1 // 2 // Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved. 3 // Use of this source code is governed by a BSD-style license that can be 4 // found in the LICENSE file. 5 // 6 7 // Program.cpp: Implements the gl::Program class. Implements GL program objects 8 // and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28. 9 10 #include "libGLESv2/Program.h" 11 12 #include "common/debug.h" 13 14 #include "libGLESv2/main.h" 15 #include "libGLESv2/Shader.h" 16 #include "libGLESv2/utilities.h" 17 18 namespace gl 19 { 20 unsigned int Program::mCurrentSerial = 1; 21 22 std::string str(int i) 23 { 24 char buffer[20]; 25 sprintf(buffer, "%d", i); 26 return buffer; 27 } 28 29 Uniform::Uniform(GLenum type, const std::string &name, unsigned int arraySize) : type(type), name(name), arraySize(arraySize) 30 { 31 int bytes = UniformTypeSize(type) * arraySize; 32 data = new unsigned char[bytes]; 33 memset(data, 0, bytes); 34 dirty = true; 35 handlesSet = false; 36 } 37 38 Uniform::~Uniform() 39 { 40 delete[] data; 41 } 42 43 UniformLocation::UniformLocation(const std::string &name, unsigned int element, unsigned int index) 44 : name(name), element(element), index(index) 45 { 46 } 47 48 Program::Program(ResourceManager *manager, GLuint handle) : mResourceManager(manager), mHandle(handle), mSerial(issueSerial()) 49 { 50 mFragmentShader = NULL; 51 mVertexShader = NULL; 52 53 mPixelExecutable = NULL; 54 mVertexExecutable = NULL; 55 mConstantTablePS = NULL; 56 mConstantTableVS = NULL; 57 58 mInfoLog = NULL; 59 mValidated = false; 60 61 unlink(); 62 63 mDeleteStatus = false; 64 65 mRefCount = 0; 66 } 67 68 Program::~Program() 69 { 70 unlink(true); 71 72 if (mVertexShader != NULL) 73 { 74 mVertexShader->release(); 75 } 76 77 if (mFragmentShader != NULL) 78 { 79 mFragmentShader->release(); 80 } 81 } 82 83 bool Program::attachShader(Shader *shader) 84 { 85 if (shader->getType() == GL_VERTEX_SHADER) 86 { 87 if (mVertexShader) 88 { 89 return false; 90 } 91 92 mVertexShader = (VertexShader*)shader; 93 mVertexShader->addRef(); 94 } 95 else if (shader->getType() == GL_FRAGMENT_SHADER) 96 { 97 if (mFragmentShader) 98 { 99 return false; 100 } 101 102 mFragmentShader = (FragmentShader*)shader; 103 mFragmentShader->addRef(); 104 } 105 else UNREACHABLE(); 106 107 return true; 108 } 109 110 bool Program::detachShader(Shader *shader) 111 { 112 if (shader->getType() == GL_VERTEX_SHADER) 113 { 114 if (mVertexShader != shader) 115 { 116 return false; 117 } 118 119 mVertexShader->release(); 120 mVertexShader = NULL; 121 } 122 else if (shader->getType() == GL_FRAGMENT_SHADER) 123 { 124 if (mFragmentShader != shader) 125 { 126 return false; 127 } 128 129 mFragmentShader->release(); 130 mFragmentShader = NULL; 131 } 132 else UNREACHABLE(); 133 134 unlink(); 135 136 return true; 137 } 138 139 int Program::getAttachedShadersCount() const 140 { 141 return (mVertexShader ? 1 : 0) + (mFragmentShader ? 1 : 0); 142 } 143 144 IDirect3DPixelShader9 *Program::getPixelShader() 145 { 146 return mPixelExecutable; 147 } 148 149 IDirect3DVertexShader9 *Program::getVertexShader() 150 { 151 return mVertexExecutable; 152 } 153 154 void Program::bindAttributeLocation(GLuint index, const char *name) 155 { 156 if (index < MAX_VERTEX_ATTRIBS) 157 { 158 for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++) 159 { 160 mAttributeBinding[i].erase(name); 161 } 162 163 mAttributeBinding[index].insert(name); 164 } 165 } 166 167 GLuint Program::getAttributeLocation(const char *name) 168 { 169 if (name) 170 { 171 for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++) 172 { 173 if (mLinkedAttribute[index].name == std::string(name)) 174 { 175 return index; 176 } 177 } 178 } 179 180 return -1; 181 } 182 183 int Program::getSemanticIndex(int attributeIndex) 184 { 185 if (attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS) 186 { 187 return mSemanticIndex[attributeIndex]; 188 } 189 190 return -1; 191 } 192 193 // Returns the index of the texture unit corresponding to a Direct3D 9 sampler 194 // index referenced in the compiled HLSL shader 195 GLint Program::getSamplerMapping(unsigned int samplerIndex) 196 { 197 assert(samplerIndex < sizeof(mSamplers)/sizeof(mSamplers[0])); 198 199 GLint logicalTextureUnit = -1; 200 201 if (mSamplers[samplerIndex].active) 202 { 203 logicalTextureUnit = mSamplers[samplerIndex].logicalTextureUnit; 204 } 205 206 if (logicalTextureUnit >= 0 && logicalTextureUnit < MAX_TEXTURE_IMAGE_UNITS) 207 { 208 return logicalTextureUnit; 209 } 210 211 return -1; 212 } 213 214 SamplerType Program::getSamplerType(unsigned int samplerIndex) 215 { 216 assert(samplerIndex < sizeof(mSamplers)/sizeof(mSamplers[0])); 217 assert(mSamplers[samplerIndex].active); 218 219 return mSamplers[samplerIndex].type; 220 } 221 222 bool Program::isSamplerDirty(unsigned int samplerIndex) const 223 { 224 if (samplerIndex < sizeof(mSamplers)/sizeof(mSamplers[0])) 225 { 226 return mSamplers[samplerIndex].dirty; 227 } 228 else UNREACHABLE(); 229 230 return false; 231 } 232 233 void Program::setSamplerDirty(unsigned int samplerIndex, bool dirty) 234 { 235 if (samplerIndex < sizeof(mSamplers)/sizeof(mSamplers[0])) 236 { 237 mSamplers[samplerIndex].dirty = dirty; 238 } 239 else UNREACHABLE(); 240 } 241 242 GLint Program::getUniformLocation(const char *name, bool decorated) 243 { 244 std::string _name = decorated ? name : decorate(name); 245 int subscript = 0; 246 247 // Strip any trailing array operator and retrieve the subscript 248 size_t open = _name.find_last_of('['); 249 size_t close = _name.find_last_of(']'); 250 if (open != std::string::npos && close == _name.length() - 1) 251 { 252 subscript = atoi(_name.substr(open + 1).c_str()); 253 _name.erase(open); 254 } 255 256 unsigned int numUniforms = mUniformIndex.size(); 257 for (unsigned int location = 0; location < numUniforms; location++) 258 { 259 if (mUniformIndex[location].name == _name && 260 mUniformIndex[location].element == subscript) 261 { 262 return location; 263 } 264 } 265 266 return -1; 267 } 268 269 bool Program::setUniform1fv(GLint location, GLsizei count, const GLfloat* v) 270 { 271 if (location < 0 || location >= (int)mUniformIndex.size()) 272 { 273 return false; 274 } 275 276 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 277 targetUniform->dirty = true; 278 279 if (targetUniform->type == GL_FLOAT) 280 { 281 int arraySize = targetUniform->arraySize; 282 283 if (arraySize == 1 && count > 1) 284 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION 285 286 count = std::min(arraySize - (int)mUniformIndex[location].element, count); 287 288 memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat), 289 v, sizeof(GLfloat) * count); 290 } 291 else if (targetUniform->type == GL_BOOL) 292 { 293 int arraySize = targetUniform->arraySize; 294 295 if (arraySize == 1 && count > 1) 296 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION 297 298 count = std::min(arraySize - (int)mUniformIndex[location].element, count); 299 GLboolean *boolParams = new GLboolean[count]; 300 301 for (int i = 0; i < count; ++i) 302 { 303 if (v[i] == 0.0f) 304 { 305 boolParams[i] = GL_FALSE; 306 } 307 else 308 { 309 boolParams[i] = GL_TRUE; 310 } 311 } 312 313 memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean), 314 boolParams, sizeof(GLboolean) * count); 315 316 delete [] boolParams; 317 } 318 else 319 { 320 return false; 321 } 322 323 return true; 324 } 325 326 bool Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v) 327 { 328 if (location < 0 || location >= (int)mUniformIndex.size()) 329 { 330 return false; 331 } 332 333 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 334 targetUniform->dirty = true; 335 336 if (targetUniform->type == GL_FLOAT_VEC2) 337 { 338 int arraySize = targetUniform->arraySize; 339 340 if (arraySize == 1 && count > 1) 341 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION 342 343 count = std::min(arraySize - (int)mUniformIndex[location].element, count); 344 345 memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 2, 346 v, 2 * sizeof(GLfloat) * count); 347 } 348 else if (targetUniform->type == GL_BOOL_VEC2) 349 { 350 int arraySize = targetUniform->arraySize; 351 352 if (arraySize == 1 && count > 1) 353 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION 354 355 count = std::min(arraySize - (int)mUniformIndex[location].element, count); 356 357 GLboolean *boolParams = new GLboolean[count * 2]; 358 359 for (int i = 0; i < count * 2; ++i) 360 { 361 if (v[i] == 0.0f) 362 { 363 boolParams[i] = GL_FALSE; 364 } 365 else 366 { 367 boolParams[i] = GL_TRUE; 368 } 369 } 370 371 memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 2, 372 boolParams, 2 * sizeof(GLboolean) * count); 373 374 delete [] boolParams; 375 } 376 else 377 { 378 return false; 379 } 380 381 return true; 382 } 383 384 bool Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v) 385 { 386 if (location < 0 || location >= (int)mUniformIndex.size()) 387 { 388 return false; 389 } 390 391 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 392 targetUniform->dirty = true; 393 394 if (targetUniform->type == GL_FLOAT_VEC3) 395 { 396 int arraySize = targetUniform->arraySize; 397 398 if (arraySize == 1 && count > 1) 399 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION 400 401 count = std::min(arraySize - (int)mUniformIndex[location].element, count); 402 403 memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 3, 404 v, 3 * sizeof(GLfloat) * count); 405 } 406 else if (targetUniform->type == GL_BOOL_VEC3) 407 { 408 int arraySize = targetUniform->arraySize; 409 410 if (arraySize == 1 && count > 1) 411 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION 412 413 count = std::min(arraySize - (int)mUniformIndex[location].element, count); 414 GLboolean *boolParams = new GLboolean[count * 3]; 415 416 for (int i = 0; i < count * 3; ++i) 417 { 418 if (v[i] == 0.0f) 419 { 420 boolParams[i] = GL_FALSE; 421 } 422 else 423 { 424 boolParams[i] = GL_TRUE; 425 } 426 } 427 428 memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 3, 429 boolParams, 3 * sizeof(GLboolean) * count); 430 431 delete [] boolParams; 432 } 433 else 434 { 435 return false; 436 } 437 438 return true; 439 } 440 441 bool Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v) 442 { 443 if (location < 0 || location >= (int)mUniformIndex.size()) 444 { 445 return false; 446 } 447 448 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 449 targetUniform->dirty = true; 450 451 if (targetUniform->type == GL_FLOAT_VEC4) 452 { 453 int arraySize = targetUniform->arraySize; 454 455 if (arraySize == 1 && count > 1) 456 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION 457 458 count = std::min(arraySize - (int)mUniformIndex[location].element, count); 459 460 memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 4, 461 v, 4 * sizeof(GLfloat) * count); 462 } 463 else if (targetUniform->type == GL_BOOL_VEC4) 464 { 465 int arraySize = targetUniform->arraySize; 466 467 if (arraySize == 1 && count > 1) 468 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION 469 470 count = std::min(arraySize - (int)mUniformIndex[location].element, count); 471 GLboolean *boolParams = new GLboolean[count * 4]; 472 473 for (int i = 0; i < count * 4; ++i) 474 { 475 if (v[i] == 0.0f) 476 { 477 boolParams[i] = GL_FALSE; 478 } 479 else 480 { 481 boolParams[i] = GL_TRUE; 482 } 483 } 484 485 memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 4, 486 boolParams, 4 * sizeof(GLboolean) * count); 487 488 delete [] boolParams; 489 } 490 else 491 { 492 return false; 493 } 494 495 return true; 496 } 497 498 bool Program::setUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value) 499 { 500 if (location < 0 || location >= (int)mUniformIndex.size()) 501 { 502 return false; 503 } 504 505 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 506 targetUniform->dirty = true; 507 508 if (targetUniform->type != GL_FLOAT_MAT2) 509 { 510 return false; 511 } 512 513 int arraySize = targetUniform->arraySize; 514 515 if (arraySize == 1 && count > 1) 516 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION 517 518 count = std::min(arraySize - (int)mUniformIndex[location].element, count); 519 520 memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 4, 521 value, 4 * sizeof(GLfloat) * count); 522 523 return true; 524 } 525 526 bool Program::setUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value) 527 { 528 if (location < 0 || location >= (int)mUniformIndex.size()) 529 { 530 return false; 531 } 532 533 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 534 targetUniform->dirty = true; 535 536 if (targetUniform->type != GL_FLOAT_MAT3) 537 { 538 return false; 539 } 540 541 int arraySize = targetUniform->arraySize; 542 543 if (arraySize == 1 && count > 1) 544 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION 545 546 count = std::min(arraySize - (int)mUniformIndex[location].element, count); 547 548 memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 9, 549 value, 9 * sizeof(GLfloat) * count); 550 551 return true; 552 } 553 554 bool Program::setUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value) 555 { 556 if (location < 0 || location >= (int)mUniformIndex.size()) 557 { 558 return false; 559 } 560 561 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 562 targetUniform->dirty = true; 563 564 if (targetUniform->type != GL_FLOAT_MAT4) 565 { 566 return false; 567 } 568 569 int arraySize = targetUniform->arraySize; 570 571 if (arraySize == 1 && count > 1) 572 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION 573 574 count = std::min(arraySize - (int)mUniformIndex[location].element, count); 575 576 memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 16, 577 value, 16 * sizeof(GLfloat) * count); 578 579 return true; 580 } 581 582 bool Program::setUniform1iv(GLint location, GLsizei count, const GLint *v) 583 { 584 if (location < 0 || location >= (int)mUniformIndex.size()) 585 { 586 return false; 587 } 588 589 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 590 targetUniform->dirty = true; 591 592 if (targetUniform->type == GL_INT || 593 targetUniform->type == GL_SAMPLER_2D || 594 targetUniform->type == GL_SAMPLER_CUBE) 595 { 596 int arraySize = targetUniform->arraySize; 597 598 if (arraySize == 1 && count > 1) 599 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION 600 601 count = std::min(arraySize - (int)mUniformIndex[location].element, count); 602 603 memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint), 604 v, sizeof(GLint) * count); 605 } 606 else if (targetUniform->type == GL_BOOL) 607 { 608 int arraySize = targetUniform->arraySize; 609 610 if (arraySize == 1 && count > 1) 611 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION 612 613 count = std::min(arraySize - (int)mUniformIndex[location].element, count); 614 GLboolean *boolParams = new GLboolean[count]; 615 616 for (int i = 0; i < count; ++i) 617 { 618 if (v[i] == 0) 619 { 620 boolParams[i] = GL_FALSE; 621 } 622 else 623 { 624 boolParams[i] = GL_TRUE; 625 } 626 } 627 628 memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean), 629 boolParams, sizeof(GLboolean) * count); 630 631 delete [] boolParams; 632 } 633 else 634 { 635 return false; 636 } 637 638 return true; 639 } 640 641 bool Program::setUniform2iv(GLint location, GLsizei count, const GLint *v) 642 { 643 if (location < 0 || location >= (int)mUniformIndex.size()) 644 { 645 return false; 646 } 647 648 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 649 targetUniform->dirty = true; 650 651 if (targetUniform->type == GL_INT_VEC2) 652 { 653 int arraySize = targetUniform->arraySize; 654 655 if (arraySize == 1 && count > 1) 656 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION 657 658 count = std::min(arraySize - (int)mUniformIndex[location].element, count); 659 660 memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 2, 661 v, 2 * sizeof(GLint) * count); 662 } 663 else if (targetUniform->type == GL_BOOL_VEC2) 664 { 665 int arraySize = targetUniform->arraySize; 666 667 if (arraySize == 1 && count > 1) 668 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION 669 670 count = std::min(arraySize - (int)mUniformIndex[location].element, count); 671 GLboolean *boolParams = new GLboolean[count * 2]; 672 673 for (int i = 0; i < count * 2; ++i) 674 { 675 if (v[i] == 0) 676 { 677 boolParams[i] = GL_FALSE; 678 } 679 else 680 { 681 boolParams[i] = GL_TRUE; 682 } 683 } 684 685 memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 2, 686 boolParams, 2 * sizeof(GLboolean) * count); 687 688 delete [] boolParams; 689 } 690 else 691 { 692 return false; 693 } 694 695 return true; 696 } 697 698 bool Program::setUniform3iv(GLint location, GLsizei count, const GLint *v) 699 { 700 if (location < 0 || location >= (int)mUniformIndex.size()) 701 { 702 return false; 703 } 704 705 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 706 targetUniform->dirty = true; 707 708 if (targetUniform->type == GL_INT_VEC3) 709 { 710 int arraySize = targetUniform->arraySize; 711 712 if (arraySize == 1 && count > 1) 713 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION 714 715 count = std::min(arraySize - (int)mUniformIndex[location].element, count); 716 717 memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 3, 718 v, 3 * sizeof(GLint) * count); 719 } 720 else if (targetUniform->type == GL_BOOL_VEC3) 721 { 722 int arraySize = targetUniform->arraySize; 723 724 if (arraySize == 1 && count > 1) 725 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION 726 727 count = std::min(arraySize - (int)mUniformIndex[location].element, count); 728 GLboolean *boolParams = new GLboolean[count * 3]; 729 730 for (int i = 0; i < count * 3; ++i) 731 { 732 if (v[i] == 0) 733 { 734 boolParams[i] = GL_FALSE; 735 } 736 else 737 { 738 boolParams[i] = GL_TRUE; 739 } 740 } 741 742 memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 3, 743 boolParams, 3 * sizeof(GLboolean) * count); 744 745 delete [] boolParams; 746 } 747 else 748 { 749 return false; 750 } 751 752 return true; 753 } 754 755 bool Program::setUniform4iv(GLint location, GLsizei count, const GLint *v) 756 { 757 if (location < 0 || location >= (int)mUniformIndex.size()) 758 { 759 return false; 760 } 761 762 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 763 targetUniform->dirty = true; 764 765 if (targetUniform->type == GL_INT_VEC4) 766 { 767 int arraySize = targetUniform->arraySize; 768 769 if (arraySize == 1 && count > 1) 770 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION 771 772 count = std::min(arraySize - (int)mUniformIndex[location].element, count); 773 774 memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 4, 775 v, 4 * sizeof(GLint) * count); 776 } 777 else if (targetUniform->type == GL_BOOL_VEC4) 778 { 779 int arraySize = targetUniform->arraySize; 780 781 if (arraySize == 1 && count > 1) 782 return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION 783 784 count = std::min(arraySize - (int)mUniformIndex[location].element, count); 785 GLboolean *boolParams = new GLboolean[count * 4]; 786 787 for (int i = 0; i < count * 4; ++i) 788 { 789 if (v[i] == 0) 790 { 791 boolParams[i] = GL_FALSE; 792 } 793 else 794 { 795 boolParams[i] = GL_TRUE; 796 } 797 } 798 799 memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 4, 800 boolParams, 4 * sizeof(GLboolean) * count); 801 802 delete [] boolParams; 803 } 804 else 805 { 806 return false; 807 } 808 809 return true; 810 } 811 812 bool Program::getUniformfv(GLint location, GLfloat *params) 813 { 814 if (location < 0 || location >= (int)mUniformIndex.size()) 815 { 816 return false; 817 } 818 819 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 820 821 unsigned int count = UniformComponentCount(targetUniform->type); 822 823 switch (UniformComponentType(targetUniform->type)) 824 { 825 case GL_BOOL: 826 { 827 GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * count; 828 829 for (unsigned int i = 0; i < count; ++i) 830 { 831 params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f; 832 } 833 } 834 break; 835 case GL_FLOAT: 836 memcpy(params, targetUniform->data + mUniformIndex[location].element * count * sizeof(GLfloat), 837 count * sizeof(GLfloat)); 838 break; 839 case GL_INT: 840 { 841 GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * count; 842 843 for (unsigned int i = 0; i < count; ++i) 844 { 845 params[i] = (float)intParams[i]; 846 } 847 } 848 break; 849 default: UNREACHABLE(); 850 } 851 852 return true; 853 } 854 855 bool Program::getUniformiv(GLint location, GLint *params) 856 { 857 if (location < 0 || location >= (int)mUniformIndex.size()) 858 { 859 return false; 860 } 861 862 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 863 864 unsigned int count = UniformComponentCount(targetUniform->type); 865 866 switch (UniformComponentType(targetUniform->type)) 867 { 868 case GL_BOOL: 869 { 870 GLboolean *boolParams = targetUniform->data + mUniformIndex[location].element * count; 871 872 for (unsigned int i = 0; i < count; ++i) 873 { 874 params[i] = (GLint)boolParams[i]; 875 } 876 } 877 break; 878 case GL_FLOAT: 879 { 880 GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * count; 881 882 for (unsigned int i = 0; i < count; ++i) 883 { 884 params[i] = (GLint)floatParams[i]; 885 } 886 } 887 break; 888 case GL_INT: 889 memcpy(params, targetUniform->data + mUniformIndex[location].element * count * sizeof(GLint), 890 count * sizeof(GLint)); 891 break; 892 default: UNREACHABLE(); 893 } 894 895 return true; 896 } 897 898 void Program::dirtyAllUniforms() 899 { 900 unsigned int numUniforms = mUniforms.size(); 901 for (unsigned int index = 0; index < numUniforms; index++) 902 { 903 mUniforms[index]->dirty = true; 904 } 905 } 906 907 void Program::dirtyAllSamplers() 908 { 909 for (unsigned int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; ++index) 910 { 911 mSamplers[index].dirty = true; 912 } 913 } 914 915 // Applies all the uniforms set for this program object to the Direct3D 9 device 916 void Program::applyUniforms() 917 { 918 unsigned int numUniforms = mUniformIndex.size(); 919 for (unsigned int location = 0; location < numUniforms; location++) 920 { 921 if (mUniformIndex[location].element != 0) 922 { 923 continue; 924 } 925 926 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 927 928 if (targetUniform->dirty) 929 { 930 int arraySize = targetUniform->arraySize; 931 GLfloat *f = (GLfloat*)targetUniform->data; 932 GLint *i = (GLint*)targetUniform->data; 933 GLboolean *b = (GLboolean*)targetUniform->data; 934 935 switch (targetUniform->type) 936 { 937 case GL_BOOL: applyUniform1bv(location, arraySize, b); break; 938 case GL_BOOL_VEC2: applyUniform2bv(location, arraySize, b); break; 939 case GL_BOOL_VEC3: applyUniform3bv(location, arraySize, b); break; 940 case GL_BOOL_VEC4: applyUniform4bv(location, arraySize, b); break; 941 case GL_FLOAT: applyUniform1fv(location, arraySize, f); break; 942 case GL_FLOAT_VEC2: applyUniform2fv(location, arraySize, f); break; 943 case GL_FLOAT_VEC3: applyUniform3fv(location, arraySize, f); break; 944 case GL_FLOAT_VEC4: applyUniform4fv(location, arraySize, f); break; 945 case GL_FLOAT_MAT2: applyUniformMatrix2fv(location, arraySize, f); break; 946 case GL_FLOAT_MAT3: applyUniformMatrix3fv(location, arraySize, f); break; 947 case GL_FLOAT_MAT4: applyUniformMatrix4fv(location, arraySize, f); break; 948 case GL_SAMPLER_2D: 949 case GL_SAMPLER_CUBE: 950 case GL_INT: applyUniform1iv(location, arraySize, i); break; 951 case GL_INT_VEC2: applyUniform2iv(location, arraySize, i); break; 952 case GL_INT_VEC3: applyUniform3iv(location, arraySize, i); break; 953 case GL_INT_VEC4: applyUniform4iv(location, arraySize, i); break; 954 default: 955 UNREACHABLE(); 956 } 957 958 targetUniform->dirty = false; 959 } 960 } 961 } 962 963 // Compiles the HLSL code of the attached shaders into executable binaries 964 ID3DXBuffer *Program::compileToBinary(const char *hlsl, const char *profile, ID3DXConstantTable **constantTable) 965 { 966 if (!hlsl) 967 { 968 return NULL; 969 } 970 971 ID3DXBuffer *binary = NULL; 972 ID3DXBuffer *errorMessage = NULL; 973 974 HRESULT result = D3DXCompileShader(hlsl, (UINT)strlen(hlsl), NULL, NULL, "main", profile, 0, &binary, &errorMessage, constantTable); 975 976 if (SUCCEEDED(result)) 977 { 978 return binary; 979 } 980 981 if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY) 982 { 983 return error(GL_OUT_OF_MEMORY, (ID3DXBuffer*)NULL); 984 } 985 986 if (errorMessage) 987 { 988 const char *message = (const char*)errorMessage->GetBufferPointer(); 989 990 appendToInfoLog("%s\n", message); 991 TRACE("\n%s", hlsl); 992 TRACE("\n%s", message); 993 } 994 995 return NULL; 996 } 997 998 // Packs varyings into generic varying registers, using the algorithm from [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111 999 // Returns the number of used varying registers, or -1 if unsuccesful 1000 int Program::packVaryings(const Varying *packing[][4]) 1001 { 1002 Context *context = getContext(); 1003 const int maxVaryingVectors = context->getMaximumVaryingVectors(); 1004 1005 for (VaryingList::iterator varying = mFragmentShader->varyings.begin(); varying != mFragmentShader->varyings.end(); varying++) 1006 { 1007 int n = VariableRowCount(varying->type) * varying->size; 1008 int m = VariableColumnCount(varying->type); 1009 bool success = false; 1010 1011 if (m == 2 || m == 3 || m == 4) 1012 { 1013 for (int r = 0; r <= maxVaryingVectors - n && !success; r++) 1014 { 1015 bool available = true; 1016 1017 for (int y = 0; y < n && available; y++) 1018 { 1019 for (int x = 0; x < m && available; x++) 1020 { 1021 if (packing[r + y][x]) 1022 { 1023 available = false; 1024 } 1025 } 1026 } 1027 1028 if (available) 1029 { 1030 varying->reg = r; 1031 varying->col = 0; 1032 1033 for (int y = 0; y < n; y++) 1034 { 1035 for (int x = 0; x < m; x++) 1036 { 1037 packing[r + y][x] = &*varying; 1038 } 1039 } 1040 1041 success = true; 1042 } 1043 } 1044 1045 if (!success && m == 2) 1046 { 1047 for (int r = maxVaryingVectors - n; r >= 0 && !success; r--) 1048 { 1049 bool available = true; 1050 1051 for (int y = 0; y < n && available; y++) 1052 { 1053 for (int x = 2; x < 4 && available; x++) 1054 { 1055 if (packing[r + y][x]) 1056 { 1057 available = false; 1058 } 1059 } 1060 } 1061 1062 if (available) 1063 { 1064 varying->reg = r; 1065 varying->col = 2; 1066 1067 for (int y = 0; y < n; y++) 1068 { 1069 for (int x = 2; x < 4; x++) 1070 { 1071 packing[r + y][x] = &*varying; 1072 } 1073 } 1074 1075 success = true; 1076 } 1077 } 1078 } 1079 } 1080 else if (m == 1) 1081 { 1082 int space[4] = {0}; 1083 1084 for (int y = 0; y < maxVaryingVectors; y++) 1085 { 1086 for (int x = 0; x < 4; x++) 1087 { 1088 space[x] += packing[y][x] ? 0 : 1; 1089 } 1090 } 1091 1092 int column = 0; 1093 1094 for (int x = 0; x < 4; x++) 1095 { 1096 if (space[x] > n && space[x] < space[column]) 1097 { 1098 column = x; 1099 } 1100 } 1101 1102 if (space[column] > n) 1103 { 1104 for (int r = 0; r < maxVaryingVectors; r++) 1105 { 1106 if (!packing[r][column]) 1107 { 1108 varying->reg = r; 1109 1110 for (int y = r; y < r + n; y++) 1111 { 1112 packing[y][column] = &*varying; 1113 } 1114 1115 break; 1116 } 1117 } 1118 1119 varying->col = column; 1120 1121 success = true; 1122 } 1123 } 1124 else UNREACHABLE(); 1125 1126 if (!success) 1127 { 1128 appendToInfoLog("Could not pack varying %s", varying->name.c_str()); 1129 1130 return -1; 1131 } 1132 } 1133 1134 // Return the number of used registers 1135 int registers = 0; 1136 1137 for (int r = 0; r < maxVaryingVectors; r++) 1138 { 1139 if (packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3]) 1140 { 1141 registers++; 1142 } 1143 } 1144 1145 return registers; 1146 } 1147 1148 bool Program::linkVaryings() 1149 { 1150 if (mPixelHLSL.empty() || mVertexHLSL.empty()) 1151 { 1152 return false; 1153 } 1154 1155 const Varying *packing[MAX_VARYING_VECTORS_SM3][4] = {NULL}; 1156 int registers = packVaryings(packing); 1157 1158 if (registers < 0) 1159 { 1160 return false; 1161 } 1162 1163 Context *context = getContext(); 1164 const bool sm3 = context->supportsShaderModel3(); 1165 const int maxVaryingVectors = context->getMaximumVaryingVectors(); 1166 1167 if (registers == maxVaryingVectors && mFragmentShader->mUsesFragCoord) 1168 { 1169 appendToInfoLog("No varying registers left to support gl_FragCoord"); 1170 1171 return false; 1172 } 1173 1174 for (VaryingList::iterator input = mFragmentShader->varyings.begin(); input != mFragmentShader->varyings.end(); input++) 1175 { 1176 bool matched = false; 1177 1178 for (VaryingList::iterator output = mVertexShader->varyings.begin(); output != mVertexShader->varyings.end(); output++) 1179 { 1180 if (output->name == input->name) 1181 { 1182 if (output->type != input->type || output->size != input->size) 1183 { 1184 appendToInfoLog("Type of vertex varying %s does not match that of the fragment varying", output->name.c_str()); 1185 1186 return false; 1187 } 1188 1189 output->reg = input->reg; 1190 output->col = input->col; 1191 1192 matched = true; 1193 break; 1194 } 1195 } 1196 1197 if (!matched) 1198 { 1199 appendToInfoLog("Fragment varying varying %s does not match any vertex varying", input->name.c_str()); 1200 1201 return false; 1202 } 1203 } 1204 1205 std::string varyingSemantic = (sm3 ? "COLOR" : "TEXCOORD"); 1206 1207 mVertexHLSL += "struct VS_INPUT\n" 1208 "{\n"; 1209 1210 int semanticIndex = 0; 1211 for (AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++) 1212 { 1213 switch (attribute->type) 1214 { 1215 case GL_FLOAT: mVertexHLSL += " float "; break; 1216 case GL_FLOAT_VEC2: mVertexHLSL += " float2 "; break; 1217 case GL_FLOAT_VEC3: mVertexHLSL += " float3 "; break; 1218 case GL_FLOAT_VEC4: mVertexHLSL += " float4 "; break; 1219 case GL_FLOAT_MAT2: mVertexHLSL += " float2x2 "; break; 1220 case GL_FLOAT_MAT3: mVertexHLSL += " float3x3 "; break; 1221 case GL_FLOAT_MAT4: mVertexHLSL += " float4x4 "; break; 1222 default: UNREACHABLE(); 1223 } 1224 1225 mVertexHLSL += decorate(attribute->name) + " : TEXCOORD" + str(semanticIndex) + ";\n"; 1226 1227 semanticIndex += VariableRowCount(attribute->type); 1228 } 1229 1230 mVertexHLSL += "};\n" 1231 "\n" 1232 "struct VS_OUTPUT\n" 1233 "{\n" 1234 " float4 gl_Position : POSITION;\n"; 1235 1236 for (int r = 0; r < registers; r++) 1237 { 1238 int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1)); 1239 1240 mVertexHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n"; 1241 } 1242 1243 if (mFragmentShader->mUsesFragCoord) 1244 { 1245 mVertexHLSL += " float4 gl_FragCoord : " + varyingSemantic + str(registers) + ";\n"; 1246 } 1247 1248 if (mVertexShader->mUsesPointSize && sm3) 1249 { 1250 mVertexHLSL += " float gl_PointSize : PSIZE;\n"; 1251 } 1252 1253 mVertexHLSL += "};\n" 1254 "\n" 1255 "VS_OUTPUT main(VS_INPUT input)\n" 1256 "{\n"; 1257 1258 for (AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++) 1259 { 1260 mVertexHLSL += " " + decorate(attribute->name) + " = "; 1261 1262 if (VariableRowCount(attribute->type) > 1) // Matrix 1263 { 1264 mVertexHLSL += "transpose"; 1265 } 1266 1267 mVertexHLSL += "(input." + decorate(attribute->name) + ");\n"; 1268 } 1269 1270 mVertexHLSL += "\n" 1271 " gl_main();\n" 1272 "\n" 1273 " VS_OUTPUT output;\n" 1274 " output.gl_Position.x = gl_Position.x - dx_HalfPixelSize.x * gl_Position.w;\n" 1275 " output.gl_Position.y = -(gl_Position.y - dx_HalfPixelSize.y * gl_Position.w);\n" 1276 " output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n" 1277 " output.gl_Position.w = gl_Position.w;\n"; 1278 1279 if (mVertexShader->mUsesPointSize && sm3) 1280 { 1281 mVertexHLSL += " output.gl_PointSize = clamp(gl_PointSize, 1.0, " + str((int)ALIASED_POINT_SIZE_RANGE_MAX_SM3) + ");\n"; 1282 } 1283 1284 if (mFragmentShader->mUsesFragCoord) 1285 { 1286 mVertexHLSL += " output.gl_FragCoord = gl_Position;\n"; 1287 } 1288 1289 for (VaryingList::iterator varying = mVertexShader->varyings.begin(); varying != mVertexShader->varyings.end(); varying++) 1290 { 1291 if (varying->reg >= 0) 1292 { 1293 for (int i = 0; i < varying->size; i++) 1294 { 1295 int rows = VariableRowCount(varying->type); 1296 1297 for (int j = 0; j < rows; j++) 1298 { 1299 int r = varying->reg + i * rows + j; 1300 mVertexHLSL += " output.v" + str(r); 1301 1302 bool sharedRegister = false; // Register used by multiple varyings 1303 1304 for (int x = 0; x < 4; x++) 1305 { 1306 if (packing[r][x] && packing[r][x] != packing[r][0]) 1307 { 1308 sharedRegister = true; 1309 break; 1310 } 1311 } 1312 1313 if(sharedRegister) 1314 { 1315 mVertexHLSL += "."; 1316 1317 for (int x = 0; x < 4; x++) 1318 { 1319 if (packing[r][x] == &*varying) 1320 { 1321 switch(x) 1322 { 1323 case 0: mVertexHLSL += "x"; break; 1324 case 1: mVertexHLSL += "y"; break; 1325 case 2: mVertexHLSL += "z"; break; 1326 case 3: mVertexHLSL += "w"; break; 1327 } 1328 } 1329 } 1330 } 1331 1332 mVertexHLSL += " = " + varying->name; 1333 1334 if (varying->array) 1335 { 1336 mVertexHLSL += "[" + str(i) + "]"; 1337 } 1338 1339 if (rows > 1) 1340 { 1341 mVertexHLSL += "[" + str(j) + "]"; 1342 } 1343 1344 mVertexHLSL += ";\n"; 1345 } 1346 } 1347 } 1348 } 1349 1350 mVertexHLSL += "\n" 1351 " return output;\n" 1352 "}\n"; 1353 1354 mPixelHLSL += "struct PS_INPUT\n" 1355 "{\n"; 1356 1357 for (VaryingList::iterator varying = mFragmentShader->varyings.begin(); varying != mFragmentShader->varyings.end(); varying++) 1358 { 1359 if (varying->reg >= 0) 1360 { 1361 for (int i = 0; i < varying->size; i++) 1362 { 1363 int rows = VariableRowCount(varying->type); 1364 for (int j = 0; j < rows; j++) 1365 { 1366 std::string n = str(varying->reg + i * rows + j); 1367 mPixelHLSL += " float4 v" + n + " : " + varyingSemantic + n + ";\n"; 1368 } 1369 } 1370 } 1371 else UNREACHABLE(); 1372 } 1373 1374 if (mFragmentShader->mUsesFragCoord) 1375 { 1376 mPixelHLSL += " float4 gl_FragCoord : " + varyingSemantic + str(registers) + ";\n"; 1377 if (sm3) { 1378 mPixelHLSL += " float2 dx_VPos : VPOS;\n"; 1379 } 1380 } 1381 1382 if (mFragmentShader->mUsesPointCoord && sm3) 1383 { 1384 mPixelHLSL += " float2 gl_PointCoord : TEXCOORD0;\n"; 1385 } 1386 1387 if (mFragmentShader->mUsesFrontFacing) 1388 { 1389 mPixelHLSL += " float vFace : VFACE;\n"; 1390 } 1391 1392 mPixelHLSL += "};\n" 1393 "\n" 1394 "struct PS_OUTPUT\n" 1395 "{\n" 1396 " float4 gl_Color[1] : COLOR;\n" 1397 "};\n" 1398 "\n" 1399 "PS_OUTPUT main(PS_INPUT input)\n" 1400 "{\n"; 1401 1402 if (mFragmentShader->mUsesFragCoord) 1403 { 1404 mPixelHLSL += " float rhw = 1.0 / input.gl_FragCoord.w;\n"; 1405 if (sm3) { 1406 mPixelHLSL += " gl_FragCoord.x = input.dx_VPos.x;\n" 1407 " gl_FragCoord.y = input.dx_VPos.y;\n"; 1408 } else { 1409 mPixelHLSL += " gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * dx_Viewport.x + dx_Viewport.z;\n" 1410 " gl_FragCoord.y = (input.gl_FragCoord.y * rhw) * dx_Viewport.y + dx_Viewport.w;\n"; 1411 } 1412 mPixelHLSL += " gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_Depth.x + dx_Depth.y;\n" 1413 " gl_FragCoord.w = rhw;\n"; 1414 } 1415 1416 if (mFragmentShader->mUsesPointCoord && sm3) 1417 { 1418 mPixelHLSL += " gl_PointCoord = float2(input.gl_PointCoord.x, 1.0 - input.gl_PointCoord.y);\n"; 1419 } 1420 1421 if (mFragmentShader->mUsesFrontFacing) 1422 { 1423 mPixelHLSL += " gl_FrontFacing = dx_PointsOrLines || (dx_FrontCCW ? (input.vFace >= 0.0) : (input.vFace <= 0.0));\n"; 1424 } 1425 1426 for (VaryingList::iterator varying = mFragmentShader->varyings.begin(); varying != mFragmentShader->varyings.end(); varying++) 1427 { 1428 if (varying->reg >= 0) 1429 { 1430 for (int i = 0; i < varying->size; i++) 1431 { 1432 int rows = VariableRowCount(varying->type); 1433 for (int j = 0; j < rows; j++) 1434 { 1435 std::string n = str(varying->reg + i * rows + j); 1436 mPixelHLSL += " " + varying->name; 1437 1438 if (varying->array) 1439 { 1440 mPixelHLSL += "[" + str(i) + "]"; 1441 } 1442 1443 if (rows > 1) 1444 { 1445 mPixelHLSL += "[" + str(j) + "]"; 1446 } 1447 1448 mPixelHLSL += " = input.v" + n + ";\n"; 1449 } 1450 } 1451 } 1452 else UNREACHABLE(); 1453 } 1454 1455 mPixelHLSL += "\n" 1456 " gl_main();\n" 1457 "\n" 1458 " PS_OUTPUT output;\n" 1459 " output.gl_Color[0] = gl_Color[0];\n" 1460 "\n" 1461 " return output;\n" 1462 "}\n"; 1463 1464 TRACE("\n%s", mPixelHLSL.c_str()); 1465 TRACE("\n%s", mVertexHLSL.c_str()); 1466 1467 return true; 1468 } 1469 1470 // Links the HLSL code of the vertex and pixel shader by matching up their varyings, 1471 // compiling them into binaries, determining the attribute mappings, and collecting 1472 // a list of uniforms 1473 void Program::link() 1474 { 1475 unlink(); 1476 1477 if (!mFragmentShader || !mFragmentShader->isCompiled()) 1478 { 1479 return; 1480 } 1481 1482 if (!mVertexShader || !mVertexShader->isCompiled()) 1483 { 1484 return; 1485 } 1486 1487 mPixelHLSL = mFragmentShader->getHLSL(); 1488 mVertexHLSL = mVertexShader->getHLSL(); 1489 1490 if (!linkVaryings()) 1491 { 1492 return; 1493 } 1494 1495 Context *context = getContext(); 1496 const char *vertexProfile = context->supportsShaderModel3() ? "vs_3_0" : "vs_2_0"; 1497 const char *pixelProfile = context->supportsShaderModel3() ? "ps_3_0" : "ps_2_0"; 1498 1499 ID3DXBuffer *vertexBinary = compileToBinary(mVertexHLSL.c_str(), vertexProfile, &mConstantTableVS); 1500 ID3DXBuffer *pixelBinary = compileToBinary(mPixelHLSL.c_str(), pixelProfile, &mConstantTablePS); 1501 1502 if (vertexBinary && pixelBinary) 1503 { 1504 IDirect3DDevice9 *device = getDevice(); 1505 HRESULT vertexResult = device->CreateVertexShader((DWORD*)vertexBinary->GetBufferPointer(), &mVertexExecutable); 1506 HRESULT pixelResult = device->CreatePixelShader((DWORD*)pixelBinary->GetBufferPointer(), &mPixelExecutable); 1507 1508 if (vertexResult == D3DERR_OUTOFVIDEOMEMORY || vertexResult == E_OUTOFMEMORY || pixelResult == D3DERR_OUTOFVIDEOMEMORY || pixelResult == E_OUTOFMEMORY) 1509 { 1510 return error(GL_OUT_OF_MEMORY); 1511 } 1512 1513 ASSERT(SUCCEEDED(vertexResult) && SUCCEEDED(pixelResult)); 1514 1515 vertexBinary->Release(); 1516 pixelBinary->Release(); 1517 vertexBinary = NULL; 1518 pixelBinary = NULL; 1519 1520 if (mVertexExecutable && mPixelExecutable) 1521 { 1522 if (!linkAttributes()) 1523 { 1524 return; 1525 } 1526 1527 if (!linkUniforms(mConstantTablePS)) 1528 { 1529 return; 1530 } 1531 1532 if (!linkUniforms(mConstantTableVS)) 1533 { 1534 return; 1535 } 1536 1537 // these uniforms are searched as already-decorated because gl_ and dx_ 1538 // are reserved prefixes, and do not receive additional decoration 1539 mDxDepthRangeLocation = getUniformLocation("dx_DepthRange", true); 1540 mDxDepthLocation = getUniformLocation("dx_Depth", true); 1541 mDxViewportLocation = getUniformLocation("dx_Viewport", true); 1542 mDxHalfPixelSizeLocation = getUniformLocation("dx_HalfPixelSize", true); 1543 mDxFrontCCWLocation = getUniformLocation("dx_FrontCCW", true); 1544 mDxPointsOrLinesLocation = getUniformLocation("dx_PointsOrLines", true); 1545 1546 mLinked = true; // Success 1547 } 1548 } 1549 } 1550 1551 // Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices 1552 bool Program::linkAttributes() 1553 { 1554 unsigned int usedLocations = 0; 1555 1556 // Link attributes that have a binding location 1557 for (AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++) 1558 { 1559 int location = getAttributeBinding(attribute->name); 1560 1561 if (location != -1) // Set by glBindAttribLocation 1562 { 1563 if (!mLinkedAttribute[location].name.empty()) 1564 { 1565 // Multiple active attributes bound to the same location; not an error 1566 } 1567 1568 mLinkedAttribute[location] = *attribute; 1569 1570 int rows = VariableRowCount(attribute->type); 1571 1572 if (rows + location > MAX_VERTEX_ATTRIBS) 1573 { 1574 appendToInfoLog("Active attribute (%s) at location %d is too big to fit", attribute->name.c_str(), location); 1575 1576 return false; 1577 } 1578 1579 for (int i = 0; i < rows; i++) 1580 { 1581 usedLocations |= 1 << (location + i); 1582 } 1583 } 1584 } 1585 1586 // Link attributes that don't have a binding location 1587 for (AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++) 1588 { 1589 int location = getAttributeBinding(attribute->name); 1590 1591 if (location == -1) // Not set by glBindAttribLocation 1592 { 1593 int rows = VariableRowCount(attribute->type); 1594 int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS); 1595 1596 if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS) 1597 { 1598 appendToInfoLog("Too many active attributes (%s)", attribute->name.c_str()); 1599 1600 return false; // Fail to link 1601 } 1602 1603 mLinkedAttribute[availableIndex] = *attribute; 1604 } 1605 } 1606 1607 for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; ) 1608 { 1609 int index = mVertexShader->getSemanticIndex(mLinkedAttribute[attributeIndex].name); 1610 int rows = std::max(VariableRowCount(mLinkedAttribute[attributeIndex].type), 1); 1611 1612 for (int r = 0; r < rows; r++) 1613 { 1614 mSemanticIndex[attributeIndex++] = index++; 1615 } 1616 } 1617 1618 return true; 1619 } 1620 1621 int Program::getAttributeBinding(const std::string &name) 1622 { 1623 for (int location = 0; location < MAX_VERTEX_ATTRIBS; location++) 1624 { 1625 if (mAttributeBinding[location].find(name) != mAttributeBinding[location].end()) 1626 { 1627 return location; 1628 } 1629 } 1630 1631 return -1; 1632 } 1633 1634 bool Program::linkUniforms(ID3DXConstantTable *constantTable) 1635 { 1636 D3DXCONSTANTTABLE_DESC constantTableDescription; 1637 D3DXCONSTANT_DESC constantDescription; 1638 UINT descriptionCount = 1; 1639 1640 constantTable->GetDesc(&constantTableDescription); 1641 1642 for (unsigned int constantIndex = 0; constantIndex < constantTableDescription.Constants; constantIndex++) 1643 { 1644 D3DXHANDLE constantHandle = constantTable->GetConstant(0, constantIndex); 1645 constantTable->GetConstantDesc(constantHandle, &constantDescription, &descriptionCount); 1646 1647 if (!defineUniform(constantHandle, constantDescription)) 1648 { 1649 return false; 1650 } 1651 } 1652 1653 return true; 1654 } 1655 1656 // Adds the description of a constant found in the binary shader to the list of uniforms 1657 // Returns true if succesful (uniform not already defined) 1658 bool Program::defineUniform(const D3DXHANDLE &constantHandle, const D3DXCONSTANT_DESC &constantDescription, std::string name) 1659 { 1660 if (constantDescription.RegisterSet == D3DXRS_SAMPLER) 1661 { 1662 for (unsigned int samplerIndex = constantDescription.RegisterIndex; samplerIndex < constantDescription.RegisterIndex + constantDescription.RegisterCount; samplerIndex++) 1663 { 1664 ASSERT(samplerIndex < sizeof(mSamplers)/sizeof(mSamplers[0])); 1665 1666 mSamplers[samplerIndex].active = true; 1667 mSamplers[samplerIndex].type = (constantDescription.Type == D3DXPT_SAMPLERCUBE) ? SAMPLER_CUBE : SAMPLER_2D; 1668 mSamplers[samplerIndex].logicalTextureUnit = 0; 1669 mSamplers[samplerIndex].dirty = true; 1670 } 1671 } 1672 1673 switch(constantDescription.Class) 1674 { 1675 case D3DXPC_STRUCT: 1676 { 1677 for (unsigned int arrayIndex = 0; arrayIndex < constantDescription.Elements; arrayIndex++) 1678 { 1679 for (unsigned int field = 0; field < constantDescription.StructMembers; field++) 1680 { 1681 D3DXHANDLE fieldHandle = mConstantTablePS->GetConstant(constantHandle, field); 1682 1683 D3DXCONSTANT_DESC fieldDescription; 1684 UINT descriptionCount = 1; 1685 1686 mConstantTablePS->GetConstantDesc(fieldHandle, &fieldDescription, &descriptionCount); 1687 1688 std::string structIndex = (constantDescription.Elements > 1) ? ("[" + str(arrayIndex) + "]") : ""; 1689 1690 if (!defineUniform(fieldHandle, fieldDescription, name + constantDescription.Name + structIndex + ".")) 1691 { 1692 return false; 1693 } 1694 } 1695 } 1696 1697 return true; 1698 } 1699 case D3DXPC_SCALAR: 1700 case D3DXPC_VECTOR: 1701 case D3DXPC_MATRIX_COLUMNS: 1702 case D3DXPC_OBJECT: 1703 return defineUniform(constantDescription, name + constantDescription.Name); 1704 default: 1705 UNREACHABLE(); 1706 return false; 1707 } 1708 } 1709 1710 bool Program::defineUniform(const D3DXCONSTANT_DESC &constantDescription, std::string &name) 1711 { 1712 Uniform *uniform = createUniform(constantDescription, name); 1713 1714 if(!uniform) 1715 { 1716 return false; 1717 } 1718 1719 // Check if already defined 1720 GLint location = getUniformLocation(name.c_str(), true); 1721 GLenum type = uniform->type; 1722 1723 if (location >= 0) 1724 { 1725 delete uniform; 1726 1727 if (mUniforms[mUniformIndex[location].index]->type != type) 1728 { 1729 return false; 1730 } 1731 else 1732 { 1733 return true; 1734 } 1735 } 1736 1737 mUniforms.push_back(uniform); 1738 unsigned int uniformIndex = mUniforms.size() - 1; 1739 1740 for (unsigned int i = 0; i < uniform->arraySize; ++i) 1741 { 1742 mUniformIndex.push_back(UniformLocation(name, i, uniformIndex)); 1743 } 1744 1745 return true; 1746 } 1747 1748 Uniform *Program::createUniform(const D3DXCONSTANT_DESC &constantDescription, std::string &name) 1749 { 1750 if (constantDescription.Rows == 1) // Vectors and scalars 1751 { 1752 switch (constantDescription.Type) 1753 { 1754 case D3DXPT_SAMPLER2D: 1755 switch (constantDescription.Columns) 1756 { 1757 case 1: return new Uniform(GL_SAMPLER_2D, name, constantDescription.Elements); 1758 default: UNREACHABLE(); 1759 } 1760 break; 1761 case D3DXPT_SAMPLERCUBE: 1762 switch (constantDescription.Columns) 1763 { 1764 case 1: return new Uniform(GL_SAMPLER_CUBE, name, constantDescription.Elements); 1765 default: UNREACHABLE(); 1766 } 1767 break; 1768 case D3DXPT_BOOL: 1769 switch (constantDescription.Columns) 1770 { 1771 case 1: return new Uniform(GL_BOOL, name, constantDescription.Elements); 1772 case 2: return new Uniform(GL_BOOL_VEC2, name, constantDescription.Elements); 1773 case 3: return new Uniform(GL_BOOL_VEC3, name, constantDescription.Elements); 1774 case 4: return new Uniform(GL_BOOL_VEC4, name, constantDescription.Elements); 1775 default: UNREACHABLE(); 1776 } 1777 break; 1778 case D3DXPT_INT: 1779 switch (constantDescription.Columns) 1780 { 1781 case 1: return new Uniform(GL_INT, name, constantDescription.Elements); 1782 case 2: return new Uniform(GL_INT_VEC2, name, constantDescription.Elements); 1783 case 3: return new Uniform(GL_INT_VEC3, name, constantDescription.Elements); 1784 case 4: return new Uniform(GL_INT_VEC4, name, constantDescription.Elements); 1785 default: UNREACHABLE(); 1786 } 1787 break; 1788 case D3DXPT_FLOAT: 1789 switch (constantDescription.Columns) 1790 { 1791 case 1: return new Uniform(GL_FLOAT, name, constantDescription.Elements); 1792 case 2: return new Uniform(GL_FLOAT_VEC2, name, constantDescription.Elements); 1793 case 3: return new Uniform(GL_FLOAT_VEC3, name, constantDescription.Elements); 1794 case 4: return new Uniform(GL_FLOAT_VEC4, name, constantDescription.Elements); 1795 default: UNREACHABLE(); 1796 } 1797 break; 1798 default: 1799 UNREACHABLE(); 1800 } 1801 } 1802 else if (constantDescription.Rows == constantDescription.Columns) // Square matrices 1803 { 1804 switch (constantDescription.Type) 1805 { 1806 case D3DXPT_FLOAT: 1807 switch (constantDescription.Rows) 1808 { 1809 case 2: return new Uniform(GL_FLOAT_MAT2, name, constantDescription.Elements); 1810 case 3: return new Uniform(GL_FLOAT_MAT3, name, constantDescription.Elements); 1811 case 4: return new Uniform(GL_FLOAT_MAT4, name, constantDescription.Elements); 1812 default: UNREACHABLE(); 1813 } 1814 break; 1815 default: UNREACHABLE(); 1816 } 1817 } 1818 else UNREACHABLE(); 1819 1820 return 0; 1821 } 1822 1823 // This method needs to match OutputHLSL::decorate 1824 std::string Program::decorate(const std::string &string) 1825 { 1826 if (string.substr(0, 3) != "gl_" && string.substr(0, 3) != "dx_") 1827 { 1828 return "_" + string; 1829 } 1830 else 1831 { 1832 return string; 1833 } 1834 } 1835 1836 std::string Program::undecorate(const std::string &string) 1837 { 1838 if (string.substr(0, 1) == "_") 1839 { 1840 return string.substr(1); 1841 } 1842 else 1843 { 1844 return string; 1845 } 1846 } 1847 1848 bool Program::applyUniform1bv(GLint location, GLsizei count, const GLboolean *v) 1849 { 1850 BOOL *vector = new BOOL[count]; 1851 for (int i = 0; i < count; i++) 1852 { 1853 if (v[i] == GL_FALSE) 1854 vector[i] = 0; 1855 else 1856 vector[i] = 1; 1857 } 1858 1859 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 1860 1861 D3DXHANDLE constantPS; 1862 D3DXHANDLE constantVS; 1863 getConstantHandles(targetUniform, &constantPS, &constantVS); 1864 1865 IDirect3DDevice9 *device = getDevice(); 1866 1867 if (constantPS) 1868 { 1869 mConstantTablePS->SetBoolArray(device, constantPS, vector, count); 1870 } 1871 1872 if (constantVS) 1873 { 1874 mConstantTableVS->SetBoolArray(device, constantVS, vector, count); 1875 } 1876 1877 delete [] vector; 1878 1879 return true; 1880 } 1881 1882 bool Program::applyUniform2bv(GLint location, GLsizei count, const GLboolean *v) 1883 { 1884 D3DXVECTOR4 *vector = new D3DXVECTOR4[count]; 1885 1886 for (int i = 0; i < count; i++) 1887 { 1888 vector[i] = D3DXVECTOR4((v[0] == GL_FALSE ? 0.0f : 1.0f), 1889 (v[1] == GL_FALSE ? 0.0f : 1.0f), 0, 0); 1890 1891 v += 2; 1892 } 1893 1894 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 1895 1896 D3DXHANDLE constantPS; 1897 D3DXHANDLE constantVS; 1898 getConstantHandles(targetUniform, &constantPS, &constantVS); 1899 IDirect3DDevice9 *device = getDevice(); 1900 1901 if (constantPS) 1902 { 1903 mConstantTablePS->SetVectorArray(device, constantPS, vector, count); 1904 } 1905 1906 if (constantVS) 1907 { 1908 mConstantTableVS->SetVectorArray(device, constantVS, vector, count); 1909 } 1910 1911 delete[] vector; 1912 1913 return true; 1914 } 1915 1916 bool Program::applyUniform3bv(GLint location, GLsizei count, const GLboolean *v) 1917 { 1918 D3DXVECTOR4 *vector = new D3DXVECTOR4[count]; 1919 1920 for (int i = 0; i < count; i++) 1921 { 1922 vector[i] = D3DXVECTOR4((v[0] == GL_FALSE ? 0.0f : 1.0f), 1923 (v[1] == GL_FALSE ? 0.0f : 1.0f), 1924 (v[2] == GL_FALSE ? 0.0f : 1.0f), 0); 1925 1926 v += 3; 1927 } 1928 1929 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 1930 1931 D3DXHANDLE constantPS; 1932 D3DXHANDLE constantVS; 1933 getConstantHandles(targetUniform, &constantPS, &constantVS); 1934 IDirect3DDevice9 *device = getDevice(); 1935 1936 if (constantPS) 1937 { 1938 mConstantTablePS->SetVectorArray(device, constantPS, vector, count); 1939 } 1940 1941 if (constantVS) 1942 { 1943 mConstantTableVS->SetVectorArray(device, constantVS, vector, count); 1944 } 1945 1946 delete[] vector; 1947 1948 return true; 1949 } 1950 1951 bool Program::applyUniform4bv(GLint location, GLsizei count, const GLboolean *v) 1952 { 1953 D3DXVECTOR4 *vector = new D3DXVECTOR4[count]; 1954 1955 for (int i = 0; i < count; i++) 1956 { 1957 vector[i] = D3DXVECTOR4((v[0] == GL_FALSE ? 0.0f : 1.0f), 1958 (v[1] == GL_FALSE ? 0.0f : 1.0f), 1959 (v[2] == GL_FALSE ? 0.0f : 1.0f), 1960 (v[3] == GL_FALSE ? 0.0f : 1.0f)); 1961 1962 v += 3; 1963 } 1964 1965 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 1966 1967 D3DXHANDLE constantPS; 1968 D3DXHANDLE constantVS; 1969 getConstantHandles(targetUniform, &constantPS, &constantVS); 1970 IDirect3DDevice9 *device = getDevice(); 1971 1972 if (constantPS) 1973 { 1974 mConstantTablePS->SetVectorArray(device, constantPS, vector, count); 1975 } 1976 1977 if (constantVS) 1978 { 1979 mConstantTableVS->SetVectorArray(device, constantVS, vector, count); 1980 } 1981 1982 delete [] vector; 1983 1984 return true; 1985 } 1986 1987 bool Program::applyUniform1fv(GLint location, GLsizei count, const GLfloat *v) 1988 { 1989 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 1990 1991 D3DXHANDLE constantPS; 1992 D3DXHANDLE constantVS; 1993 getConstantHandles(targetUniform, &constantPS, &constantVS); 1994 IDirect3DDevice9 *device = getDevice(); 1995 1996 if (constantPS) 1997 { 1998 mConstantTablePS->SetFloatArray(device, constantPS, v, count); 1999 } 2000 2001 if (constantVS) 2002 { 2003 mConstantTableVS->SetFloatArray(device, constantVS, v, count); 2004 } 2005 2006 return true; 2007 } 2008 2009 bool Program::applyUniform2fv(GLint location, GLsizei count, const GLfloat *v) 2010 { 2011 D3DXVECTOR4 *vector = new D3DXVECTOR4[count]; 2012 2013 for (int i = 0; i < count; i++) 2014 { 2015 vector[i] = D3DXVECTOR4(v[0], v[1], 0, 0); 2016 2017 v += 2; 2018 } 2019 2020 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 2021 2022 D3DXHANDLE constantPS; 2023 D3DXHANDLE constantVS; 2024 getConstantHandles(targetUniform, &constantPS, &constantVS); 2025 IDirect3DDevice9 *device = getDevice(); 2026 2027 if (constantPS) 2028 { 2029 mConstantTablePS->SetVectorArray(device, constantPS, vector, count); 2030 } 2031 2032 if (constantVS) 2033 { 2034 mConstantTableVS->SetVectorArray(device, constantVS, vector, count); 2035 } 2036 2037 delete[] vector; 2038 2039 return true; 2040 } 2041 2042 bool Program::applyUniform3fv(GLint location, GLsizei count, const GLfloat *v) 2043 { 2044 D3DXVECTOR4 *vector = new D3DXVECTOR4[count]; 2045 2046 for (int i = 0; i < count; i++) 2047 { 2048 vector[i] = D3DXVECTOR4(v[0], v[1], v[2], 0); 2049 2050 v += 3; 2051 } 2052 2053 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 2054 2055 D3DXHANDLE constantPS; 2056 D3DXHANDLE constantVS; 2057 getConstantHandles(targetUniform, &constantPS, &constantVS); 2058 IDirect3DDevice9 *device = getDevice(); 2059 2060 if (constantPS) 2061 { 2062 mConstantTablePS->SetVectorArray(device, constantPS, vector, count); 2063 } 2064 2065 if (constantVS) 2066 { 2067 mConstantTableVS->SetVectorArray(device, constantVS, vector, count); 2068 } 2069 2070 delete[] vector; 2071 2072 return true; 2073 } 2074 2075 bool Program::applyUniform4fv(GLint location, GLsizei count, const GLfloat *v) 2076 { 2077 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 2078 2079 D3DXHANDLE constantPS; 2080 D3DXHANDLE constantVS; 2081 getConstantHandles(targetUniform, &constantPS, &constantVS); 2082 IDirect3DDevice9 *device = getDevice(); 2083 2084 if (constantPS) 2085 { 2086 mConstantTablePS->SetVectorArray(device, constantPS, (D3DXVECTOR4*)v, count); 2087 } 2088 2089 if (constantVS) 2090 { 2091 mConstantTableVS->SetVectorArray(device, constantVS, (D3DXVECTOR4*)v, count); 2092 } 2093 2094 return true; 2095 } 2096 2097 bool Program::applyUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value) 2098 { 2099 D3DXMATRIX *matrix = new D3DXMATRIX[count]; 2100 2101 for (int i = 0; i < count; i++) 2102 { 2103 matrix[i] = D3DXMATRIX(value[0], value[2], 0, 0, 2104 value[1], value[3], 0, 0, 2105 0, 0, 1, 0, 2106 0, 0, 0, 1); 2107 2108 value += 4; 2109 } 2110 2111 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 2112 2113 D3DXHANDLE constantPS; 2114 D3DXHANDLE constantVS; 2115 getConstantHandles(targetUniform, &constantPS, &constantVS); 2116 IDirect3DDevice9 *device = getDevice(); 2117 2118 if (constantPS) 2119 { 2120 mConstantTablePS->SetMatrixTransposeArray(device, constantPS, matrix, count); 2121 } 2122 2123 if (constantVS) 2124 { 2125 mConstantTableVS->SetMatrixTransposeArray(device, constantVS, matrix, count); 2126 } 2127 2128 delete[] matrix; 2129 2130 return true; 2131 } 2132 2133 bool Program::applyUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value) 2134 { 2135 D3DXMATRIX *matrix = new D3DXMATRIX[count]; 2136 2137 for (int i = 0; i < count; i++) 2138 { 2139 matrix[i] = D3DXMATRIX(value[0], value[3], value[6], 0, 2140 value[1], value[4], value[7], 0, 2141 value[2], value[5], value[8], 0, 2142 0, 0, 0, 1); 2143 2144 value += 9; 2145 } 2146 2147 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 2148 2149 D3DXHANDLE constantPS; 2150 D3DXHANDLE constantVS; 2151 getConstantHandles(targetUniform, &constantPS, &constantVS); 2152 IDirect3DDevice9 *device = getDevice(); 2153 2154 if (constantPS) 2155 { 2156 mConstantTablePS->SetMatrixTransposeArray(device, constantPS, matrix, count); 2157 } 2158 2159 if (constantVS) 2160 { 2161 mConstantTableVS->SetMatrixTransposeArray(device, constantVS, matrix, count); 2162 } 2163 2164 delete[] matrix; 2165 2166 return true; 2167 } 2168 2169 bool Program::applyUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value) 2170 { 2171 D3DXMATRIX *matrix = new D3DXMATRIX[count]; 2172 2173 for (int i = 0; i < count; i++) 2174 { 2175 matrix[i] = D3DXMATRIX(value[0], value[4], value[8], value[12], 2176 value[1], value[5], value[9], value[13], 2177 value[2], value[6], value[10], value[14], 2178 value[3], value[7], value[11], value[15]); 2179 2180 value += 16; 2181 } 2182 2183 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 2184 2185 D3DXHANDLE constantPS; 2186 D3DXHANDLE constantVS; 2187 getConstantHandles(targetUniform, &constantPS, &constantVS); 2188 IDirect3DDevice9 *device = getDevice(); 2189 2190 if (constantPS) 2191 { 2192 mConstantTablePS->SetMatrixTransposeArray(device, constantPS, matrix, count); 2193 } 2194 2195 if (constantVS) 2196 { 2197 mConstantTableVS->SetMatrixTransposeArray(device, constantVS, matrix, count); 2198 } 2199 2200 delete[] matrix; 2201 2202 return true; 2203 } 2204 2205 bool Program::applyUniform1iv(GLint location, GLsizei count, const GLint *v) 2206 { 2207 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 2208 2209 D3DXHANDLE constantPS; 2210 D3DXHANDLE constantVS; 2211 getConstantHandles(targetUniform, &constantPS, &constantVS); 2212 IDirect3DDevice9 *device = getDevice(); 2213 2214 if (constantPS) 2215 { 2216 D3DXCONSTANT_DESC constantDescription; 2217 UINT descriptionCount = 1; 2218 HRESULT result = mConstantTablePS->GetConstantDesc(constantPS, &constantDescription, &descriptionCount); 2219 2220 if (FAILED(result)) 2221 { 2222 return false; 2223 } 2224 2225 if (constantDescription.RegisterSet == D3DXRS_SAMPLER) 2226 { 2227 unsigned int firstIndex = mConstantTablePS->GetSamplerIndex(constantPS); 2228 2229 for (int i = 0; i < count; i++) 2230 { 2231 unsigned int samplerIndex = firstIndex + i; 2232 2233 if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS) 2234 { 2235 ASSERT(mSamplers[samplerIndex].active); 2236 mSamplers[samplerIndex].logicalTextureUnit = v[i]; 2237 mSamplers[samplerIndex].dirty = true; 2238 } 2239 } 2240 2241 return true; 2242 } 2243 } 2244 2245 if (constantPS) 2246 { 2247 mConstantTablePS->SetIntArray(device, constantPS, v, count); 2248 } 2249 2250 if (constantVS) 2251 { 2252 mConstantTableVS->SetIntArray(device, constantVS, v, count); 2253 } 2254 2255 return true; 2256 } 2257 2258 bool Program::applyUniform2iv(GLint location, GLsizei count, const GLint *v) 2259 { 2260 D3DXVECTOR4 *vector = new D3DXVECTOR4[count]; 2261 2262 for (int i = 0; i < count; i++) 2263 { 2264 vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], 0, 0); 2265 2266 v += 2; 2267 } 2268 2269 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 2270 2271 D3DXHANDLE constantPS; 2272 D3DXHANDLE constantVS; 2273 getConstantHandles(targetUniform, &constantPS, &constantVS); 2274 IDirect3DDevice9 *device = getDevice(); 2275 2276 if (constantPS) 2277 { 2278 mConstantTablePS->SetVectorArray(device, constantPS, vector, count); 2279 } 2280 2281 if (constantVS) 2282 { 2283 mConstantTableVS->SetVectorArray(device, constantVS, vector, count); 2284 } 2285 2286 delete[] vector; 2287 2288 return true; 2289 } 2290 2291 bool Program::applyUniform3iv(GLint location, GLsizei count, const GLint *v) 2292 { 2293 D3DXVECTOR4 *vector = new D3DXVECTOR4[count]; 2294 2295 for (int i = 0; i < count; i++) 2296 { 2297 vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], (float)v[2], 0); 2298 2299 v += 3; 2300 } 2301 2302 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 2303 2304 D3DXHANDLE constantPS; 2305 D3DXHANDLE constantVS; 2306 getConstantHandles(targetUniform, &constantPS, &constantVS); 2307 IDirect3DDevice9 *device = getDevice(); 2308 2309 if (constantPS) 2310 { 2311 mConstantTablePS->SetVectorArray(device, constantPS, vector, count); 2312 } 2313 2314 if (constantVS) 2315 { 2316 mConstantTableVS->SetVectorArray(device, constantVS, vector, count); 2317 } 2318 2319 delete[] vector; 2320 2321 return true; 2322 } 2323 2324 bool Program::applyUniform4iv(GLint location, GLsizei count, const GLint *v) 2325 { 2326 D3DXVECTOR4 *vector = new D3DXVECTOR4[count]; 2327 2328 for (int i = 0; i < count; i++) 2329 { 2330 vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], (float)v[2], (float)v[3]); 2331 2332 v += 4; 2333 } 2334 2335 Uniform *targetUniform = mUniforms[mUniformIndex[location].index]; 2336 2337 D3DXHANDLE constantPS; 2338 D3DXHANDLE constantVS; 2339 getConstantHandles(targetUniform, &constantPS, &constantVS); 2340 IDirect3DDevice9 *device = getDevice(); 2341 2342 if (constantPS) 2343 { 2344 mConstantTablePS->SetVectorArray(device, constantPS, vector, count); 2345 } 2346 2347 if (constantVS) 2348 { 2349 mConstantTableVS->SetVectorArray(device, constantVS, vector, count); 2350 } 2351 2352 delete [] vector; 2353 2354 return true; 2355 } 2356 2357 void Program::appendToInfoLog(const char *format, ...) 2358 { 2359 if (!format) 2360 { 2361 return; 2362 } 2363 2364 char info[1024]; 2365 2366 va_list vararg; 2367 va_start(vararg, format); 2368 vsnprintf(info, sizeof(info), format, vararg); 2369 va_end(vararg); 2370 2371 size_t infoLength = strlen(info); 2372 2373 if (!mInfoLog) 2374 { 2375 mInfoLog = new char[infoLength + 1]; 2376 strcpy(mInfoLog, info); 2377 } 2378 else 2379 { 2380 size_t logLength = strlen(mInfoLog); 2381 char *newLog = new char[logLength + infoLength + 1]; 2382 strcpy(newLog, mInfoLog); 2383 strcpy(newLog + logLength, info); 2384 2385 delete[] mInfoLog; 2386 mInfoLog = newLog; 2387 } 2388 } 2389 2390 void Program::resetInfoLog() 2391 { 2392 if (mInfoLog) 2393 { 2394 delete [] mInfoLog; 2395 mInfoLog = NULL; 2396 } 2397 } 2398 2399 // Returns the program object to an unlinked state, after detaching a shader, before re-linking, or at destruction 2400 void Program::unlink(bool destroy) 2401 { 2402 if (destroy) // Object being destructed 2403 { 2404 if (mFragmentShader) 2405 { 2406 mFragmentShader->release(); 2407 mFragmentShader = NULL; 2408 } 2409 2410 if (mVertexShader) 2411 { 2412 mVertexShader->release(); 2413 mVertexShader = NULL; 2414 } 2415 } 2416 2417 if (mPixelExecutable) 2418 { 2419 mPixelExecutable->Release(); 2420 mPixelExecutable = NULL; 2421 } 2422 2423 if (mVertexExecutable) 2424 { 2425 mVertexExecutable->Release(); 2426 mVertexExecutable = NULL; 2427 } 2428 2429 if (mConstantTablePS) 2430 { 2431 mConstantTablePS->Release(); 2432 mConstantTablePS = NULL; 2433 } 2434 2435 if (mConstantTableVS) 2436 { 2437 mConstantTableVS->Release(); 2438 mConstantTableVS = NULL; 2439 } 2440 2441 for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++) 2442 { 2443 mLinkedAttribute[index].name.clear(); 2444 mSemanticIndex[index] = -1; 2445 } 2446 2447 for (int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++) 2448 { 2449 mSamplers[index].active = false; 2450 mSamplers[index].dirty = true; 2451 } 2452 2453 while (!mUniforms.empty()) 2454 { 2455 delete mUniforms.back(); 2456 mUniforms.pop_back(); 2457 } 2458 2459 mDxDepthRangeLocation = -1; 2460 mDxDepthLocation = -1; 2461 mDxViewportLocation = -1; 2462 mDxHalfPixelSizeLocation = -1; 2463 mDxFrontCCWLocation = -1; 2464 mDxPointsOrLinesLocation = -1; 2465 2466 mUniformIndex.clear(); 2467 2468 mPixelHLSL.clear(); 2469 mVertexHLSL.clear(); 2470 2471 delete[] mInfoLog; 2472 mInfoLog = NULL; 2473 2474 mLinked = false; 2475 } 2476 2477 bool Program::isLinked() 2478 { 2479 return mLinked; 2480 } 2481 2482 bool Program::isValidated() const 2483 { 2484 return mValidated; 2485 } 2486 2487 void Program::release() 2488 { 2489 mRefCount--; 2490 2491 if (mRefCount == 0 && mDeleteStatus) 2492 { 2493 mResourceManager->deleteProgram(mHandle); 2494 } 2495 } 2496 2497 void Program::addRef() 2498 { 2499 mRefCount++; 2500 } 2501 2502 unsigned int Program::getRefCount() const 2503 { 2504 return mRefCount; 2505 } 2506 2507 unsigned int Program::getSerial() const 2508 { 2509 return mSerial; 2510 } 2511 2512 unsigned int Program::issueSerial() 2513 { 2514 return mCurrentSerial++; 2515 } 2516 2517 int Program::getInfoLogLength() const 2518 { 2519 if (!mInfoLog) 2520 { 2521 return 0; 2522 } 2523 else 2524 { 2525 return strlen(mInfoLog) + 1; 2526 } 2527 } 2528 2529 void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *infoLog) 2530 { 2531 int index = 0; 2532 2533 if (mInfoLog) 2534 { 2535 while (index < bufSize - 1 && index < (int)strlen(mInfoLog)) 2536 { 2537 infoLog[index] = mInfoLog[index]; 2538 index++; 2539 } 2540 } 2541 2542 if (bufSize) 2543 { 2544 infoLog[index] = '\0'; 2545 } 2546 2547 if (length) 2548 { 2549 *length = index; 2550 } 2551 } 2552 2553 void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders) 2554 { 2555 int total = 0; 2556 2557 if (mVertexShader) 2558 { 2559 if (total < maxCount) 2560 { 2561 shaders[total] = mVertexShader->getHandle(); 2562 } 2563 2564 total++; 2565 } 2566 2567 if (mFragmentShader) 2568 { 2569 if (total < maxCount) 2570 { 2571 shaders[total] = mFragmentShader->getHandle(); 2572 } 2573 2574 total++; 2575 } 2576 2577 if (count) 2578 { 2579 *count = total; 2580 } 2581 } 2582 2583 void Program::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) 2584 { 2585 // Skip over inactive attributes 2586 unsigned int activeAttribute = 0; 2587 unsigned int attribute; 2588 for (attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++) 2589 { 2590 if (mLinkedAttribute[attribute].name.empty()) 2591 { 2592 continue; 2593 } 2594 2595 if (activeAttribute == index) 2596 { 2597 break; 2598 } 2599 2600 activeAttribute++; 2601 } 2602 2603 if (bufsize > 0) 2604 { 2605 const char *string = mLinkedAttribute[attribute].name.c_str(); 2606 2607 strncpy(name, string, bufsize); 2608 name[bufsize - 1] = '\0'; 2609 2610 if (length) 2611 { 2612 *length = strlen(name); 2613 } 2614 } 2615 2616 *size = 1; // Always a single 'type' instance 2617 2618 *type = mLinkedAttribute[attribute].type; 2619 } 2620 2621 GLint Program::getActiveAttributeCount() 2622 { 2623 int count = 0; 2624 2625 for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) 2626 { 2627 if (!mLinkedAttribute[attributeIndex].name.empty()) 2628 { 2629 count++; 2630 } 2631 } 2632 2633 return count; 2634 } 2635 2636 GLint Program::getActiveAttributeMaxLength() 2637 { 2638 int maxLength = 0; 2639 2640 for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) 2641 { 2642 if (!mLinkedAttribute[attributeIndex].name.empty()) 2643 { 2644 maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength); 2645 } 2646 } 2647 2648 return maxLength; 2649 } 2650 2651 void Program::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) 2652 { 2653 // Skip over internal uniforms 2654 unsigned int activeUniform = 0; 2655 unsigned int uniform; 2656 for (uniform = 0; uniform < mUniforms.size(); uniform++) 2657 { 2658 if (mUniforms[uniform]->name.substr(0, 3) == "dx_") 2659 { 2660 continue; 2661 } 2662 2663 if (activeUniform == index) 2664 { 2665 break; 2666 } 2667 2668 activeUniform++; 2669 } 2670 2671 ASSERT(uniform < mUniforms.size()); // index must be smaller than getActiveUniformCount() 2672 2673 if (bufsize > 0) 2674 { 2675 std::string string = undecorate(mUniforms[uniform]->name); 2676 2677 if (mUniforms[uniform]->arraySize != 1) 2678 { 2679 string += "[0]"; 2680 } 2681 2682 strncpy(name, string.c_str(), bufsize); 2683 name[bufsize - 1] = '\0'; 2684 2685 if (length) 2686 { 2687 *length = strlen(name); 2688 } 2689 } 2690 2691 *size = mUniforms[uniform]->arraySize; 2692 2693 *type = mUniforms[uniform]->type; 2694 } 2695 2696 GLint Program::getActiveUniformCount() 2697 { 2698 int count = 0; 2699 2700 unsigned int numUniforms = mUniforms.size(); 2701 for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++) 2702 { 2703 if (mUniforms[uniformIndex]->name.substr(0, 3) != "dx_") 2704 { 2705 count++; 2706 } 2707 } 2708 2709 return count; 2710 } 2711 2712 GLint Program::getActiveUniformMaxLength() 2713 { 2714 int maxLength = 0; 2715 2716 unsigned int numUniforms = mUniforms.size(); 2717 for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++) 2718 { 2719 if (!mUniforms[uniformIndex]->name.empty() && mUniforms[uniformIndex]->name.substr(0, 3) != "dx_") 2720 { 2721 maxLength = std::max((int)(undecorate(mUniforms[uniformIndex]->name).length() + 1), maxLength); 2722 } 2723 } 2724 2725 return maxLength; 2726 } 2727 2728 void Program::flagForDeletion() 2729 { 2730 mDeleteStatus = true; 2731 } 2732 2733 bool Program::isFlaggedForDeletion() const 2734 { 2735 return mDeleteStatus; 2736 } 2737 2738 void Program::validate() 2739 { 2740 resetInfoLog(); 2741 2742 if (!isLinked()) 2743 { 2744 appendToInfoLog("Program has not been successfully linked."); 2745 mValidated = false; 2746 } 2747 else 2748 { 2749 applyUniforms(); 2750 if (!validateSamplers()) 2751 { 2752 appendToInfoLog("Samplers of conflicting types refer to the same texture image unit."); 2753 mValidated = false; 2754 } 2755 else 2756 { 2757 mValidated = true; 2758 } 2759 } 2760 } 2761 2762 bool Program::validateSamplers() const 2763 { 2764 // if any two active samplers in a program are of different types, but refer to the same 2765 // texture image unit, and this is the current program, then ValidateProgram will fail, and 2766 // DrawArrays and DrawElements will issue the INVALID_OPERATION error. 2767 std::map<int, SamplerType> samplerMap; 2768 for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i) 2769 { 2770 if (mSamplers[i].active) 2771 { 2772 if (samplerMap.find(mSamplers[i].logicalTextureUnit) != samplerMap.end()) 2773 { 2774 if (mSamplers[i].type != samplerMap[mSamplers[i].logicalTextureUnit]) 2775 return false; 2776 } 2777 else 2778 { 2779 samplerMap[mSamplers[i].logicalTextureUnit] = mSamplers[i].type; 2780 } 2781 } 2782 } 2783 2784 return true; 2785 } 2786 2787 void Program::getConstantHandles(Uniform *targetUniform, D3DXHANDLE *constantPS, D3DXHANDLE *constantVS) 2788 { 2789 if (!targetUniform->handlesSet) 2790 { 2791 targetUniform->psHandle = mConstantTablePS->GetConstantByName(0, targetUniform->name.c_str()); 2792 targetUniform->vsHandle = mConstantTableVS->GetConstantByName(0, targetUniform->name.c_str()); 2793 targetUniform->handlesSet = true; 2794 } 2795 2796 *constantPS = targetUniform->psHandle; 2797 *constantVS = targetUniform->vsHandle; 2798 } 2799 2800 GLint Program::getDxDepthRangeLocation() const 2801 { 2802 return mDxDepthRangeLocation; 2803 } 2804 2805 GLint Program::getDxDepthLocation() const 2806 { 2807 return mDxDepthLocation; 2808 } 2809 2810 GLint Program::getDxViewportLocation() const 2811 { 2812 return mDxViewportLocation; 2813 } 2814 2815 GLint Program::getDxHalfPixelSizeLocation() const 2816 { 2817 return mDxHalfPixelSizeLocation; 2818 } 2819 2820 GLint Program::getDxFrontCCWLocation() const 2821 { 2822 return mDxFrontCCWLocation; 2823 } 2824 2825 GLint Program::getDxPointsOrLinesLocation() const 2826 { 2827 return mDxPointsOrLinesLocation; 2828 } 2829 2830 } 2831