Home | History | Annotate | Download | only in Analysis
      1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements routines for folding instructions into simpler forms
     11 // that do not require creating new instructions.  This does constant folding
     12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
     13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
     14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
     15 // simplified: This is usually true and assuming it simplifies the logic (if
     16 // they have not been simplified then results are correct but maybe suboptimal).
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #define DEBUG_TYPE "instsimplify"
     21 #include "llvm/GlobalAlias.h"
     22 #include "llvm/Operator.h"
     23 #include "llvm/ADT/Statistic.h"
     24 #include "llvm/ADT/SetVector.h"
     25 #include "llvm/Analysis/InstructionSimplify.h"
     26 #include "llvm/Analysis/AliasAnalysis.h"
     27 #include "llvm/Analysis/ConstantFolding.h"
     28 #include "llvm/Analysis/Dominators.h"
     29 #include "llvm/Analysis/ValueTracking.h"
     30 #include "llvm/Support/ConstantRange.h"
     31 #include "llvm/Support/GetElementPtrTypeIterator.h"
     32 #include "llvm/Support/PatternMatch.h"
     33 #include "llvm/Support/ValueHandle.h"
     34 #include "llvm/Target/TargetData.h"
     35 using namespace llvm;
     36 using namespace llvm::PatternMatch;
     37 
     38 enum { RecursionLimit = 3 };
     39 
     40 STATISTIC(NumExpand,  "Number of expansions");
     41 STATISTIC(NumFactor , "Number of factorizations");
     42 STATISTIC(NumReassoc, "Number of reassociations");
     43 
     44 struct Query {
     45   const TargetData *TD;
     46   const TargetLibraryInfo *TLI;
     47   const DominatorTree *DT;
     48 
     49   Query(const TargetData *td, const TargetLibraryInfo *tli,
     50         const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {};
     51 };
     52 
     53 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
     54 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
     55                             unsigned);
     56 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
     57                               unsigned);
     58 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
     59 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
     60 static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
     61 
     62 /// getFalse - For a boolean type, or a vector of boolean type, return false, or
     63 /// a vector with every element false, as appropriate for the type.
     64 static Constant *getFalse(Type *Ty) {
     65   assert(Ty->getScalarType()->isIntegerTy(1) &&
     66          "Expected i1 type or a vector of i1!");
     67   return Constant::getNullValue(Ty);
     68 }
     69 
     70 /// getTrue - For a boolean type, or a vector of boolean type, return true, or
     71 /// a vector with every element true, as appropriate for the type.
     72 static Constant *getTrue(Type *Ty) {
     73   assert(Ty->getScalarType()->isIntegerTy(1) &&
     74          "Expected i1 type or a vector of i1!");
     75   return Constant::getAllOnesValue(Ty);
     76 }
     77 
     78 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
     79 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
     80                           Value *RHS) {
     81   CmpInst *Cmp = dyn_cast<CmpInst>(V);
     82   if (!Cmp)
     83     return false;
     84   CmpInst::Predicate CPred = Cmp->getPredicate();
     85   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
     86   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
     87     return true;
     88   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
     89     CRHS == LHS;
     90 }
     91 
     92 /// ValueDominatesPHI - Does the given value dominate the specified phi node?
     93 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
     94   Instruction *I = dyn_cast<Instruction>(V);
     95   if (!I)
     96     // Arguments and constants dominate all instructions.
     97     return true;
     98 
     99   // If we are processing instructions (and/or basic blocks) that have not been
    100   // fully added to a function, the parent nodes may still be null. Simply
    101   // return the conservative answer in these cases.
    102   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
    103     return false;
    104 
    105   // If we have a DominatorTree then do a precise test.
    106   if (DT) {
    107     if (!DT->isReachableFromEntry(P->getParent()))
    108       return true;
    109     if (!DT->isReachableFromEntry(I->getParent()))
    110       return false;
    111     return DT->dominates(I, P);
    112   }
    113 
    114   // Otherwise, if the instruction is in the entry block, and is not an invoke,
    115   // then it obviously dominates all phi nodes.
    116   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
    117       !isa<InvokeInst>(I))
    118     return true;
    119 
    120   return false;
    121 }
    122 
    123 /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
    124 /// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
    125 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
    126 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
    127 /// Returns the simplified value, or null if no simplification was performed.
    128 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
    129                           unsigned OpcToExpand, const Query &Q,
    130                           unsigned MaxRecurse) {
    131   Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
    132   // Recursion is always used, so bail out at once if we already hit the limit.
    133   if (!MaxRecurse--)
    134     return 0;
    135 
    136   // Check whether the expression has the form "(A op' B) op C".
    137   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
    138     if (Op0->getOpcode() == OpcodeToExpand) {
    139       // It does!  Try turning it into "(A op C) op' (B op C)".
    140       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
    141       // Do "A op C" and "B op C" both simplify?
    142       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
    143         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
    144           // They do! Return "L op' R" if it simplifies or is already available.
    145           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
    146           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
    147                                      && L == B && R == A)) {
    148             ++NumExpand;
    149             return LHS;
    150           }
    151           // Otherwise return "L op' R" if it simplifies.
    152           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
    153             ++NumExpand;
    154             return V;
    155           }
    156         }
    157     }
    158 
    159   // Check whether the expression has the form "A op (B op' C)".
    160   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
    161     if (Op1->getOpcode() == OpcodeToExpand) {
    162       // It does!  Try turning it into "(A op B) op' (A op C)".
    163       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
    164       // Do "A op B" and "A op C" both simplify?
    165       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
    166         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
    167           // They do! Return "L op' R" if it simplifies or is already available.
    168           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
    169           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
    170                                      && L == C && R == B)) {
    171             ++NumExpand;
    172             return RHS;
    173           }
    174           // Otherwise return "L op' R" if it simplifies.
    175           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
    176             ++NumExpand;
    177             return V;
    178           }
    179         }
    180     }
    181 
    182   return 0;
    183 }
    184 
    185 /// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
    186 /// using the operation OpCodeToExtract.  For example, when Opcode is Add and
    187 /// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
    188 /// Returns the simplified value, or null if no simplification was performed.
    189 static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
    190                              unsigned OpcToExtract, const Query &Q,
    191                              unsigned MaxRecurse) {
    192   Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
    193   // Recursion is always used, so bail out at once if we already hit the limit.
    194   if (!MaxRecurse--)
    195     return 0;
    196 
    197   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
    198   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
    199 
    200   if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
    201       !Op1 || Op1->getOpcode() != OpcodeToExtract)
    202     return 0;
    203 
    204   // The expression has the form "(A op' B) op (C op' D)".
    205   Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
    206   Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
    207 
    208   // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
    209   // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
    210   // commutative case, "(A op' B) op (C op' A)"?
    211   if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
    212     Value *DD = A == C ? D : C;
    213     // Form "A op' (B op DD)" if it simplifies completely.
    214     // Does "B op DD" simplify?
    215     if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) {
    216       // It does!  Return "A op' V" if it simplifies or is already available.
    217       // If V equals B then "A op' V" is just the LHS.  If V equals DD then
    218       // "A op' V" is just the RHS.
    219       if (V == B || V == DD) {
    220         ++NumFactor;
    221         return V == B ? LHS : RHS;
    222       }
    223       // Otherwise return "A op' V" if it simplifies.
    224       if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) {
    225         ++NumFactor;
    226         return W;
    227       }
    228     }
    229   }
    230 
    231   // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
    232   // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
    233   // commutative case, "(A op' B) op (B op' D)"?
    234   if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
    235     Value *CC = B == D ? C : D;
    236     // Form "(A op CC) op' B" if it simplifies completely..
    237     // Does "A op CC" simplify?
    238     if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) {
    239       // It does!  Return "V op' B" if it simplifies or is already available.
    240       // If V equals A then "V op' B" is just the LHS.  If V equals CC then
    241       // "V op' B" is just the RHS.
    242       if (V == A || V == CC) {
    243         ++NumFactor;
    244         return V == A ? LHS : RHS;
    245       }
    246       // Otherwise return "V op' B" if it simplifies.
    247       if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) {
    248         ++NumFactor;
    249         return W;
    250       }
    251     }
    252   }
    253 
    254   return 0;
    255 }
    256 
    257 /// SimplifyAssociativeBinOp - Generic simplifications for associative binary
    258 /// operations.  Returns the simpler value, or null if none was found.
    259 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
    260                                        const Query &Q, unsigned MaxRecurse) {
    261   Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
    262   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
    263 
    264   // Recursion is always used, so bail out at once if we already hit the limit.
    265   if (!MaxRecurse--)
    266     return 0;
    267 
    268   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
    269   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
    270 
    271   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
    272   if (Op0 && Op0->getOpcode() == Opcode) {
    273     Value *A = Op0->getOperand(0);
    274     Value *B = Op0->getOperand(1);
    275     Value *C = RHS;
    276 
    277     // Does "B op C" simplify?
    278     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
    279       // It does!  Return "A op V" if it simplifies or is already available.
    280       // If V equals B then "A op V" is just the LHS.
    281       if (V == B) return LHS;
    282       // Otherwise return "A op V" if it simplifies.
    283       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
    284         ++NumReassoc;
    285         return W;
    286       }
    287     }
    288   }
    289 
    290   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
    291   if (Op1 && Op1->getOpcode() == Opcode) {
    292     Value *A = LHS;
    293     Value *B = Op1->getOperand(0);
    294     Value *C = Op1->getOperand(1);
    295 
    296     // Does "A op B" simplify?
    297     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
    298       // It does!  Return "V op C" if it simplifies or is already available.
    299       // If V equals B then "V op C" is just the RHS.
    300       if (V == B) return RHS;
    301       // Otherwise return "V op C" if it simplifies.
    302       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
    303         ++NumReassoc;
    304         return W;
    305       }
    306     }
    307   }
    308 
    309   // The remaining transforms require commutativity as well as associativity.
    310   if (!Instruction::isCommutative(Opcode))
    311     return 0;
    312 
    313   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
    314   if (Op0 && Op0->getOpcode() == Opcode) {
    315     Value *A = Op0->getOperand(0);
    316     Value *B = Op0->getOperand(1);
    317     Value *C = RHS;
    318 
    319     // Does "C op A" simplify?
    320     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
    321       // It does!  Return "V op B" if it simplifies or is already available.
    322       // If V equals A then "V op B" is just the LHS.
    323       if (V == A) return LHS;
    324       // Otherwise return "V op B" if it simplifies.
    325       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
    326         ++NumReassoc;
    327         return W;
    328       }
    329     }
    330   }
    331 
    332   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
    333   if (Op1 && Op1->getOpcode() == Opcode) {
    334     Value *A = LHS;
    335     Value *B = Op1->getOperand(0);
    336     Value *C = Op1->getOperand(1);
    337 
    338     // Does "C op A" simplify?
    339     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
    340       // It does!  Return "B op V" if it simplifies or is already available.
    341       // If V equals C then "B op V" is just the RHS.
    342       if (V == C) return RHS;
    343       // Otherwise return "B op V" if it simplifies.
    344       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
    345         ++NumReassoc;
    346         return W;
    347       }
    348     }
    349   }
    350 
    351   return 0;
    352 }
    353 
    354 /// ThreadBinOpOverSelect - In the case of a binary operation with a select
    355 /// instruction as an operand, try to simplify the binop by seeing whether
    356 /// evaluating it on both branches of the select results in the same value.
    357 /// Returns the common value if so, otherwise returns null.
    358 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
    359                                     const Query &Q, unsigned MaxRecurse) {
    360   // Recursion is always used, so bail out at once if we already hit the limit.
    361   if (!MaxRecurse--)
    362     return 0;
    363 
    364   SelectInst *SI;
    365   if (isa<SelectInst>(LHS)) {
    366     SI = cast<SelectInst>(LHS);
    367   } else {
    368     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
    369     SI = cast<SelectInst>(RHS);
    370   }
    371 
    372   // Evaluate the BinOp on the true and false branches of the select.
    373   Value *TV;
    374   Value *FV;
    375   if (SI == LHS) {
    376     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
    377     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
    378   } else {
    379     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
    380     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
    381   }
    382 
    383   // If they simplified to the same value, then return the common value.
    384   // If they both failed to simplify then return null.
    385   if (TV == FV)
    386     return TV;
    387 
    388   // If one branch simplified to undef, return the other one.
    389   if (TV && isa<UndefValue>(TV))
    390     return FV;
    391   if (FV && isa<UndefValue>(FV))
    392     return TV;
    393 
    394   // If applying the operation did not change the true and false select values,
    395   // then the result of the binop is the select itself.
    396   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
    397     return SI;
    398 
    399   // If one branch simplified and the other did not, and the simplified
    400   // value is equal to the unsimplified one, return the simplified value.
    401   // For example, select (cond, X, X & Z) & Z -> X & Z.
    402   if ((FV && !TV) || (TV && !FV)) {
    403     // Check that the simplified value has the form "X op Y" where "op" is the
    404     // same as the original operation.
    405     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
    406     if (Simplified && Simplified->getOpcode() == Opcode) {
    407       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
    408       // We already know that "op" is the same as for the simplified value.  See
    409       // if the operands match too.  If so, return the simplified value.
    410       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
    411       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
    412       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
    413       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
    414           Simplified->getOperand(1) == UnsimplifiedRHS)
    415         return Simplified;
    416       if (Simplified->isCommutative() &&
    417           Simplified->getOperand(1) == UnsimplifiedLHS &&
    418           Simplified->getOperand(0) == UnsimplifiedRHS)
    419         return Simplified;
    420     }
    421   }
    422 
    423   return 0;
    424 }
    425 
    426 /// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
    427 /// try to simplify the comparison by seeing whether both branches of the select
    428 /// result in the same value.  Returns the common value if so, otherwise returns
    429 /// null.
    430 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
    431                                   Value *RHS, const Query &Q,
    432                                   unsigned MaxRecurse) {
    433   // Recursion is always used, so bail out at once if we already hit the limit.
    434   if (!MaxRecurse--)
    435     return 0;
    436 
    437   // Make sure the select is on the LHS.
    438   if (!isa<SelectInst>(LHS)) {
    439     std::swap(LHS, RHS);
    440     Pred = CmpInst::getSwappedPredicate(Pred);
    441   }
    442   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
    443   SelectInst *SI = cast<SelectInst>(LHS);
    444   Value *Cond = SI->getCondition();
    445   Value *TV = SI->getTrueValue();
    446   Value *FV = SI->getFalseValue();
    447 
    448   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
    449   // Does "cmp TV, RHS" simplify?
    450   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
    451   if (TCmp == Cond) {
    452     // It not only simplified, it simplified to the select condition.  Replace
    453     // it with 'true'.
    454     TCmp = getTrue(Cond->getType());
    455   } else if (!TCmp) {
    456     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
    457     // condition then we can replace it with 'true'.  Otherwise give up.
    458     if (!isSameCompare(Cond, Pred, TV, RHS))
    459       return 0;
    460     TCmp = getTrue(Cond->getType());
    461   }
    462 
    463   // Does "cmp FV, RHS" simplify?
    464   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
    465   if (FCmp == Cond) {
    466     // It not only simplified, it simplified to the select condition.  Replace
    467     // it with 'false'.
    468     FCmp = getFalse(Cond->getType());
    469   } else if (!FCmp) {
    470     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
    471     // condition then we can replace it with 'false'.  Otherwise give up.
    472     if (!isSameCompare(Cond, Pred, FV, RHS))
    473       return 0;
    474     FCmp = getFalse(Cond->getType());
    475   }
    476 
    477   // If both sides simplified to the same value, then use it as the result of
    478   // the original comparison.
    479   if (TCmp == FCmp)
    480     return TCmp;
    481 
    482   // The remaining cases only make sense if the select condition has the same
    483   // type as the result of the comparison, so bail out if this is not so.
    484   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
    485     return 0;
    486   // If the false value simplified to false, then the result of the compare
    487   // is equal to "Cond && TCmp".  This also catches the case when the false
    488   // value simplified to false and the true value to true, returning "Cond".
    489   if (match(FCmp, m_Zero()))
    490     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
    491       return V;
    492   // If the true value simplified to true, then the result of the compare
    493   // is equal to "Cond || FCmp".
    494   if (match(TCmp, m_One()))
    495     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
    496       return V;
    497   // Finally, if the false value simplified to true and the true value to
    498   // false, then the result of the compare is equal to "!Cond".
    499   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
    500     if (Value *V =
    501         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
    502                         Q, MaxRecurse))
    503       return V;
    504 
    505   return 0;
    506 }
    507 
    508 /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
    509 /// is a PHI instruction, try to simplify the binop by seeing whether evaluating
    510 /// it on the incoming phi values yields the same result for every value.  If so
    511 /// returns the common value, otherwise returns null.
    512 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
    513                                  const Query &Q, unsigned MaxRecurse) {
    514   // Recursion is always used, so bail out at once if we already hit the limit.
    515   if (!MaxRecurse--)
    516     return 0;
    517 
    518   PHINode *PI;
    519   if (isa<PHINode>(LHS)) {
    520     PI = cast<PHINode>(LHS);
    521     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
    522     if (!ValueDominatesPHI(RHS, PI, Q.DT))
    523       return 0;
    524   } else {
    525     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
    526     PI = cast<PHINode>(RHS);
    527     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
    528     if (!ValueDominatesPHI(LHS, PI, Q.DT))
    529       return 0;
    530   }
    531 
    532   // Evaluate the BinOp on the incoming phi values.
    533   Value *CommonValue = 0;
    534   for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
    535     Value *Incoming = PI->getIncomingValue(i);
    536     // If the incoming value is the phi node itself, it can safely be skipped.
    537     if (Incoming == PI) continue;
    538     Value *V = PI == LHS ?
    539       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
    540       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
    541     // If the operation failed to simplify, or simplified to a different value
    542     // to previously, then give up.
    543     if (!V || (CommonValue && V != CommonValue))
    544       return 0;
    545     CommonValue = V;
    546   }
    547 
    548   return CommonValue;
    549 }
    550 
    551 /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
    552 /// try to simplify the comparison by seeing whether comparing with all of the
    553 /// incoming phi values yields the same result every time.  If so returns the
    554 /// common result, otherwise returns null.
    555 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
    556                                const Query &Q, unsigned MaxRecurse) {
    557   // Recursion is always used, so bail out at once if we already hit the limit.
    558   if (!MaxRecurse--)
    559     return 0;
    560 
    561   // Make sure the phi is on the LHS.
    562   if (!isa<PHINode>(LHS)) {
    563     std::swap(LHS, RHS);
    564     Pred = CmpInst::getSwappedPredicate(Pred);
    565   }
    566   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
    567   PHINode *PI = cast<PHINode>(LHS);
    568 
    569   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
    570   if (!ValueDominatesPHI(RHS, PI, Q.DT))
    571     return 0;
    572 
    573   // Evaluate the BinOp on the incoming phi values.
    574   Value *CommonValue = 0;
    575   for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
    576     Value *Incoming = PI->getIncomingValue(i);
    577     // If the incoming value is the phi node itself, it can safely be skipped.
    578     if (Incoming == PI) continue;
    579     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
    580     // If the operation failed to simplify, or simplified to a different value
    581     // to previously, then give up.
    582     if (!V || (CommonValue && V != CommonValue))
    583       return 0;
    584     CommonValue = V;
    585   }
    586 
    587   return CommonValue;
    588 }
    589 
    590 /// SimplifyAddInst - Given operands for an Add, see if we can
    591 /// fold the result.  If not, this returns null.
    592 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    593                               const Query &Q, unsigned MaxRecurse) {
    594   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    595     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
    596       Constant *Ops[] = { CLHS, CRHS };
    597       return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
    598                                       Q.TD, Q.TLI);
    599     }
    600 
    601     // Canonicalize the constant to the RHS.
    602     std::swap(Op0, Op1);
    603   }
    604 
    605   // X + undef -> undef
    606   if (match(Op1, m_Undef()))
    607     return Op1;
    608 
    609   // X + 0 -> X
    610   if (match(Op1, m_Zero()))
    611     return Op0;
    612 
    613   // X + (Y - X) -> Y
    614   // (Y - X) + X -> Y
    615   // Eg: X + -X -> 0
    616   Value *Y = 0;
    617   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
    618       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
    619     return Y;
    620 
    621   // X + ~X -> -1   since   ~X = -X-1
    622   if (match(Op0, m_Not(m_Specific(Op1))) ||
    623       match(Op1, m_Not(m_Specific(Op0))))
    624     return Constant::getAllOnesValue(Op0->getType());
    625 
    626   /// i1 add -> xor.
    627   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
    628     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
    629       return V;
    630 
    631   // Try some generic simplifications for associative operations.
    632   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
    633                                           MaxRecurse))
    634     return V;
    635 
    636   // Mul distributes over Add.  Try some generic simplifications based on this.
    637   if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
    638                                 Q, MaxRecurse))
    639     return V;
    640 
    641   // Threading Add over selects and phi nodes is pointless, so don't bother.
    642   // Threading over the select in "A + select(cond, B, C)" means evaluating
    643   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
    644   // only if B and C are equal.  If B and C are equal then (since we assume
    645   // that operands have already been simplified) "select(cond, B, C)" should
    646   // have been simplified to the common value of B and C already.  Analysing
    647   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
    648   // for threading over phi nodes.
    649 
    650   return 0;
    651 }
    652 
    653 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    654                              const TargetData *TD, const TargetLibraryInfo *TLI,
    655                              const DominatorTree *DT) {
    656   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
    657                            RecursionLimit);
    658 }
    659 
    660 /// \brief Accumulate the constant integer offset a GEP represents.
    661 ///
    662 /// Given a getelementptr instruction/constantexpr, accumulate the constant
    663 /// offset from the base pointer into the provided APInt 'Offset'. Returns true
    664 /// if the GEP has all-constant indices. Returns false if any non-constant
    665 /// index is encountered leaving the 'Offset' in an undefined state. The
    666 /// 'Offset' APInt must be the bitwidth of the target's pointer size.
    667 static bool accumulateGEPOffset(const TargetData &TD, GEPOperator *GEP,
    668                                 APInt &Offset) {
    669   unsigned IntPtrWidth = TD.getPointerSizeInBits();
    670   assert(IntPtrWidth == Offset.getBitWidth());
    671 
    672   gep_type_iterator GTI = gep_type_begin(GEP);
    673   for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); I != E;
    674        ++I, ++GTI) {
    675     ConstantInt *OpC = dyn_cast<ConstantInt>(*I);
    676     if (!OpC) return false;
    677     if (OpC->isZero()) continue;
    678 
    679     // Handle a struct index, which adds its field offset to the pointer.
    680     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    681       unsigned ElementIdx = OpC->getZExtValue();
    682       const StructLayout *SL = TD.getStructLayout(STy);
    683       Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
    684       continue;
    685     }
    686 
    687     APInt TypeSize(IntPtrWidth, TD.getTypeAllocSize(GTI.getIndexedType()));
    688     Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
    689   }
    690   return true;
    691 }
    692 
    693 /// \brief Compute the base pointer and cumulative constant offsets for V.
    694 ///
    695 /// This strips all constant offsets off of V, leaving it the base pointer, and
    696 /// accumulates the total constant offset applied in the returned constant. It
    697 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
    698 /// no constant offsets applied.
    699 static Constant *stripAndComputeConstantOffsets(const TargetData &TD,
    700                                                 Value *&V) {
    701   if (!V->getType()->isPointerTy())
    702     return 0;
    703 
    704   unsigned IntPtrWidth = TD.getPointerSizeInBits();
    705   APInt Offset = APInt::getNullValue(IntPtrWidth);
    706 
    707   // Even though we don't look through PHI nodes, we could be called on an
    708   // instruction in an unreachable block, which may be on a cycle.
    709   SmallPtrSet<Value *, 4> Visited;
    710   Visited.insert(V);
    711   do {
    712     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    713       if (!GEP->isInBounds() || !accumulateGEPOffset(TD, GEP, Offset))
    714         break;
    715       V = GEP->getPointerOperand();
    716     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
    717       V = cast<Operator>(V)->getOperand(0);
    718     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    719       if (GA->mayBeOverridden())
    720         break;
    721       V = GA->getAliasee();
    722     } else {
    723       break;
    724     }
    725     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
    726   } while (Visited.insert(V));
    727 
    728   Type *IntPtrTy = TD.getIntPtrType(V->getContext());
    729   return ConstantInt::get(IntPtrTy, Offset);
    730 }
    731 
    732 /// \brief Compute the constant difference between two pointer values.
    733 /// If the difference is not a constant, returns zero.
    734 static Constant *computePointerDifference(const TargetData &TD,
    735                                           Value *LHS, Value *RHS) {
    736   Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
    737   if (!LHSOffset)
    738     return 0;
    739   Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
    740   if (!RHSOffset)
    741     return 0;
    742 
    743   // If LHS and RHS are not related via constant offsets to the same base
    744   // value, there is nothing we can do here.
    745   if (LHS != RHS)
    746     return 0;
    747 
    748   // Otherwise, the difference of LHS - RHS can be computed as:
    749   //    LHS - RHS
    750   //  = (LHSOffset + Base) - (RHSOffset + Base)
    751   //  = LHSOffset - RHSOffset
    752   return ConstantExpr::getSub(LHSOffset, RHSOffset);
    753 }
    754 
    755 /// SimplifySubInst - Given operands for a Sub, see if we can
    756 /// fold the result.  If not, this returns null.
    757 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    758                               const Query &Q, unsigned MaxRecurse) {
    759   if (Constant *CLHS = dyn_cast<Constant>(Op0))
    760     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
    761       Constant *Ops[] = { CLHS, CRHS };
    762       return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
    763                                       Ops, Q.TD, Q.TLI);
    764     }
    765 
    766   // X - undef -> undef
    767   // undef - X -> undef
    768   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
    769     return UndefValue::get(Op0->getType());
    770 
    771   // X - 0 -> X
    772   if (match(Op1, m_Zero()))
    773     return Op0;
    774 
    775   // X - X -> 0
    776   if (Op0 == Op1)
    777     return Constant::getNullValue(Op0->getType());
    778 
    779   // (X*2) - X -> X
    780   // (X<<1) - X -> X
    781   Value *X = 0;
    782   if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
    783       match(Op0, m_Shl(m_Specific(Op1), m_One())))
    784     return Op1;
    785 
    786   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
    787   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
    788   Value *Y = 0, *Z = Op1;
    789   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
    790     // See if "V === Y - Z" simplifies.
    791     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
    792       // It does!  Now see if "X + V" simplifies.
    793       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
    794         // It does, we successfully reassociated!
    795         ++NumReassoc;
    796         return W;
    797       }
    798     // See if "V === X - Z" simplifies.
    799     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
    800       // It does!  Now see if "Y + V" simplifies.
    801       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
    802         // It does, we successfully reassociated!
    803         ++NumReassoc;
    804         return W;
    805       }
    806   }
    807 
    808   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
    809   // For example, X - (X + 1) -> -1
    810   X = Op0;
    811   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
    812     // See if "V === X - Y" simplifies.
    813     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
    814       // It does!  Now see if "V - Z" simplifies.
    815       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
    816         // It does, we successfully reassociated!
    817         ++NumReassoc;
    818         return W;
    819       }
    820     // See if "V === X - Z" simplifies.
    821     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
    822       // It does!  Now see if "V - Y" simplifies.
    823       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
    824         // It does, we successfully reassociated!
    825         ++NumReassoc;
    826         return W;
    827       }
    828   }
    829 
    830   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
    831   // For example, X - (X - Y) -> Y.
    832   Z = Op0;
    833   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
    834     // See if "V === Z - X" simplifies.
    835     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
    836       // It does!  Now see if "V + Y" simplifies.
    837       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
    838         // It does, we successfully reassociated!
    839         ++NumReassoc;
    840         return W;
    841       }
    842 
    843   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
    844   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
    845       match(Op1, m_Trunc(m_Value(Y))))
    846     if (X->getType() == Y->getType())
    847       // See if "V === X - Y" simplifies.
    848       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
    849         // It does!  Now see if "trunc V" simplifies.
    850         if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
    851           // It does, return the simplified "trunc V".
    852           return W;
    853 
    854   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
    855   if (Q.TD && match(Op0, m_PtrToInt(m_Value(X))) &&
    856       match(Op1, m_PtrToInt(m_Value(Y))))
    857     if (Constant *Result = computePointerDifference(*Q.TD, X, Y))
    858       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
    859 
    860   // Mul distributes over Sub.  Try some generic simplifications based on this.
    861   if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
    862                                 Q, MaxRecurse))
    863     return V;
    864 
    865   // i1 sub -> xor.
    866   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
    867     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
    868       return V;
    869 
    870   // Threading Sub over selects and phi nodes is pointless, so don't bother.
    871   // Threading over the select in "A - select(cond, B, C)" means evaluating
    872   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
    873   // only if B and C are equal.  If B and C are equal then (since we assume
    874   // that operands have already been simplified) "select(cond, B, C)" should
    875   // have been simplified to the common value of B and C already.  Analysing
    876   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
    877   // for threading over phi nodes.
    878 
    879   return 0;
    880 }
    881 
    882 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    883                              const TargetData *TD, const TargetLibraryInfo *TLI,
    884                              const DominatorTree *DT) {
    885   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
    886                            RecursionLimit);
    887 }
    888 
    889 /// SimplifyMulInst - Given operands for a Mul, see if we can
    890 /// fold the result.  If not, this returns null.
    891 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
    892                               unsigned MaxRecurse) {
    893   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    894     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
    895       Constant *Ops[] = { CLHS, CRHS };
    896       return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
    897                                       Ops, Q.TD, Q.TLI);
    898     }
    899 
    900     // Canonicalize the constant to the RHS.
    901     std::swap(Op0, Op1);
    902   }
    903 
    904   // X * undef -> 0
    905   if (match(Op1, m_Undef()))
    906     return Constant::getNullValue(Op0->getType());
    907 
    908   // X * 0 -> 0
    909   if (match(Op1, m_Zero()))
    910     return Op1;
    911 
    912   // X * 1 -> X
    913   if (match(Op1, m_One()))
    914     return Op0;
    915 
    916   // (X / Y) * Y -> X if the division is exact.
    917   Value *X = 0;
    918   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
    919       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
    920     return X;
    921 
    922   // i1 mul -> and.
    923   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
    924     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
    925       return V;
    926 
    927   // Try some generic simplifications for associative operations.
    928   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
    929                                           MaxRecurse))
    930     return V;
    931 
    932   // Mul distributes over Add.  Try some generic simplifications based on this.
    933   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
    934                              Q, MaxRecurse))
    935     return V;
    936 
    937   // If the operation is with the result of a select instruction, check whether
    938   // operating on either branch of the select always yields the same value.
    939   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
    940     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
    941                                          MaxRecurse))
    942       return V;
    943 
    944   // If the operation is with the result of a phi instruction, check whether
    945   // operating on all incoming values of the phi always yields the same value.
    946   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
    947     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
    948                                       MaxRecurse))
    949       return V;
    950 
    951   return 0;
    952 }
    953 
    954 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
    955                              const TargetLibraryInfo *TLI,
    956                              const DominatorTree *DT) {
    957   return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
    958 }
    959 
    960 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
    961 /// fold the result.  If not, this returns null.
    962 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
    963                           const Query &Q, unsigned MaxRecurse) {
    964   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
    965     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
    966       Constant *Ops[] = { C0, C1 };
    967       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
    968     }
    969   }
    970 
    971   bool isSigned = Opcode == Instruction::SDiv;
    972 
    973   // X / undef -> undef
    974   if (match(Op1, m_Undef()))
    975     return Op1;
    976 
    977   // undef / X -> 0
    978   if (match(Op0, m_Undef()))
    979     return Constant::getNullValue(Op0->getType());
    980 
    981   // 0 / X -> 0, we don't need to preserve faults!
    982   if (match(Op0, m_Zero()))
    983     return Op0;
    984 
    985   // X / 1 -> X
    986   if (match(Op1, m_One()))
    987     return Op0;
    988 
    989   if (Op0->getType()->isIntegerTy(1))
    990     // It can't be division by zero, hence it must be division by one.
    991     return Op0;
    992 
    993   // X / X -> 1
    994   if (Op0 == Op1)
    995     return ConstantInt::get(Op0->getType(), 1);
    996 
    997   // (X * Y) / Y -> X if the multiplication does not overflow.
    998   Value *X = 0, *Y = 0;
    999   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
   1000     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
   1001     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
   1002     // If the Mul knows it does not overflow, then we are good to go.
   1003     if ((isSigned && Mul->hasNoSignedWrap()) ||
   1004         (!isSigned && Mul->hasNoUnsignedWrap()))
   1005       return X;
   1006     // If X has the form X = A / Y then X * Y cannot overflow.
   1007     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
   1008       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
   1009         return X;
   1010   }
   1011 
   1012   // (X rem Y) / Y -> 0
   1013   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
   1014       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
   1015     return Constant::getNullValue(Op0->getType());
   1016 
   1017   // If the operation is with the result of a select instruction, check whether
   1018   // operating on either branch of the select always yields the same value.
   1019   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1020     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
   1021       return V;
   1022 
   1023   // If the operation is with the result of a phi instruction, check whether
   1024   // operating on all incoming values of the phi always yields the same value.
   1025   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1026     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
   1027       return V;
   1028 
   1029   return 0;
   1030 }
   1031 
   1032 /// SimplifySDivInst - Given operands for an SDiv, see if we can
   1033 /// fold the result.  If not, this returns null.
   1034 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
   1035                                unsigned MaxRecurse) {
   1036   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
   1037     return V;
   1038 
   1039   return 0;
   1040 }
   1041 
   1042 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
   1043                               const TargetLibraryInfo *TLI,
   1044                               const DominatorTree *DT) {
   1045   return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
   1046 }
   1047 
   1048 /// SimplifyUDivInst - Given operands for a UDiv, see if we can
   1049 /// fold the result.  If not, this returns null.
   1050 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
   1051                                unsigned MaxRecurse) {
   1052   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
   1053     return V;
   1054 
   1055   return 0;
   1056 }
   1057 
   1058 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
   1059                               const TargetLibraryInfo *TLI,
   1060                               const DominatorTree *DT) {
   1061   return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
   1062 }
   1063 
   1064 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
   1065                                unsigned) {
   1066   // undef / X -> undef    (the undef could be a snan).
   1067   if (match(Op0, m_Undef()))
   1068     return Op0;
   1069 
   1070   // X / undef -> undef
   1071   if (match(Op1, m_Undef()))
   1072     return Op1;
   1073 
   1074   return 0;
   1075 }
   1076 
   1077 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
   1078                               const TargetLibraryInfo *TLI,
   1079                               const DominatorTree *DT) {
   1080   return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
   1081 }
   1082 
   1083 /// SimplifyRem - Given operands for an SRem or URem, see if we can
   1084 /// fold the result.  If not, this returns null.
   1085 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
   1086                           const Query &Q, unsigned MaxRecurse) {
   1087   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
   1088     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
   1089       Constant *Ops[] = { C0, C1 };
   1090       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
   1091     }
   1092   }
   1093 
   1094   // X % undef -> undef
   1095   if (match(Op1, m_Undef()))
   1096     return Op1;
   1097 
   1098   // undef % X -> 0
   1099   if (match(Op0, m_Undef()))
   1100     return Constant::getNullValue(Op0->getType());
   1101 
   1102   // 0 % X -> 0, we don't need to preserve faults!
   1103   if (match(Op0, m_Zero()))
   1104     return Op0;
   1105 
   1106   // X % 0 -> undef, we don't need to preserve faults!
   1107   if (match(Op1, m_Zero()))
   1108     return UndefValue::get(Op0->getType());
   1109 
   1110   // X % 1 -> 0
   1111   if (match(Op1, m_One()))
   1112     return Constant::getNullValue(Op0->getType());
   1113 
   1114   if (Op0->getType()->isIntegerTy(1))
   1115     // It can't be remainder by zero, hence it must be remainder by one.
   1116     return Constant::getNullValue(Op0->getType());
   1117 
   1118   // X % X -> 0
   1119   if (Op0 == Op1)
   1120     return Constant::getNullValue(Op0->getType());
   1121 
   1122   // If the operation is with the result of a select instruction, check whether
   1123   // operating on either branch of the select always yields the same value.
   1124   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1125     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
   1126       return V;
   1127 
   1128   // If the operation is with the result of a phi instruction, check whether
   1129   // operating on all incoming values of the phi always yields the same value.
   1130   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1131     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
   1132       return V;
   1133 
   1134   return 0;
   1135 }
   1136 
   1137 /// SimplifySRemInst - Given operands for an SRem, see if we can
   1138 /// fold the result.  If not, this returns null.
   1139 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
   1140                                unsigned MaxRecurse) {
   1141   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
   1142     return V;
   1143 
   1144   return 0;
   1145 }
   1146 
   1147 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
   1148                               const TargetLibraryInfo *TLI,
   1149                               const DominatorTree *DT) {
   1150   return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
   1151 }
   1152 
   1153 /// SimplifyURemInst - Given operands for a URem, see if we can
   1154 /// fold the result.  If not, this returns null.
   1155 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
   1156                                unsigned MaxRecurse) {
   1157   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
   1158     return V;
   1159 
   1160   return 0;
   1161 }
   1162 
   1163 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
   1164                               const TargetLibraryInfo *TLI,
   1165                               const DominatorTree *DT) {
   1166   return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
   1167 }
   1168 
   1169 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
   1170                                unsigned) {
   1171   // undef % X -> undef    (the undef could be a snan).
   1172   if (match(Op0, m_Undef()))
   1173     return Op0;
   1174 
   1175   // X % undef -> undef
   1176   if (match(Op1, m_Undef()))
   1177     return Op1;
   1178 
   1179   return 0;
   1180 }
   1181 
   1182 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *TD,
   1183                               const TargetLibraryInfo *TLI,
   1184                               const DominatorTree *DT) {
   1185   return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
   1186 }
   1187 
   1188 /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
   1189 /// fold the result.  If not, this returns null.
   1190 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
   1191                             const Query &Q, unsigned MaxRecurse) {
   1192   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
   1193     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
   1194       Constant *Ops[] = { C0, C1 };
   1195       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
   1196     }
   1197   }
   1198 
   1199   // 0 shift by X -> 0
   1200   if (match(Op0, m_Zero()))
   1201     return Op0;
   1202 
   1203   // X shift by 0 -> X
   1204   if (match(Op1, m_Zero()))
   1205     return Op0;
   1206 
   1207   // X shift by undef -> undef because it may shift by the bitwidth.
   1208   if (match(Op1, m_Undef()))
   1209     return Op1;
   1210 
   1211   // Shifting by the bitwidth or more is undefined.
   1212   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
   1213     if (CI->getValue().getLimitedValue() >=
   1214         Op0->getType()->getScalarSizeInBits())
   1215       return UndefValue::get(Op0->getType());
   1216 
   1217   // If the operation is with the result of a select instruction, check whether
   1218   // operating on either branch of the select always yields the same value.
   1219   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1220     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
   1221       return V;
   1222 
   1223   // If the operation is with the result of a phi instruction, check whether
   1224   // operating on all incoming values of the phi always yields the same value.
   1225   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1226     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
   1227       return V;
   1228 
   1229   return 0;
   1230 }
   1231 
   1232 /// SimplifyShlInst - Given operands for an Shl, see if we can
   1233 /// fold the result.  If not, this returns null.
   1234 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
   1235                               const Query &Q, unsigned MaxRecurse) {
   1236   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
   1237     return V;
   1238 
   1239   // undef << X -> 0
   1240   if (match(Op0, m_Undef()))
   1241     return Constant::getNullValue(Op0->getType());
   1242 
   1243   // (X >> A) << A -> X
   1244   Value *X;
   1245   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
   1246     return X;
   1247   return 0;
   1248 }
   1249 
   1250 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
   1251                              const TargetData *TD, const TargetLibraryInfo *TLI,
   1252                              const DominatorTree *DT) {
   1253   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
   1254                            RecursionLimit);
   1255 }
   1256 
   1257 /// SimplifyLShrInst - Given operands for an LShr, see if we can
   1258 /// fold the result.  If not, this returns null.
   1259 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
   1260                                const Query &Q, unsigned MaxRecurse) {
   1261   if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
   1262     return V;
   1263 
   1264   // undef >>l X -> 0
   1265   if (match(Op0, m_Undef()))
   1266     return Constant::getNullValue(Op0->getType());
   1267 
   1268   // (X << A) >> A -> X
   1269   Value *X;
   1270   if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
   1271       cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
   1272     return X;
   1273 
   1274   return 0;
   1275 }
   1276 
   1277 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
   1278                               const TargetData *TD,
   1279                               const TargetLibraryInfo *TLI,
   1280                               const DominatorTree *DT) {
   1281   return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
   1282                             RecursionLimit);
   1283 }
   1284 
   1285 /// SimplifyAShrInst - Given operands for an AShr, see if we can
   1286 /// fold the result.  If not, this returns null.
   1287 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
   1288                                const Query &Q, unsigned MaxRecurse) {
   1289   if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
   1290     return V;
   1291 
   1292   // all ones >>a X -> all ones
   1293   if (match(Op0, m_AllOnes()))
   1294     return Op0;
   1295 
   1296   // undef >>a X -> all ones
   1297   if (match(Op0, m_Undef()))
   1298     return Constant::getAllOnesValue(Op0->getType());
   1299 
   1300   // (X << A) >> A -> X
   1301   Value *X;
   1302   if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
   1303       cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
   1304     return X;
   1305 
   1306   return 0;
   1307 }
   1308 
   1309 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
   1310                               const TargetData *TD,
   1311                               const TargetLibraryInfo *TLI,
   1312                               const DominatorTree *DT) {
   1313   return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
   1314                             RecursionLimit);
   1315 }
   1316 
   1317 /// SimplifyAndInst - Given operands for an And, see if we can
   1318 /// fold the result.  If not, this returns null.
   1319 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
   1320                               unsigned MaxRecurse) {
   1321   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
   1322     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
   1323       Constant *Ops[] = { CLHS, CRHS };
   1324       return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
   1325                                       Ops, Q.TD, Q.TLI);
   1326     }
   1327 
   1328     // Canonicalize the constant to the RHS.
   1329     std::swap(Op0, Op1);
   1330   }
   1331 
   1332   // X & undef -> 0
   1333   if (match(Op1, m_Undef()))
   1334     return Constant::getNullValue(Op0->getType());
   1335 
   1336   // X & X = X
   1337   if (Op0 == Op1)
   1338     return Op0;
   1339 
   1340   // X & 0 = 0
   1341   if (match(Op1, m_Zero()))
   1342     return Op1;
   1343 
   1344   // X & -1 = X
   1345   if (match(Op1, m_AllOnes()))
   1346     return Op0;
   1347 
   1348   // A & ~A  =  ~A & A  =  0
   1349   if (match(Op0, m_Not(m_Specific(Op1))) ||
   1350       match(Op1, m_Not(m_Specific(Op0))))
   1351     return Constant::getNullValue(Op0->getType());
   1352 
   1353   // (A | ?) & A = A
   1354   Value *A = 0, *B = 0;
   1355   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
   1356       (A == Op1 || B == Op1))
   1357     return Op1;
   1358 
   1359   // A & (A | ?) = A
   1360   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
   1361       (A == Op0 || B == Op0))
   1362     return Op0;
   1363 
   1364   // A & (-A) = A if A is a power of two or zero.
   1365   if (match(Op0, m_Neg(m_Specific(Op1))) ||
   1366       match(Op1, m_Neg(m_Specific(Op0)))) {
   1367     if (isPowerOfTwo(Op0, Q.TD, /*OrZero*/true))
   1368       return Op0;
   1369     if (isPowerOfTwo(Op1, Q.TD, /*OrZero*/true))
   1370       return Op1;
   1371   }
   1372 
   1373   // Try some generic simplifications for associative operations.
   1374   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
   1375                                           MaxRecurse))
   1376     return V;
   1377 
   1378   // And distributes over Or.  Try some generic simplifications based on this.
   1379   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
   1380                              Q, MaxRecurse))
   1381     return V;
   1382 
   1383   // And distributes over Xor.  Try some generic simplifications based on this.
   1384   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
   1385                              Q, MaxRecurse))
   1386     return V;
   1387 
   1388   // Or distributes over And.  Try some generic simplifications based on this.
   1389   if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
   1390                                 Q, MaxRecurse))
   1391     return V;
   1392 
   1393   // If the operation is with the result of a select instruction, check whether
   1394   // operating on either branch of the select always yields the same value.
   1395   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1396     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
   1397                                          MaxRecurse))
   1398       return V;
   1399 
   1400   // If the operation is with the result of a phi instruction, check whether
   1401   // operating on all incoming values of the phi always yields the same value.
   1402   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1403     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
   1404                                       MaxRecurse))
   1405       return V;
   1406 
   1407   return 0;
   1408 }
   1409 
   1410 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
   1411                              const TargetLibraryInfo *TLI,
   1412                              const DominatorTree *DT) {
   1413   return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
   1414 }
   1415 
   1416 /// SimplifyOrInst - Given operands for an Or, see if we can
   1417 /// fold the result.  If not, this returns null.
   1418 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
   1419                              unsigned MaxRecurse) {
   1420   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
   1421     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
   1422       Constant *Ops[] = { CLHS, CRHS };
   1423       return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
   1424                                       Ops, Q.TD, Q.TLI);
   1425     }
   1426 
   1427     // Canonicalize the constant to the RHS.
   1428     std::swap(Op0, Op1);
   1429   }
   1430 
   1431   // X | undef -> -1
   1432   if (match(Op1, m_Undef()))
   1433     return Constant::getAllOnesValue(Op0->getType());
   1434 
   1435   // X | X = X
   1436   if (Op0 == Op1)
   1437     return Op0;
   1438 
   1439   // X | 0 = X
   1440   if (match(Op1, m_Zero()))
   1441     return Op0;
   1442 
   1443   // X | -1 = -1
   1444   if (match(Op1, m_AllOnes()))
   1445     return Op1;
   1446 
   1447   // A | ~A  =  ~A | A  =  -1
   1448   if (match(Op0, m_Not(m_Specific(Op1))) ||
   1449       match(Op1, m_Not(m_Specific(Op0))))
   1450     return Constant::getAllOnesValue(Op0->getType());
   1451 
   1452   // (A & ?) | A = A
   1453   Value *A = 0, *B = 0;
   1454   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
   1455       (A == Op1 || B == Op1))
   1456     return Op1;
   1457 
   1458   // A | (A & ?) = A
   1459   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
   1460       (A == Op0 || B == Op0))
   1461     return Op0;
   1462 
   1463   // ~(A & ?) | A = -1
   1464   if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
   1465       (A == Op1 || B == Op1))
   1466     return Constant::getAllOnesValue(Op1->getType());
   1467 
   1468   // A | ~(A & ?) = -1
   1469   if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
   1470       (A == Op0 || B == Op0))
   1471     return Constant::getAllOnesValue(Op0->getType());
   1472 
   1473   // Try some generic simplifications for associative operations.
   1474   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
   1475                                           MaxRecurse))
   1476     return V;
   1477 
   1478   // Or distributes over And.  Try some generic simplifications based on this.
   1479   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
   1480                              MaxRecurse))
   1481     return V;
   1482 
   1483   // And distributes over Or.  Try some generic simplifications based on this.
   1484   if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
   1485                                 Q, MaxRecurse))
   1486     return V;
   1487 
   1488   // If the operation is with the result of a select instruction, check whether
   1489   // operating on either branch of the select always yields the same value.
   1490   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1491     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
   1492                                          MaxRecurse))
   1493       return V;
   1494 
   1495   // If the operation is with the result of a phi instruction, check whether
   1496   // operating on all incoming values of the phi always yields the same value.
   1497   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1498     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
   1499       return V;
   1500 
   1501   return 0;
   1502 }
   1503 
   1504 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
   1505                             const TargetLibraryInfo *TLI,
   1506                             const DominatorTree *DT) {
   1507   return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
   1508 }
   1509 
   1510 /// SimplifyXorInst - Given operands for a Xor, see if we can
   1511 /// fold the result.  If not, this returns null.
   1512 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
   1513                               unsigned MaxRecurse) {
   1514   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
   1515     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
   1516       Constant *Ops[] = { CLHS, CRHS };
   1517       return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
   1518                                       Ops, Q.TD, Q.TLI);
   1519     }
   1520 
   1521     // Canonicalize the constant to the RHS.
   1522     std::swap(Op0, Op1);
   1523   }
   1524 
   1525   // A ^ undef -> undef
   1526   if (match(Op1, m_Undef()))
   1527     return Op1;
   1528 
   1529   // A ^ 0 = A
   1530   if (match(Op1, m_Zero()))
   1531     return Op0;
   1532 
   1533   // A ^ A = 0
   1534   if (Op0 == Op1)
   1535     return Constant::getNullValue(Op0->getType());
   1536 
   1537   // A ^ ~A  =  ~A ^ A  =  -1
   1538   if (match(Op0, m_Not(m_Specific(Op1))) ||
   1539       match(Op1, m_Not(m_Specific(Op0))))
   1540     return Constant::getAllOnesValue(Op0->getType());
   1541 
   1542   // Try some generic simplifications for associative operations.
   1543   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
   1544                                           MaxRecurse))
   1545     return V;
   1546 
   1547   // And distributes over Xor.  Try some generic simplifications based on this.
   1548   if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
   1549                                 Q, MaxRecurse))
   1550     return V;
   1551 
   1552   // Threading Xor over selects and phi nodes is pointless, so don't bother.
   1553   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
   1554   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
   1555   // only if B and C are equal.  If B and C are equal then (since we assume
   1556   // that operands have already been simplified) "select(cond, B, C)" should
   1557   // have been simplified to the common value of B and C already.  Analysing
   1558   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
   1559   // for threading over phi nodes.
   1560 
   1561   return 0;
   1562 }
   1563 
   1564 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
   1565                              const TargetLibraryInfo *TLI,
   1566                              const DominatorTree *DT) {
   1567   return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
   1568 }
   1569 
   1570 static Type *GetCompareTy(Value *Op) {
   1571   return CmpInst::makeCmpResultType(Op->getType());
   1572 }
   1573 
   1574 /// ExtractEquivalentCondition - Rummage around inside V looking for something
   1575 /// equivalent to the comparison "LHS Pred RHS".  Return such a value if found,
   1576 /// otherwise return null.  Helper function for analyzing max/min idioms.
   1577 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
   1578                                          Value *LHS, Value *RHS) {
   1579   SelectInst *SI = dyn_cast<SelectInst>(V);
   1580   if (!SI)
   1581     return 0;
   1582   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
   1583   if (!Cmp)
   1584     return 0;
   1585   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
   1586   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
   1587     return Cmp;
   1588   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
   1589       LHS == CmpRHS && RHS == CmpLHS)
   1590     return Cmp;
   1591   return 0;
   1592 }
   1593 
   1594 static Constant *computePointerICmp(const TargetData &TD,
   1595                                     CmpInst::Predicate Pred,
   1596                                     Value *LHS, Value *RHS) {
   1597   // We can only fold certain predicates on pointer comparisons.
   1598   switch (Pred) {
   1599   default:
   1600     return 0;
   1601 
   1602     // Equality comaprisons are easy to fold.
   1603   case CmpInst::ICMP_EQ:
   1604   case CmpInst::ICMP_NE:
   1605     break;
   1606 
   1607     // We can only handle unsigned relational comparisons because 'inbounds' on
   1608     // a GEP only protects against unsigned wrapping.
   1609   case CmpInst::ICMP_UGT:
   1610   case CmpInst::ICMP_UGE:
   1611   case CmpInst::ICMP_ULT:
   1612   case CmpInst::ICMP_ULE:
   1613     // However, we have to switch them to their signed variants to handle
   1614     // negative indices from the base pointer.
   1615     Pred = ICmpInst::getSignedPredicate(Pred);
   1616     break;
   1617   }
   1618 
   1619   Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
   1620   if (!LHSOffset)
   1621     return 0;
   1622   Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
   1623   if (!RHSOffset)
   1624     return 0;
   1625 
   1626   // If LHS and RHS are not related via constant offsets to the same base
   1627   // value, there is nothing we can do here.
   1628   if (LHS != RHS)
   1629     return 0;
   1630 
   1631   return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
   1632 }
   1633 
   1634 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
   1635 /// fold the result.  If not, this returns null.
   1636 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   1637                                const Query &Q, unsigned MaxRecurse) {
   1638   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
   1639   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
   1640 
   1641   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
   1642     if (Constant *CRHS = dyn_cast<Constant>(RHS))
   1643       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
   1644 
   1645     // If we have a constant, make sure it is on the RHS.
   1646     std::swap(LHS, RHS);
   1647     Pred = CmpInst::getSwappedPredicate(Pred);
   1648   }
   1649 
   1650   Type *ITy = GetCompareTy(LHS); // The return type.
   1651   Type *OpTy = LHS->getType();   // The operand type.
   1652 
   1653   // icmp X, X -> true/false
   1654   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
   1655   // because X could be 0.
   1656   if (LHS == RHS || isa<UndefValue>(RHS))
   1657     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
   1658 
   1659   // Special case logic when the operands have i1 type.
   1660   if (OpTy->getScalarType()->isIntegerTy(1)) {
   1661     switch (Pred) {
   1662     default: break;
   1663     case ICmpInst::ICMP_EQ:
   1664       // X == 1 -> X
   1665       if (match(RHS, m_One()))
   1666         return LHS;
   1667       break;
   1668     case ICmpInst::ICMP_NE:
   1669       // X != 0 -> X
   1670       if (match(RHS, m_Zero()))
   1671         return LHS;
   1672       break;
   1673     case ICmpInst::ICMP_UGT:
   1674       // X >u 0 -> X
   1675       if (match(RHS, m_Zero()))
   1676         return LHS;
   1677       break;
   1678     case ICmpInst::ICMP_UGE:
   1679       // X >=u 1 -> X
   1680       if (match(RHS, m_One()))
   1681         return LHS;
   1682       break;
   1683     case ICmpInst::ICMP_SLT:
   1684       // X <s 0 -> X
   1685       if (match(RHS, m_Zero()))
   1686         return LHS;
   1687       break;
   1688     case ICmpInst::ICMP_SLE:
   1689       // X <=s -1 -> X
   1690       if (match(RHS, m_One()))
   1691         return LHS;
   1692       break;
   1693     }
   1694   }
   1695 
   1696   // icmp <object*>, <object*/null> - Different identified objects have
   1697   // different addresses (unless null), and what's more the address of an
   1698   // identified local is never equal to another argument (again, barring null).
   1699   // Note that generalizing to the case where LHS is a global variable address
   1700   // or null is pointless, since if both LHS and RHS are constants then we
   1701   // already constant folded the compare, and if only one of them is then we
   1702   // moved it to RHS already.
   1703   Value *LHSPtr = LHS->stripPointerCasts();
   1704   Value *RHSPtr = RHS->stripPointerCasts();
   1705   if (LHSPtr == RHSPtr)
   1706     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
   1707 
   1708   // Be more aggressive about stripping pointer adjustments when checking a
   1709   // comparison of an alloca address to another object.  We can rip off all
   1710   // inbounds GEP operations, even if they are variable.
   1711   LHSPtr = LHSPtr->stripInBoundsOffsets();
   1712   if (llvm::isIdentifiedObject(LHSPtr)) {
   1713     RHSPtr = RHSPtr->stripInBoundsOffsets();
   1714     if (llvm::isKnownNonNull(LHSPtr) || llvm::isKnownNonNull(RHSPtr)) {
   1715       // If both sides are different identified objects, they aren't equal
   1716       // unless they're null.
   1717       if (LHSPtr != RHSPtr && llvm::isIdentifiedObject(RHSPtr) &&
   1718           Pred == CmpInst::ICMP_EQ)
   1719         return ConstantInt::get(ITy, false);
   1720 
   1721       // A local identified object (alloca or noalias call) can't equal any
   1722       // incoming argument, unless they're both null.
   1723       if (isa<Instruction>(LHSPtr) && isa<Argument>(RHSPtr) &&
   1724           Pred == CmpInst::ICMP_EQ)
   1725         return ConstantInt::get(ITy, false);
   1726     }
   1727 
   1728     // Assume that the constant null is on the right.
   1729     if (llvm::isKnownNonNull(LHSPtr) && isa<ConstantPointerNull>(RHSPtr)) {
   1730       if (Pred == CmpInst::ICMP_EQ)
   1731         return ConstantInt::get(ITy, false);
   1732       else if (Pred == CmpInst::ICMP_NE)
   1733         return ConstantInt::get(ITy, true);
   1734     }
   1735   } else if (isa<Argument>(LHSPtr)) {
   1736     RHSPtr = RHSPtr->stripInBoundsOffsets();
   1737     // An alloca can't be equal to an argument.
   1738     if (isa<AllocaInst>(RHSPtr)) {
   1739       if (Pred == CmpInst::ICMP_EQ)
   1740         return ConstantInt::get(ITy, false);
   1741       else if (Pred == CmpInst::ICMP_NE)
   1742         return ConstantInt::get(ITy, true);
   1743     }
   1744   }
   1745 
   1746   // If we are comparing with zero then try hard since this is a common case.
   1747   if (match(RHS, m_Zero())) {
   1748     bool LHSKnownNonNegative, LHSKnownNegative;
   1749     switch (Pred) {
   1750     default: llvm_unreachable("Unknown ICmp predicate!");
   1751     case ICmpInst::ICMP_ULT:
   1752       return getFalse(ITy);
   1753     case ICmpInst::ICMP_UGE:
   1754       return getTrue(ITy);
   1755     case ICmpInst::ICMP_EQ:
   1756     case ICmpInst::ICMP_ULE:
   1757       if (isKnownNonZero(LHS, Q.TD))
   1758         return getFalse(ITy);
   1759       break;
   1760     case ICmpInst::ICMP_NE:
   1761     case ICmpInst::ICMP_UGT:
   1762       if (isKnownNonZero(LHS, Q.TD))
   1763         return getTrue(ITy);
   1764       break;
   1765     case ICmpInst::ICMP_SLT:
   1766       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
   1767       if (LHSKnownNegative)
   1768         return getTrue(ITy);
   1769       if (LHSKnownNonNegative)
   1770         return getFalse(ITy);
   1771       break;
   1772     case ICmpInst::ICMP_SLE:
   1773       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
   1774       if (LHSKnownNegative)
   1775         return getTrue(ITy);
   1776       if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
   1777         return getFalse(ITy);
   1778       break;
   1779     case ICmpInst::ICMP_SGE:
   1780       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
   1781       if (LHSKnownNegative)
   1782         return getFalse(ITy);
   1783       if (LHSKnownNonNegative)
   1784         return getTrue(ITy);
   1785       break;
   1786     case ICmpInst::ICMP_SGT:
   1787       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
   1788       if (LHSKnownNegative)
   1789         return getFalse(ITy);
   1790       if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
   1791         return getTrue(ITy);
   1792       break;
   1793     }
   1794   }
   1795 
   1796   // See if we are doing a comparison with a constant integer.
   1797   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   1798     // Rule out tautological comparisons (eg., ult 0 or uge 0).
   1799     ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
   1800     if (RHS_CR.isEmptySet())
   1801       return ConstantInt::getFalse(CI->getContext());
   1802     if (RHS_CR.isFullSet())
   1803       return ConstantInt::getTrue(CI->getContext());
   1804 
   1805     // Many binary operators with constant RHS have easy to compute constant
   1806     // range.  Use them to check whether the comparison is a tautology.
   1807     uint32_t Width = CI->getBitWidth();
   1808     APInt Lower = APInt(Width, 0);
   1809     APInt Upper = APInt(Width, 0);
   1810     ConstantInt *CI2;
   1811     if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
   1812       // 'urem x, CI2' produces [0, CI2).
   1813       Upper = CI2->getValue();
   1814     } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
   1815       // 'srem x, CI2' produces (-|CI2|, |CI2|).
   1816       Upper = CI2->getValue().abs();
   1817       Lower = (-Upper) + 1;
   1818     } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
   1819       // 'udiv CI2, x' produces [0, CI2].
   1820       Upper = CI2->getValue() + 1;
   1821     } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
   1822       // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
   1823       APInt NegOne = APInt::getAllOnesValue(Width);
   1824       if (!CI2->isZero())
   1825         Upper = NegOne.udiv(CI2->getValue()) + 1;
   1826     } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
   1827       // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
   1828       APInt IntMin = APInt::getSignedMinValue(Width);
   1829       APInt IntMax = APInt::getSignedMaxValue(Width);
   1830       APInt Val = CI2->getValue().abs();
   1831       if (!Val.isMinValue()) {
   1832         Lower = IntMin.sdiv(Val);
   1833         Upper = IntMax.sdiv(Val) + 1;
   1834       }
   1835     } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
   1836       // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
   1837       APInt NegOne = APInt::getAllOnesValue(Width);
   1838       if (CI2->getValue().ult(Width))
   1839         Upper = NegOne.lshr(CI2->getValue()) + 1;
   1840     } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
   1841       // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
   1842       APInt IntMin = APInt::getSignedMinValue(Width);
   1843       APInt IntMax = APInt::getSignedMaxValue(Width);
   1844       if (CI2->getValue().ult(Width)) {
   1845         Lower = IntMin.ashr(CI2->getValue());
   1846         Upper = IntMax.ashr(CI2->getValue()) + 1;
   1847       }
   1848     } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
   1849       // 'or x, CI2' produces [CI2, UINT_MAX].
   1850       Lower = CI2->getValue();
   1851     } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
   1852       // 'and x, CI2' produces [0, CI2].
   1853       Upper = CI2->getValue() + 1;
   1854     }
   1855     if (Lower != Upper) {
   1856       ConstantRange LHS_CR = ConstantRange(Lower, Upper);
   1857       if (RHS_CR.contains(LHS_CR))
   1858         return ConstantInt::getTrue(RHS->getContext());
   1859       if (RHS_CR.inverse().contains(LHS_CR))
   1860         return ConstantInt::getFalse(RHS->getContext());
   1861     }
   1862   }
   1863 
   1864   // Compare of cast, for example (zext X) != 0 -> X != 0
   1865   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
   1866     Instruction *LI = cast<CastInst>(LHS);
   1867     Value *SrcOp = LI->getOperand(0);
   1868     Type *SrcTy = SrcOp->getType();
   1869     Type *DstTy = LI->getType();
   1870 
   1871     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
   1872     // if the integer type is the same size as the pointer type.
   1873     if (MaxRecurse && Q.TD && isa<PtrToIntInst>(LI) &&
   1874         Q.TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
   1875       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
   1876         // Transfer the cast to the constant.
   1877         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
   1878                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
   1879                                         Q, MaxRecurse-1))
   1880           return V;
   1881       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
   1882         if (RI->getOperand(0)->getType() == SrcTy)
   1883           // Compare without the cast.
   1884           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
   1885                                           Q, MaxRecurse-1))
   1886             return V;
   1887       }
   1888     }
   1889 
   1890     if (isa<ZExtInst>(LHS)) {
   1891       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
   1892       // same type.
   1893       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
   1894         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
   1895           // Compare X and Y.  Note that signed predicates become unsigned.
   1896           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
   1897                                           SrcOp, RI->getOperand(0), Q,
   1898                                           MaxRecurse-1))
   1899             return V;
   1900       }
   1901       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
   1902       // too.  If not, then try to deduce the result of the comparison.
   1903       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   1904         // Compute the constant that would happen if we truncated to SrcTy then
   1905         // reextended to DstTy.
   1906         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
   1907         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
   1908 
   1909         // If the re-extended constant didn't change then this is effectively
   1910         // also a case of comparing two zero-extended values.
   1911         if (RExt == CI && MaxRecurse)
   1912           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
   1913                                         SrcOp, Trunc, Q, MaxRecurse-1))
   1914             return V;
   1915 
   1916         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
   1917         // there.  Use this to work out the result of the comparison.
   1918         if (RExt != CI) {
   1919           switch (Pred) {
   1920           default: llvm_unreachable("Unknown ICmp predicate!");
   1921           // LHS <u RHS.
   1922           case ICmpInst::ICMP_EQ:
   1923           case ICmpInst::ICMP_UGT:
   1924           case ICmpInst::ICMP_UGE:
   1925             return ConstantInt::getFalse(CI->getContext());
   1926 
   1927           case ICmpInst::ICMP_NE:
   1928           case ICmpInst::ICMP_ULT:
   1929           case ICmpInst::ICMP_ULE:
   1930             return ConstantInt::getTrue(CI->getContext());
   1931 
   1932           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
   1933           // is non-negative then LHS <s RHS.
   1934           case ICmpInst::ICMP_SGT:
   1935           case ICmpInst::ICMP_SGE:
   1936             return CI->getValue().isNegative() ?
   1937               ConstantInt::getTrue(CI->getContext()) :
   1938               ConstantInt::getFalse(CI->getContext());
   1939 
   1940           case ICmpInst::ICMP_SLT:
   1941           case ICmpInst::ICMP_SLE:
   1942             return CI->getValue().isNegative() ?
   1943               ConstantInt::getFalse(CI->getContext()) :
   1944               ConstantInt::getTrue(CI->getContext());
   1945           }
   1946         }
   1947       }
   1948     }
   1949 
   1950     if (isa<SExtInst>(LHS)) {
   1951       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
   1952       // same type.
   1953       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
   1954         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
   1955           // Compare X and Y.  Note that the predicate does not change.
   1956           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
   1957                                           Q, MaxRecurse-1))
   1958             return V;
   1959       }
   1960       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
   1961       // too.  If not, then try to deduce the result of the comparison.
   1962       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   1963         // Compute the constant that would happen if we truncated to SrcTy then
   1964         // reextended to DstTy.
   1965         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
   1966         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
   1967 
   1968         // If the re-extended constant didn't change then this is effectively
   1969         // also a case of comparing two sign-extended values.
   1970         if (RExt == CI && MaxRecurse)
   1971           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
   1972             return V;
   1973 
   1974         // Otherwise the upper bits of LHS are all equal, while RHS has varying
   1975         // bits there.  Use this to work out the result of the comparison.
   1976         if (RExt != CI) {
   1977           switch (Pred) {
   1978           default: llvm_unreachable("Unknown ICmp predicate!");
   1979           case ICmpInst::ICMP_EQ:
   1980             return ConstantInt::getFalse(CI->getContext());
   1981           case ICmpInst::ICMP_NE:
   1982             return ConstantInt::getTrue(CI->getContext());
   1983 
   1984           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
   1985           // LHS >s RHS.
   1986           case ICmpInst::ICMP_SGT:
   1987           case ICmpInst::ICMP_SGE:
   1988             return CI->getValue().isNegative() ?
   1989               ConstantInt::getTrue(CI->getContext()) :
   1990               ConstantInt::getFalse(CI->getContext());
   1991           case ICmpInst::ICMP_SLT:
   1992           case ICmpInst::ICMP_SLE:
   1993             return CI->getValue().isNegative() ?
   1994               ConstantInt::getFalse(CI->getContext()) :
   1995               ConstantInt::getTrue(CI->getContext());
   1996 
   1997           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
   1998           // LHS >u RHS.
   1999           case ICmpInst::ICMP_UGT:
   2000           case ICmpInst::ICMP_UGE:
   2001             // Comparison is true iff the LHS <s 0.
   2002             if (MaxRecurse)
   2003               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
   2004                                               Constant::getNullValue(SrcTy),
   2005                                               Q, MaxRecurse-1))
   2006                 return V;
   2007             break;
   2008           case ICmpInst::ICMP_ULT:
   2009           case ICmpInst::ICMP_ULE:
   2010             // Comparison is true iff the LHS >=s 0.
   2011             if (MaxRecurse)
   2012               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
   2013                                               Constant::getNullValue(SrcTy),
   2014                                               Q, MaxRecurse-1))
   2015                 return V;
   2016             break;
   2017           }
   2018         }
   2019       }
   2020     }
   2021   }
   2022 
   2023   // Special logic for binary operators.
   2024   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
   2025   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
   2026   if (MaxRecurse && (LBO || RBO)) {
   2027     // Analyze the case when either LHS or RHS is an add instruction.
   2028     Value *A = 0, *B = 0, *C = 0, *D = 0;
   2029     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
   2030     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
   2031     if (LBO && LBO->getOpcode() == Instruction::Add) {
   2032       A = LBO->getOperand(0); B = LBO->getOperand(1);
   2033       NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
   2034         (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
   2035         (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
   2036     }
   2037     if (RBO && RBO->getOpcode() == Instruction::Add) {
   2038       C = RBO->getOperand(0); D = RBO->getOperand(1);
   2039       NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
   2040         (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
   2041         (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
   2042     }
   2043 
   2044     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
   2045     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
   2046       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
   2047                                       Constant::getNullValue(RHS->getType()),
   2048                                       Q, MaxRecurse-1))
   2049         return V;
   2050 
   2051     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
   2052     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
   2053       if (Value *V = SimplifyICmpInst(Pred,
   2054                                       Constant::getNullValue(LHS->getType()),
   2055                                       C == LHS ? D : C, Q, MaxRecurse-1))
   2056         return V;
   2057 
   2058     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
   2059     if (A && C && (A == C || A == D || B == C || B == D) &&
   2060         NoLHSWrapProblem && NoRHSWrapProblem) {
   2061       // Determine Y and Z in the form icmp (X+Y), (X+Z).
   2062       Value *Y = (A == C || A == D) ? B : A;
   2063       Value *Z = (C == A || C == B) ? D : C;
   2064       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
   2065         return V;
   2066     }
   2067   }
   2068 
   2069   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
   2070     bool KnownNonNegative, KnownNegative;
   2071     switch (Pred) {
   2072     default:
   2073       break;
   2074     case ICmpInst::ICMP_SGT:
   2075     case ICmpInst::ICMP_SGE:
   2076       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
   2077       if (!KnownNonNegative)
   2078         break;
   2079       // fall-through
   2080     case ICmpInst::ICMP_EQ:
   2081     case ICmpInst::ICMP_UGT:
   2082     case ICmpInst::ICMP_UGE:
   2083       return getFalse(ITy);
   2084     case ICmpInst::ICMP_SLT:
   2085     case ICmpInst::ICMP_SLE:
   2086       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
   2087       if (!KnownNonNegative)
   2088         break;
   2089       // fall-through
   2090     case ICmpInst::ICMP_NE:
   2091     case ICmpInst::ICMP_ULT:
   2092     case ICmpInst::ICMP_ULE:
   2093       return getTrue(ITy);
   2094     }
   2095   }
   2096   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
   2097     bool KnownNonNegative, KnownNegative;
   2098     switch (Pred) {
   2099     default:
   2100       break;
   2101     case ICmpInst::ICMP_SGT:
   2102     case ICmpInst::ICMP_SGE:
   2103       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
   2104       if (!KnownNonNegative)
   2105         break;
   2106       // fall-through
   2107     case ICmpInst::ICMP_NE:
   2108     case ICmpInst::ICMP_UGT:
   2109     case ICmpInst::ICMP_UGE:
   2110       return getTrue(ITy);
   2111     case ICmpInst::ICMP_SLT:
   2112     case ICmpInst::ICMP_SLE:
   2113       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
   2114       if (!KnownNonNegative)
   2115         break;
   2116       // fall-through
   2117     case ICmpInst::ICMP_EQ:
   2118     case ICmpInst::ICMP_ULT:
   2119     case ICmpInst::ICMP_ULE:
   2120       return getFalse(ITy);
   2121     }
   2122   }
   2123 
   2124   // x udiv y <=u x.
   2125   if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
   2126     // icmp pred (X /u Y), X
   2127     if (Pred == ICmpInst::ICMP_UGT)
   2128       return getFalse(ITy);
   2129     if (Pred == ICmpInst::ICMP_ULE)
   2130       return getTrue(ITy);
   2131   }
   2132 
   2133   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
   2134       LBO->getOperand(1) == RBO->getOperand(1)) {
   2135     switch (LBO->getOpcode()) {
   2136     default: break;
   2137     case Instruction::UDiv:
   2138     case Instruction::LShr:
   2139       if (ICmpInst::isSigned(Pred))
   2140         break;
   2141       // fall-through
   2142     case Instruction::SDiv:
   2143     case Instruction::AShr:
   2144       if (!LBO->isExact() || !RBO->isExact())
   2145         break;
   2146       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
   2147                                       RBO->getOperand(0), Q, MaxRecurse-1))
   2148         return V;
   2149       break;
   2150     case Instruction::Shl: {
   2151       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
   2152       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
   2153       if (!NUW && !NSW)
   2154         break;
   2155       if (!NSW && ICmpInst::isSigned(Pred))
   2156         break;
   2157       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
   2158                                       RBO->getOperand(0), Q, MaxRecurse-1))
   2159         return V;
   2160       break;
   2161     }
   2162     }
   2163   }
   2164 
   2165   // Simplify comparisons involving max/min.
   2166   Value *A, *B;
   2167   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
   2168   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
   2169 
   2170   // Signed variants on "max(a,b)>=a -> true".
   2171   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
   2172     if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
   2173     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
   2174     // We analyze this as smax(A, B) pred A.
   2175     P = Pred;
   2176   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
   2177              (A == LHS || B == LHS)) {
   2178     if (A != LHS) std::swap(A, B); // A pred smax(A, B).
   2179     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
   2180     // We analyze this as smax(A, B) swapped-pred A.
   2181     P = CmpInst::getSwappedPredicate(Pred);
   2182   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
   2183              (A == RHS || B == RHS)) {
   2184     if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
   2185     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
   2186     // We analyze this as smax(-A, -B) swapped-pred -A.
   2187     // Note that we do not need to actually form -A or -B thanks to EqP.
   2188     P = CmpInst::getSwappedPredicate(Pred);
   2189   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
   2190              (A == LHS || B == LHS)) {
   2191     if (A != LHS) std::swap(A, B); // A pred smin(A, B).
   2192     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
   2193     // We analyze this as smax(-A, -B) pred -A.
   2194     // Note that we do not need to actually form -A or -B thanks to EqP.
   2195     P = Pred;
   2196   }
   2197   if (P != CmpInst::BAD_ICMP_PREDICATE) {
   2198     // Cases correspond to "max(A, B) p A".
   2199     switch (P) {
   2200     default:
   2201       break;
   2202     case CmpInst::ICMP_EQ:
   2203     case CmpInst::ICMP_SLE:
   2204       // Equivalent to "A EqP B".  This may be the same as the condition tested
   2205       // in the max/min; if so, we can just return that.
   2206       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
   2207         return V;
   2208       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
   2209         return V;
   2210       // Otherwise, see if "A EqP B" simplifies.
   2211       if (MaxRecurse)
   2212         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
   2213           return V;
   2214       break;
   2215     case CmpInst::ICMP_NE:
   2216     case CmpInst::ICMP_SGT: {
   2217       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
   2218       // Equivalent to "A InvEqP B".  This may be the same as the condition
   2219       // tested in the max/min; if so, we can just return that.
   2220       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
   2221         return V;
   2222       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
   2223         return V;
   2224       // Otherwise, see if "A InvEqP B" simplifies.
   2225       if (MaxRecurse)
   2226         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
   2227           return V;
   2228       break;
   2229     }
   2230     case CmpInst::ICMP_SGE:
   2231       // Always true.
   2232       return getTrue(ITy);
   2233     case CmpInst::ICMP_SLT:
   2234       // Always false.
   2235       return getFalse(ITy);
   2236     }
   2237   }
   2238 
   2239   // Unsigned variants on "max(a,b)>=a -> true".
   2240   P = CmpInst::BAD_ICMP_PREDICATE;
   2241   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
   2242     if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
   2243     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
   2244     // We analyze this as umax(A, B) pred A.
   2245     P = Pred;
   2246   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
   2247              (A == LHS || B == LHS)) {
   2248     if (A != LHS) std::swap(A, B); // A pred umax(A, B).
   2249     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
   2250     // We analyze this as umax(A, B) swapped-pred A.
   2251     P = CmpInst::getSwappedPredicate(Pred);
   2252   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
   2253              (A == RHS || B == RHS)) {
   2254     if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
   2255     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
   2256     // We analyze this as umax(-A, -B) swapped-pred -A.
   2257     // Note that we do not need to actually form -A or -B thanks to EqP.
   2258     P = CmpInst::getSwappedPredicate(Pred);
   2259   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
   2260              (A == LHS || B == LHS)) {
   2261     if (A != LHS) std::swap(A, B); // A pred umin(A, B).
   2262     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
   2263     // We analyze this as umax(-A, -B) pred -A.
   2264     // Note that we do not need to actually form -A or -B thanks to EqP.
   2265     P = Pred;
   2266   }
   2267   if (P != CmpInst::BAD_ICMP_PREDICATE) {
   2268     // Cases correspond to "max(A, B) p A".
   2269     switch (P) {
   2270     default:
   2271       break;
   2272     case CmpInst::ICMP_EQ:
   2273     case CmpInst::ICMP_ULE:
   2274       // Equivalent to "A EqP B".  This may be the same as the condition tested
   2275       // in the max/min; if so, we can just return that.
   2276       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
   2277         return V;
   2278       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
   2279         return V;
   2280       // Otherwise, see if "A EqP B" simplifies.
   2281       if (MaxRecurse)
   2282         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
   2283           return V;
   2284       break;
   2285     case CmpInst::ICMP_NE:
   2286     case CmpInst::ICMP_UGT: {
   2287       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
   2288       // Equivalent to "A InvEqP B".  This may be the same as the condition
   2289       // tested in the max/min; if so, we can just return that.
   2290       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
   2291         return V;
   2292       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
   2293         return V;
   2294       // Otherwise, see if "A InvEqP B" simplifies.
   2295       if (MaxRecurse)
   2296         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
   2297           return V;
   2298       break;
   2299     }
   2300     case CmpInst::ICMP_UGE:
   2301       // Always true.
   2302       return getTrue(ITy);
   2303     case CmpInst::ICMP_ULT:
   2304       // Always false.
   2305       return getFalse(ITy);
   2306     }
   2307   }
   2308 
   2309   // Variants on "max(x,y) >= min(x,z)".
   2310   Value *C, *D;
   2311   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
   2312       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
   2313       (A == C || A == D || B == C || B == D)) {
   2314     // max(x, ?) pred min(x, ?).
   2315     if (Pred == CmpInst::ICMP_SGE)
   2316       // Always true.
   2317       return getTrue(ITy);
   2318     if (Pred == CmpInst::ICMP_SLT)
   2319       // Always false.
   2320       return getFalse(ITy);
   2321   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
   2322              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
   2323              (A == C || A == D || B == C || B == D)) {
   2324     // min(x, ?) pred max(x, ?).
   2325     if (Pred == CmpInst::ICMP_SLE)
   2326       // Always true.
   2327       return getTrue(ITy);
   2328     if (Pred == CmpInst::ICMP_SGT)
   2329       // Always false.
   2330       return getFalse(ITy);
   2331   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
   2332              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
   2333              (A == C || A == D || B == C || B == D)) {
   2334     // max(x, ?) pred min(x, ?).
   2335     if (Pred == CmpInst::ICMP_UGE)
   2336       // Always true.
   2337       return getTrue(ITy);
   2338     if (Pred == CmpInst::ICMP_ULT)
   2339       // Always false.
   2340       return getFalse(ITy);
   2341   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
   2342              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
   2343              (A == C || A == D || B == C || B == D)) {
   2344     // min(x, ?) pred max(x, ?).
   2345     if (Pred == CmpInst::ICMP_ULE)
   2346       // Always true.
   2347       return getTrue(ITy);
   2348     if (Pred == CmpInst::ICMP_UGT)
   2349       // Always false.
   2350       return getFalse(ITy);
   2351   }
   2352 
   2353   // Simplify comparisons of related pointers using a powerful, recursive
   2354   // GEP-walk when we have target data available..
   2355   if (Q.TD && LHS->getType()->isPointerTy() && RHS->getType()->isPointerTy())
   2356     if (Constant *C = computePointerICmp(*Q.TD, Pred, LHS, RHS))
   2357       return C;
   2358 
   2359   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
   2360     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
   2361       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
   2362           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
   2363           (ICmpInst::isEquality(Pred) ||
   2364            (GLHS->isInBounds() && GRHS->isInBounds() &&
   2365             Pred == ICmpInst::getSignedPredicate(Pred)))) {
   2366         // The bases are equal and the indices are constant.  Build a constant
   2367         // expression GEP with the same indices and a null base pointer to see
   2368         // what constant folding can make out of it.
   2369         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
   2370         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
   2371         Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS);
   2372 
   2373         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
   2374         Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS);
   2375         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
   2376       }
   2377     }
   2378   }
   2379 
   2380   // If the comparison is with the result of a select instruction, check whether
   2381   // comparing with either branch of the select always yields the same value.
   2382   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
   2383     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
   2384       return V;
   2385 
   2386   // If the comparison is with the result of a phi instruction, check whether
   2387   // doing the compare with each incoming phi value yields a common result.
   2388   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
   2389     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
   2390       return V;
   2391 
   2392   return 0;
   2393 }
   2394 
   2395 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   2396                               const TargetData *TD,
   2397                               const TargetLibraryInfo *TLI,
   2398                               const DominatorTree *DT) {
   2399   return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
   2400                             RecursionLimit);
   2401 }
   2402 
   2403 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
   2404 /// fold the result.  If not, this returns null.
   2405 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   2406                                const Query &Q, unsigned MaxRecurse) {
   2407   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
   2408   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
   2409 
   2410   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
   2411     if (Constant *CRHS = dyn_cast<Constant>(RHS))
   2412       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
   2413 
   2414     // If we have a constant, make sure it is on the RHS.
   2415     std::swap(LHS, RHS);
   2416     Pred = CmpInst::getSwappedPredicate(Pred);
   2417   }
   2418 
   2419   // Fold trivial predicates.
   2420   if (Pred == FCmpInst::FCMP_FALSE)
   2421     return ConstantInt::get(GetCompareTy(LHS), 0);
   2422   if (Pred == FCmpInst::FCMP_TRUE)
   2423     return ConstantInt::get(GetCompareTy(LHS), 1);
   2424 
   2425   if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
   2426     return UndefValue::get(GetCompareTy(LHS));
   2427 
   2428   // fcmp x,x -> true/false.  Not all compares are foldable.
   2429   if (LHS == RHS) {
   2430     if (CmpInst::isTrueWhenEqual(Pred))
   2431       return ConstantInt::get(GetCompareTy(LHS), 1);
   2432     if (CmpInst::isFalseWhenEqual(Pred))
   2433       return ConstantInt::get(GetCompareTy(LHS), 0);
   2434   }
   2435 
   2436   // Handle fcmp with constant RHS
   2437   if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
   2438     // If the constant is a nan, see if we can fold the comparison based on it.
   2439     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
   2440       if (CFP->getValueAPF().isNaN()) {
   2441         if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
   2442           return ConstantInt::getFalse(CFP->getContext());
   2443         assert(FCmpInst::isUnordered(Pred) &&
   2444                "Comparison must be either ordered or unordered!");
   2445         // True if unordered.
   2446         return ConstantInt::getTrue(CFP->getContext());
   2447       }
   2448       // Check whether the constant is an infinity.
   2449       if (CFP->getValueAPF().isInfinity()) {
   2450         if (CFP->getValueAPF().isNegative()) {
   2451           switch (Pred) {
   2452           case FCmpInst::FCMP_OLT:
   2453             // No value is ordered and less than negative infinity.
   2454             return ConstantInt::getFalse(CFP->getContext());
   2455           case FCmpInst::FCMP_UGE:
   2456             // All values are unordered with or at least negative infinity.
   2457             return ConstantInt::getTrue(CFP->getContext());
   2458           default:
   2459             break;
   2460           }
   2461         } else {
   2462           switch (Pred) {
   2463           case FCmpInst::FCMP_OGT:
   2464             // No value is ordered and greater than infinity.
   2465             return ConstantInt::getFalse(CFP->getContext());
   2466           case FCmpInst::FCMP_ULE:
   2467             // All values are unordered with and at most infinity.
   2468             return ConstantInt::getTrue(CFP->getContext());
   2469           default:
   2470             break;
   2471           }
   2472         }
   2473       }
   2474     }
   2475   }
   2476 
   2477   // If the comparison is with the result of a select instruction, check whether
   2478   // comparing with either branch of the select always yields the same value.
   2479   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
   2480     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
   2481       return V;
   2482 
   2483   // If the comparison is with the result of a phi instruction, check whether
   2484   // doing the compare with each incoming phi value yields a common result.
   2485   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
   2486     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
   2487       return V;
   2488 
   2489   return 0;
   2490 }
   2491 
   2492 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   2493                               const TargetData *TD,
   2494                               const TargetLibraryInfo *TLI,
   2495                               const DominatorTree *DT) {
   2496   return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
   2497                             RecursionLimit);
   2498 }
   2499 
   2500 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
   2501 /// the result.  If not, this returns null.
   2502 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
   2503                                  Value *FalseVal, const Query &Q,
   2504                                  unsigned MaxRecurse) {
   2505   // select true, X, Y  -> X
   2506   // select false, X, Y -> Y
   2507   if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
   2508     return CB->getZExtValue() ? TrueVal : FalseVal;
   2509 
   2510   // select C, X, X -> X
   2511   if (TrueVal == FalseVal)
   2512     return TrueVal;
   2513 
   2514   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
   2515     if (isa<Constant>(TrueVal))
   2516       return TrueVal;
   2517     return FalseVal;
   2518   }
   2519   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
   2520     return FalseVal;
   2521   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
   2522     return TrueVal;
   2523 
   2524   return 0;
   2525 }
   2526 
   2527 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
   2528                                 const TargetData *TD,
   2529                                 const TargetLibraryInfo *TLI,
   2530                                 const DominatorTree *DT) {
   2531   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT),
   2532                               RecursionLimit);
   2533 }
   2534 
   2535 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
   2536 /// fold the result.  If not, this returns null.
   2537 static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
   2538   // The type of the GEP pointer operand.
   2539   PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType());
   2540   // The GEP pointer operand is not a pointer, it's a vector of pointers.
   2541   if (!PtrTy)
   2542     return 0;
   2543 
   2544   // getelementptr P -> P.
   2545   if (Ops.size() == 1)
   2546     return Ops[0];
   2547 
   2548   if (isa<UndefValue>(Ops[0])) {
   2549     // Compute the (pointer) type returned by the GEP instruction.
   2550     Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
   2551     Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
   2552     return UndefValue::get(GEPTy);
   2553   }
   2554 
   2555   if (Ops.size() == 2) {
   2556     // getelementptr P, 0 -> P.
   2557     if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
   2558       if (C->isZero())
   2559         return Ops[0];
   2560     // getelementptr P, N -> P if P points to a type of zero size.
   2561     if (Q.TD) {
   2562       Type *Ty = PtrTy->getElementType();
   2563       if (Ty->isSized() && Q.TD->getTypeAllocSize(Ty) == 0)
   2564         return Ops[0];
   2565     }
   2566   }
   2567 
   2568   // Check to see if this is constant foldable.
   2569   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2570     if (!isa<Constant>(Ops[i]))
   2571       return 0;
   2572 
   2573   return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
   2574 }
   2575 
   2576 Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const TargetData *TD,
   2577                              const TargetLibraryInfo *TLI,
   2578                              const DominatorTree *DT) {
   2579   return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit);
   2580 }
   2581 
   2582 /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
   2583 /// can fold the result.  If not, this returns null.
   2584 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
   2585                                       ArrayRef<unsigned> Idxs, const Query &Q,
   2586                                       unsigned) {
   2587   if (Constant *CAgg = dyn_cast<Constant>(Agg))
   2588     if (Constant *CVal = dyn_cast<Constant>(Val))
   2589       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
   2590 
   2591   // insertvalue x, undef, n -> x
   2592   if (match(Val, m_Undef()))
   2593     return Agg;
   2594 
   2595   // insertvalue x, (extractvalue y, n), n
   2596   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
   2597     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
   2598         EV->getIndices() == Idxs) {
   2599       // insertvalue undef, (extractvalue y, n), n -> y
   2600       if (match(Agg, m_Undef()))
   2601         return EV->getAggregateOperand();
   2602 
   2603       // insertvalue y, (extractvalue y, n), n -> y
   2604       if (Agg == EV->getAggregateOperand())
   2605         return Agg;
   2606     }
   2607 
   2608   return 0;
   2609 }
   2610 
   2611 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
   2612                                      ArrayRef<unsigned> Idxs,
   2613                                      const TargetData *TD,
   2614                                      const TargetLibraryInfo *TLI,
   2615                                      const DominatorTree *DT) {
   2616   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT),
   2617                                    RecursionLimit);
   2618 }
   2619 
   2620 /// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
   2621 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
   2622   // If all of the PHI's incoming values are the same then replace the PHI node
   2623   // with the common value.
   2624   Value *CommonValue = 0;
   2625   bool HasUndefInput = false;
   2626   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   2627     Value *Incoming = PN->getIncomingValue(i);
   2628     // If the incoming value is the phi node itself, it can safely be skipped.
   2629     if (Incoming == PN) continue;
   2630     if (isa<UndefValue>(Incoming)) {
   2631       // Remember that we saw an undef value, but otherwise ignore them.
   2632       HasUndefInput = true;
   2633       continue;
   2634     }
   2635     if (CommonValue && Incoming != CommonValue)
   2636       return 0;  // Not the same, bail out.
   2637     CommonValue = Incoming;
   2638   }
   2639 
   2640   // If CommonValue is null then all of the incoming values were either undef or
   2641   // equal to the phi node itself.
   2642   if (!CommonValue)
   2643     return UndefValue::get(PN->getType());
   2644 
   2645   // If we have a PHI node like phi(X, undef, X), where X is defined by some
   2646   // instruction, we cannot return X as the result of the PHI node unless it
   2647   // dominates the PHI block.
   2648   if (HasUndefInput)
   2649     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : 0;
   2650 
   2651   return CommonValue;
   2652 }
   2653 
   2654 static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
   2655   if (Constant *C = dyn_cast<Constant>(Op))
   2656     return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.TD, Q.TLI);
   2657 
   2658   return 0;
   2659 }
   2660 
   2661 Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const TargetData *TD,
   2662                                const TargetLibraryInfo *TLI,
   2663                                const DominatorTree *DT) {
   2664   return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit);
   2665 }
   2666 
   2667 //=== Helper functions for higher up the class hierarchy.
   2668 
   2669 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
   2670 /// fold the result.  If not, this returns null.
   2671 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
   2672                             const Query &Q, unsigned MaxRecurse) {
   2673   switch (Opcode) {
   2674   case Instruction::Add:
   2675     return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
   2676                            Q, MaxRecurse);
   2677   case Instruction::Sub:
   2678     return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
   2679                            Q, MaxRecurse);
   2680   case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
   2681   case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
   2682   case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
   2683   case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
   2684   case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
   2685   case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
   2686   case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
   2687   case Instruction::Shl:
   2688     return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
   2689                            Q, MaxRecurse);
   2690   case Instruction::LShr:
   2691     return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
   2692   case Instruction::AShr:
   2693     return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
   2694   case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
   2695   case Instruction::Or:  return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
   2696   case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
   2697   default:
   2698     if (Constant *CLHS = dyn_cast<Constant>(LHS))
   2699       if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
   2700         Constant *COps[] = {CLHS, CRHS};
   2701         return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.TD,
   2702                                         Q.TLI);
   2703       }
   2704 
   2705     // If the operation is associative, try some generic simplifications.
   2706     if (Instruction::isAssociative(Opcode))
   2707       if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
   2708         return V;
   2709 
   2710     // If the operation is with the result of a select instruction check whether
   2711     // operating on either branch of the select always yields the same value.
   2712     if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
   2713       if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
   2714         return V;
   2715 
   2716     // If the operation is with the result of a phi instruction, check whether
   2717     // operating on all incoming values of the phi always yields the same value.
   2718     if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
   2719       if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
   2720         return V;
   2721 
   2722     return 0;
   2723   }
   2724 }
   2725 
   2726 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
   2727                            const TargetData *TD, const TargetLibraryInfo *TLI,
   2728                            const DominatorTree *DT) {
   2729   return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit);
   2730 }
   2731 
   2732 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
   2733 /// fold the result.
   2734 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   2735                               const Query &Q, unsigned MaxRecurse) {
   2736   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
   2737     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
   2738   return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
   2739 }
   2740 
   2741 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   2742                              const TargetData *TD, const TargetLibraryInfo *TLI,
   2743                              const DominatorTree *DT) {
   2744   return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
   2745                            RecursionLimit);
   2746 }
   2747 
   2748 static Value *SimplifyCallInst(CallInst *CI, const Query &) {
   2749   // call undef -> undef
   2750   if (isa<UndefValue>(CI->getCalledValue()))
   2751     return UndefValue::get(CI->getType());
   2752 
   2753   return 0;
   2754 }
   2755 
   2756 /// SimplifyInstruction - See if we can compute a simplified version of this
   2757 /// instruction.  If not, this returns null.
   2758 Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
   2759                                  const TargetLibraryInfo *TLI,
   2760                                  const DominatorTree *DT) {
   2761   Value *Result;
   2762 
   2763   switch (I->getOpcode()) {
   2764   default:
   2765     Result = ConstantFoldInstruction(I, TD, TLI);
   2766     break;
   2767   case Instruction::Add:
   2768     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
   2769                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
   2770                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
   2771                              TD, TLI, DT);
   2772     break;
   2773   case Instruction::Sub:
   2774     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
   2775                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
   2776                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
   2777                              TD, TLI, DT);
   2778     break;
   2779   case Instruction::Mul:
   2780     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
   2781     break;
   2782   case Instruction::SDiv:
   2783     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
   2784     break;
   2785   case Instruction::UDiv:
   2786     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
   2787     break;
   2788   case Instruction::FDiv:
   2789     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
   2790     break;
   2791   case Instruction::SRem:
   2792     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
   2793     break;
   2794   case Instruction::URem:
   2795     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
   2796     break;
   2797   case Instruction::FRem:
   2798     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
   2799     break;
   2800   case Instruction::Shl:
   2801     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
   2802                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
   2803                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
   2804                              TD, TLI, DT);
   2805     break;
   2806   case Instruction::LShr:
   2807     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
   2808                               cast<BinaryOperator>(I)->isExact(),
   2809                               TD, TLI, DT);
   2810     break;
   2811   case Instruction::AShr:
   2812     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
   2813                               cast<BinaryOperator>(I)->isExact(),
   2814                               TD, TLI, DT);
   2815     break;
   2816   case Instruction::And:
   2817     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
   2818     break;
   2819   case Instruction::Or:
   2820     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
   2821     break;
   2822   case Instruction::Xor:
   2823     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
   2824     break;
   2825   case Instruction::ICmp:
   2826     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
   2827                               I->getOperand(0), I->getOperand(1), TD, TLI, DT);
   2828     break;
   2829   case Instruction::FCmp:
   2830     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
   2831                               I->getOperand(0), I->getOperand(1), TD, TLI, DT);
   2832     break;
   2833   case Instruction::Select:
   2834     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
   2835                                 I->getOperand(2), TD, TLI, DT);
   2836     break;
   2837   case Instruction::GetElementPtr: {
   2838     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
   2839     Result = SimplifyGEPInst(Ops, TD, TLI, DT);
   2840     break;
   2841   }
   2842   case Instruction::InsertValue: {
   2843     InsertValueInst *IV = cast<InsertValueInst>(I);
   2844     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
   2845                                      IV->getInsertedValueOperand(),
   2846                                      IV->getIndices(), TD, TLI, DT);
   2847     break;
   2848   }
   2849   case Instruction::PHI:
   2850     Result = SimplifyPHINode(cast<PHINode>(I), Query (TD, TLI, DT));
   2851     break;
   2852   case Instruction::Call:
   2853     Result = SimplifyCallInst(cast<CallInst>(I), Query (TD, TLI, DT));
   2854     break;
   2855   case Instruction::Trunc:
   2856     Result = SimplifyTruncInst(I->getOperand(0), I->getType(), TD, TLI, DT);
   2857     break;
   2858   }
   2859 
   2860   /// If called on unreachable code, the above logic may report that the
   2861   /// instruction simplified to itself.  Make life easier for users by
   2862   /// detecting that case here, returning a safe value instead.
   2863   return Result == I ? UndefValue::get(I->getType()) : Result;
   2864 }
   2865 
   2866 /// \brief Implementation of recursive simplification through an instructions
   2867 /// uses.
   2868 ///
   2869 /// This is the common implementation of the recursive simplification routines.
   2870 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
   2871 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
   2872 /// instructions to process and attempt to simplify it using
   2873 /// InstructionSimplify.
   2874 ///
   2875 /// This routine returns 'true' only when *it* simplifies something. The passed
   2876 /// in simplified value does not count toward this.
   2877 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
   2878                                               const TargetData *TD,
   2879                                               const TargetLibraryInfo *TLI,
   2880                                               const DominatorTree *DT) {
   2881   bool Simplified = false;
   2882   SmallSetVector<Instruction *, 8> Worklist;
   2883 
   2884   // If we have an explicit value to collapse to, do that round of the
   2885   // simplification loop by hand initially.
   2886   if (SimpleV) {
   2887     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
   2888          ++UI)
   2889       if (*UI != I)
   2890         Worklist.insert(cast<Instruction>(*UI));
   2891 
   2892     // Replace the instruction with its simplified value.
   2893     I->replaceAllUsesWith(SimpleV);
   2894 
   2895     // Gracefully handle edge cases where the instruction is not wired into any
   2896     // parent block.
   2897     if (I->getParent())
   2898       I->eraseFromParent();
   2899   } else {
   2900     Worklist.insert(I);
   2901   }
   2902 
   2903   // Note that we must test the size on each iteration, the worklist can grow.
   2904   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
   2905     I = Worklist[Idx];
   2906 
   2907     // See if this instruction simplifies.
   2908     SimpleV = SimplifyInstruction(I, TD, TLI, DT);
   2909     if (!SimpleV)
   2910       continue;
   2911 
   2912     Simplified = true;
   2913 
   2914     // Stash away all the uses of the old instruction so we can check them for
   2915     // recursive simplifications after a RAUW. This is cheaper than checking all
   2916     // uses of To on the recursive step in most cases.
   2917     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
   2918          ++UI)
   2919       Worklist.insert(cast<Instruction>(*UI));
   2920 
   2921     // Replace the instruction with its simplified value.
   2922     I->replaceAllUsesWith(SimpleV);
   2923 
   2924     // Gracefully handle edge cases where the instruction is not wired into any
   2925     // parent block.
   2926     if (I->getParent())
   2927       I->eraseFromParent();
   2928   }
   2929   return Simplified;
   2930 }
   2931 
   2932 bool llvm::recursivelySimplifyInstruction(Instruction *I,
   2933                                           const TargetData *TD,
   2934                                           const TargetLibraryInfo *TLI,
   2935                                           const DominatorTree *DT) {
   2936   return replaceAndRecursivelySimplifyImpl(I, 0, TD, TLI, DT);
   2937 }
   2938 
   2939 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
   2940                                          const TargetData *TD,
   2941                                          const TargetLibraryInfo *TLI,
   2942                                          const DominatorTree *DT) {
   2943   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
   2944   assert(SimpleV && "Must provide a simplified value.");
   2945   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TD, TLI, DT);
   2946 }
   2947