Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Stmt nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGDebugInfo.h"
     15 #include "CodeGenModule.h"
     16 #include "CodeGenFunction.h"
     17 #include "TargetInfo.h"
     18 #include "clang/AST/StmtVisitor.h"
     19 #include "clang/Basic/PrettyStackTrace.h"
     20 #include "clang/Basic/TargetInfo.h"
     21 #include "llvm/ADT/StringExtras.h"
     22 #include "llvm/InlineAsm.h"
     23 #include "llvm/Intrinsics.h"
     24 #include "llvm/Target/TargetData.h"
     25 using namespace clang;
     26 using namespace CodeGen;
     27 
     28 //===----------------------------------------------------------------------===//
     29 //                              Statement Emission
     30 //===----------------------------------------------------------------------===//
     31 
     32 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
     33   if (CGDebugInfo *DI = getDebugInfo()) {
     34     SourceLocation Loc;
     35     if (isa<DeclStmt>(S))
     36       Loc = S->getLocEnd();
     37     else
     38       Loc = S->getLocStart();
     39     DI->EmitLocation(Builder, Loc);
     40   }
     41 }
     42 
     43 void CodeGenFunction::EmitStmt(const Stmt *S) {
     44   assert(S && "Null statement?");
     45 
     46   // These statements have their own debug info handling.
     47   if (EmitSimpleStmt(S))
     48     return;
     49 
     50   // Check if we are generating unreachable code.
     51   if (!HaveInsertPoint()) {
     52     // If so, and the statement doesn't contain a label, then we do not need to
     53     // generate actual code. This is safe because (1) the current point is
     54     // unreachable, so we don't need to execute the code, and (2) we've already
     55     // handled the statements which update internal data structures (like the
     56     // local variable map) which could be used by subsequent statements.
     57     if (!ContainsLabel(S)) {
     58       // Verify that any decl statements were handled as simple, they may be in
     59       // scope of subsequent reachable statements.
     60       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
     61       return;
     62     }
     63 
     64     // Otherwise, make a new block to hold the code.
     65     EnsureInsertPoint();
     66   }
     67 
     68   // Generate a stoppoint if we are emitting debug info.
     69   EmitStopPoint(S);
     70 
     71   switch (S->getStmtClass()) {
     72   case Stmt::NoStmtClass:
     73   case Stmt::CXXCatchStmtClass:
     74   case Stmt::SEHExceptStmtClass:
     75   case Stmt::SEHFinallyStmtClass:
     76   case Stmt::MSDependentExistsStmtClass:
     77     llvm_unreachable("invalid statement class to emit generically");
     78   case Stmt::NullStmtClass:
     79   case Stmt::CompoundStmtClass:
     80   case Stmt::DeclStmtClass:
     81   case Stmt::LabelStmtClass:
     82   case Stmt::AttributedStmtClass:
     83   case Stmt::GotoStmtClass:
     84   case Stmt::BreakStmtClass:
     85   case Stmt::ContinueStmtClass:
     86   case Stmt::DefaultStmtClass:
     87   case Stmt::CaseStmtClass:
     88     llvm_unreachable("should have emitted these statements as simple");
     89 
     90 #define STMT(Type, Base)
     91 #define ABSTRACT_STMT(Op)
     92 #define EXPR(Type, Base) \
     93   case Stmt::Type##Class:
     94 #include "clang/AST/StmtNodes.inc"
     95   {
     96     // Remember the block we came in on.
     97     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
     98     assert(incoming && "expression emission must have an insertion point");
     99 
    100     EmitIgnoredExpr(cast<Expr>(S));
    101 
    102     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
    103     assert(outgoing && "expression emission cleared block!");
    104 
    105     // The expression emitters assume (reasonably!) that the insertion
    106     // point is always set.  To maintain that, the call-emission code
    107     // for noreturn functions has to enter a new block with no
    108     // predecessors.  We want to kill that block and mark the current
    109     // insertion point unreachable in the common case of a call like
    110     // "exit();".  Since expression emission doesn't otherwise create
    111     // blocks with no predecessors, we can just test for that.
    112     // However, we must be careful not to do this to our incoming
    113     // block, because *statement* emission does sometimes create
    114     // reachable blocks which will have no predecessors until later in
    115     // the function.  This occurs with, e.g., labels that are not
    116     // reachable by fallthrough.
    117     if (incoming != outgoing && outgoing->use_empty()) {
    118       outgoing->eraseFromParent();
    119       Builder.ClearInsertionPoint();
    120     }
    121     break;
    122   }
    123 
    124   case Stmt::IndirectGotoStmtClass:
    125     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
    126 
    127   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
    128   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
    129   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
    130   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
    131 
    132   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
    133 
    134   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
    135   case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break;
    136 
    137   case Stmt::ObjCAtTryStmtClass:
    138     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
    139     break;
    140   case Stmt::ObjCAtCatchStmtClass:
    141     llvm_unreachable(
    142                     "@catch statements should be handled by EmitObjCAtTryStmt");
    143   case Stmt::ObjCAtFinallyStmtClass:
    144     llvm_unreachable(
    145                   "@finally statements should be handled by EmitObjCAtTryStmt");
    146   case Stmt::ObjCAtThrowStmtClass:
    147     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
    148     break;
    149   case Stmt::ObjCAtSynchronizedStmtClass:
    150     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
    151     break;
    152   case Stmt::ObjCForCollectionStmtClass:
    153     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
    154     break;
    155   case Stmt::ObjCAutoreleasePoolStmtClass:
    156     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
    157     break;
    158 
    159   case Stmt::CXXTryStmtClass:
    160     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
    161     break;
    162   case Stmt::CXXForRangeStmtClass:
    163     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
    164   case Stmt::SEHTryStmtClass:
    165     // FIXME Not yet implemented
    166     break;
    167   }
    168 }
    169 
    170 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
    171   switch (S->getStmtClass()) {
    172   default: return false;
    173   case Stmt::NullStmtClass: break;
    174   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
    175   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
    176   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
    177   case Stmt::AttributedStmtClass:
    178                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
    179   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
    180   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
    181   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
    182   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
    183   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
    184   }
    185 
    186   return true;
    187 }
    188 
    189 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
    190 /// this captures the expression result of the last sub-statement and returns it
    191 /// (for use by the statement expression extension).
    192 RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
    193                                          AggValueSlot AggSlot) {
    194   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
    195                              "LLVM IR generation of compound statement ('{}')");
    196 
    197   // Keep track of the current cleanup stack depth, including debug scopes.
    198   LexicalScope Scope(*this, S.getSourceRange());
    199 
    200   for (CompoundStmt::const_body_iterator I = S.body_begin(),
    201        E = S.body_end()-GetLast; I != E; ++I)
    202     EmitStmt(*I);
    203 
    204   RValue RV;
    205   if (!GetLast)
    206     RV = RValue::get(0);
    207   else {
    208     // We have to special case labels here.  They are statements, but when put
    209     // at the end of a statement expression, they yield the value of their
    210     // subexpression.  Handle this by walking through all labels we encounter,
    211     // emitting them before we evaluate the subexpr.
    212     const Stmt *LastStmt = S.body_back();
    213     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
    214       EmitLabel(LS->getDecl());
    215       LastStmt = LS->getSubStmt();
    216     }
    217 
    218     EnsureInsertPoint();
    219 
    220     RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot);
    221   }
    222 
    223   return RV;
    224 }
    225 
    226 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
    227   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
    228 
    229   // If there is a cleanup stack, then we it isn't worth trying to
    230   // simplify this block (we would need to remove it from the scope map
    231   // and cleanup entry).
    232   if (!EHStack.empty())
    233     return;
    234 
    235   // Can only simplify direct branches.
    236   if (!BI || !BI->isUnconditional())
    237     return;
    238 
    239   BB->replaceAllUsesWith(BI->getSuccessor(0));
    240   BI->eraseFromParent();
    241   BB->eraseFromParent();
    242 }
    243 
    244 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
    245   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    246 
    247   // Fall out of the current block (if necessary).
    248   EmitBranch(BB);
    249 
    250   if (IsFinished && BB->use_empty()) {
    251     delete BB;
    252     return;
    253   }
    254 
    255   // Place the block after the current block, if possible, or else at
    256   // the end of the function.
    257   if (CurBB && CurBB->getParent())
    258     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
    259   else
    260     CurFn->getBasicBlockList().push_back(BB);
    261   Builder.SetInsertPoint(BB);
    262 }
    263 
    264 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
    265   // Emit a branch from the current block to the target one if this
    266   // was a real block.  If this was just a fall-through block after a
    267   // terminator, don't emit it.
    268   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    269 
    270   if (!CurBB || CurBB->getTerminator()) {
    271     // If there is no insert point or the previous block is already
    272     // terminated, don't touch it.
    273   } else {
    274     // Otherwise, create a fall-through branch.
    275     Builder.CreateBr(Target);
    276   }
    277 
    278   Builder.ClearInsertionPoint();
    279 }
    280 
    281 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
    282   bool inserted = false;
    283   for (llvm::BasicBlock::use_iterator
    284          i = block->use_begin(), e = block->use_end(); i != e; ++i) {
    285     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) {
    286       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
    287       inserted = true;
    288       break;
    289     }
    290   }
    291 
    292   if (!inserted)
    293     CurFn->getBasicBlockList().push_back(block);
    294 
    295   Builder.SetInsertPoint(block);
    296 }
    297 
    298 CodeGenFunction::JumpDest
    299 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
    300   JumpDest &Dest = LabelMap[D];
    301   if (Dest.isValid()) return Dest;
    302 
    303   // Create, but don't insert, the new block.
    304   Dest = JumpDest(createBasicBlock(D->getName()),
    305                   EHScopeStack::stable_iterator::invalid(),
    306                   NextCleanupDestIndex++);
    307   return Dest;
    308 }
    309 
    310 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
    311   JumpDest &Dest = LabelMap[D];
    312 
    313   // If we didn't need a forward reference to this label, just go
    314   // ahead and create a destination at the current scope.
    315   if (!Dest.isValid()) {
    316     Dest = getJumpDestInCurrentScope(D->getName());
    317 
    318   // Otherwise, we need to give this label a target depth and remove
    319   // it from the branch-fixups list.
    320   } else {
    321     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
    322     Dest = JumpDest(Dest.getBlock(),
    323                     EHStack.stable_begin(),
    324                     Dest.getDestIndex());
    325 
    326     ResolveBranchFixups(Dest.getBlock());
    327   }
    328 
    329   EmitBlock(Dest.getBlock());
    330 }
    331 
    332 
    333 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
    334   EmitLabel(S.getDecl());
    335   EmitStmt(S.getSubStmt());
    336 }
    337 
    338 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
    339   EmitStmt(S.getSubStmt());
    340 }
    341 
    342 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
    343   // If this code is reachable then emit a stop point (if generating
    344   // debug info). We have to do this ourselves because we are on the
    345   // "simple" statement path.
    346   if (HaveInsertPoint())
    347     EmitStopPoint(&S);
    348 
    349   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
    350 }
    351 
    352 
    353 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
    354   if (const LabelDecl *Target = S.getConstantTarget()) {
    355     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
    356     return;
    357   }
    358 
    359   // Ensure that we have an i8* for our PHI node.
    360   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
    361                                          Int8PtrTy, "addr");
    362   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    363 
    364 
    365   // Get the basic block for the indirect goto.
    366   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
    367 
    368   // The first instruction in the block has to be the PHI for the switch dest,
    369   // add an entry for this branch.
    370   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
    371 
    372   EmitBranch(IndGotoBB);
    373 }
    374 
    375 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
    376   // C99 6.8.4.1: The first substatement is executed if the expression compares
    377   // unequal to 0.  The condition must be a scalar type.
    378   RunCleanupsScope ConditionScope(*this);
    379 
    380   if (S.getConditionVariable())
    381     EmitAutoVarDecl(*S.getConditionVariable());
    382 
    383   // If the condition constant folds and can be elided, try to avoid emitting
    384   // the condition and the dead arm of the if/else.
    385   bool CondConstant;
    386   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
    387     // Figure out which block (then or else) is executed.
    388     const Stmt *Executed = S.getThen();
    389     const Stmt *Skipped  = S.getElse();
    390     if (!CondConstant)  // Condition false?
    391       std::swap(Executed, Skipped);
    392 
    393     // If the skipped block has no labels in it, just emit the executed block.
    394     // This avoids emitting dead code and simplifies the CFG substantially.
    395     if (!ContainsLabel(Skipped)) {
    396       if (Executed) {
    397         RunCleanupsScope ExecutedScope(*this);
    398         EmitStmt(Executed);
    399       }
    400       return;
    401     }
    402   }
    403 
    404   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
    405   // the conditional branch.
    406   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
    407   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
    408   llvm::BasicBlock *ElseBlock = ContBlock;
    409   if (S.getElse())
    410     ElseBlock = createBasicBlock("if.else");
    411   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
    412 
    413   // Emit the 'then' code.
    414   EmitBlock(ThenBlock);
    415   {
    416     RunCleanupsScope ThenScope(*this);
    417     EmitStmt(S.getThen());
    418   }
    419   EmitBranch(ContBlock);
    420 
    421   // Emit the 'else' code if present.
    422   if (const Stmt *Else = S.getElse()) {
    423     // There is no need to emit line number for unconditional branch.
    424     if (getDebugInfo())
    425       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
    426     EmitBlock(ElseBlock);
    427     {
    428       RunCleanupsScope ElseScope(*this);
    429       EmitStmt(Else);
    430     }
    431     // There is no need to emit line number for unconditional branch.
    432     if (getDebugInfo())
    433       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
    434     EmitBranch(ContBlock);
    435   }
    436 
    437   // Emit the continuation block for code after the if.
    438   EmitBlock(ContBlock, true);
    439 }
    440 
    441 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
    442   // Emit the header for the loop, which will also become
    443   // the continue target.
    444   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
    445   EmitBlock(LoopHeader.getBlock());
    446 
    447   // Create an exit block for when the condition fails, which will
    448   // also become the break target.
    449   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
    450 
    451   // Store the blocks to use for break and continue.
    452   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
    453 
    454   // C++ [stmt.while]p2:
    455   //   When the condition of a while statement is a declaration, the
    456   //   scope of the variable that is declared extends from its point
    457   //   of declaration (3.3.2) to the end of the while statement.
    458   //   [...]
    459   //   The object created in a condition is destroyed and created
    460   //   with each iteration of the loop.
    461   RunCleanupsScope ConditionScope(*this);
    462 
    463   if (S.getConditionVariable())
    464     EmitAutoVarDecl(*S.getConditionVariable());
    465 
    466   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
    467   // evaluation of the controlling expression takes place before each
    468   // execution of the loop body.
    469   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    470 
    471   // while(1) is common, avoid extra exit blocks.  Be sure
    472   // to correctly handle break/continue though.
    473   bool EmitBoolCondBranch = true;
    474   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
    475     if (C->isOne())
    476       EmitBoolCondBranch = false;
    477 
    478   // As long as the condition is true, go to the loop body.
    479   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
    480   if (EmitBoolCondBranch) {
    481     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    482     if (ConditionScope.requiresCleanups())
    483       ExitBlock = createBasicBlock("while.exit");
    484 
    485     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
    486 
    487     if (ExitBlock != LoopExit.getBlock()) {
    488       EmitBlock(ExitBlock);
    489       EmitBranchThroughCleanup(LoopExit);
    490     }
    491   }
    492 
    493   // Emit the loop body.  We have to emit this in a cleanup scope
    494   // because it might be a singleton DeclStmt.
    495   {
    496     RunCleanupsScope BodyScope(*this);
    497     EmitBlock(LoopBody);
    498     EmitStmt(S.getBody());
    499   }
    500 
    501   BreakContinueStack.pop_back();
    502 
    503   // Immediately force cleanup.
    504   ConditionScope.ForceCleanup();
    505 
    506   // Branch to the loop header again.
    507   EmitBranch(LoopHeader.getBlock());
    508 
    509   // Emit the exit block.
    510   EmitBlock(LoopExit.getBlock(), true);
    511 
    512   // The LoopHeader typically is just a branch if we skipped emitting
    513   // a branch, try to erase it.
    514   if (!EmitBoolCondBranch)
    515     SimplifyForwardingBlocks(LoopHeader.getBlock());
    516 }
    517 
    518 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
    519   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
    520   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
    521 
    522   // Store the blocks to use for break and continue.
    523   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
    524 
    525   // Emit the body of the loop.
    526   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
    527   EmitBlock(LoopBody);
    528   {
    529     RunCleanupsScope BodyScope(*this);
    530     EmitStmt(S.getBody());
    531   }
    532 
    533   BreakContinueStack.pop_back();
    534 
    535   EmitBlock(LoopCond.getBlock());
    536 
    537   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
    538   // after each execution of the loop body."
    539 
    540   // Evaluate the conditional in the while header.
    541   // C99 6.8.5p2/p4: The first substatement is executed if the expression
    542   // compares unequal to 0.  The condition must be a scalar type.
    543   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    544 
    545   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
    546   // to correctly handle break/continue though.
    547   bool EmitBoolCondBranch = true;
    548   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
    549     if (C->isZero())
    550       EmitBoolCondBranch = false;
    551 
    552   // As long as the condition is true, iterate the loop.
    553   if (EmitBoolCondBranch)
    554     Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
    555 
    556   // Emit the exit block.
    557   EmitBlock(LoopExit.getBlock());
    558 
    559   // The DoCond block typically is just a branch if we skipped
    560   // emitting a branch, try to erase it.
    561   if (!EmitBoolCondBranch)
    562     SimplifyForwardingBlocks(LoopCond.getBlock());
    563 }
    564 
    565 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
    566   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
    567 
    568   RunCleanupsScope ForScope(*this);
    569 
    570   CGDebugInfo *DI = getDebugInfo();
    571   if (DI)
    572     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
    573 
    574   // Evaluate the first part before the loop.
    575   if (S.getInit())
    576     EmitStmt(S.getInit());
    577 
    578   // Start the loop with a block that tests the condition.
    579   // If there's an increment, the continue scope will be overwritten
    580   // later.
    581   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
    582   llvm::BasicBlock *CondBlock = Continue.getBlock();
    583   EmitBlock(CondBlock);
    584 
    585   // Create a cleanup scope for the condition variable cleanups.
    586   RunCleanupsScope ConditionScope(*this);
    587 
    588   llvm::Value *BoolCondVal = 0;
    589   if (S.getCond()) {
    590     // If the for statement has a condition scope, emit the local variable
    591     // declaration.
    592     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    593     if (S.getConditionVariable()) {
    594       EmitAutoVarDecl(*S.getConditionVariable());
    595     }
    596 
    597     // If there are any cleanups between here and the loop-exit scope,
    598     // create a block to stage a loop exit along.
    599     if (ForScope.requiresCleanups())
    600       ExitBlock = createBasicBlock("for.cond.cleanup");
    601 
    602     // As long as the condition is true, iterate the loop.
    603     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
    604 
    605     // C99 6.8.5p2/p4: The first substatement is executed if the expression
    606     // compares unequal to 0.  The condition must be a scalar type.
    607     BoolCondVal = EvaluateExprAsBool(S.getCond());
    608     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
    609 
    610     if (ExitBlock != LoopExit.getBlock()) {
    611       EmitBlock(ExitBlock);
    612       EmitBranchThroughCleanup(LoopExit);
    613     }
    614 
    615     EmitBlock(ForBody);
    616   } else {
    617     // Treat it as a non-zero constant.  Don't even create a new block for the
    618     // body, just fall into it.
    619   }
    620 
    621   // If the for loop doesn't have an increment we can just use the
    622   // condition as the continue block.  Otherwise we'll need to create
    623   // a block for it (in the current scope, i.e. in the scope of the
    624   // condition), and that we will become our continue block.
    625   if (S.getInc())
    626     Continue = getJumpDestInCurrentScope("for.inc");
    627 
    628   // Store the blocks to use for break and continue.
    629   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
    630 
    631   {
    632     // Create a separate cleanup scope for the body, in case it is not
    633     // a compound statement.
    634     RunCleanupsScope BodyScope(*this);
    635     EmitStmt(S.getBody());
    636   }
    637 
    638   // If there is an increment, emit it next.
    639   if (S.getInc()) {
    640     EmitBlock(Continue.getBlock());
    641     EmitStmt(S.getInc());
    642   }
    643 
    644   BreakContinueStack.pop_back();
    645 
    646   ConditionScope.ForceCleanup();
    647   EmitBranch(CondBlock);
    648 
    649   ForScope.ForceCleanup();
    650 
    651   if (DI)
    652     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
    653 
    654   // Emit the fall-through block.
    655   EmitBlock(LoopExit.getBlock(), true);
    656 }
    657 
    658 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
    659   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
    660 
    661   RunCleanupsScope ForScope(*this);
    662 
    663   CGDebugInfo *DI = getDebugInfo();
    664   if (DI)
    665     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
    666 
    667   // Evaluate the first pieces before the loop.
    668   EmitStmt(S.getRangeStmt());
    669   EmitStmt(S.getBeginEndStmt());
    670 
    671   // Start the loop with a block that tests the condition.
    672   // If there's an increment, the continue scope will be overwritten
    673   // later.
    674   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
    675   EmitBlock(CondBlock);
    676 
    677   // If there are any cleanups between here and the loop-exit scope,
    678   // create a block to stage a loop exit along.
    679   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    680   if (ForScope.requiresCleanups())
    681     ExitBlock = createBasicBlock("for.cond.cleanup");
    682 
    683   // The loop body, consisting of the specified body and the loop variable.
    684   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
    685 
    686   // The body is executed if the expression, contextually converted
    687   // to bool, is true.
    688   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    689   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
    690 
    691   if (ExitBlock != LoopExit.getBlock()) {
    692     EmitBlock(ExitBlock);
    693     EmitBranchThroughCleanup(LoopExit);
    694   }
    695 
    696   EmitBlock(ForBody);
    697 
    698   // Create a block for the increment. In case of a 'continue', we jump there.
    699   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
    700 
    701   // Store the blocks to use for break and continue.
    702   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
    703 
    704   {
    705     // Create a separate cleanup scope for the loop variable and body.
    706     RunCleanupsScope BodyScope(*this);
    707     EmitStmt(S.getLoopVarStmt());
    708     EmitStmt(S.getBody());
    709   }
    710 
    711   // If there is an increment, emit it next.
    712   EmitBlock(Continue.getBlock());
    713   EmitStmt(S.getInc());
    714 
    715   BreakContinueStack.pop_back();
    716 
    717   EmitBranch(CondBlock);
    718 
    719   ForScope.ForceCleanup();
    720 
    721   if (DI)
    722     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
    723 
    724   // Emit the fall-through block.
    725   EmitBlock(LoopExit.getBlock(), true);
    726 }
    727 
    728 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
    729   if (RV.isScalar()) {
    730     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
    731   } else if (RV.isAggregate()) {
    732     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
    733   } else {
    734     StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
    735   }
    736   EmitBranchThroughCleanup(ReturnBlock);
    737 }
    738 
    739 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
    740 /// if the function returns void, or may be missing one if the function returns
    741 /// non-void.  Fun stuff :).
    742 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
    743   // Emit the result value, even if unused, to evalute the side effects.
    744   const Expr *RV = S.getRetValue();
    745 
    746   // FIXME: Clean this up by using an LValue for ReturnTemp,
    747   // EmitStoreThroughLValue, and EmitAnyExpr.
    748   if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
    749       !Target.useGlobalsForAutomaticVariables()) {
    750     // Apply the named return value optimization for this return statement,
    751     // which means doing nothing: the appropriate result has already been
    752     // constructed into the NRVO variable.
    753 
    754     // If there is an NRVO flag for this variable, set it to 1 into indicate
    755     // that the cleanup code should not destroy the variable.
    756     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
    757       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
    758   } else if (!ReturnValue) {
    759     // Make sure not to return anything, but evaluate the expression
    760     // for side effects.
    761     if (RV)
    762       EmitAnyExpr(RV);
    763   } else if (RV == 0) {
    764     // Do nothing (return value is left uninitialized)
    765   } else if (FnRetTy->isReferenceType()) {
    766     // If this function returns a reference, take the address of the expression
    767     // rather than the value.
    768     RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0);
    769     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
    770   } else if (!hasAggregateLLVMType(RV->getType())) {
    771     Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
    772   } else if (RV->getType()->isAnyComplexType()) {
    773     EmitComplexExprIntoAddr(RV, ReturnValue, false);
    774   } else {
    775     CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
    776     EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, Qualifiers(),
    777                                           AggValueSlot::IsDestructed,
    778                                           AggValueSlot::DoesNotNeedGCBarriers,
    779                                           AggValueSlot::IsNotAliased));
    780   }
    781 
    782   EmitBranchThroughCleanup(ReturnBlock);
    783 }
    784 
    785 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
    786   // As long as debug info is modeled with instructions, we have to ensure we
    787   // have a place to insert here and write the stop point here.
    788   if (HaveInsertPoint())
    789     EmitStopPoint(&S);
    790 
    791   for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
    792        I != E; ++I)
    793     EmitDecl(**I);
    794 }
    795 
    796 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
    797   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
    798 
    799   // If this code is reachable then emit a stop point (if generating
    800   // debug info). We have to do this ourselves because we are on the
    801   // "simple" statement path.
    802   if (HaveInsertPoint())
    803     EmitStopPoint(&S);
    804 
    805   JumpDest Block = BreakContinueStack.back().BreakBlock;
    806   EmitBranchThroughCleanup(Block);
    807 }
    808 
    809 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
    810   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
    811 
    812   // If this code is reachable then emit a stop point (if generating
    813   // debug info). We have to do this ourselves because we are on the
    814   // "simple" statement path.
    815   if (HaveInsertPoint())
    816     EmitStopPoint(&S);
    817 
    818   JumpDest Block = BreakContinueStack.back().ContinueBlock;
    819   EmitBranchThroughCleanup(Block);
    820 }
    821 
    822 /// EmitCaseStmtRange - If case statement range is not too big then
    823 /// add multiple cases to switch instruction, one for each value within
    824 /// the range. If range is too big then emit "if" condition check.
    825 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
    826   assert(S.getRHS() && "Expected RHS value in CaseStmt");
    827 
    828   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
    829   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
    830 
    831   // Emit the code for this case. We do this first to make sure it is
    832   // properly chained from our predecessor before generating the
    833   // switch machinery to enter this block.
    834   EmitBlock(createBasicBlock("sw.bb"));
    835   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
    836   EmitStmt(S.getSubStmt());
    837 
    838   // If range is empty, do nothing.
    839   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
    840     return;
    841 
    842   llvm::APInt Range = RHS - LHS;
    843   // FIXME: parameters such as this should not be hardcoded.
    844   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
    845     // Range is small enough to add multiple switch instruction cases.
    846     for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
    847       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
    848       LHS++;
    849     }
    850     return;
    851   }
    852 
    853   // The range is too big. Emit "if" condition into a new block,
    854   // making sure to save and restore the current insertion point.
    855   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
    856 
    857   // Push this test onto the chain of range checks (which terminates
    858   // in the default basic block). The switch's default will be changed
    859   // to the top of this chain after switch emission is complete.
    860   llvm::BasicBlock *FalseDest = CaseRangeBlock;
    861   CaseRangeBlock = createBasicBlock("sw.caserange");
    862 
    863   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
    864   Builder.SetInsertPoint(CaseRangeBlock);
    865 
    866   // Emit range check.
    867   llvm::Value *Diff =
    868     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
    869   llvm::Value *Cond =
    870     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
    871   Builder.CreateCondBr(Cond, CaseDest, FalseDest);
    872 
    873   // Restore the appropriate insertion point.
    874   if (RestoreBB)
    875     Builder.SetInsertPoint(RestoreBB);
    876   else
    877     Builder.ClearInsertionPoint();
    878 }
    879 
    880 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
    881   // If there is no enclosing switch instance that we're aware of, then this
    882   // case statement and its block can be elided.  This situation only happens
    883   // when we've constant-folded the switch, are emitting the constant case,
    884   // and part of the constant case includes another case statement.  For
    885   // instance: switch (4) { case 4: do { case 5: } while (1); }
    886   if (!SwitchInsn) {
    887     EmitStmt(S.getSubStmt());
    888     return;
    889   }
    890 
    891   // Handle case ranges.
    892   if (S.getRHS()) {
    893     EmitCaseStmtRange(S);
    894     return;
    895   }
    896 
    897   llvm::ConstantInt *CaseVal =
    898     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
    899 
    900   // If the body of the case is just a 'break', and if there was no fallthrough,
    901   // try to not emit an empty block.
    902   if ((CGM.getCodeGenOpts().OptimizationLevel > 0) && isa<BreakStmt>(S.getSubStmt())) {
    903     JumpDest Block = BreakContinueStack.back().BreakBlock;
    904 
    905     // Only do this optimization if there are no cleanups that need emitting.
    906     if (isObviouslyBranchWithoutCleanups(Block)) {
    907       SwitchInsn->addCase(CaseVal, Block.getBlock());
    908 
    909       // If there was a fallthrough into this case, make sure to redirect it to
    910       // the end of the switch as well.
    911       if (Builder.GetInsertBlock()) {
    912         Builder.CreateBr(Block.getBlock());
    913         Builder.ClearInsertionPoint();
    914       }
    915       return;
    916     }
    917   }
    918 
    919   EmitBlock(createBasicBlock("sw.bb"));
    920   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
    921   SwitchInsn->addCase(CaseVal, CaseDest);
    922 
    923   // Recursively emitting the statement is acceptable, but is not wonderful for
    924   // code where we have many case statements nested together, i.e.:
    925   //  case 1:
    926   //    case 2:
    927   //      case 3: etc.
    928   // Handling this recursively will create a new block for each case statement
    929   // that falls through to the next case which is IR intensive.  It also causes
    930   // deep recursion which can run into stack depth limitations.  Handle
    931   // sequential non-range case statements specially.
    932   const CaseStmt *CurCase = &S;
    933   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
    934 
    935   // Otherwise, iteratively add consecutive cases to this switch stmt.
    936   while (NextCase && NextCase->getRHS() == 0) {
    937     CurCase = NextCase;
    938     llvm::ConstantInt *CaseVal =
    939       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
    940     SwitchInsn->addCase(CaseVal, CaseDest);
    941     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
    942   }
    943 
    944   // Normal default recursion for non-cases.
    945   EmitStmt(CurCase->getSubStmt());
    946 }
    947 
    948 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
    949   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
    950   assert(DefaultBlock->empty() &&
    951          "EmitDefaultStmt: Default block already defined?");
    952   EmitBlock(DefaultBlock);
    953   EmitStmt(S.getSubStmt());
    954 }
    955 
    956 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
    957 /// constant value that is being switched on, see if we can dead code eliminate
    958 /// the body of the switch to a simple series of statements to emit.  Basically,
    959 /// on a switch (5) we want to find these statements:
    960 ///    case 5:
    961 ///      printf(...);    <--
    962 ///      ++i;            <--
    963 ///      break;
    964 ///
    965 /// and add them to the ResultStmts vector.  If it is unsafe to do this
    966 /// transformation (for example, one of the elided statements contains a label
    967 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
    968 /// should include statements after it (e.g. the printf() line is a substmt of
    969 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
    970 /// statement, then return CSFC_Success.
    971 ///
    972 /// If Case is non-null, then we are looking for the specified case, checking
    973 /// that nothing we jump over contains labels.  If Case is null, then we found
    974 /// the case and are looking for the break.
    975 ///
    976 /// If the recursive walk actually finds our Case, then we set FoundCase to
    977 /// true.
    978 ///
    979 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
    980 static CSFC_Result CollectStatementsForCase(const Stmt *S,
    981                                             const SwitchCase *Case,
    982                                             bool &FoundCase,
    983                               SmallVectorImpl<const Stmt*> &ResultStmts) {
    984   // If this is a null statement, just succeed.
    985   if (S == 0)
    986     return Case ? CSFC_Success : CSFC_FallThrough;
    987 
    988   // If this is the switchcase (case 4: or default) that we're looking for, then
    989   // we're in business.  Just add the substatement.
    990   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
    991     if (S == Case) {
    992       FoundCase = true;
    993       return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
    994                                       ResultStmts);
    995     }
    996 
    997     // Otherwise, this is some other case or default statement, just ignore it.
    998     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
    999                                     ResultStmts);
   1000   }
   1001 
   1002   // If we are in the live part of the code and we found our break statement,
   1003   // return a success!
   1004   if (Case == 0 && isa<BreakStmt>(S))
   1005     return CSFC_Success;
   1006 
   1007   // If this is a switch statement, then it might contain the SwitchCase, the
   1008   // break, or neither.
   1009   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
   1010     // Handle this as two cases: we might be looking for the SwitchCase (if so
   1011     // the skipped statements must be skippable) or we might already have it.
   1012     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
   1013     if (Case) {
   1014       // Keep track of whether we see a skipped declaration.  The code could be
   1015       // using the declaration even if it is skipped, so we can't optimize out
   1016       // the decl if the kept statements might refer to it.
   1017       bool HadSkippedDecl = false;
   1018 
   1019       // If we're looking for the case, just see if we can skip each of the
   1020       // substatements.
   1021       for (; Case && I != E; ++I) {
   1022         HadSkippedDecl |= isa<DeclStmt>(*I);
   1023 
   1024         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
   1025         case CSFC_Failure: return CSFC_Failure;
   1026         case CSFC_Success:
   1027           // A successful result means that either 1) that the statement doesn't
   1028           // have the case and is skippable, or 2) does contain the case value
   1029           // and also contains the break to exit the switch.  In the later case,
   1030           // we just verify the rest of the statements are elidable.
   1031           if (FoundCase) {
   1032             // If we found the case and skipped declarations, we can't do the
   1033             // optimization.
   1034             if (HadSkippedDecl)
   1035               return CSFC_Failure;
   1036 
   1037             for (++I; I != E; ++I)
   1038               if (CodeGenFunction::ContainsLabel(*I, true))
   1039                 return CSFC_Failure;
   1040             return CSFC_Success;
   1041           }
   1042           break;
   1043         case CSFC_FallThrough:
   1044           // If we have a fallthrough condition, then we must have found the
   1045           // case started to include statements.  Consider the rest of the
   1046           // statements in the compound statement as candidates for inclusion.
   1047           assert(FoundCase && "Didn't find case but returned fallthrough?");
   1048           // We recursively found Case, so we're not looking for it anymore.
   1049           Case = 0;
   1050 
   1051           // If we found the case and skipped declarations, we can't do the
   1052           // optimization.
   1053           if (HadSkippedDecl)
   1054             return CSFC_Failure;
   1055           break;
   1056         }
   1057       }
   1058     }
   1059 
   1060     // If we have statements in our range, then we know that the statements are
   1061     // live and need to be added to the set of statements we're tracking.
   1062     for (; I != E; ++I) {
   1063       switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
   1064       case CSFC_Failure: return CSFC_Failure;
   1065       case CSFC_FallThrough:
   1066         // A fallthrough result means that the statement was simple and just
   1067         // included in ResultStmt, keep adding them afterwards.
   1068         break;
   1069       case CSFC_Success:
   1070         // A successful result means that we found the break statement and
   1071         // stopped statement inclusion.  We just ensure that any leftover stmts
   1072         // are skippable and return success ourselves.
   1073         for (++I; I != E; ++I)
   1074           if (CodeGenFunction::ContainsLabel(*I, true))
   1075             return CSFC_Failure;
   1076         return CSFC_Success;
   1077       }
   1078     }
   1079 
   1080     return Case ? CSFC_Success : CSFC_FallThrough;
   1081   }
   1082 
   1083   // Okay, this is some other statement that we don't handle explicitly, like a
   1084   // for statement or increment etc.  If we are skipping over this statement,
   1085   // just verify it doesn't have labels, which would make it invalid to elide.
   1086   if (Case) {
   1087     if (CodeGenFunction::ContainsLabel(S, true))
   1088       return CSFC_Failure;
   1089     return CSFC_Success;
   1090   }
   1091 
   1092   // Otherwise, we want to include this statement.  Everything is cool with that
   1093   // so long as it doesn't contain a break out of the switch we're in.
   1094   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
   1095 
   1096   // Otherwise, everything is great.  Include the statement and tell the caller
   1097   // that we fall through and include the next statement as well.
   1098   ResultStmts.push_back(S);
   1099   return CSFC_FallThrough;
   1100 }
   1101 
   1102 /// FindCaseStatementsForValue - Find the case statement being jumped to and
   1103 /// then invoke CollectStatementsForCase to find the list of statements to emit
   1104 /// for a switch on constant.  See the comment above CollectStatementsForCase
   1105 /// for more details.
   1106 static bool FindCaseStatementsForValue(const SwitchStmt &S,
   1107                                        const llvm::APInt &ConstantCondValue,
   1108                                 SmallVectorImpl<const Stmt*> &ResultStmts,
   1109                                        ASTContext &C) {
   1110   // First step, find the switch case that is being branched to.  We can do this
   1111   // efficiently by scanning the SwitchCase list.
   1112   const SwitchCase *Case = S.getSwitchCaseList();
   1113   const DefaultStmt *DefaultCase = 0;
   1114 
   1115   for (; Case; Case = Case->getNextSwitchCase()) {
   1116     // It's either a default or case.  Just remember the default statement in
   1117     // case we're not jumping to any numbered cases.
   1118     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
   1119       DefaultCase = DS;
   1120       continue;
   1121     }
   1122 
   1123     // Check to see if this case is the one we're looking for.
   1124     const CaseStmt *CS = cast<CaseStmt>(Case);
   1125     // Don't handle case ranges yet.
   1126     if (CS->getRHS()) return false;
   1127 
   1128     // If we found our case, remember it as 'case'.
   1129     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
   1130       break;
   1131   }
   1132 
   1133   // If we didn't find a matching case, we use a default if it exists, or we
   1134   // elide the whole switch body!
   1135   if (Case == 0) {
   1136     // It is safe to elide the body of the switch if it doesn't contain labels
   1137     // etc.  If it is safe, return successfully with an empty ResultStmts list.
   1138     if (DefaultCase == 0)
   1139       return !CodeGenFunction::ContainsLabel(&S);
   1140     Case = DefaultCase;
   1141   }
   1142 
   1143   // Ok, we know which case is being jumped to, try to collect all the
   1144   // statements that follow it.  This can fail for a variety of reasons.  Also,
   1145   // check to see that the recursive walk actually found our case statement.
   1146   // Insane cases like this can fail to find it in the recursive walk since we
   1147   // don't handle every stmt kind:
   1148   // switch (4) {
   1149   //   while (1) {
   1150   //     case 4: ...
   1151   bool FoundCase = false;
   1152   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
   1153                                   ResultStmts) != CSFC_Failure &&
   1154          FoundCase;
   1155 }
   1156 
   1157 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
   1158   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
   1159 
   1160   RunCleanupsScope ConditionScope(*this);
   1161 
   1162   if (S.getConditionVariable())
   1163     EmitAutoVarDecl(*S.getConditionVariable());
   1164 
   1165   // Handle nested switch statements.
   1166   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
   1167   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
   1168 
   1169   // See if we can constant fold the condition of the switch and therefore only
   1170   // emit the live case statement (if any) of the switch.
   1171   llvm::APInt ConstantCondValue;
   1172   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
   1173     SmallVector<const Stmt*, 4> CaseStmts;
   1174     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
   1175                                    getContext())) {
   1176       RunCleanupsScope ExecutedScope(*this);
   1177 
   1178       // At this point, we are no longer "within" a switch instance, so
   1179       // we can temporarily enforce this to ensure that any embedded case
   1180       // statements are not emitted.
   1181       SwitchInsn = 0;
   1182 
   1183       // Okay, we can dead code eliminate everything except this case.  Emit the
   1184       // specified series of statements and we're good.
   1185       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
   1186         EmitStmt(CaseStmts[i]);
   1187 
   1188       // Now we want to restore the saved switch instance so that nested
   1189       // switches continue to function properly
   1190       SwitchInsn = SavedSwitchInsn;
   1191 
   1192       return;
   1193     }
   1194   }
   1195 
   1196   llvm::Value *CondV = EmitScalarExpr(S.getCond());
   1197 
   1198   // Create basic block to hold stuff that comes after switch
   1199   // statement. We also need to create a default block now so that
   1200   // explicit case ranges tests can have a place to jump to on
   1201   // failure.
   1202   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
   1203   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
   1204   CaseRangeBlock = DefaultBlock;
   1205 
   1206   // Clear the insertion point to indicate we are in unreachable code.
   1207   Builder.ClearInsertionPoint();
   1208 
   1209   // All break statements jump to NextBlock. If BreakContinueStack is non empty
   1210   // then reuse last ContinueBlock.
   1211   JumpDest OuterContinue;
   1212   if (!BreakContinueStack.empty())
   1213     OuterContinue = BreakContinueStack.back().ContinueBlock;
   1214 
   1215   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
   1216 
   1217   // Emit switch body.
   1218   EmitStmt(S.getBody());
   1219 
   1220   BreakContinueStack.pop_back();
   1221 
   1222   // Update the default block in case explicit case range tests have
   1223   // been chained on top.
   1224   SwitchInsn->setDefaultDest(CaseRangeBlock);
   1225 
   1226   // If a default was never emitted:
   1227   if (!DefaultBlock->getParent()) {
   1228     // If we have cleanups, emit the default block so that there's a
   1229     // place to jump through the cleanups from.
   1230     if (ConditionScope.requiresCleanups()) {
   1231       EmitBlock(DefaultBlock);
   1232 
   1233     // Otherwise, just forward the default block to the switch end.
   1234     } else {
   1235       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
   1236       delete DefaultBlock;
   1237     }
   1238   }
   1239 
   1240   ConditionScope.ForceCleanup();
   1241 
   1242   // Emit continuation.
   1243   EmitBlock(SwitchExit.getBlock(), true);
   1244 
   1245   SwitchInsn = SavedSwitchInsn;
   1246   CaseRangeBlock = SavedCRBlock;
   1247 }
   1248 
   1249 static std::string
   1250 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
   1251                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
   1252   std::string Result;
   1253 
   1254   while (*Constraint) {
   1255     switch (*Constraint) {
   1256     default:
   1257       Result += Target.convertConstraint(Constraint);
   1258       break;
   1259     // Ignore these
   1260     case '*':
   1261     case '?':
   1262     case '!':
   1263     case '=': // Will see this and the following in mult-alt constraints.
   1264     case '+':
   1265       break;
   1266     case ',':
   1267       Result += "|";
   1268       break;
   1269     case 'g':
   1270       Result += "imr";
   1271       break;
   1272     case '[': {
   1273       assert(OutCons &&
   1274              "Must pass output names to constraints with a symbolic name");
   1275       unsigned Index;
   1276       bool result = Target.resolveSymbolicName(Constraint,
   1277                                                &(*OutCons)[0],
   1278                                                OutCons->size(), Index);
   1279       assert(result && "Could not resolve symbolic name"); (void)result;
   1280       Result += llvm::utostr(Index);
   1281       break;
   1282     }
   1283     }
   1284 
   1285     Constraint++;
   1286   }
   1287 
   1288   return Result;
   1289 }
   1290 
   1291 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
   1292 /// as using a particular register add that as a constraint that will be used
   1293 /// in this asm stmt.
   1294 static std::string
   1295 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
   1296                        const TargetInfo &Target, CodeGenModule &CGM,
   1297                        const AsmStmt &Stmt) {
   1298   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
   1299   if (!AsmDeclRef)
   1300     return Constraint;
   1301   const ValueDecl &Value = *AsmDeclRef->getDecl();
   1302   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
   1303   if (!Variable)
   1304     return Constraint;
   1305   if (Variable->getStorageClass() != SC_Register)
   1306     return Constraint;
   1307   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
   1308   if (!Attr)
   1309     return Constraint;
   1310   StringRef Register = Attr->getLabel();
   1311   assert(Target.isValidGCCRegisterName(Register));
   1312   // We're using validateOutputConstraint here because we only care if
   1313   // this is a register constraint.
   1314   TargetInfo::ConstraintInfo Info(Constraint, "");
   1315   if (Target.validateOutputConstraint(Info) &&
   1316       !Info.allowsRegister()) {
   1317     CGM.ErrorUnsupported(&Stmt, "__asm__");
   1318     return Constraint;
   1319   }
   1320   // Canonicalize the register here before returning it.
   1321   Register = Target.getNormalizedGCCRegisterName(Register);
   1322   return "{" + Register.str() + "}";
   1323 }
   1324 
   1325 llvm::Value*
   1326 CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S,
   1327                                     const TargetInfo::ConstraintInfo &Info,
   1328                                     LValue InputValue, QualType InputType,
   1329                                     std::string &ConstraintStr) {
   1330   llvm::Value *Arg;
   1331   if (Info.allowsRegister() || !Info.allowsMemory()) {
   1332     if (!CodeGenFunction::hasAggregateLLVMType(InputType)) {
   1333       Arg = EmitLoadOfLValue(InputValue).getScalarVal();
   1334     } else {
   1335       llvm::Type *Ty = ConvertType(InputType);
   1336       uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
   1337       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
   1338         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
   1339         Ty = llvm::PointerType::getUnqual(Ty);
   1340 
   1341         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
   1342                                                        Ty));
   1343       } else {
   1344         Arg = InputValue.getAddress();
   1345         ConstraintStr += '*';
   1346       }
   1347     }
   1348   } else {
   1349     Arg = InputValue.getAddress();
   1350     ConstraintStr += '*';
   1351   }
   1352 
   1353   return Arg;
   1354 }
   1355 
   1356 llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
   1357                                          const TargetInfo::ConstraintInfo &Info,
   1358                                            const Expr *InputExpr,
   1359                                            std::string &ConstraintStr) {
   1360   if (Info.allowsRegister() || !Info.allowsMemory())
   1361     if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType()))
   1362       return EmitScalarExpr(InputExpr);
   1363 
   1364   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
   1365   LValue Dest = EmitLValue(InputExpr);
   1366   return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr);
   1367 }
   1368 
   1369 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
   1370 /// asm call instruction.  The !srcloc MDNode contains a list of constant
   1371 /// integers which are the source locations of the start of each line in the
   1372 /// asm.
   1373 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
   1374                                       CodeGenFunction &CGF) {
   1375   SmallVector<llvm::Value *, 8> Locs;
   1376   // Add the location of the first line to the MDNode.
   1377   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
   1378                                         Str->getLocStart().getRawEncoding()));
   1379   StringRef StrVal = Str->getString();
   1380   if (!StrVal.empty()) {
   1381     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
   1382     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
   1383 
   1384     // Add the location of the start of each subsequent line of the asm to the
   1385     // MDNode.
   1386     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
   1387       if (StrVal[i] != '\n') continue;
   1388       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
   1389                                                       CGF.Target);
   1390       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
   1391                                             LineLoc.getRawEncoding()));
   1392     }
   1393   }
   1394 
   1395   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
   1396 }
   1397 
   1398 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
   1399   // Analyze the asm string to decompose it into its pieces.  We know that Sema
   1400   // has already done this, so it is guaranteed to be successful.
   1401   SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
   1402   unsigned DiagOffs;
   1403   S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
   1404 
   1405   // Assemble the pieces into the final asm string.
   1406   std::string AsmString;
   1407   for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
   1408     if (Pieces[i].isString())
   1409       AsmString += Pieces[i].getString();
   1410     else if (Pieces[i].getModifier() == '\0')
   1411       AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
   1412     else
   1413       AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
   1414                    Pieces[i].getModifier() + '}';
   1415   }
   1416 
   1417   // Get all the output and input constraints together.
   1418   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
   1419   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
   1420 
   1421   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
   1422     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
   1423                                     S.getOutputName(i));
   1424     bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
   1425     assert(IsValid && "Failed to parse output constraint");
   1426     OutputConstraintInfos.push_back(Info);
   1427   }
   1428 
   1429   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
   1430     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
   1431                                     S.getInputName(i));
   1432     bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
   1433                                                   S.getNumOutputs(), Info);
   1434     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
   1435     InputConstraintInfos.push_back(Info);
   1436   }
   1437 
   1438   std::string Constraints;
   1439 
   1440   std::vector<LValue> ResultRegDests;
   1441   std::vector<QualType> ResultRegQualTys;
   1442   std::vector<llvm::Type *> ResultRegTypes;
   1443   std::vector<llvm::Type *> ResultTruncRegTypes;
   1444   std::vector<llvm::Type*> ArgTypes;
   1445   std::vector<llvm::Value*> Args;
   1446 
   1447   // Keep track of inout constraints.
   1448   std::string InOutConstraints;
   1449   std::vector<llvm::Value*> InOutArgs;
   1450   std::vector<llvm::Type*> InOutArgTypes;
   1451 
   1452   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
   1453     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
   1454 
   1455     // Simplify the output constraint.
   1456     std::string OutputConstraint(S.getOutputConstraint(i));
   1457     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
   1458 
   1459     const Expr *OutExpr = S.getOutputExpr(i);
   1460     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
   1461 
   1462     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
   1463                                               Target, CGM, S);
   1464 
   1465     LValue Dest = EmitLValue(OutExpr);
   1466     if (!Constraints.empty())
   1467       Constraints += ',';
   1468 
   1469     // If this is a register output, then make the inline asm return it
   1470     // by-value.  If this is a memory result, return the value by-reference.
   1471     if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
   1472       Constraints += "=" + OutputConstraint;
   1473       ResultRegQualTys.push_back(OutExpr->getType());
   1474       ResultRegDests.push_back(Dest);
   1475       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
   1476       ResultTruncRegTypes.push_back(ResultRegTypes.back());
   1477 
   1478       // If this output is tied to an input, and if the input is larger, then
   1479       // we need to set the actual result type of the inline asm node to be the
   1480       // same as the input type.
   1481       if (Info.hasMatchingInput()) {
   1482         unsigned InputNo;
   1483         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
   1484           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
   1485           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
   1486             break;
   1487         }
   1488         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
   1489 
   1490         QualType InputTy = S.getInputExpr(InputNo)->getType();
   1491         QualType OutputType = OutExpr->getType();
   1492 
   1493         uint64_t InputSize = getContext().getTypeSize(InputTy);
   1494         if (getContext().getTypeSize(OutputType) < InputSize) {
   1495           // Form the asm to return the value as a larger integer or fp type.
   1496           ResultRegTypes.back() = ConvertType(InputTy);
   1497         }
   1498       }
   1499       if (llvm::Type* AdjTy =
   1500             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
   1501                                                  ResultRegTypes.back()))
   1502         ResultRegTypes.back() = AdjTy;
   1503     } else {
   1504       ArgTypes.push_back(Dest.getAddress()->getType());
   1505       Args.push_back(Dest.getAddress());
   1506       Constraints += "=*";
   1507       Constraints += OutputConstraint;
   1508     }
   1509 
   1510     if (Info.isReadWrite()) {
   1511       InOutConstraints += ',';
   1512 
   1513       const Expr *InputExpr = S.getOutputExpr(i);
   1514       llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(),
   1515                                             InOutConstraints);
   1516 
   1517       if (llvm::Type* AdjTy =
   1518             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
   1519                                                  Arg->getType()))
   1520         Arg = Builder.CreateBitCast(Arg, AdjTy);
   1521 
   1522       if (Info.allowsRegister())
   1523         InOutConstraints += llvm::utostr(i);
   1524       else
   1525         InOutConstraints += OutputConstraint;
   1526 
   1527       InOutArgTypes.push_back(Arg->getType());
   1528       InOutArgs.push_back(Arg);
   1529     }
   1530   }
   1531 
   1532   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
   1533 
   1534   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
   1535     const Expr *InputExpr = S.getInputExpr(i);
   1536 
   1537     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
   1538 
   1539     if (!Constraints.empty())
   1540       Constraints += ',';
   1541 
   1542     // Simplify the input constraint.
   1543     std::string InputConstraint(S.getInputConstraint(i));
   1544     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
   1545                                          &OutputConstraintInfos);
   1546 
   1547     InputConstraint =
   1548       AddVariableConstraints(InputConstraint,
   1549                             *InputExpr->IgnoreParenNoopCasts(getContext()),
   1550                             Target, CGM, S);
   1551 
   1552     llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
   1553 
   1554     // If this input argument is tied to a larger output result, extend the
   1555     // input to be the same size as the output.  The LLVM backend wants to see
   1556     // the input and output of a matching constraint be the same size.  Note
   1557     // that GCC does not define what the top bits are here.  We use zext because
   1558     // that is usually cheaper, but LLVM IR should really get an anyext someday.
   1559     if (Info.hasTiedOperand()) {
   1560       unsigned Output = Info.getTiedOperand();
   1561       QualType OutputType = S.getOutputExpr(Output)->getType();
   1562       QualType InputTy = InputExpr->getType();
   1563 
   1564       if (getContext().getTypeSize(OutputType) >
   1565           getContext().getTypeSize(InputTy)) {
   1566         // Use ptrtoint as appropriate so that we can do our extension.
   1567         if (isa<llvm::PointerType>(Arg->getType()))
   1568           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
   1569         llvm::Type *OutputTy = ConvertType(OutputType);
   1570         if (isa<llvm::IntegerType>(OutputTy))
   1571           Arg = Builder.CreateZExt(Arg, OutputTy);
   1572         else if (isa<llvm::PointerType>(OutputTy))
   1573           Arg = Builder.CreateZExt(Arg, IntPtrTy);
   1574         else {
   1575           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
   1576           Arg = Builder.CreateFPExt(Arg, OutputTy);
   1577         }
   1578       }
   1579     }
   1580     if (llvm::Type* AdjTy =
   1581               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
   1582                                                    Arg->getType()))
   1583       Arg = Builder.CreateBitCast(Arg, AdjTy);
   1584 
   1585     ArgTypes.push_back(Arg->getType());
   1586     Args.push_back(Arg);
   1587     Constraints += InputConstraint;
   1588   }
   1589 
   1590   // Append the "input" part of inout constraints last.
   1591   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
   1592     ArgTypes.push_back(InOutArgTypes[i]);
   1593     Args.push_back(InOutArgs[i]);
   1594   }
   1595   Constraints += InOutConstraints;
   1596 
   1597   // Clobbers
   1598   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
   1599     StringRef Clobber = S.getClobber(i)->getString();
   1600 
   1601     if (Clobber != "memory" && Clobber != "cc")
   1602     Clobber = Target.getNormalizedGCCRegisterName(Clobber);
   1603 
   1604     if (i != 0 || NumConstraints != 0)
   1605       Constraints += ',';
   1606 
   1607     Constraints += "~{";
   1608     Constraints += Clobber;
   1609     Constraints += '}';
   1610   }
   1611 
   1612   // Add machine specific clobbers
   1613   std::string MachineClobbers = Target.getClobbers();
   1614   if (!MachineClobbers.empty()) {
   1615     if (!Constraints.empty())
   1616       Constraints += ',';
   1617     Constraints += MachineClobbers;
   1618   }
   1619 
   1620   llvm::Type *ResultType;
   1621   if (ResultRegTypes.empty())
   1622     ResultType = VoidTy;
   1623   else if (ResultRegTypes.size() == 1)
   1624     ResultType = ResultRegTypes[0];
   1625   else
   1626     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
   1627 
   1628   llvm::FunctionType *FTy =
   1629     llvm::FunctionType::get(ResultType, ArgTypes, false);
   1630 
   1631   llvm::InlineAsm *IA =
   1632     llvm::InlineAsm::get(FTy, AsmString, Constraints,
   1633                          S.isVolatile() || S.getNumOutputs() == 0);
   1634   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
   1635   Result->addAttribute(~0, llvm::Attribute::NoUnwind);
   1636 
   1637   // Slap the source location of the inline asm into a !srcloc metadata on the
   1638   // call.
   1639   Result->setMetadata("srcloc", getAsmSrcLocInfo(S.getAsmString(), *this));
   1640 
   1641   // Extract all of the register value results from the asm.
   1642   std::vector<llvm::Value*> RegResults;
   1643   if (ResultRegTypes.size() == 1) {
   1644     RegResults.push_back(Result);
   1645   } else {
   1646     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
   1647       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
   1648       RegResults.push_back(Tmp);
   1649     }
   1650   }
   1651 
   1652   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
   1653     llvm::Value *Tmp = RegResults[i];
   1654 
   1655     // If the result type of the LLVM IR asm doesn't match the result type of
   1656     // the expression, do the conversion.
   1657     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
   1658       llvm::Type *TruncTy = ResultTruncRegTypes[i];
   1659 
   1660       // Truncate the integer result to the right size, note that TruncTy can be
   1661       // a pointer.
   1662       if (TruncTy->isFloatingPointTy())
   1663         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
   1664       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
   1665         uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
   1666         Tmp = Builder.CreateTrunc(Tmp,
   1667                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
   1668         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
   1669       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
   1670         uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType());
   1671         Tmp = Builder.CreatePtrToInt(Tmp,
   1672                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
   1673         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
   1674       } else if (TruncTy->isIntegerTy()) {
   1675         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
   1676       } else if (TruncTy->isVectorTy()) {
   1677         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
   1678       }
   1679     }
   1680 
   1681     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
   1682   }
   1683 }
   1684