Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Aggregate Expr nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CodeGenModule.h"
     16 #include "CGObjCRuntime.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/DeclCXX.h"
     19 #include "clang/AST/DeclTemplate.h"
     20 #include "clang/AST/StmtVisitor.h"
     21 #include "llvm/Constants.h"
     22 #include "llvm/Function.h"
     23 #include "llvm/GlobalVariable.h"
     24 #include "llvm/Intrinsics.h"
     25 using namespace clang;
     26 using namespace CodeGen;
     27 
     28 //===----------------------------------------------------------------------===//
     29 //                        Aggregate Expression Emitter
     30 //===----------------------------------------------------------------------===//
     31 
     32 namespace  {
     33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
     34   CodeGenFunction &CGF;
     35   CGBuilderTy &Builder;
     36   AggValueSlot Dest;
     37   bool IgnoreResult;
     38 
     39   /// We want to use 'dest' as the return slot except under two
     40   /// conditions:
     41   ///   - The destination slot requires garbage collection, so we
     42   ///     need to use the GC API.
     43   ///   - The destination slot is potentially aliased.
     44   bool shouldUseDestForReturnSlot() const {
     45     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
     46   }
     47 
     48   ReturnValueSlot getReturnValueSlot() const {
     49     if (!shouldUseDestForReturnSlot())
     50       return ReturnValueSlot();
     51 
     52     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
     53   }
     54 
     55   AggValueSlot EnsureSlot(QualType T) {
     56     if (!Dest.isIgnored()) return Dest;
     57     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
     58   }
     59 
     60 public:
     61   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
     62                  bool ignore)
     63     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
     64       IgnoreResult(ignore) {
     65   }
     66 
     67   //===--------------------------------------------------------------------===//
     68   //                               Utilities
     69   //===--------------------------------------------------------------------===//
     70 
     71   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
     72   /// represents a value lvalue, this method emits the address of the lvalue,
     73   /// then loads the result into DestPtr.
     74   void EmitAggLoadOfLValue(const Expr *E);
     75 
     76   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
     77   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
     78   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false,
     79                          unsigned Alignment = 0);
     80 
     81   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
     82 
     83   void EmitStdInitializerList(llvm::Value *DestPtr, InitListExpr *InitList);
     84   void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
     85                      QualType elementType, InitListExpr *E);
     86 
     87   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
     88     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
     89       return AggValueSlot::NeedsGCBarriers;
     90     return AggValueSlot::DoesNotNeedGCBarriers;
     91   }
     92 
     93   bool TypeRequiresGCollection(QualType T);
     94 
     95   //===--------------------------------------------------------------------===//
     96   //                            Visitor Methods
     97   //===--------------------------------------------------------------------===//
     98 
     99   void VisitStmt(Stmt *S) {
    100     CGF.ErrorUnsupported(S, "aggregate expression");
    101   }
    102   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
    103   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
    104     Visit(GE->getResultExpr());
    105   }
    106   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
    107   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
    108     return Visit(E->getReplacement());
    109   }
    110 
    111   // l-values.
    112   void VisitDeclRefExpr(DeclRefExpr *E) {
    113     // For aggregates, we should always be able to emit the variable
    114     // as an l-value unless it's a reference.  This is due to the fact
    115     // that we can't actually ever see a normal l2r conversion on an
    116     // aggregate in C++, and in C there's no language standard
    117     // actively preventing us from listing variables in the captures
    118     // list of a block.
    119     if (E->getDecl()->getType()->isReferenceType()) {
    120       if (CodeGenFunction::ConstantEmission result
    121             = CGF.tryEmitAsConstant(E)) {
    122         EmitFinalDestCopy(E, result.getReferenceLValue(CGF, E));
    123         return;
    124       }
    125     }
    126 
    127     EmitAggLoadOfLValue(E);
    128   }
    129 
    130   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
    131   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
    132   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
    133   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
    134   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
    135     EmitAggLoadOfLValue(E);
    136   }
    137   void VisitPredefinedExpr(const PredefinedExpr *E) {
    138     EmitAggLoadOfLValue(E);
    139   }
    140 
    141   // Operators.
    142   void VisitCastExpr(CastExpr *E);
    143   void VisitCallExpr(const CallExpr *E);
    144   void VisitStmtExpr(const StmtExpr *E);
    145   void VisitBinaryOperator(const BinaryOperator *BO);
    146   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
    147   void VisitBinAssign(const BinaryOperator *E);
    148   void VisitBinComma(const BinaryOperator *E);
    149 
    150   void VisitObjCMessageExpr(ObjCMessageExpr *E);
    151   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
    152     EmitAggLoadOfLValue(E);
    153   }
    154 
    155   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
    156   void VisitChooseExpr(const ChooseExpr *CE);
    157   void VisitInitListExpr(InitListExpr *E);
    158   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
    159   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
    160     Visit(DAE->getExpr());
    161   }
    162   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
    163   void VisitCXXConstructExpr(const CXXConstructExpr *E);
    164   void VisitLambdaExpr(LambdaExpr *E);
    165   void VisitExprWithCleanups(ExprWithCleanups *E);
    166   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
    167   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
    168   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
    169   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
    170 
    171   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
    172     if (E->isGLValue()) {
    173       LValue LV = CGF.EmitPseudoObjectLValue(E);
    174       return EmitFinalDestCopy(E, LV);
    175     }
    176 
    177     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
    178   }
    179 
    180   void VisitVAArgExpr(VAArgExpr *E);
    181 
    182   void EmitInitializationToLValue(Expr *E, LValue Address);
    183   void EmitNullInitializationToLValue(LValue Address);
    184   //  case Expr::ChooseExprClass:
    185   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
    186   void VisitAtomicExpr(AtomicExpr *E) {
    187     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
    188   }
    189 };
    190 }  // end anonymous namespace.
    191 
    192 //===----------------------------------------------------------------------===//
    193 //                                Utilities
    194 //===----------------------------------------------------------------------===//
    195 
    196 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
    197 /// represents a value lvalue, this method emits the address of the lvalue,
    198 /// then loads the result into DestPtr.
    199 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
    200   LValue LV = CGF.EmitLValue(E);
    201   EmitFinalDestCopy(E, LV);
    202 }
    203 
    204 /// \brief True if the given aggregate type requires special GC API calls.
    205 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
    206   // Only record types have members that might require garbage collection.
    207   const RecordType *RecordTy = T->getAs<RecordType>();
    208   if (!RecordTy) return false;
    209 
    210   // Don't mess with non-trivial C++ types.
    211   RecordDecl *Record = RecordTy->getDecl();
    212   if (isa<CXXRecordDecl>(Record) &&
    213       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
    214        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
    215     return false;
    216 
    217   // Check whether the type has an object member.
    218   return Record->hasObjectMember();
    219 }
    220 
    221 /// \brief Perform the final move to DestPtr if for some reason
    222 /// getReturnValueSlot() didn't use it directly.
    223 ///
    224 /// The idea is that you do something like this:
    225 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
    226 ///   EmitMoveFromReturnSlot(E, Result);
    227 ///
    228 /// If nothing interferes, this will cause the result to be emitted
    229 /// directly into the return value slot.  Otherwise, a final move
    230 /// will be performed.
    231 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) {
    232   if (shouldUseDestForReturnSlot()) {
    233     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
    234     // The possibility of undef rvalues complicates that a lot,
    235     // though, so we can't really assert.
    236     return;
    237   }
    238 
    239   // Otherwise, do a final copy,
    240   assert(Dest.getAddr() != Src.getAggregateAddr());
    241   std::pair<CharUnits, CharUnits> TypeInfo =
    242     CGF.getContext().getTypeInfoInChars(E->getType());
    243   CharUnits Alignment = std::min(TypeInfo.second, Dest.getAlignment());
    244   EmitFinalDestCopy(E, Src, /*Ignore*/ true, Alignment.getQuantity());
    245 }
    246 
    247 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
    248 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore,
    249                                        unsigned Alignment) {
    250   assert(Src.isAggregate() && "value must be aggregate value!");
    251 
    252   // If Dest is ignored, then we're evaluating an aggregate expression
    253   // in a context (like an expression statement) that doesn't care
    254   // about the result.  C says that an lvalue-to-rvalue conversion is
    255   // performed in these cases; C++ says that it is not.  In either
    256   // case, we don't actually need to do anything unless the value is
    257   // volatile.
    258   if (Dest.isIgnored()) {
    259     if (!Src.isVolatileQualified() ||
    260         CGF.CGM.getLangOpts().CPlusPlus ||
    261         (IgnoreResult && Ignore))
    262       return;
    263 
    264     // If the source is volatile, we must read from it; to do that, we need
    265     // some place to put it.
    266     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
    267   }
    268 
    269   if (Dest.requiresGCollection()) {
    270     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
    271     llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
    272     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
    273     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
    274                                                       Dest.getAddr(),
    275                                                       Src.getAggregateAddr(),
    276                                                       SizeVal);
    277     return;
    278   }
    279   // If the result of the assignment is used, copy the LHS there also.
    280   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
    281   // from the source as well, as we can't eliminate it if either operand
    282   // is volatile, unless copy has volatile for both source and destination..
    283   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
    284                         Dest.isVolatile()|Src.isVolatileQualified(),
    285                         Alignment);
    286 }
    287 
    288 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
    289 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
    290   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
    291 
    292   CharUnits Alignment = std::min(Src.getAlignment(), Dest.getAlignment());
    293   EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity());
    294 }
    295 
    296 static QualType GetStdInitializerListElementType(QualType T) {
    297   // Just assume that this is really std::initializer_list.
    298   ClassTemplateSpecializationDecl *specialization =
    299       cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl());
    300   return specialization->getTemplateArgs()[0].getAsType();
    301 }
    302 
    303 /// \brief Prepare cleanup for the temporary array.
    304 static void EmitStdInitializerListCleanup(CodeGenFunction &CGF,
    305                                           QualType arrayType,
    306                                           llvm::Value *addr,
    307                                           const InitListExpr *initList) {
    308   QualType::DestructionKind dtorKind = arrayType.isDestructedType();
    309   if (!dtorKind)
    310     return; // Type doesn't need destroying.
    311   if (dtorKind != QualType::DK_cxx_destructor) {
    312     CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list");
    313     return;
    314   }
    315 
    316   CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind);
    317   CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer,
    318                   /*EHCleanup=*/true);
    319 }
    320 
    321 /// \brief Emit the initializer for a std::initializer_list initialized with a
    322 /// real initializer list.
    323 void AggExprEmitter::EmitStdInitializerList(llvm::Value *destPtr,
    324                                             InitListExpr *initList) {
    325   // We emit an array containing the elements, then have the init list point
    326   // at the array.
    327   ASTContext &ctx = CGF.getContext();
    328   unsigned numInits = initList->getNumInits();
    329   QualType element = GetStdInitializerListElementType(initList->getType());
    330   llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
    331   QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0);
    332   llvm::Type *LTy = CGF.ConvertTypeForMem(array);
    333   llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy);
    334   alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity());
    335   alloc->setName(".initlist.");
    336 
    337   EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList);
    338 
    339   // FIXME: The diagnostics are somewhat out of place here.
    340   RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl();
    341   RecordDecl::field_iterator field = record->field_begin();
    342   if (field == record->field_end()) {
    343     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
    344     return;
    345   }
    346 
    347   QualType elementPtr = ctx.getPointerType(element.withConst());
    348 
    349   // Start pointer.
    350   if (!ctx.hasSameType(field->getType(), elementPtr)) {
    351     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
    352     return;
    353   }
    354   LValue DestLV = CGF.MakeNaturalAlignAddrLValue(destPtr, initList->getType());
    355   LValue start = CGF.EmitLValueForFieldInitialization(DestLV, *field);
    356   llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart");
    357   CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start);
    358   ++field;
    359 
    360   if (field == record->field_end()) {
    361     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
    362     return;
    363   }
    364   LValue endOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *field);
    365   if (ctx.hasSameType(field->getType(), elementPtr)) {
    366     // End pointer.
    367     llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend");
    368     CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength);
    369   } else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) {
    370     // Length.
    371     CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength);
    372   } else {
    373     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
    374     return;
    375   }
    376 
    377   if (!Dest.isExternallyDestructed())
    378     EmitStdInitializerListCleanup(CGF, array, alloc, initList);
    379 }
    380 
    381 /// \brief Emit initialization of an array from an initializer list.
    382 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
    383                                    QualType elementType, InitListExpr *E) {
    384   uint64_t NumInitElements = E->getNumInits();
    385 
    386   uint64_t NumArrayElements = AType->getNumElements();
    387   assert(NumInitElements <= NumArrayElements);
    388 
    389   // DestPtr is an array*.  Construct an elementType* by drilling
    390   // down a level.
    391   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
    392   llvm::Value *indices[] = { zero, zero };
    393   llvm::Value *begin =
    394     Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
    395 
    396   // Exception safety requires us to destroy all the
    397   // already-constructed members if an initializer throws.
    398   // For that, we'll need an EH cleanup.
    399   QualType::DestructionKind dtorKind = elementType.isDestructedType();
    400   llvm::AllocaInst *endOfInit = 0;
    401   EHScopeStack::stable_iterator cleanup;
    402   llvm::Instruction *cleanupDominator = 0;
    403   if (CGF.needsEHCleanup(dtorKind)) {
    404     // In principle we could tell the cleanup where we are more
    405     // directly, but the control flow can get so varied here that it
    406     // would actually be quite complex.  Therefore we go through an
    407     // alloca.
    408     endOfInit = CGF.CreateTempAlloca(begin->getType(),
    409                                      "arrayinit.endOfInit");
    410     cleanupDominator = Builder.CreateStore(begin, endOfInit);
    411     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
    412                                          CGF.getDestroyer(dtorKind));
    413     cleanup = CGF.EHStack.stable_begin();
    414 
    415   // Otherwise, remember that we didn't need a cleanup.
    416   } else {
    417     dtorKind = QualType::DK_none;
    418   }
    419 
    420   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
    421 
    422   // The 'current element to initialize'.  The invariants on this
    423   // variable are complicated.  Essentially, after each iteration of
    424   // the loop, it points to the last initialized element, except
    425   // that it points to the beginning of the array before any
    426   // elements have been initialized.
    427   llvm::Value *element = begin;
    428 
    429   // Emit the explicit initializers.
    430   for (uint64_t i = 0; i != NumInitElements; ++i) {
    431     // Advance to the next element.
    432     if (i > 0) {
    433       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
    434 
    435       // Tell the cleanup that it needs to destroy up to this
    436       // element.  TODO: some of these stores can be trivially
    437       // observed to be unnecessary.
    438       if (endOfInit) Builder.CreateStore(element, endOfInit);
    439     }
    440 
    441     // If these are nested std::initializer_list inits, do them directly,
    442     // because they are conceptually the same "location".
    443     InitListExpr *initList = dyn_cast<InitListExpr>(E->getInit(i));
    444     if (initList && initList->initializesStdInitializerList()) {
    445       EmitStdInitializerList(element, initList);
    446     } else {
    447       LValue elementLV = CGF.MakeAddrLValue(element, elementType);
    448       EmitInitializationToLValue(E->getInit(i), elementLV);
    449     }
    450   }
    451 
    452   // Check whether there's a non-trivial array-fill expression.
    453   // Note that this will be a CXXConstructExpr even if the element
    454   // type is an array (or array of array, etc.) of class type.
    455   Expr *filler = E->getArrayFiller();
    456   bool hasTrivialFiller = true;
    457   if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
    458     assert(cons->getConstructor()->isDefaultConstructor());
    459     hasTrivialFiller = cons->getConstructor()->isTrivial();
    460   }
    461 
    462   // Any remaining elements need to be zero-initialized, possibly
    463   // using the filler expression.  We can skip this if the we're
    464   // emitting to zeroed memory.
    465   if (NumInitElements != NumArrayElements &&
    466       !(Dest.isZeroed() && hasTrivialFiller &&
    467         CGF.getTypes().isZeroInitializable(elementType))) {
    468 
    469     // Use an actual loop.  This is basically
    470     //   do { *array++ = filler; } while (array != end);
    471 
    472     // Advance to the start of the rest of the array.
    473     if (NumInitElements) {
    474       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
    475       if (endOfInit) Builder.CreateStore(element, endOfInit);
    476     }
    477 
    478     // Compute the end of the array.
    479     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
    480                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
    481                                                  "arrayinit.end");
    482 
    483     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
    484     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
    485 
    486     // Jump into the body.
    487     CGF.EmitBlock(bodyBB);
    488     llvm::PHINode *currentElement =
    489       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
    490     currentElement->addIncoming(element, entryBB);
    491 
    492     // Emit the actual filler expression.
    493     LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
    494     if (filler)
    495       EmitInitializationToLValue(filler, elementLV);
    496     else
    497       EmitNullInitializationToLValue(elementLV);
    498 
    499     // Move on to the next element.
    500     llvm::Value *nextElement =
    501       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
    502 
    503     // Tell the EH cleanup that we finished with the last element.
    504     if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
    505 
    506     // Leave the loop if we're done.
    507     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
    508                                              "arrayinit.done");
    509     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
    510     Builder.CreateCondBr(done, endBB, bodyBB);
    511     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
    512 
    513     CGF.EmitBlock(endBB);
    514   }
    515 
    516   // Leave the partial-array cleanup if we entered one.
    517   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
    518 }
    519 
    520 //===----------------------------------------------------------------------===//
    521 //                            Visitor Methods
    522 //===----------------------------------------------------------------------===//
    523 
    524 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
    525   Visit(E->GetTemporaryExpr());
    526 }
    527 
    528 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
    529   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
    530 }
    531 
    532 void
    533 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
    534   if (E->getType().isPODType(CGF.getContext())) {
    535     // For a POD type, just emit a load of the lvalue + a copy, because our
    536     // compound literal might alias the destination.
    537     // FIXME: This is a band-aid; the real problem appears to be in our handling
    538     // of assignments, where we store directly into the LHS without checking
    539     // whether anything in the RHS aliases.
    540     EmitAggLoadOfLValue(E);
    541     return;
    542   }
    543 
    544   AggValueSlot Slot = EnsureSlot(E->getType());
    545   CGF.EmitAggExpr(E->getInitializer(), Slot);
    546 }
    547 
    548 
    549 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
    550   switch (E->getCastKind()) {
    551   case CK_Dynamic: {
    552     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
    553     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
    554     // FIXME: Do we also need to handle property references here?
    555     if (LV.isSimple())
    556       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
    557     else
    558       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
    559 
    560     if (!Dest.isIgnored())
    561       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
    562     break;
    563   }
    564 
    565   case CK_ToUnion: {
    566     if (Dest.isIgnored()) break;
    567 
    568     // GCC union extension
    569     QualType Ty = E->getSubExpr()->getType();
    570     QualType PtrTy = CGF.getContext().getPointerType(Ty);
    571     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
    572                                                  CGF.ConvertType(PtrTy));
    573     EmitInitializationToLValue(E->getSubExpr(),
    574                                CGF.MakeAddrLValue(CastPtr, Ty));
    575     break;
    576   }
    577 
    578   case CK_DerivedToBase:
    579   case CK_BaseToDerived:
    580   case CK_UncheckedDerivedToBase: {
    581     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
    582                 "should have been unpacked before we got here");
    583   }
    584 
    585   case CK_LValueToRValue: // hope for downstream optimization
    586   case CK_NoOp:
    587   case CK_AtomicToNonAtomic:
    588   case CK_NonAtomicToAtomic:
    589   case CK_UserDefinedConversion:
    590   case CK_ConstructorConversion:
    591     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
    592                                                    E->getType()) &&
    593            "Implicit cast types must be compatible");
    594     Visit(E->getSubExpr());
    595     break;
    596 
    597   case CK_LValueBitCast:
    598     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
    599 
    600   case CK_Dependent:
    601   case CK_BitCast:
    602   case CK_ArrayToPointerDecay:
    603   case CK_FunctionToPointerDecay:
    604   case CK_NullToPointer:
    605   case CK_NullToMemberPointer:
    606   case CK_BaseToDerivedMemberPointer:
    607   case CK_DerivedToBaseMemberPointer:
    608   case CK_MemberPointerToBoolean:
    609   case CK_ReinterpretMemberPointer:
    610   case CK_IntegralToPointer:
    611   case CK_PointerToIntegral:
    612   case CK_PointerToBoolean:
    613   case CK_ToVoid:
    614   case CK_VectorSplat:
    615   case CK_IntegralCast:
    616   case CK_IntegralToBoolean:
    617   case CK_IntegralToFloating:
    618   case CK_FloatingToIntegral:
    619   case CK_FloatingToBoolean:
    620   case CK_FloatingCast:
    621   case CK_CPointerToObjCPointerCast:
    622   case CK_BlockPointerToObjCPointerCast:
    623   case CK_AnyPointerToBlockPointerCast:
    624   case CK_ObjCObjectLValueCast:
    625   case CK_FloatingRealToComplex:
    626   case CK_FloatingComplexToReal:
    627   case CK_FloatingComplexToBoolean:
    628   case CK_FloatingComplexCast:
    629   case CK_FloatingComplexToIntegralComplex:
    630   case CK_IntegralRealToComplex:
    631   case CK_IntegralComplexToReal:
    632   case CK_IntegralComplexToBoolean:
    633   case CK_IntegralComplexCast:
    634   case CK_IntegralComplexToFloatingComplex:
    635   case CK_ARCProduceObject:
    636   case CK_ARCConsumeObject:
    637   case CK_ARCReclaimReturnedObject:
    638   case CK_ARCExtendBlockObject:
    639   case CK_CopyAndAutoreleaseBlockObject:
    640     llvm_unreachable("cast kind invalid for aggregate types");
    641   }
    642 }
    643 
    644 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
    645   if (E->getCallReturnType()->isReferenceType()) {
    646     EmitAggLoadOfLValue(E);
    647     return;
    648   }
    649 
    650   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
    651   EmitMoveFromReturnSlot(E, RV);
    652 }
    653 
    654 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
    655   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
    656   EmitMoveFromReturnSlot(E, RV);
    657 }
    658 
    659 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
    660   CGF.EmitIgnoredExpr(E->getLHS());
    661   Visit(E->getRHS());
    662 }
    663 
    664 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
    665   CodeGenFunction::StmtExprEvaluation eval(CGF);
    666   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
    667 }
    668 
    669 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
    670   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
    671     VisitPointerToDataMemberBinaryOperator(E);
    672   else
    673     CGF.ErrorUnsupported(E, "aggregate binary expression");
    674 }
    675 
    676 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
    677                                                     const BinaryOperator *E) {
    678   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
    679   EmitFinalDestCopy(E, LV);
    680 }
    681 
    682 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
    683   // For an assignment to work, the value on the right has
    684   // to be compatible with the value on the left.
    685   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
    686                                                  E->getRHS()->getType())
    687          && "Invalid assignment");
    688 
    689   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
    690     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
    691       if (VD->hasAttr<BlocksAttr>() &&
    692           E->getRHS()->HasSideEffects(CGF.getContext())) {
    693         // When __block variable on LHS, the RHS must be evaluated first
    694         // as it may change the 'forwarding' field via call to Block_copy.
    695         LValue RHS = CGF.EmitLValue(E->getRHS());
    696         LValue LHS = CGF.EmitLValue(E->getLHS());
    697         Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
    698                                        needsGC(E->getLHS()->getType()),
    699                                        AggValueSlot::IsAliased);
    700         EmitFinalDestCopy(E, RHS, true);
    701         return;
    702       }
    703 
    704   LValue LHS = CGF.EmitLValue(E->getLHS());
    705 
    706   // Codegen the RHS so that it stores directly into the LHS.
    707   AggValueSlot LHSSlot =
    708     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
    709                             needsGC(E->getLHS()->getType()),
    710                             AggValueSlot::IsAliased);
    711   CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
    712   EmitFinalDestCopy(E, LHS, true);
    713 }
    714 
    715 void AggExprEmitter::
    716 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
    717   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
    718   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
    719   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
    720 
    721   // Bind the common expression if necessary.
    722   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
    723 
    724   CodeGenFunction::ConditionalEvaluation eval(CGF);
    725   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
    726 
    727   // Save whether the destination's lifetime is externally managed.
    728   bool isExternallyDestructed = Dest.isExternallyDestructed();
    729 
    730   eval.begin(CGF);
    731   CGF.EmitBlock(LHSBlock);
    732   Visit(E->getTrueExpr());
    733   eval.end(CGF);
    734 
    735   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
    736   CGF.Builder.CreateBr(ContBlock);
    737 
    738   // If the result of an agg expression is unused, then the emission
    739   // of the LHS might need to create a destination slot.  That's fine
    740   // with us, and we can safely emit the RHS into the same slot, but
    741   // we shouldn't claim that it's already being destructed.
    742   Dest.setExternallyDestructed(isExternallyDestructed);
    743 
    744   eval.begin(CGF);
    745   CGF.EmitBlock(RHSBlock);
    746   Visit(E->getFalseExpr());
    747   eval.end(CGF);
    748 
    749   CGF.EmitBlock(ContBlock);
    750 }
    751 
    752 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
    753   Visit(CE->getChosenSubExpr(CGF.getContext()));
    754 }
    755 
    756 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
    757   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
    758   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
    759 
    760   if (!ArgPtr) {
    761     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
    762     return;
    763   }
    764 
    765   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
    766 }
    767 
    768 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
    769   // Ensure that we have a slot, but if we already do, remember
    770   // whether it was externally destructed.
    771   bool wasExternallyDestructed = Dest.isExternallyDestructed();
    772   Dest = EnsureSlot(E->getType());
    773 
    774   // We're going to push a destructor if there isn't already one.
    775   Dest.setExternallyDestructed();
    776 
    777   Visit(E->getSubExpr());
    778 
    779   // Push that destructor we promised.
    780   if (!wasExternallyDestructed)
    781     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
    782 }
    783 
    784 void
    785 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
    786   AggValueSlot Slot = EnsureSlot(E->getType());
    787   CGF.EmitCXXConstructExpr(E, Slot);
    788 }
    789 
    790 void
    791 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
    792   AggValueSlot Slot = EnsureSlot(E->getType());
    793   CGF.EmitLambdaExpr(E, Slot);
    794 }
    795 
    796 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
    797   CGF.enterFullExpression(E);
    798   CodeGenFunction::RunCleanupsScope cleanups(CGF);
    799   Visit(E->getSubExpr());
    800 }
    801 
    802 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
    803   QualType T = E->getType();
    804   AggValueSlot Slot = EnsureSlot(T);
    805   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
    806 }
    807 
    808 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
    809   QualType T = E->getType();
    810   AggValueSlot Slot = EnsureSlot(T);
    811   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
    812 }
    813 
    814 /// isSimpleZero - If emitting this value will obviously just cause a store of
    815 /// zero to memory, return true.  This can return false if uncertain, so it just
    816 /// handles simple cases.
    817 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
    818   E = E->IgnoreParens();
    819 
    820   // 0
    821   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
    822     return IL->getValue() == 0;
    823   // +0.0
    824   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
    825     return FL->getValue().isPosZero();
    826   // int()
    827   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
    828       CGF.getTypes().isZeroInitializable(E->getType()))
    829     return true;
    830   // (int*)0 - Null pointer expressions.
    831   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
    832     return ICE->getCastKind() == CK_NullToPointer;
    833   // '\0'
    834   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
    835     return CL->getValue() == 0;
    836 
    837   // Otherwise, hard case: conservatively return false.
    838   return false;
    839 }
    840 
    841 
    842 void
    843 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
    844   QualType type = LV.getType();
    845   // FIXME: Ignore result?
    846   // FIXME: Are initializers affected by volatile?
    847   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
    848     // Storing "i32 0" to a zero'd memory location is a noop.
    849   } else if (isa<ImplicitValueInitExpr>(E)) {
    850     EmitNullInitializationToLValue(LV);
    851   } else if (type->isReferenceType()) {
    852     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
    853     CGF.EmitStoreThroughLValue(RV, LV);
    854   } else if (type->isAnyComplexType()) {
    855     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
    856   } else if (CGF.hasAggregateLLVMType(type)) {
    857     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
    858                                                AggValueSlot::IsDestructed,
    859                                       AggValueSlot::DoesNotNeedGCBarriers,
    860                                                AggValueSlot::IsNotAliased,
    861                                                Dest.isZeroed()));
    862   } else if (LV.isSimple()) {
    863     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
    864   } else {
    865     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
    866   }
    867 }
    868 
    869 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
    870   QualType type = lv.getType();
    871 
    872   // If the destination slot is already zeroed out before the aggregate is
    873   // copied into it, we don't have to emit any zeros here.
    874   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
    875     return;
    876 
    877   if (!CGF.hasAggregateLLVMType(type)) {
    878     // For non-aggregates, we can store zero.
    879     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
    880     // Note that the following is not equivalent to
    881     // EmitStoreThroughBitfieldLValue for ARC types.
    882     if (lv.isBitField()) {
    883       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
    884     } else {
    885       assert(lv.isSimple());
    886       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
    887     }
    888   } else {
    889     // There's a potential optimization opportunity in combining
    890     // memsets; that would be easy for arrays, but relatively
    891     // difficult for structures with the current code.
    892     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
    893   }
    894 }
    895 
    896 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
    897 #if 0
    898   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
    899   // (Length of globals? Chunks of zeroed-out space?).
    900   //
    901   // If we can, prefer a copy from a global; this is a lot less code for long
    902   // globals, and it's easier for the current optimizers to analyze.
    903   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
    904     llvm::GlobalVariable* GV =
    905     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
    906                              llvm::GlobalValue::InternalLinkage, C, "");
    907     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
    908     return;
    909   }
    910 #endif
    911   if (E->hadArrayRangeDesignator())
    912     CGF.ErrorUnsupported(E, "GNU array range designator extension");
    913 
    914   if (E->initializesStdInitializerList()) {
    915     EmitStdInitializerList(Dest.getAddr(), E);
    916     return;
    917   }
    918 
    919   AggValueSlot Dest = EnsureSlot(E->getType());
    920   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
    921                                      Dest.getAlignment());
    922 
    923   // Handle initialization of an array.
    924   if (E->getType()->isArrayType()) {
    925     if (E->isStringLiteralInit())
    926       return Visit(E->getInit(0));
    927 
    928     QualType elementType =
    929         CGF.getContext().getAsArrayType(E->getType())->getElementType();
    930 
    931     llvm::PointerType *APType =
    932       cast<llvm::PointerType>(Dest.getAddr()->getType());
    933     llvm::ArrayType *AType =
    934       cast<llvm::ArrayType>(APType->getElementType());
    935 
    936     EmitArrayInit(Dest.getAddr(), AType, elementType, E);
    937     return;
    938   }
    939 
    940   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
    941 
    942   // Do struct initialization; this code just sets each individual member
    943   // to the approprate value.  This makes bitfield support automatic;
    944   // the disadvantage is that the generated code is more difficult for
    945   // the optimizer, especially with bitfields.
    946   unsigned NumInitElements = E->getNumInits();
    947   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
    948 
    949   if (record->isUnion()) {
    950     // Only initialize one field of a union. The field itself is
    951     // specified by the initializer list.
    952     if (!E->getInitializedFieldInUnion()) {
    953       // Empty union; we have nothing to do.
    954 
    955 #ifndef NDEBUG
    956       // Make sure that it's really an empty and not a failure of
    957       // semantic analysis.
    958       for (RecordDecl::field_iterator Field = record->field_begin(),
    959                                    FieldEnd = record->field_end();
    960            Field != FieldEnd; ++Field)
    961         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
    962 #endif
    963       return;
    964     }
    965 
    966     // FIXME: volatility
    967     FieldDecl *Field = E->getInitializedFieldInUnion();
    968 
    969     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
    970     if (NumInitElements) {
    971       // Store the initializer into the field
    972       EmitInitializationToLValue(E->getInit(0), FieldLoc);
    973     } else {
    974       // Default-initialize to null.
    975       EmitNullInitializationToLValue(FieldLoc);
    976     }
    977 
    978     return;
    979   }
    980 
    981   // We'll need to enter cleanup scopes in case any of the member
    982   // initializers throw an exception.
    983   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
    984   llvm::Instruction *cleanupDominator = 0;
    985 
    986   // Here we iterate over the fields; this makes it simpler to both
    987   // default-initialize fields and skip over unnamed fields.
    988   unsigned curInitIndex = 0;
    989   for (RecordDecl::field_iterator field = record->field_begin(),
    990                                fieldEnd = record->field_end();
    991        field != fieldEnd; ++field) {
    992     // We're done once we hit the flexible array member.
    993     if (field->getType()->isIncompleteArrayType())
    994       break;
    995 
    996     // Always skip anonymous bitfields.
    997     if (field->isUnnamedBitfield())
    998       continue;
    999 
   1000     // We're done if we reach the end of the explicit initializers, we
   1001     // have a zeroed object, and the rest of the fields are
   1002     // zero-initializable.
   1003     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
   1004         CGF.getTypes().isZeroInitializable(E->getType()))
   1005       break;
   1006 
   1007 
   1008     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, *field);
   1009     // We never generate write-barries for initialized fields.
   1010     LV.setNonGC(true);
   1011 
   1012     if (curInitIndex < NumInitElements) {
   1013       // Store the initializer into the field.
   1014       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
   1015     } else {
   1016       // We're out of initalizers; default-initialize to null
   1017       EmitNullInitializationToLValue(LV);
   1018     }
   1019 
   1020     // Push a destructor if necessary.
   1021     // FIXME: if we have an array of structures, all explicitly
   1022     // initialized, we can end up pushing a linear number of cleanups.
   1023     bool pushedCleanup = false;
   1024     if (QualType::DestructionKind dtorKind
   1025           = field->getType().isDestructedType()) {
   1026       assert(LV.isSimple());
   1027       if (CGF.needsEHCleanup(dtorKind)) {
   1028         if (!cleanupDominator)
   1029           cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
   1030 
   1031         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
   1032                         CGF.getDestroyer(dtorKind), false);
   1033         cleanups.push_back(CGF.EHStack.stable_begin());
   1034         pushedCleanup = true;
   1035       }
   1036     }
   1037 
   1038     // If the GEP didn't get used because of a dead zero init or something
   1039     // else, clean it up for -O0 builds and general tidiness.
   1040     if (!pushedCleanup && LV.isSimple())
   1041       if (llvm::GetElementPtrInst *GEP =
   1042             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
   1043         if (GEP->use_empty())
   1044           GEP->eraseFromParent();
   1045   }
   1046 
   1047   // Deactivate all the partial cleanups in reverse order, which
   1048   // generally means popping them.
   1049   for (unsigned i = cleanups.size(); i != 0; --i)
   1050     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
   1051 
   1052   // Destroy the placeholder if we made one.
   1053   if (cleanupDominator)
   1054     cleanupDominator->eraseFromParent();
   1055 }
   1056 
   1057 //===----------------------------------------------------------------------===//
   1058 //                        Entry Points into this File
   1059 //===----------------------------------------------------------------------===//
   1060 
   1061 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
   1062 /// non-zero bytes that will be stored when outputting the initializer for the
   1063 /// specified initializer expression.
   1064 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
   1065   E = E->IgnoreParens();
   1066 
   1067   // 0 and 0.0 won't require any non-zero stores!
   1068   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
   1069 
   1070   // If this is an initlist expr, sum up the size of sizes of the (present)
   1071   // elements.  If this is something weird, assume the whole thing is non-zero.
   1072   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
   1073   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
   1074     return CGF.getContext().getTypeSizeInChars(E->getType());
   1075 
   1076   // InitListExprs for structs have to be handled carefully.  If there are
   1077   // reference members, we need to consider the size of the reference, not the
   1078   // referencee.  InitListExprs for unions and arrays can't have references.
   1079   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
   1080     if (!RT->isUnionType()) {
   1081       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
   1082       CharUnits NumNonZeroBytes = CharUnits::Zero();
   1083 
   1084       unsigned ILEElement = 0;
   1085       for (RecordDecl::field_iterator Field = SD->field_begin(),
   1086            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
   1087         // We're done once we hit the flexible array member or run out of
   1088         // InitListExpr elements.
   1089         if (Field->getType()->isIncompleteArrayType() ||
   1090             ILEElement == ILE->getNumInits())
   1091           break;
   1092         if (Field->isUnnamedBitfield())
   1093           continue;
   1094 
   1095         const Expr *E = ILE->getInit(ILEElement++);
   1096 
   1097         // Reference values are always non-null and have the width of a pointer.
   1098         if (Field->getType()->isReferenceType())
   1099           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
   1100               CGF.getContext().getTargetInfo().getPointerWidth(0));
   1101         else
   1102           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
   1103       }
   1104 
   1105       return NumNonZeroBytes;
   1106     }
   1107   }
   1108 
   1109 
   1110   CharUnits NumNonZeroBytes = CharUnits::Zero();
   1111   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
   1112     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
   1113   return NumNonZeroBytes;
   1114 }
   1115 
   1116 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
   1117 /// zeros in it, emit a memset and avoid storing the individual zeros.
   1118 ///
   1119 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
   1120                                      CodeGenFunction &CGF) {
   1121   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
   1122   // volatile stores.
   1123   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
   1124 
   1125   // C++ objects with a user-declared constructor don't need zero'ing.
   1126   if (CGF.getContext().getLangOpts().CPlusPlus)
   1127     if (const RecordType *RT = CGF.getContext()
   1128                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
   1129       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   1130       if (RD->hasUserDeclaredConstructor())
   1131         return;
   1132     }
   1133 
   1134   // If the type is 16-bytes or smaller, prefer individual stores over memset.
   1135   std::pair<CharUnits, CharUnits> TypeInfo =
   1136     CGF.getContext().getTypeInfoInChars(E->getType());
   1137   if (TypeInfo.first <= CharUnits::fromQuantity(16))
   1138     return;
   1139 
   1140   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
   1141   // we prefer to emit memset + individual stores for the rest.
   1142   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
   1143   if (NumNonZeroBytes*4 > TypeInfo.first)
   1144     return;
   1145 
   1146   // Okay, it seems like a good idea to use an initial memset, emit the call.
   1147   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
   1148   CharUnits Align = TypeInfo.second;
   1149 
   1150   llvm::Value *Loc = Slot.getAddr();
   1151 
   1152   Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
   1153   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
   1154                            Align.getQuantity(), false);
   1155 
   1156   // Tell the AggExprEmitter that the slot is known zero.
   1157   Slot.setZeroed();
   1158 }
   1159 
   1160 
   1161 
   1162 
   1163 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
   1164 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
   1165 /// the value of the aggregate expression is not needed.  If VolatileDest is
   1166 /// true, DestPtr cannot be 0.
   1167 ///
   1168 /// \param IsInitializer - true if this evaluation is initializing an
   1169 /// object whose lifetime is already being managed.
   1170 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
   1171                                   bool IgnoreResult) {
   1172   assert(E && hasAggregateLLVMType(E->getType()) &&
   1173          "Invalid aggregate expression to emit");
   1174   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
   1175          "slot has bits but no address");
   1176 
   1177   // Optimize the slot if possible.
   1178   CheckAggExprForMemSetUse(Slot, E, *this);
   1179 
   1180   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
   1181 }
   1182 
   1183 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
   1184   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
   1185   llvm::Value *Temp = CreateMemTemp(E->getType());
   1186   LValue LV = MakeAddrLValue(Temp, E->getType());
   1187   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
   1188                                          AggValueSlot::DoesNotNeedGCBarriers,
   1189                                          AggValueSlot::IsNotAliased));
   1190   return LV;
   1191 }
   1192 
   1193 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
   1194                                         llvm::Value *SrcPtr, QualType Ty,
   1195                                         bool isVolatile, unsigned Alignment) {
   1196   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
   1197 
   1198   if (getContext().getLangOpts().CPlusPlus) {
   1199     if (const RecordType *RT = Ty->getAs<RecordType>()) {
   1200       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
   1201       assert((Record->hasTrivialCopyConstructor() ||
   1202               Record->hasTrivialCopyAssignment() ||
   1203               Record->hasTrivialMoveConstructor() ||
   1204               Record->hasTrivialMoveAssignment()) &&
   1205              "Trying to aggregate-copy a type without a trivial copy "
   1206              "constructor or assignment operator");
   1207       // Ignore empty classes in C++.
   1208       if (Record->isEmpty())
   1209         return;
   1210     }
   1211   }
   1212 
   1213   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
   1214   // C99 6.5.16.1p3, which states "If the value being stored in an object is
   1215   // read from another object that overlaps in anyway the storage of the first
   1216   // object, then the overlap shall be exact and the two objects shall have
   1217   // qualified or unqualified versions of a compatible type."
   1218   //
   1219   // memcpy is not defined if the source and destination pointers are exactly
   1220   // equal, but other compilers do this optimization, and almost every memcpy
   1221   // implementation handles this case safely.  If there is a libc that does not
   1222   // safely handle this, we can add a target hook.
   1223 
   1224   // Get size and alignment info for this aggregate.
   1225   std::pair<CharUnits, CharUnits> TypeInfo =
   1226     getContext().getTypeInfoInChars(Ty);
   1227 
   1228   if (!Alignment)
   1229     Alignment = TypeInfo.second.getQuantity();
   1230 
   1231   // FIXME: Handle variable sized types.
   1232 
   1233   // FIXME: If we have a volatile struct, the optimizer can remove what might
   1234   // appear to be `extra' memory ops:
   1235   //
   1236   // volatile struct { int i; } a, b;
   1237   //
   1238   // int main() {
   1239   //   a = b;
   1240   //   a = b;
   1241   // }
   1242   //
   1243   // we need to use a different call here.  We use isVolatile to indicate when
   1244   // either the source or the destination is volatile.
   1245 
   1246   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
   1247   llvm::Type *DBP =
   1248     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
   1249   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
   1250 
   1251   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
   1252   llvm::Type *SBP =
   1253     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
   1254   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
   1255 
   1256   // Don't do any of the memmove_collectable tests if GC isn't set.
   1257   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
   1258     // fall through
   1259   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
   1260     RecordDecl *Record = RecordTy->getDecl();
   1261     if (Record->hasObjectMember()) {
   1262       CharUnits size = TypeInfo.first;
   1263       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
   1264       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
   1265       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
   1266                                                     SizeVal);
   1267       return;
   1268     }
   1269   } else if (Ty->isArrayType()) {
   1270     QualType BaseType = getContext().getBaseElementType(Ty);
   1271     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
   1272       if (RecordTy->getDecl()->hasObjectMember()) {
   1273         CharUnits size = TypeInfo.first;
   1274         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
   1275         llvm::Value *SizeVal =
   1276           llvm::ConstantInt::get(SizeTy, size.getQuantity());
   1277         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
   1278                                                       SizeVal);
   1279         return;
   1280       }
   1281     }
   1282   }
   1283 
   1284   Builder.CreateMemCpy(DestPtr, SrcPtr,
   1285                        llvm::ConstantInt::get(IntPtrTy,
   1286                                               TypeInfo.first.getQuantity()),
   1287                        Alignment, isVolatile);
   1288 }
   1289 
   1290 void CodeGenFunction::MaybeEmitStdInitializerListCleanup(llvm::Value *loc,
   1291                                                          const Expr *init) {
   1292   const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init);
   1293   if (cleanups)
   1294     init = cleanups->getSubExpr();
   1295 
   1296   if (isa<InitListExpr>(init) &&
   1297       cast<InitListExpr>(init)->initializesStdInitializerList()) {
   1298     // We initialized this std::initializer_list with an initializer list.
   1299     // A backing array was created. Push a cleanup for it.
   1300     EmitStdInitializerListCleanup(loc, cast<InitListExpr>(init));
   1301   }
   1302 }
   1303 
   1304 static void EmitRecursiveStdInitializerListCleanup(CodeGenFunction &CGF,
   1305                                                    llvm::Value *arrayStart,
   1306                                                    const InitListExpr *init) {
   1307   // Check if there are any recursive cleanups to do, i.e. if we have
   1308   //   std::initializer_list<std::initializer_list<obj>> list = {{obj()}};
   1309   // then we need to destroy the inner array as well.
   1310   for (unsigned i = 0, e = init->getNumInits(); i != e; ++i) {
   1311     const InitListExpr *subInit = dyn_cast<InitListExpr>(init->getInit(i));
   1312     if (!subInit || !subInit->initializesStdInitializerList())
   1313       continue;
   1314 
   1315     // This one needs to be destroyed. Get the address of the std::init_list.
   1316     llvm::Value *offset = llvm::ConstantInt::get(CGF.SizeTy, i);
   1317     llvm::Value *loc = CGF.Builder.CreateInBoundsGEP(arrayStart, offset,
   1318                                                  "std.initlist");
   1319     CGF.EmitStdInitializerListCleanup(loc, subInit);
   1320   }
   1321 }
   1322 
   1323 void CodeGenFunction::EmitStdInitializerListCleanup(llvm::Value *loc,
   1324                                                     const InitListExpr *init) {
   1325   ASTContext &ctx = getContext();
   1326   QualType element = GetStdInitializerListElementType(init->getType());
   1327   unsigned numInits = init->getNumInits();
   1328   llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
   1329   QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0);
   1330   QualType arrayPtr = ctx.getPointerType(array);
   1331   llvm::Type *arrayPtrType = ConvertType(arrayPtr);
   1332 
   1333   // lvalue is the location of a std::initializer_list, which as its first
   1334   // element has a pointer to the array we want to destroy.
   1335   llvm::Value *startPointer = Builder.CreateStructGEP(loc, 0, "startPointer");
   1336   llvm::Value *startAddress = Builder.CreateLoad(startPointer, "startAddress");
   1337 
   1338   ::EmitRecursiveStdInitializerListCleanup(*this, startAddress, init);
   1339 
   1340   llvm::Value *arrayAddress =
   1341       Builder.CreateBitCast(startAddress, arrayPtrType, "arrayAddress");
   1342   ::EmitStdInitializerListCleanup(*this, array, arrayAddress, init);
   1343 }
   1344