenceType(ArgType);
   2870   } else {
   2871     // C++ [temp.deduct.call]p2:
   2872     //   If P is not a reference type:
   2873     //   - If A is an array type, the pointer type produced by the
   2874     //     array-to-pointer standard conversion (4.2) is used in place of
   2875     //     A for type deduction; otherwise,
   2876     if (ArgType->isArrayType())
   2877       ArgType = S.Context.getArrayDecayedType(ArgType);
   2878     //   - If A is a function type, the pointer type produced by the
   2879     //     function-to-pointer standard conversion (4.3) is used in place
   2880     //     of A for type deduction; otherwise,
   2881     else if (ArgType->isFunctionType())
   2882       ArgType = S.Context.getPointerType(ArgType);
   2883     else {
   2884       // - If A is a cv-qualified type, the top level cv-qualifiers of A's
   2885       //   type are ignored for type deduction.
   2886       ArgType = ArgType.getUnqualifiedType();
   2887     }
   2888   }
   2889 
   2890   // C++0x [temp.deduct.call]p4:
   2891   //   In general, the deduction process attempts to find template argument
   2892   //   values that will make the deduced A identical to A (after the type A
   2893   //   is transformed as described above). [...]
   2894   TDF = TDF_SkipNonDependent;
   2895 
   2896   //     - If the original P is a reference type, the deduced A (i.e., the
   2897   //       type referred to by the reference) can be more cv-qualified than
   2898   //       the transformed A.
   2899   if (ParamRefType)
   2900     TDF |= TDF_ParamWithReferenceType;
   2901   //     - The transformed A can be another pointer or pointer to member
   2902   //       type that can be converted to the deduced A via a qualification
   2903   //       conversion (4.4).
   2904   if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
   2905       ArgType->isObjCObjectPointerType())
   2906     TDF |= TDF_IgnoreQualifiers;
   2907   //     - If P is a class and P has the form simple-template-id, then the
   2908   //       transformed A can be a derived class of the deduced A. Likewise,
   2909   //       if P is a pointer to a class of the form simple-template-id, the
   2910   //       transformed A can be a pointer to a derived class pointed to by
   2911   //       the deduced A.
   2912   if (isSimpleTemplateIdType(ParamType) ||
   2913       (isa<PointerType>(ParamType) &&
   2914        isSimpleTemplateIdType(
   2915                               ParamType->getAs<PointerType>()->getPointeeType())))
   2916     TDF |= TDF_DerivedClass;
   2917 
   2918   return false;
   2919 }
   2920 
   2921 static bool hasDeducibleTemplateParameters(Sema &S,
   2922                                            FunctionTemplateDecl *FunctionTemplate,
   2923                                            QualType T);
   2924 
   2925 /// \brief Perform template argument deduction by matching a parameter type
   2926 ///        against a single expression, where the expression is an element of
   2927 ///        an initializer list that was originally matched against the argument
   2928 ///        type.
   2929 static Sema::TemplateDeductionResult
   2930 DeduceTemplateArgumentByListElement(Sema &S,
   2931                                     TemplateParameterList *TemplateParams,
   2932                                     QualType ParamType, Expr *Arg,
   2933                                     TemplateDeductionInfo &Info,
   2934                               SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2935                                     unsigned TDF) {
   2936   // Handle the case where an init list contains another init list as the
   2937   // element.
   2938   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
   2939     QualType X;
   2940     if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
   2941       return Sema::TDK_Success; // Just ignore this expression.
   2942 
   2943     // Recurse down into the init list.
   2944     for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
   2945       if (Sema::TemplateDeductionResult Result =
   2946             DeduceTemplateArgumentByListElement(S, TemplateParams, X,
   2947                                                  ILE->getInit(i),
   2948                                                  Info, Deduced, TDF))
   2949         return Result;
   2950     }
   2951     return Sema::TDK_Success;
   2952   }
   2953 
   2954   // For all other cases, just match by type.
   2955   QualType ArgType = Arg->getType();
   2956   if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
   2957                                                 ArgType, Arg, TDF))
   2958     return Sema::TDK_FailedOverloadResolution;
   2959   return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
   2960                                             ArgType, Info, Deduced, TDF);
   2961 }
   2962 
   2963 /// \brief Perform template argument deduction from a function call
   2964 /// (C++ [temp.deduct.call]).
   2965 ///
   2966 /// \param FunctionTemplate the function template for which we are performing
   2967 /// template argument deduction.
   2968 ///
   2969 /// \param ExplicitTemplateArguments the explicit template arguments provided
   2970 /// for this call.
   2971 ///
   2972 /// \param Args the function call arguments
   2973 ///
   2974 /// \param NumArgs the number of arguments in Args
   2975 ///
   2976 /// \param Name the name of the function being called. This is only significant
   2977 /// when the function template is a conversion function template, in which
   2978 /// case this routine will also perform template argument deduction based on
   2979 /// the function to which
   2980 ///
   2981 /// \param Specialization if template argument deduction was successful,
   2982 /// this will be set to the function template specialization produced by
   2983 /// template argument deduction.
   2984 ///
   2985 /// \param Info the argument will be updated to provide additional information
   2986 /// about template argument deduction.
   2987 ///
   2988 /// \returns the result of template argument deduction.
   2989 Sema::TemplateDeductionResult
   2990 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   2991                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   2992                               llvm::ArrayRef<Expr *> Args,
   2993                               FunctionDecl *&Specialization,
   2994                               TemplateDeductionInfo &Info) {
   2995   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   2996 
   2997   // C++ [temp.deduct.call]p1:
   2998   //   Template argument deduction is done by comparing each function template
   2999   //   parameter type (call it P) with the type of the corresponding argument
   3000   //   of the call (call it A) as described below.
   3001   unsigned CheckArgs = Args.size();
   3002   if (Args.size() < Function->getMinRequiredArguments())
   3003     return TDK_TooFewArguments;
   3004   else if (Args.size() > Function->getNumParams()) {
   3005     const FunctionProtoType *Proto
   3006       = Function->getType()->getAs<FunctionProtoType>();
   3007     if (Proto->isTemplateVariadic())
   3008       /* Do nothing */;
   3009     else if (Proto->isVariadic())
   3010       CheckArgs = Function->getNumParams();
   3011     else
   3012       return TDK_TooManyArguments;
   3013   }
   3014 
   3015   // The types of the parameters from which we will perform template argument
   3016   // deduction.
   3017   LocalInstantiationScope InstScope(*this);
   3018   TemplateParameterList *TemplateParams
   3019     = FunctionTemplate->getTemplateParameters();
   3020   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3021   SmallVector<QualType, 4> ParamTypes;
   3022   unsigned NumExplicitlySpecified = 0;
   3023   if (ExplicitTemplateArgs) {
   3024     TemplateDeductionResult Result =
   3025       SubstituteExplicitTemplateArguments(FunctionTemplate,
   3026                                           *ExplicitTemplateArgs,
   3027                                           Deduced,
   3028                                           ParamTypes,
   3029                                           0,
   3030                                           Info);
   3031     if (Result)
   3032       return Result;
   3033 
   3034     NumExplicitlySpecified = Deduced.size();
   3035   } else {
   3036     // Just fill in the parameter types from the function declaration.
   3037     for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
   3038       ParamTypes.push_back(Function->getParamDecl(I)->getType());
   3039   }
   3040 
   3041   // Deduce template arguments from the function parameters.
   3042   Deduced.resize(TemplateParams->size());
   3043   unsigned ArgIdx = 0;
   3044   SmallVector<OriginalCallArg, 4> OriginalCallArgs;
   3045   for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
   3046        ParamIdx != NumParams; ++ParamIdx) {
   3047     QualType OrigParamType = ParamTypes[ParamIdx];
   3048     QualType ParamType = OrigParamType;
   3049 
   3050     const PackExpansionType *ParamExpansion
   3051       = dyn_cast<PackExpansionType>(ParamType);
   3052     if (!ParamExpansion) {
   3053       // Simple case: matching a function parameter to a function argument.
   3054       if (ArgIdx >= CheckArgs)
   3055         break;
   3056 
   3057       Expr *Arg = Args[ArgIdx++];
   3058       QualType ArgType = Arg->getType();
   3059 
   3060       unsigned TDF = 0;
   3061       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
   3062                                                     ParamType, ArgType, Arg,
   3063                                                     TDF))
   3064         continue;
   3065 
   3066       // If we have nothing to deduce, we're done.
   3067       if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
   3068         continue;
   3069 
   3070       // If the argument is an initializer list ...
   3071       if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
   3072         // ... then the parameter is an undeduced context, unless the parameter
   3073         // type is (reference to cv) std::initializer_list<P'>, in which case
   3074         // deduction is done for each element of the initializer list, and the
   3075         // result is the deduced type if it's the same for all elements.
   3076         QualType X;
   3077         // Removing references was already done.
   3078         if (!isStdInitializerList(ParamType, &X))
   3079           continue;
   3080 
   3081         for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
   3082           if (TemplateDeductionResult Result =
   3083                 DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
   3084                                                      ILE->getInit(i),
   3085                                                      Info, Deduced, TDF))
   3086             return Result;
   3087         }
   3088         // Don't track the argument type, since an initializer list has none.
   3089         continue;
   3090       }
   3091 
   3092       // Keep track of the argument type and corresponding parameter index,
   3093       // so we can check for compatibility between the deduced A and A.
   3094       OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
   3095                                                  ArgType));
   3096 
   3097       if (TemplateDeductionResult Result
   3098             = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3099                                                  ParamType, ArgType,
   3100                                                  Info, Deduced, TDF))
   3101         return Result;
   3102 
   3103       continue;
   3104     }
   3105 
   3106     // C++0x [temp.deduct.call]p1:
   3107     //   For a function parameter pack that occurs at the end of the
   3108     //   parameter-declaration-list, the type A of each remaining argument of
   3109     //   the call is compared with the type P of the declarator-id of the
   3110     //   function parameter pack. Each comparison deduces template arguments
   3111     //   for subsequent positions in the template parameter packs expanded by
   3112     //   the function parameter pack. For a function parameter pack that does
   3113     //   not occur at the end of the parameter-declaration-list, the type of
   3114     //   the parameter pack is a non-deduced context.
   3115     if (ParamIdx + 1 < NumParams)
   3116       break;
   3117 
   3118     QualType ParamPattern = ParamExpansion->getPattern();
   3119     SmallVector<unsigned, 2> PackIndices;
   3120     {
   3121       llvm::SmallBitVector SawIndices(TemplateParams->size());
   3122       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
   3123       collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
   3124       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
   3125         unsigned Depth, Index;
   3126         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
   3127         if (Depth == 0 && !SawIndices[Index]) {
   3128           SawIndices[Index] = true;
   3129           PackIndices.push_back(Index);
   3130         }
   3131       }
   3132     }
   3133     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
   3134 
   3135     // Keep track of the deduced template arguments for each parameter pack
   3136     // expanded by this pack expansion (the outer index) and for each
   3137     // template argument (the inner SmallVectors).
   3138     SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
   3139       NewlyDeducedPacks(PackIndices.size());
   3140     SmallVector<DeducedTemplateArgument, 2>
   3141       SavedPacks(PackIndices.size());
   3142     PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
   3143                                  NewlyDeducedPacks);
   3144     bool HasAnyArguments = false;
   3145     for (; ArgIdx < Args.size(); ++ArgIdx) {
   3146       HasAnyArguments = true;
   3147 
   3148       QualType OrigParamType = ParamPattern;
   3149       ParamType = OrigParamType;
   3150       Expr *Arg = Args[ArgIdx];
   3151       QualType ArgType = Arg->getType();
   3152 
   3153       unsigned TDF = 0;
   3154       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
   3155                                                     ParamType, ArgType, Arg,
   3156                                                     TDF)) {
   3157         // We can't actually perform any deduction for this argument, so stop
   3158         // deduction at this point.
   3159         ++ArgIdx;
   3160         break;
   3161       }
   3162 
   3163       // As above, initializer lists need special handling.
   3164       if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
   3165         QualType X;
   3166         if (!isStdInitializerList(ParamType, &X)) {
   3167           ++ArgIdx;
   3168           break;
   3169         }
   3170 
   3171         for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
   3172           if (TemplateDeductionResult Result =
   3173                 DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
   3174                                                    ILE->getInit(i)->getType(),
   3175                                                    Info, Deduced, TDF))
   3176             return Result;
   3177         }
   3178       } else {
   3179 
   3180         // Keep track of the argument type and corresponding argument index,
   3181         // so we can check for compatibility between the deduced A and A.
   3182         if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
   3183           OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
   3184                                                      ArgType));
   3185 
   3186         if (TemplateDeductionResult Result
   3187             = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3188                                                  ParamType, ArgType, Info,
   3189                                                  Deduced, TDF))
   3190           return Result;
   3191       }
   3192 
   3193       // Capture the deduced template arguments for each parameter pack expanded
   3194       // by this pack expansion, add them to the list of arguments we've deduced
   3195       // for that pack, then clear out the deduced argument.
   3196       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
   3197         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
   3198         if (!DeducedArg.isNull()) {
   3199           NewlyDeducedPacks[I].push_back(DeducedArg);
   3200           DeducedArg = DeducedTemplateArgument();
   3201         }
   3202       }
   3203     }
   3204 
   3205     // Build argument packs for each of the parameter packs expanded by this
   3206     // pack expansion.
   3207     if (Sema::TemplateDeductionResult Result
   3208           = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
   3209                                         Deduced, PackIndices, SavedPacks,
   3210                                         NewlyDeducedPacks, Info))
   3211       return Result;
   3212 
   3213     // After we've matching against a parameter pack, we're done.
   3214     break;
   3215   }
   3216 
   3217   return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
   3218                                          NumExplicitlySpecified,
   3219                                          Specialization, Info, &OriginalCallArgs);
   3220 }
   3221 
   3222 /// \brief Deduce template arguments when taking the address of a function
   3223 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
   3224 /// a template.
   3225 ///
   3226 /// \param FunctionTemplate the function template for which we are performing
   3227 /// template argument deduction.
   3228 ///
   3229 /// \param ExplicitTemplateArguments the explicitly-specified template
   3230 /// arguments.
   3231 ///
   3232 /// \param ArgFunctionType the function type that will be used as the
   3233 /// "argument" type (A) when performing template argument deduction from the
   3234 /// function template's function type. This type may be NULL, if there is no
   3235 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
   3236 ///
   3237 /// \param Specialization if template argument deduction was successful,
   3238 /// this will be set to the function template specialization produced by
   3239 /// template argument deduction.
   3240 ///
   3241 /// \param Info the argument will be updated to provide additional information
   3242 /// about template argument deduction.
   3243 ///
   3244 /// \returns the result of template argument deduction.
   3245 Sema::TemplateDeductionResult
   3246 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3247                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   3248                               QualType ArgFunctionType,
   3249                               FunctionDecl *&Specialization,
   3250                               TemplateDeductionInfo &Info) {
   3251   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   3252   TemplateParameterList *TemplateParams
   3253     = FunctionTemplate->getTemplateParameters();
   3254   QualType FunctionType = Function->getType();
   3255 
   3256   // Substitute any explicit template arguments.
   3257   LocalInstantiationScope InstScope(*this);
   3258   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3259   unsigned NumExplicitlySpecified = 0;
   3260   SmallVector<QualType, 4> ParamTypes;
   3261   if (ExplicitTemplateArgs) {
   3262     if (TemplateDeductionResult Result
   3263           = SubstituteExplicitTemplateArguments(FunctionTemplate,
   3264                                                 *ExplicitTemplateArgs,
   3265                                                 Deduced, ParamTypes,
   3266                                                 &FunctionType, Info))
   3267       return Result;
   3268 
   3269     NumExplicitlySpecified = Deduced.size();
   3270   }
   3271 
   3272   // Unevaluated SFINAE context.
   3273   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   3274   SFINAETrap Trap(*this);
   3275 
   3276   Deduced.resize(TemplateParams->size());
   3277 
   3278   if (!ArgFunctionType.isNull()) {
   3279     // Deduce template arguments from the function type.
   3280     if (TemplateDeductionResult Result
   3281           = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3282                                       FunctionType, ArgFunctionType, Info,
   3283                                       Deduced, TDF_TopLevelParameterTypeList))
   3284       return Result;
   3285   }
   3286 
   3287   if (TemplateDeductionResult Result
   3288         = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
   3289                                           NumExplicitlySpecified,
   3290                                           Specialization, Info))
   3291     return Result;
   3292 
   3293   // If the requested function type does not match the actual type of the
   3294   // specialization, template argument deduction fails.
   3295   if (!ArgFunctionType.isNull() &&
   3296       !Context.hasSameType(ArgFunctionType, Specialization->getType()))
   3297     return TDK_NonDeducedMismatch;
   3298 
   3299   return TDK_Success;
   3300 }
   3301 
   3302 /// \brief Deduce template arguments for a templated conversion
   3303 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
   3304 /// conversion function template specialization.
   3305 Sema::TemplateDeductionResult
   3306 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3307                               QualType ToType,
   3308                               CXXConversionDecl *&Specialization,
   3309                               TemplateDeductionInfo &Info) {
   3310   CXXConversionDecl *Conv
   3311     = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
   3312   QualType FromType = Conv->getConversionType();
   3313 
   3314   // Canonicalize the types for deduction.
   3315   QualType P = Context.getCanonicalType(FromType);
   3316   QualType A = Context.getCanonicalType(ToType);
   3317 
   3318   // C++0x [temp.deduct.conv]p2:
   3319   //   If P is a reference type, the type referred to by P is used for
   3320   //   type deduction.
   3321   if (const ReferenceType *PRef = P->getAs<ReferenceType>())
   3322     P = PRef->getPointeeType();
   3323 
   3324   // C++0x [temp.deduct.conv]p4:
   3325   //   [...] If A is a reference type, the type referred to by A is used
   3326   //   for type deduction.
   3327   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
   3328     A = ARef->getPointeeType().getUnqualifiedType();
   3329   // C++ [temp.deduct.conv]p3:
   3330   //
   3331   //   If A is not a reference type:
   3332   else {
   3333     assert(!A->isReferenceType() && "Reference types were handled above");
   3334 
   3335     //   - If P is an array type, the pointer type produced by the
   3336     //     array-to-pointer standard conversion (4.2) is used in place
   3337     //     of P for type deduction; otherwise,
   3338     if (P->isArrayType())
   3339       P = Context.getArrayDecayedType(P);
   3340     //   - If P is a function type, the pointer type produced by the
   3341     //     function-to-pointer standard conversion (4.3) is used in
   3342     //     place of P for type deduction; otherwise,
   3343     else if (P->isFunctionType())
   3344       P = Context.getPointerType(P);
   3345     //   - If P is a cv-qualified type, the top level cv-qualifiers of
   3346     //     P's type are ignored for type deduction.
   3347     else
   3348       P = P.getUnqualifiedType();
   3349 
   3350     // C++0x [temp.deduct.conv]p4:
   3351     //   If A is a cv-qualified type, the top level cv-qualifiers of A's
   3352     //   type are ignored for type deduction. If A is a reference type, the type
   3353     //   referred to by A is used for type deduction.
   3354     A = A.getUnqualifiedType();
   3355   }
   3356 
   3357   // Unevaluated SFINAE context.
   3358   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   3359   SFINAETrap Trap(*this);
   3360 
   3361   // C++ [temp.deduct.conv]p1:
   3362   //   Template argument deduction is done by comparing the return
   3363   //   type of the template conversion function (call it P) with the
   3364   //   type that is required as the result of the conversion (call it
   3365   //   A) as described in 14.8.2.4.
   3366   TemplateParameterList *TemplateParams
   3367     = FunctionTemplate->getTemplateParameters();
   3368   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3369   Deduced.resize(TemplateParams->size());
   3370 
   3371   // C++0x [temp.deduct.conv]p4:
   3372   //   In general, the deduction process attempts to find template
   3373   //   argument values that will make the deduced A identical to
   3374   //   A. However, there are two cases that allow a difference:
   3375   unsigned TDF = 0;
   3376   //     - If the original A is a reference type, A can be more
   3377   //       cv-qualified than the deduced A (i.e., the type referred to
   3378   //       by the reference)
   3379   if (ToType->isReferenceType())
   3380     TDF |= TDF_ParamWithReferenceType;
   3381   //     - The deduced A can be another pointer or pointer to member
   3382   //       type that can be converted to A via a qualification
   3383   //       conversion.
   3384   //
   3385   // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
   3386   // both P and A are pointers or member pointers. In this case, we
   3387   // just ignore cv-qualifiers completely).
   3388   if ((P->isPointerType() && A->isPointerType()) ||
   3389       (P->isMemberPointerType() && A->isMemberPointerType()))
   3390     TDF |= TDF_IgnoreQualifiers;
   3391   if (TemplateDeductionResult Result
   3392         = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3393                                              P, A, Info, Deduced, TDF))
   3394     return Result;
   3395 
   3396   // Finish template argument deduction.
   3397   LocalInstantiationScope InstScope(*this);
   3398   FunctionDecl *Spec = 0;
   3399   TemplateDeductionResult Result
   3400     = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
   3401                                       Info);
   3402   Specialization = cast_or_null<CXXConversionDecl>(Spec);
   3403   return Result;
   3404 }
   3405 
   3406 /// \brief Deduce template arguments for a function template when there is
   3407 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
   3408 ///
   3409 /// \param FunctionTemplate the function template for which we are performing
   3410 /// template argument deduction.
   3411 ///
   3412 /// \param ExplicitTemplateArguments the explicitly-specified template
   3413 /// arguments.
   3414 ///
   3415 /// \param Specialization if template argument deduction was successful,
   3416 /// this will be set to the function template specialization produced by
   3417 /// template argument deduction.
   3418 ///
   3419 /// \param Info the argument will be updated to provide additional information
   3420 /// about template argument deduction.
   3421 ///
   3422 /// \returns the result of template argument deduction.
   3423 Sema::TemplateDeductionResult
   3424 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3425                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   3426                               FunctionDecl *&Specialization,
   3427                               TemplateDeductionInfo &Info) {
   3428   return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
   3429                                  QualType(), Specialization, Info);
   3430 }
   3431 
   3432 namespace {
   3433   /// Substitute the 'auto' type specifier within a type for a given replacement
   3434   /// type.
   3435   class SubstituteAutoTransform :
   3436     public TreeTransform<SubstituteAutoTransform> {
   3437     QualType Replacement;
   3438   public:
   3439     SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
   3440       TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
   3441     }
   3442     QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
   3443       // If we're building the type pattern to deduce against, don't wrap the
   3444       // substituted type in an AutoType. Certain template deduction rules
   3445       // apply only when a template type parameter appears directly (and not if
   3446       // the parameter is found through desugaring). For instance:
   3447       //   auto &&lref = lvalue;
   3448       // must transform into "rvalue reference to T" not "rvalue reference to
   3449       // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
   3450       if (isa<TemplateTypeParmType>(Replacement)) {
   3451         QualType Result = Replacement;
   3452         TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
   3453         NewTL.setNameLoc(TL.getNameLoc());
   3454         return Result;
   3455       } else {
   3456         QualType Result = RebuildAutoType(Replacement);
   3457         AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
   3458         NewTL.setNameLoc(TL.getNameLoc());
   3459         return Result;
   3460       }
   3461     }
   3462 
   3463     ExprResult TransformLambdaExpr(LambdaExpr *E) {
   3464       // Lambdas never need to be transformed.
   3465       return E;
   3466     }
   3467   };
   3468 }
   3469 
   3470 /// \brief Deduce the type for an auto type-specifier (C++0x [dcl.spec.auto]p6)
   3471 ///
   3472 /// \param Type the type pattern using the auto type-specifier.
   3473 ///
   3474 /// \param Init the initializer for the variable whose type is to be deduced.
   3475 ///
   3476 /// \param Result if type deduction was successful, this will be set to the
   3477 /// deduced type. This may still contain undeduced autos if the type is
   3478 /// dependent. This will be set to null if deduction succeeded, but auto
   3479 /// substitution failed; the appropriate diagnostic will already have been
   3480 /// produced in that case.
   3481 Sema::DeduceAutoResult
   3482 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init,
   3483                      TypeSourceInfo *&Result) {
   3484   if (Init->getType()->isNonOverloadPlaceholderType()) {
   3485     ExprResult result = CheckPlaceholderExpr(Init);
   3486     if (result.isInvalid()) return DAR_FailedAlreadyDiagnosed;
   3487     Init = result.take();
   3488   }
   3489 
   3490   if (Init->isTypeDependent()) {
   3491     Result = Type;
   3492     return DAR_Succeeded;
   3493   }
   3494 
   3495   SourceLocation Loc = Init->getExprLoc();
   3496 
   3497   LocalInstantiationScope InstScope(*this);
   3498 
   3499   // Build template<class TemplParam> void Func(FuncParam);
   3500   TemplateTypeParmDecl *TemplParam =
   3501     TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
   3502                                  false, false);
   3503   QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
   3504   NamedDecl *TemplParamPtr = TemplParam;
   3505   FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
   3506                                                    Loc);
   3507 
   3508   TypeSourceInfo *FuncParamInfo =
   3509     SubstituteAutoTransform(*this, TemplArg).TransformType(Type);
   3510   assert(FuncParamInfo && "substituting template parameter for 'auto' failed");
   3511   QualType FuncParam = FuncParamInfo->getType();
   3512 
   3513   // Deduce type of TemplParam in Func(Init)
   3514   SmallVector<DeducedTemplateArgument, 1> Deduced;
   3515   Deduced.resize(1);
   3516   QualType InitType = Init->getType();
   3517   unsigned TDF = 0;
   3518 
   3519   TemplateDeductionInfo Info(Context, Loc);
   3520 
   3521   InitListExpr * InitList = dyn_cast<InitListExpr>(Init);
   3522   if (InitList) {
   3523     for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
   3524       if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
   3525                                               TemplArg,
   3526                                               InitList->getInit(i),
   3527                                               Info, Deduced, TDF))
   3528         return DAR_Failed;
   3529     }
   3530   } else {
   3531     if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
   3532                                                   FuncParam, InitType, Init,
   3533                                                   TDF))
   3534       return DAR_Failed;
   3535 
   3536     if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
   3537                                            InitType, Info, Deduced, TDF))
   3538       return DAR_Failed;
   3539   }
   3540 
   3541   QualType DeducedType = Deduced[0].getAsType();
   3542   if (DeducedType.isNull())
   3543     return DAR_Failed;
   3544 
   3545   if (InitList) {
   3546     DeducedType = BuildStdInitializerList(DeducedType, Loc);
   3547     if (DeducedType.isNull())
   3548       return DAR_FailedAlreadyDiagnosed;
   3549   }
   3550 
   3551   Result = SubstituteAutoTransform(*this, DeducedType).TransformType(Type);
   3552 
   3553   // Check that the deduced argument type is compatible with the original
   3554   // argument type per C++ [temp.deduct.call]p4.
   3555   if (!InitList && Result &&
   3556       CheckOriginalCallArgDeduction(*this,
   3557                                     Sema::OriginalCallArg(FuncParam,0,InitType),
   3558                                     Result->getType())) {
   3559     Result = 0;
   3560     return DAR_Failed;
   3561   }
   3562 
   3563   return DAR_Succeeded;
   3564 }
   3565 
   3566 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
   3567   if (isa<InitListExpr>(Init))
   3568     Diag(VDecl->getLocation(),
   3569          diag::err_auto_var_deduction_failure_from_init_list)
   3570       << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
   3571   else
   3572     Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
   3573       << VDecl->getDeclName() << VDecl->getType() << Init->getType()
   3574       << Init->getSourceRange();
   3575 }
   3576 
   3577 static void
   3578 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
   3579                            bool OnlyDeduced,
   3580                            unsigned Level,
   3581                            llvm::SmallBitVector &Deduced);
   3582 
   3583 /// \brief If this is a non-static member function,
   3584 static void MaybeAddImplicitObjectParameterType(ASTContext &Context,
   3585                                                 CXXMethodDecl *Method,
   3586                                  SmallVectorImpl<QualType> &ArgTypes) {
   3587   if (Method->isStatic())
   3588     return;
   3589 
   3590   // C++ [over.match.funcs]p4:
   3591   //
   3592   //   For non-static member functions, the type of the implicit
   3593   //   object parameter is
   3594   //     - "lvalue reference to cv X" for functions declared without a
   3595   //       ref-qualifier or with the & ref-qualifier
   3596   //     - "rvalue reference to cv X" for functions declared with the
   3597   //       && ref-qualifier
   3598   //
   3599   // FIXME: We don't have ref-qualifiers yet, so we don't do that part.
   3600   QualType ArgTy = Context.getTypeDeclType(Method->getParent());
   3601   ArgTy = Context.getQualifiedType(ArgTy,
   3602                         Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
   3603   ArgTy = Context.getLValueReferenceType(ArgTy);
   3604   ArgTypes.push_back(ArgTy);
   3605 }
   3606 
   3607 /// \brief Determine whether the function template \p FT1 is at least as
   3608 /// specialized as \p FT2.
   3609 static bool isAtLeastAsSpecializedAs(Sema &S,
   3610                                      SourceLocation Loc,
   3611                                      FunctionTemplateDecl *FT1,
   3612                                      FunctionTemplateDecl *FT2,
   3613                                      TemplatePartialOrderingContext TPOC,
   3614                                      unsigned NumCallArguments,
   3615     SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
   3616   FunctionDecl *FD1 = FT1->getTemplatedDecl();
   3617   FunctionDecl *FD2 = FT2->getTemplatedDecl();
   3618   const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
   3619   const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
   3620 
   3621   assert(Proto1 && Proto2 && "Function templates must have prototypes");
   3622   TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
   3623   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3624   Deduced.resize(TemplateParams->size());
   3625 
   3626   // C++0x [temp.deduct.partial]p3:
   3627   //   The types used to determine the ordering depend on the context in which
   3628   //   the partial ordering is done:
   3629   TemplateDeductionInfo Info(S.Context, Loc);
   3630   CXXMethodDecl *Method1 = 0;
   3631   CXXMethodDecl *Method2 = 0;
   3632   bool IsNonStatic2 = false;
   3633   bool IsNonStatic1 = false;
   3634   unsigned Skip2 = 0;
   3635   switch (TPOC) {
   3636   case TPOC_Call: {
   3637     //   - In the context of a function call, the function parameter types are
   3638     //     used.
   3639     Method1 = dyn_cast<CXXMethodDecl>(FD1);
   3640     Method2 = dyn_cast<CXXMethodDecl>(FD2);
   3641     IsNonStatic1 = Method1 && !Method1->isStatic();
   3642     IsNonStatic2 = Method2 && !Method2->isStatic();
   3643 
   3644     // C++0x [temp.func.order]p3:
   3645     //   [...] If only one of the function templates is a non-static
   3646     //   member, that function template is considered to have a new
   3647     //   first parameter inserted in its function parameter list. The
   3648     //   new parameter is of type "reference to cv A," where cv are
   3649     //   the cv-qualifiers of the function template (if any) and A is
   3650     //   the class of which the function template is a member.
   3651     //
   3652     // C++98/03 doesn't have this provision, so instead we drop the
   3653     // first argument of the free function or static member, which
   3654     // seems to match existing practice.
   3655     SmallVector<QualType, 4> Args1;
   3656     unsigned Skip1 = !S.getLangOpts().CPlusPlus0x &&
   3657       IsNonStatic2 && !IsNonStatic1;
   3658     if (S.getLangOpts().CPlusPlus0x && IsNonStatic1 && !IsNonStatic2)
   3659       MaybeAddImplicitObjectParameterType(S.Context, Method1, Args1);
   3660     Args1.insert(Args1.end(),
   3661                  Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
   3662 
   3663     SmallVector<QualType, 4> Args2;
   3664     Skip2 = !S.getLangOpts().CPlusPlus0x &&
   3665       IsNonStatic1 && !IsNonStatic2;
   3666     if (S.getLangOpts().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
   3667       MaybeAddImplicitObjectParameterType(S.Context, Method2, Args2);
   3668     Args2.insert(Args2.end(),
   3669                  Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
   3670 
   3671     // C++ [temp.func.order]p5:
   3672     //   The presence of unused ellipsis and default arguments has no effect on
   3673     //   the partial ordering of function templates.
   3674     if (Args1.size() > NumCallArguments)
   3675       Args1.resize(NumCallArguments);
   3676     if (Args2.size() > NumCallArguments)
   3677       Args2.resize(NumCallArguments);
   3678     if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
   3679                                 Args1.data(), Args1.size(), Info, Deduced,
   3680                                 TDF_None, /*PartialOrdering=*/true,
   3681                                 RefParamComparisons))
   3682         return false;
   3683 
   3684     break;
   3685   }
   3686 
   3687   case TPOC_Conversion:
   3688     //   - In the context of a call to a conversion operator, the return types
   3689     //     of the conversion function templates are used.
   3690     if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   3691                                            Proto2->getResultType(),
   3692                                            Proto1->getResultType(),
   3693                                            Info, Deduced, TDF_None,
   3694                                            /*PartialOrdering=*/true,
   3695                                            RefParamComparisons))
   3696       return false;
   3697     break;
   3698 
   3699   case TPOC_Other:
   3700     //   - In other contexts (14.6.6.2) the function template's function type
   3701     //     is used.
   3702     if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   3703                                            FD2->getType(), FD1->getType(),
   3704                                            Info, Deduced, TDF_None,
   3705                                            /*PartialOrdering=*/true,
   3706                                            RefParamComparisons))
   3707       return false;
   3708     break;
   3709   }
   3710 
   3711   // C++0x [temp.deduct.partial]p11:
   3712   //   In most cases, all template parameters must have values in order for
   3713   //   deduction to succeed, but for partial ordering purposes a template
   3714   //   parameter may remain without a value provided it is not used in the
   3715   //   types being used for partial ordering. [ Note: a template parameter used
   3716   //   in a non-deduced context is considered used. -end note]
   3717   unsigned ArgIdx = 0, NumArgs = Deduced.size();
   3718   for (; ArgIdx != NumArgs; ++ArgIdx)
   3719     if (Deduced[ArgIdx].isNull())
   3720       break;
   3721 
   3722   if (ArgIdx == NumArgs) {
   3723     // All template arguments were deduced. FT1 is at least as specialized
   3724     // as FT2.
   3725     return true;
   3726   }
   3727 
   3728   // Figure out which template parameters were used.
   3729   llvm::SmallBitVector UsedParameters(TemplateParams->size());
   3730   switch (TPOC) {
   3731   case TPOC_Call: {
   3732     unsigned NumParams = std::min(NumCallArguments,
   3733                                   std::min(Proto1->getNumArgs(),
   3734                                            Proto2->getNumArgs()));
   3735     if (S.getLangOpts().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
   3736       ::MarkUsedTemplateParameters(S.Context, Method2->getThisType(S.Context),
   3737                                    false,
   3738                                    TemplateParams->getDepth(), UsedParameters);
   3739     for (unsigned I = Skip2; I < NumParams; ++I)
   3740       ::MarkUsedTemplateParameters(S.Context, Proto2->getArgType(I), false,
   3741                                    TemplateParams->getDepth(),
   3742                                    UsedParameters);
   3743     break;
   3744   }
   3745 
   3746   case TPOC_Conversion:
   3747     ::MarkUsedTemplateParameters(S.Context, Proto2->getResultType(), false,
   3748                                  TemplateParams->getDepth(),
   3749                                  UsedParameters);
   3750     break;
   3751 
   3752   case TPOC_Other:
   3753     ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
   3754                                  TemplateParams->getDepth(),
   3755                                  UsedParameters);
   3756     break;
   3757   }
   3758 
   3759   for (; ArgIdx != NumArgs; ++ArgIdx)
   3760     // If this argument had no value deduced but was used in one of the types
   3761     // used for partial ordering, then deduction fails.
   3762     if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
   3763       return false;
   3764 
   3765   return true;
   3766 }
   3767 
   3768 /// \brief Determine whether this a function template whose parameter-type-list
   3769 /// ends with a function parameter pack.
   3770 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
   3771   FunctionDecl *Function = FunTmpl->getTemplatedDecl();
   3772   unsigned NumParams = Function->getNumParams();
   3773   if (NumParams == 0)
   3774     return false;
   3775 
   3776   ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
   3777   if (!Last->isParameterPack())
   3778     return false;
   3779 
   3780   // Make sure that no previous parameter is a parameter pack.
   3781   while (--NumParams > 0) {
   3782     if (Function->getParamDecl(NumParams - 1)->isParameterPack())
   3783       return false;
   3784   }
   3785 
   3786   return true;
   3787 }
   3788 
   3789 /// \brief Returns the more specialized function template according
   3790 /// to the rules of function template partial ordering (C++ [temp.func.order]).
   3791 ///
   3792 /// \param FT1 the first function template
   3793 ///
   3794 /// \param FT2 the second function template
   3795 ///
   3796 /// \param TPOC the context in which we are performing partial ordering of
   3797 /// function templates.
   3798 ///
   3799 /// \param NumCallArguments The number of arguments in a call, used only
   3800 /// when \c TPOC is \c TPOC_Call.
   3801 ///
   3802 /// \returns the more specialized function template. If neither
   3803 /// template is more specialized, returns NULL.
   3804 FunctionTemplateDecl *
   3805 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
   3806                                  FunctionTemplateDecl *FT2,
   3807                                  SourceLocation Loc,
   3808                                  TemplatePartialOrderingContext TPOC,
   3809                                  unsigned NumCallArguments) {
   3810   SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
   3811   bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
   3812                                           NumCallArguments, 0);
   3813   bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
   3814                                           NumCallArguments,
   3815                                           &RefParamComparisons);
   3816 
   3817   if (Better1 != Better2) // We have a clear winner
   3818     return Better1? FT1 : FT2;
   3819 
   3820   if (!Better1 && !Better2) // Neither is better than the other
   3821     return 0;
   3822 
   3823   // C++0x [temp.deduct.partial]p10:
   3824   //   If for each type being considered a given template is at least as
   3825   //   specialized for all types and more specialized for some set of types and
   3826   //   the other template is not more specialized for any types or is not at
   3827   //   least as specialized for any types, then the given template is more
   3828   //   specialized than the other template. Otherwise, neither template is more
   3829   //   specialized than the other.
   3830   Better1 = false;
   3831   Better2 = false;
   3832   for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
   3833     // C++0x [temp.deduct.partial]p9:
   3834     //   If, for a given type, deduction succeeds in both directions (i.e., the
   3835     //   types are identical after the transformations above) and both P and A
   3836     //   were reference types (before being replaced with the type referred to
   3837     //   above):
   3838 
   3839     //     -- if the type from the argument template was an lvalue reference
   3840     //        and the type from the parameter template was not, the argument
   3841     //        type is considered to be more specialized than the other;
   3842     //        otherwise,
   3843     if (!RefParamComparisons[I].ArgIsRvalueRef &&
   3844         RefParamComparisons[I].ParamIsRvalueRef) {
   3845       Better2 = true;
   3846       if (Better1)
   3847         return 0;
   3848       continue;
   3849     } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
   3850                RefParamComparisons[I].ArgIsRvalueRef) {
   3851       Better1 = true;
   3852       if (Better2)
   3853         return 0;
   3854       continue;
   3855     }
   3856 
   3857     //     -- if the type from the argument template is more cv-qualified than
   3858     //        the type from the parameter template (as described above), the
   3859     //        argument type is considered to be more specialized than the
   3860     //        other; otherwise,
   3861     switch (RefParamComparisons[I].Qualifiers) {
   3862     case NeitherMoreQualified:
   3863       break;
   3864 
   3865     case ParamMoreQualified:
   3866       Better1 = true;
   3867       if (Better2)
   3868         return 0;
   3869       continue;
   3870 
   3871     case ArgMoreQualified:
   3872       Better2 = true;
   3873       if (Better1)
   3874         return 0;
   3875       continue;
   3876     }
   3877 
   3878     //     -- neither type is more specialized than the other.
   3879   }
   3880 
   3881   assert(!(Better1 && Better2) && "Should have broken out in the loop above");
   3882   if (Better1)
   3883     return FT1;
   3884   else if (Better2)
   3885     return FT2;
   3886 
   3887   // FIXME: This mimics what GCC implements, but doesn't match up with the
   3888   // proposed resolution for core issue 692. This area needs to be sorted out,
   3889   // but for now we attempt to maintain compatibility.
   3890   bool Variadic1 = isVariadicFunctionTemplate(FT1);
   3891   bool Variadic2 = isVariadicFunctionTemplate(FT2);
   3892   if (Variadic1 != Variadic2)
   3893     return Variadic1? FT2 : FT1;
   3894 
   3895   return 0;
   3896 }
   3897 
   3898 /// \brief Determine if the two templates are equivalent.
   3899 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
   3900   if (T1 == T2)
   3901     return true;
   3902 
   3903   if (!T1 || !T2)
   3904     return false;
   3905 
   3906   return T1->getCanonicalDecl() == T2->getCanonicalDecl();
   3907 }
   3908 
   3909 /// \brief Retrieve the most specialized of the given function template
   3910 /// specializations.
   3911 ///
   3912 /// \param SpecBegin the start iterator of the function template
   3913 /// specializations that we will be comparing.
   3914 ///
   3915 /// \param SpecEnd the end iterator of the function template
   3916 /// specializations, paired with \p SpecBegin.
   3917 ///
   3918 /// \param TPOC the partial ordering context to use to compare the function
   3919 /// template specializations.
   3920 ///
   3921 /// \param NumCallArguments The number of arguments in a call, used only
   3922 /// when \c TPOC is \c TPOC_Call.
   3923 ///
   3924 /// \param Loc the location where the ambiguity or no-specializations
   3925 /// diagnostic should occur.
   3926 ///
   3927 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
   3928 /// no matching candidates.
   3929 ///
   3930 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
   3931 /// occurs.
   3932 ///
   3933 /// \param CandidateDiag partial diagnostic used for each function template
   3934 /// specialization that is a candidate in the ambiguous ordering. One parameter
   3935 /// in this diagnostic should be unbound, which will correspond to the string
   3936 /// describing the template arguments for the function template specialization.
   3937 ///
   3938 /// \param Index if non-NULL and the result of this function is non-nULL,
   3939 /// receives the index corresponding to the resulting function template
   3940 /// specialization.
   3941 ///
   3942 /// \returns the most specialized function template specialization, if
   3943 /// found. Otherwise, returns SpecEnd.
   3944 ///
   3945 /// \todo FIXME: Consider passing in the "also-ran" candidates that failed
   3946 /// template argument deduction.
   3947 UnresolvedSetIterator
   3948 Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
   3949                         UnresolvedSetIterator SpecEnd,
   3950                          TemplatePartialOrderingContext TPOC,
   3951                          unsigned NumCallArguments,
   3952                          SourceLocation Loc,
   3953                          const PartialDiagnostic &NoneDiag,
   3954                          const PartialDiagnostic &AmbigDiag,
   3955                          const PartialDiagnostic &CandidateDiag,
   3956                          bool Complain,
   3957                          QualType TargetType) {
   3958   if (SpecBegin == SpecEnd) {
   3959     if (Complain)
   3960       Diag(Loc, NoneDiag);
   3961     return SpecEnd;
   3962   }
   3963 
   3964   if (SpecBegin + 1 == SpecEnd)
   3965     return SpecBegin;
   3966 
   3967   // Find the function template that is better than all of the templates it
   3968   // has been compared to.
   3969   UnresolvedSetIterator Best = SpecBegin;
   3970   FunctionTemplateDecl *BestTemplate
   3971     = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
   3972   assert(BestTemplate && "Not a function template specialization?");
   3973   for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
   3974     FunctionTemplateDecl *Challenger
   3975       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
   3976     assert(Challenger && "Not a function template specialization?");
   3977     if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
   3978                                                   Loc, TPOC, NumCallArguments),
   3979                        Challenger)) {
   3980       Best = I;
   3981       BestTemplate = Challenger;
   3982     }
   3983   }
   3984 
   3985   // Make sure that the "best" function template is more specialized than all
   3986   // of the others.
   3987   bool Ambiguous = false;
   3988   for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
   3989     FunctionTemplateDecl *Challenger
   3990       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
   3991     if (I != Best &&
   3992         !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
   3993                                                    Loc, TPOC, NumCallArguments),
   3994                         BestTemplate)) {
   3995       Ambiguous = true;
   3996       break;
   3997     }
   3998   }
   3999 
   4000   if (!Ambiguous) {
   4001     // We found an answer. Return it.
   4002     return Best;
   4003   }
   4004 
   4005   // Diagnose the ambiguity.
   4006   if (Complain)
   4007     Diag(Loc, AmbigDiag);
   4008 
   4009   if (Complain)
   4010   // FIXME: Can we order the candidates in some sane way?
   4011     for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
   4012       PartialDiagnostic PD = CandidateDiag;
   4013       PD << getTemplateArgumentBindingsText(
   4014           cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
   4015                     *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
   4016       if (!TargetType.isNull())
   4017         HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
   4018                                    TargetType);
   4019       Diag((*I)->getLocation(), PD);
   4020     }
   4021 
   4022   return SpecEnd;
   4023 }
   4024 
   4025 /// \brief Returns the more specialized class template partial specialization
   4026 /// according to the rules of partial ordering of class template partial
   4027 /// specializations (C++ [temp.class.order]).
   4028 ///
   4029 /// \param PS1 the first class template partial specialization
   4030 ///
   4031 /// \param PS2 the second class template partial specialization
   4032 ///
   4033 /// \returns the more specialized class template partial specialization. If
   4034 /// neither partial specialization is more specialized, returns NULL.
   4035 ClassTemplatePartialSpecializationDecl *
   4036 Sema::getMoreSpecializedPartialSpecialization(
   4037                                   ClassTemplatePartialSpecializationDecl *PS1,
   4038                                   ClassTemplatePartialSpecializationDecl *PS2,
   4039                                               SourceLocation Loc) {
   4040   // C++ [temp.class.order]p1:
   4041   //   For two class template partial specializations, the first is at least as
   4042   //   specialized as the second if, given the following rewrite to two
   4043   //   function templates, the first function template is at least as
   4044   //   specialized as the second according to the ordering rules for function
   4045   //   templates (14.6.6.2):
   4046   //     - the first function template has the same template parameters as the
   4047   //       first partial specialization and has a single function parameter
   4048   //       whose type is a class template specialization with the template
   4049   //       arguments of the first partial specialization, and
   4050   //     - the second function template has the same template parameters as the
   4051   //       second partial specialization and has a single function parameter
   4052   //       whose type is a class template specialization with the template
   4053   //       arguments of the second partial specialization.
   4054   //
   4055   // Rather than synthesize function templates, we merely perform the
   4056   // equivalent partial ordering by performing deduction directly on
   4057   // the template arguments of the class template partial
   4058   // specializations. This computation is slightly simpler than the
   4059   // general problem of function template partial ordering, because
   4060   // class template partial specializations are more constrained. We
   4061   // know that every template parameter is deducible from the class
   4062   // template partial specialization's template arguments, for
   4063   // example.
   4064   SmallVector<DeducedTemplateArgument, 4> Deduced;
   4065   TemplateDeductionInfo Info(Context, Loc);
   4066 
   4067   QualType PT1 = PS1->getInjectedSpecializationType();
   4068   QualType PT2 = PS2->getInjectedSpecializationType();
   4069 
   4070   // Determine whether PS1 is at least as specialized as PS2
   4071   Deduced.resize(PS2->getTemplateParameters()->size());
   4072   bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
   4073                                             PS2->getTemplateParameters(),
   4074                                             PT2, PT1, Info, Deduced, TDF_None,
   4075                                             /*PartialOrdering=*/true,
   4076                                             /*RefParamComparisons=*/0);
   4077   if (Better1) {
   4078     InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
   4079                                Deduced.data(), Deduced.size(), Info);
   4080     Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
   4081                                                  PS1->getTemplateArgs(),
   4082                                                  Deduced, Info);
   4083   }
   4084 
   4085   // Determine whether PS2 is at least as specialized as PS1
   4086   Deduced.clear();
   4087   Deduced.resize(PS1->getTemplateParameters()->size());
   4088   bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
   4089                                             PS1->getTemplateParameters(),
   4090                                             PT1, PT2, Info, Deduced, TDF_None,
   4091                                             /*PartialOrdering=*/true,
   4092                                             /*RefParamComparisons=*/0);
   4093   if (Better2) {
   4094     InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
   4095                                Deduced.data(), Deduced.size(), Info);
   4096     Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
   4097                                                  PS2->getTemplateArgs(),
   4098                                                  Deduced, Info);
   4099   }
   4100 
   4101   if (Better1 == Better2)
   4102     return 0;
   4103 
   4104   return Better1? PS1 : PS2;
   4105 }
   4106 
   4107 static void
   4108 MarkUsedTemplateParameters(ASTContext &Ctx,
   4109                            const TemplateArgument &TemplateArg,
   4110                            bool OnlyDeduced,
   4111                            unsigned Depth,
   4112                            llvm::SmallBitVector &Used);
   4113 
   4114 /// \brief Mark the template parameters that are used by the given
   4115 /// expression.
   4116 static void
   4117 MarkUsedTemplateParameters(ASTContext &Ctx,
   4118                            const Expr *E,
   4119                            bool OnlyDeduced,
   4120                            unsigned Depth,
   4121                            llvm::SmallBitVector &Used) {
   4122   // We can deduce from a pack expansion.
   4123   if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
   4124     E = Expansion->getPattern();
   4125 
   4126   // Skip through any implicit casts we added while type-checking.
   4127   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
   4128     E = ICE->getSubExpr();
   4129 
   4130   // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
   4131   // find other occurrences of template parameters.
   4132   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   4133   if (!DRE)
   4134     return;
   4135 
   4136   const NonTypeTemplateParmDecl *NTTP
   4137     = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
   4138   if (!NTTP)
   4139     return;
   4140 
   4141   if (NTTP->getDepth() == Depth)
   4142     Used[NTTP->getIndex()] = true;
   4143 }
   4144 
   4145 /// \brief Mark the template parameters that are used by the given
   4146 /// nested name specifier.
   4147 static void
   4148 MarkUsedTemplateParameters(ASTContext &Ctx,
   4149                            NestedNameSpecifier *NNS,
   4150                            bool OnlyDeduced,
   4151                            unsigned Depth,
   4152                            llvm::SmallBitVector &Used) {
   4153   if (!NNS)
   4154     return;
   4155 
   4156   MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
   4157                              Used);
   4158   MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
   4159                              OnlyDeduced, Depth, Used);
   4160 }
   4161 
   4162 /// \brief Mark the template parameters that are used by the given
   4163 /// template name.
   4164 static void
   4165 MarkUsedTemplateParameters(ASTContext &Ctx,
   4166                            TemplateName Name,
   4167                            bool OnlyDeduced,
   4168                            unsigned Depth,
   4169                            llvm::SmallBitVector &Used) {
   4170   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
   4171     if (TemplateTemplateParmDecl *TTP
   4172           = dyn_cast<TemplateTemplateParmDecl>(Template)) {
   4173       if (TTP->getDepth() == Depth)
   4174         Used[TTP->getIndex()] = true;
   4175     }
   4176     return;
   4177   }
   4178 
   4179   if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
   4180     MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
   4181                                Depth, Used);
   4182   if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
   4183     MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
   4184                                Depth, Used);
   4185 }
   4186 
   4187 /// \brief Mark the template parameters that are used by the given
   4188 /// type.
   4189 static void
   4190 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
   4191                            bool OnlyDeduced,
   4192                            unsigned Depth,
   4193                            llvm::SmallBitVector &Used) {
   4194   if (T.isNull())
   4195     return;
   4196 
   4197   // Non-dependent types have nothing deducible
   4198   if (!T->isDependentType())
   4199     return;
   4200 
   4201   T = Ctx.getCanonicalType(T);
   4202   switch (T->getTypeClass()) {
   4203   case Type::Pointer:
   4204     MarkUsedTemplateParameters(Ctx,
   4205                                cast<PointerType>(T)->getPointeeType(),
   4206                                OnlyDeduced,
   4207                                Depth,
   4208                                Used);
   4209     break;
   4210 
   4211   case Type::BlockPointer:
   4212     MarkUsedTemplateParameters(Ctx,
   4213                                cast<BlockPointerType>(T)->getPointeeType(),
   4214                                OnlyDeduced,
   4215                                Depth,
   4216                                Used);
   4217     break;
   4218 
   4219   case Type::LValueReference:
   4220   case Type::RValueReference:
   4221     MarkUsedTemplateParameters(Ctx,
   4222                                cast<ReferenceType>(T)->getPointeeType(),
   4223                                OnlyDeduced,
   4224                                Depth,
   4225                                Used);
   4226     break;
   4227 
   4228   case Type::MemberPointer: {
   4229     const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
   4230     MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
   4231                                Depth, Used);
   4232     MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
   4233                                OnlyDeduced, Depth, Used);
   4234     break;
   4235   }
   4236 
   4237   case Type::DependentSizedArray:
   4238     MarkUsedTemplateParameters(Ctx,
   4239                                cast<DependentSizedArrayType>(T)->getSizeExpr(),
   4240                                OnlyDeduced, Depth, Used);
   4241     // Fall through to check the element type
   4242 
   4243   case Type::ConstantArray:
   4244   case Type::IncompleteArray:
   4245     MarkUsedTemplateParameters(Ctx,
   4246                                cast<ArrayType>(T)->getElementType(),
   4247                                OnlyDeduced, Depth, Used);
   4248     break;
   4249 
   4250   case Type::Vector:
   4251   case Type::ExtVector:
   4252     MarkUsedTemplateParameters(Ctx,
   4253                                cast<VectorType>(T)->getElementType(),
   4254                                OnlyDeduced, Depth, Used);
   4255     break;
   4256 
   4257   case Type::DependentSizedExtVector: {
   4258     const DependentSizedExtVectorType *VecType
   4259       = cast<DependentSizedExtVectorType>(T);
   4260     MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
   4261                                Depth, Used);
   4262     MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
   4263                                Depth, Used);
   4264     break;
   4265   }
   4266 
   4267   case Type::FunctionProto: {
   4268     const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
   4269     MarkUsedTemplateParameters(Ctx, Proto->getResultType(), OnlyDeduced,
   4270                                Depth, Used);
   4271     for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
   4272       MarkUsedTemplateParameters(Ctx, Proto->getArgType(I), OnlyDeduced,
   4273                                  Depth, Used);
   4274     break;
   4275   }
   4276 
   4277   case Type::TemplateTypeParm: {
   4278     const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
   4279     if (TTP->getDepth() == Depth)
   4280       Used[TTP->getIndex()] = true;
   4281     break;
   4282   }
   4283 
   4284   case Type::SubstTemplateTypeParmPack: {
   4285     const SubstTemplateTypeParmPackType *Subst
   4286       = cast<SubstTemplateTypeParmPackType>(T);
   4287     MarkUsedTemplateParameters(Ctx,
   4288                                QualType(Subst->getReplacedParameter(), 0),
   4289                                OnlyDeduced, Depth, Used);
   4290     MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
   4291                                OnlyDeduced, Depth, Used);
   4292     break;
   4293   }
   4294 
   4295   case Type::InjectedClassName:
   4296     T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
   4297     // fall through
   4298 
   4299   case Type::TemplateSpecialization: {
   4300     const TemplateSpecializationType *Spec
   4301       = cast<TemplateSpecializationType>(T);
   4302     MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
   4303                                Depth, Used);
   4304 
   4305     // C++0x [temp.deduct.type]p9:
   4306     //   If the template argument list of P contains a pack expansion that is not
   4307     //   the last template argument, the entire template argument list is a
   4308     //   non-deduced context.
   4309     if (OnlyDeduced &&
   4310         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
   4311       break;
   4312 
   4313     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
   4314       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
   4315                                  Used);
   4316     break;
   4317   }
   4318 
   4319   case Type::Complex:
   4320     if (!OnlyDeduced)
   4321       MarkUsedTemplateParameters(Ctx,
   4322                                  cast<ComplexType>(T)->getElementType(),
   4323                                  OnlyDeduced, Depth, Used);
   4324     break;
   4325 
   4326   case Type::Atomic:
   4327     if (!OnlyDeduced)
   4328       MarkUsedTemplateParameters(Ctx,
   4329                                  cast<AtomicType>(T)->getValueType(),
   4330                                  OnlyDeduced, Depth, Used);
   4331     break;
   4332 
   4333   case Type::DependentName:
   4334     if (!OnlyDeduced)
   4335       MarkUsedTemplateParameters(Ctx,
   4336                                  cast<DependentNameType>(T)->getQualifier(),
   4337                                  OnlyDeduced, Depth, Used);
   4338     break;
   4339 
   4340   case Type::DependentTemplateSpecialization: {
   4341     const DependentTemplateSpecializationType *Spec
   4342       = cast<DependentTemplateSpecializationType>(T);
   4343     if (!OnlyDeduced)
   4344       MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
   4345                                  OnlyDeduced, Depth, Used);
   4346 
   4347     // C++0x [temp.deduct.type]p9:
   4348     //   If the template argument list of P contains a pack expansion that is not
   4349     //   the last template argument, the entire template argument list is a
   4350     //   non-deduced context.
   4351     if (OnlyDeduced &&
   4352         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
   4353       break;
   4354 
   4355     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
   4356       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
   4357                                  Used);
   4358     break;
   4359   }
   4360 
   4361   case Type::TypeOf:
   4362     if (!OnlyDeduced)
   4363       MarkUsedTemplateParameters(Ctx,
   4364                                  cast<TypeOfType>(T)->getUnderlyingType(),
   4365                                  OnlyDeduced, Depth, Used);
   4366     break;
   4367 
   4368   case Type::TypeOfExpr:
   4369     if (!OnlyDeduced)
   4370       MarkUsedTemplateParameters(Ctx,
   4371                                  cast<TypeOfExprType>(T)->getUnderlyingExpr(),
   4372                                  OnlyDeduced, Depth, Used);
   4373     break;
   4374 
   4375   case Type::Decltype:
   4376     if (!OnlyDeduced)
   4377       MarkUsedTemplateParameters(Ctx,
   4378                                  cast<DecltypeType>(T)->getUnderlyingExpr(),
   4379                                  OnlyDeduced, Depth, Used);
   4380     break;
   4381 
   4382   case Type::UnaryTransform:
   4383     if (!OnlyDeduced)
   4384       MarkUsedTemplateParameters(Ctx,
   4385                                cast<UnaryTransformType>(T)->getUnderlyingType(),
   4386                                  OnlyDeduced, Depth, Used);
   4387     break;
   4388 
   4389   case Type::PackExpansion:
   4390     MarkUsedTemplateParameters(Ctx,
   4391                                cast<PackExpansionType>(T)->getPattern(),
   4392                                OnlyDeduced, Depth, Used);
   4393     break;
   4394 
   4395   case Type::Auto:
   4396     MarkUsedTemplateParameters(Ctx,
   4397                                cast<AutoType>(T)->getDeducedType(),
   4398                                OnlyDeduced, Depth, Used);
   4399 
   4400   // None of these types have any template parameters in them.
   4401   case Type::Builtin:
   4402   case Type::VariableArray:
   4403   case Type::FunctionNoProto:
   4404   case Type::Record:
   4405   case Type::Enum:
   4406   case Type::ObjCInterface:
   4407   case Type::ObjCObject:
   4408   case Type::ObjCObjectPointer:
   4409   case Type::UnresolvedUsing:
   4410 #define TYPE(Class, Base)
   4411 #define ABSTRACT_TYPE(Class, Base)
   4412 #define DEPENDENT_TYPE(Class, Base)
   4413 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   4414 #include "clang/AST/TypeNodes.def"
   4415     break;
   4416   }
   4417 }
   4418 
   4419 /// \brief Mark the template parameters that are used by this
   4420 /// template argument.
   4421 static void
   4422 MarkUsedTemplateParameters(ASTContext &Ctx,
   4423                            const TemplateArgument &TemplateArg,
   4424                            bool OnlyDeduced,
   4425                            unsigned Depth,
   4426                            llvm::SmallBitVector &Used) {
   4427   switch (TemplateArg.getKind()) {
   4428   case TemplateArgument::Null:
   4429   case TemplateArgument::Integral:
   4430   case TemplateArgument::Declaration:
   4431     break;
   4432 
   4433   case TemplateArgument::Type:
   4434     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
   4435                                Depth, Used);
   4436     break;
   4437 
   4438   case TemplateArgument::Template:
   4439   case TemplateArgument::TemplateExpansion:
   4440     MarkUsedTemplateParameters(Ctx,
   4441                                TemplateArg.getAsTemplateOrTemplatePattern(),
   4442                                OnlyDeduced, Depth, Used);
   4443     break;
   4444 
   4445   case TemplateArgument::Expression:
   4446     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
   4447                                Depth, Used);
   4448     break;
   4449 
   4450   case TemplateArgument::Pack:
   4451     for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
   4452                                       PEnd = TemplateArg.pack_end();
   4453          P != PEnd; ++P)
   4454       MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used);
   4455     break;
   4456   }
   4457 }
   4458 
   4459 /// \brief Mark the template parameters can be deduced by the given
   4460 /// template argument list.
   4461 ///
   4462 /// \param TemplateArgs the template argument list from which template
   4463 /// parameters will be deduced.
   4464 ///
   4465 /// \param Deduced a bit vector whose elements will be set to \c true
   4466 /// to indicate when the corresponding template parameter will be
   4467 /// deduced.
   4468 void
   4469 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
   4470                                  bool OnlyDeduced, unsigned Depth,
   4471                                  llvm::SmallBitVector &Used) {
   4472   // C++0x [temp.deduct.type]p9:
   4473   //   If the template argument list of P contains a pack expansion that is not
   4474   //   the last template argument, the entire template argument list is a
   4475   //   non-deduced context.
   4476   if (OnlyDeduced &&
   4477       hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
   4478     return;
   4479 
   4480   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   4481     ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
   4482                                  Depth, Used);
   4483 }
   4484 
   4485 /// \brief Marks all of the template parameters that will be deduced by a
   4486 /// call to the given function template.
   4487 void
   4488 Sema::MarkDeducedTemplateParameters(ASTContext &Ctx,
   4489                                     FunctionTemplateDecl *FunctionTemplate,
   4490                                     llvm::SmallBitVector &Deduced) {
   4491   TemplateParameterList *TemplateParams
   4492     = FunctionTemplate->getTemplateParameters();
   4493   Deduced.clear();
   4494   Deduced.resize(TemplateParams->size());
   4495 
   4496   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   4497   for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
   4498     ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
   4499                                  true, TemplateParams->getDepth(), Deduced);
   4500 }
   4501 
   4502 bool hasDeducibleTemplateParameters(Sema &S,
   4503                                     FunctionTemplateDecl *FunctionTemplate,
   4504                                     QualType T) {
   4505   if (!T->isDependentType())
   4506     return false;
   4507 
   4508   TemplateParameterList *TemplateParams
   4509     = FunctionTemplate->getTemplateParameters();
   4510   llvm::SmallBitVector Deduced(TemplateParams->size());
   4511   ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
   4512                                Deduced);
   4513 
   4514   return Deduced.any();
   4515 }
   4516