1 /* 2 * Copyright (C) 2008 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 /* 18 * Class loading, including bootstrap class loader, linking, and 19 * initialization. 20 */ 21 22 #define LOG_CLASS_LOADING 0 23 24 #include "Dalvik.h" 25 #include "libdex/DexClass.h" 26 #include "analysis/Optimize.h" 27 28 #include <stdlib.h> 29 #include <stddef.h> 30 #include <sys/stat.h> 31 32 #if LOG_CLASS_LOADING 33 #include <unistd.h> 34 #include <pthread.h> 35 #include <cutils/process_name.h> 36 #include <sys/types.h> 37 #endif 38 39 /* 40 Notes on Linking and Verification 41 42 The basic way to retrieve a class is to load it, make sure its superclass 43 and interfaces are available, prepare its fields, and return it. This gets 44 a little more complicated when multiple threads can be trying to retrieve 45 the class simultaneously, requiring that we use the class object's monitor 46 to keep things orderly. 47 48 The linking (preparing, resolving) of a class can cause us to recursively 49 load superclasses and interfaces. Barring circular references (e.g. two 50 classes that are superclasses of each other), this will complete without 51 the loader attempting to access the partially-linked class. 52 53 With verification, the situation is different. If we try to verify 54 every class as we load it, we quickly run into trouble. Even the lowly 55 java.lang.Object requires CloneNotSupportedException; follow the list 56 of referenced classes and you can head down quite a trail. The trail 57 eventually leads back to Object, which is officially not fully-formed yet. 58 59 The VM spec (specifically, v2 5.4.1) notes that classes pulled in during 60 verification do not need to be prepared or verified. This means that we 61 are allowed to have loaded but unverified classes. It further notes that 62 the class must be verified before it is initialized, which allows us to 63 defer verification for all classes until class init. You can't execute 64 code or access fields in an uninitialized class, so this is safe. 65 66 It also allows a more peaceful coexistence between verified and 67 unverifiable code. If class A refers to B, and B has a method that 68 refers to a bogus class C, should we allow class A to be verified? 69 If A only exercises parts of B that don't use class C, then there is 70 nothing wrong with running code in A. We can fully verify both A and B, 71 and allow execution to continue until B causes initialization of C. The 72 VerifyError is thrown close to the point of use. 73 74 This gets a little weird with java.lang.Class, which is the only class 75 that can be instantiated before it is initialized. We have to force 76 initialization right after the class is created, because by definition we 77 have instances of it on the heap, and somebody might get a class object and 78 start making virtual calls on it. We can end up going recursive during 79 verification of java.lang.Class, but we avoid that by checking to see if 80 verification is already in progress before we try to initialize it. 81 */ 82 83 /* 84 Notes on class loaders and interaction with optimization / verification 85 86 In what follows, "pre-verification" and "optimization" are the steps 87 performed by the dexopt command, which attempts to verify and optimize 88 classes as part of unpacking jar files and storing the DEX data in the 89 dalvik-cache directory. These steps are performed by loading the DEX 90 files directly, without any assistance from ClassLoader instances. 91 92 When we pre-verify and optimize a class in a DEX file, we make some 93 assumptions about where the class loader will go to look for classes. 94 If we can't guarantee those assumptions, e.g. because a class ("AppClass") 95 references something not defined in the bootstrap jars or the AppClass jar, 96 we can't pre-verify or optimize the class. 97 98 The VM doesn't define the behavior of user-defined class loaders. 99 For example, suppose application class AppClass, loaded by UserLoader, 100 has a method that creates a java.lang.String. The first time 101 AppClass.stringyMethod tries to do something with java.lang.String, it 102 asks UserLoader to find it. UserLoader is expected to defer to its parent 103 loader, but isn't required to. UserLoader might provide a replacement 104 for String. 105 106 We can run into trouble if we pre-verify AppClass with the assumption that 107 java.lang.String will come from core.jar, and don't verify this assumption 108 at runtime. There are two places that an alternate implementation of 109 java.lang.String can come from: the AppClass jar, or from some other jar 110 that UserLoader knows about. (Someday UserLoader will be able to generate 111 some bytecode and call DefineClass, but not yet.) 112 113 To handle the first situation, the pre-verifier will explicitly check for 114 conflicts between the class being optimized/verified and the bootstrap 115 classes. If an app jar contains a class that has the same package and 116 class name as a class in a bootstrap jar, the verification resolver refuses 117 to find either, which will block pre-verification and optimization on 118 classes that reference ambiguity. The VM will postpone verification of 119 the app class until first load. 120 121 For the second situation, we need to ensure that all references from a 122 pre-verified class are satisified by the class' jar or earlier bootstrap 123 jars. In concrete terms: when resolving a reference to NewClass, 124 which was caused by a reference in class AppClass, we check to see if 125 AppClass was pre-verified. If so, we require that NewClass comes out 126 of either the AppClass jar or one of the jars in the bootstrap path. 127 (We may not control the class loaders, but we do manage the DEX files. 128 We can verify that it's either (loader==null && dexFile==a_boot_dex) 129 or (loader==UserLoader && dexFile==AppClass.dexFile). Classes from 130 DefineClass can't be pre-verified, so this doesn't apply.) 131 132 This should ensure that you can't "fake out" the pre-verifier by creating 133 a user-defined class loader that replaces system classes. It should 134 also ensure that you can write such a loader and have it work in the 135 expected fashion; all you lose is some performance due to "just-in-time 136 verification" and the lack of DEX optimizations. 137 138 There is a "back door" of sorts in the class resolution check, due to 139 the fact that the "class ref" entries are shared between the bytecode 140 and meta-data references (e.g. annotations and exception handler lists). 141 The class references in annotations have no bearing on class verification, 142 so when a class does an annotation query that causes a class reference 143 index to be resolved, we don't want to fail just because the calling 144 class was pre-verified and the resolved class is in some random DEX file. 145 The successful resolution adds the class to the "resolved classes" table, 146 so when optimized bytecode references it we don't repeat the resolve-time 147 check. We can avoid this by not updating the "resolved classes" table 148 when the class reference doesn't come out of something that has been 149 checked by the verifier, but that has a nonzero performance impact. 150 Since the ultimate goal of this test is to catch an unusual situation 151 (user-defined class loaders redefining core classes), the added caution 152 may not be worth the performance hit. 153 */ 154 155 /* 156 * Class serial numbers start at this value. We use a nonzero initial 157 * value so they stand out in binary dumps (e.g. hprof output). 158 */ 159 #define INITIAL_CLASS_SERIAL_NUMBER 0x50000000 160 161 /* 162 * Constant used to size an auxillary class object data structure. 163 * For optimum memory use this should be equal to or slightly larger than 164 * the number of classes loaded when the zygote finishes initializing. 165 */ 166 #define ZYGOTE_CLASS_CUTOFF 2304 167 168 #define CLASS_SFIELD_SLOTS 1 169 170 static ClassPathEntry* processClassPath(const char* pathStr, bool isBootstrap); 171 static void freeCpeArray(ClassPathEntry* cpe); 172 173 static ClassObject* findClassFromLoaderNoInit( 174 const char* descriptor, Object* loader); 175 static ClassObject* findClassNoInit(const char* descriptor, Object* loader,\ 176 DvmDex* pDvmDex); 177 static ClassObject* loadClassFromDex(DvmDex* pDvmDex, 178 const DexClassDef* pClassDef, Object* loader); 179 static void loadMethodFromDex(ClassObject* clazz, const DexMethod* pDexMethod,\ 180 Method* meth); 181 static int computeJniArgInfo(const DexProto* proto); 182 static void loadSFieldFromDex(ClassObject* clazz, 183 const DexField* pDexSField, StaticField* sfield); 184 static void loadIFieldFromDex(ClassObject* clazz, 185 const DexField* pDexIField, InstField* field); 186 static bool precacheReferenceOffsets(ClassObject* clazz); 187 static void computeRefOffsets(ClassObject* clazz); 188 static void freeMethodInnards(Method* meth); 189 static bool createVtable(ClassObject* clazz); 190 static bool createIftable(ClassObject* clazz); 191 static bool insertMethodStubs(ClassObject* clazz); 192 static bool computeFieldOffsets(ClassObject* clazz); 193 static void throwEarlierClassFailure(ClassObject* clazz); 194 195 #if LOG_CLASS_LOADING 196 /* 197 * Logs information about a class loading with given timestamp. 198 * 199 * TODO: In the case where we fail in dvmLinkClass() and log the class as closing (type='<'), 200 * it would probably be better to use a new type code to indicate the failure. This change would 201 * require a matching change in the parser and analysis code in frameworks/base/tools/preload. 202 */ 203 static void logClassLoadWithTime(char type, ClassObject* clazz, u8 time) { 204 pid_t ppid = getppid(); 205 pid_t pid = getpid(); 206 unsigned int tid = (unsigned int) pthread_self(); 207 208 ALOG(LOG_INFO, "PRELOAD", "%c%d:%d:%d:%s:%d:%s:%lld", type, ppid, pid, tid, 209 get_process_name(), (int) clazz->classLoader, clazz->descriptor, 210 time); 211 } 212 213 /* 214 * Logs information about a class loading. 215 */ 216 static void logClassLoad(char type, ClassObject* clazz) { 217 logClassLoadWithTime(type, clazz, dvmGetThreadCpuTimeNsec()); 218 } 219 #endif 220 221 /* 222 * Some LinearAlloc unit tests. 223 */ 224 static void linearAllocTests() 225 { 226 char* fiddle; 227 int test = 1; 228 229 switch (test) { 230 case 0: 231 fiddle = (char*)dvmLinearAlloc(NULL, 3200-28); 232 dvmLinearReadOnly(NULL, (char*)fiddle); 233 break; 234 case 1: 235 fiddle = (char*)dvmLinearAlloc(NULL, 3200-24); 236 dvmLinearReadOnly(NULL, (char*)fiddle); 237 break; 238 case 2: 239 fiddle = (char*)dvmLinearAlloc(NULL, 3200-20); 240 dvmLinearReadOnly(NULL, (char*)fiddle); 241 break; 242 case 3: 243 fiddle = (char*)dvmLinearAlloc(NULL, 3200-16); 244 dvmLinearReadOnly(NULL, (char*)fiddle); 245 break; 246 case 4: 247 fiddle = (char*)dvmLinearAlloc(NULL, 3200-12); 248 dvmLinearReadOnly(NULL, (char*)fiddle); 249 break; 250 } 251 fiddle = (char*)dvmLinearAlloc(NULL, 896); 252 dvmLinearReadOnly(NULL, (char*)fiddle); 253 fiddle = (char*)dvmLinearAlloc(NULL, 20); // watch addr of this alloc 254 dvmLinearReadOnly(NULL, (char*)fiddle); 255 256 fiddle = (char*)dvmLinearAlloc(NULL, 1); 257 fiddle[0] = 'q'; 258 dvmLinearReadOnly(NULL, fiddle); 259 fiddle = (char*)dvmLinearAlloc(NULL, 4096); 260 fiddle[0] = 'x'; 261 fiddle[4095] = 'y'; 262 dvmLinearReadOnly(NULL, fiddle); 263 dvmLinearFree(NULL, fiddle); 264 fiddle = (char*)dvmLinearAlloc(NULL, 0); 265 dvmLinearReadOnly(NULL, fiddle); 266 fiddle = (char*)dvmLinearRealloc(NULL, fiddle, 12); 267 fiddle[11] = 'z'; 268 dvmLinearReadOnly(NULL, (char*)fiddle); 269 fiddle = (char*)dvmLinearRealloc(NULL, fiddle, 5); 270 dvmLinearReadOnly(NULL, fiddle); 271 fiddle = (char*)dvmLinearAlloc(NULL, 17001); 272 fiddle[0] = 'x'; 273 fiddle[17000] = 'y'; 274 dvmLinearReadOnly(NULL, (char*)fiddle); 275 276 char* str = (char*)dvmLinearStrdup(NULL, "This is a test!"); 277 ALOGI("GOT: '%s'", str); 278 279 /* try to check the bounds; allocator may round allocation size up */ 280 fiddle = (char*)dvmLinearAlloc(NULL, 12); 281 ALOGI("Should be 1: %d", dvmLinearAllocContains(fiddle, 12)); 282 ALOGI("Should be 0: %d", dvmLinearAllocContains(fiddle, 13)); 283 ALOGI("Should be 0: %d", dvmLinearAllocContains(fiddle - 128*1024, 1)); 284 285 dvmLinearAllocDump(NULL); 286 dvmLinearFree(NULL, (char*)str); 287 } 288 289 static size_t classObjectSize(size_t sfieldCount) 290 { 291 size_t offset = OFFSETOF_MEMBER(ClassObject, sfields); 292 return offset + sizeof(StaticField) * sfieldCount; 293 } 294 295 size_t dvmClassObjectSize(const ClassObject *clazz) 296 { 297 assert(clazz != NULL); 298 return classObjectSize(clazz->sfieldCount); 299 } 300 301 /* (documented in header) */ 302 ClassObject* dvmFindPrimitiveClass(char type) 303 { 304 PrimitiveType primitiveType = dexGetPrimitiveTypeFromDescriptorChar(type); 305 306 switch (primitiveType) { 307 case PRIM_VOID: return gDvm.typeVoid; 308 case PRIM_BOOLEAN: return gDvm.typeBoolean; 309 case PRIM_BYTE: return gDvm.typeByte; 310 case PRIM_SHORT: return gDvm.typeShort; 311 case PRIM_CHAR: return gDvm.typeChar; 312 case PRIM_INT: return gDvm.typeInt; 313 case PRIM_LONG: return gDvm.typeLong; 314 case PRIM_FLOAT: return gDvm.typeFloat; 315 case PRIM_DOUBLE: return gDvm.typeDouble; 316 default: { 317 ALOGW("Unknown primitive type '%c'", type); 318 return NULL; 319 } 320 } 321 } 322 323 /* 324 * Synthesize a primitive class. 325 * 326 * Just creates the class and returns it (does not add it to the class list). 327 */ 328 static bool createPrimitiveType(PrimitiveType primitiveType, ClassObject** pClass) 329 { 330 /* 331 * Fill out a few fields in the ClassObject. 332 * 333 * Note that primitive classes do not sub-class the class Object. 334 * This matters for "instanceof" checks. Also, we assume that the 335 * primitive class does not override finalize(). 336 */ 337 338 const char* descriptor = dexGetPrimitiveTypeDescriptor(primitiveType); 339 assert(descriptor != NULL); 340 341 ClassObject* newClass = (ClassObject*) dvmMalloc(sizeof(*newClass), ALLOC_NON_MOVING); 342 if (newClass == NULL) { 343 return false; 344 } 345 346 DVM_OBJECT_INIT(newClass, gDvm.classJavaLangClass); 347 dvmSetClassSerialNumber(newClass); 348 SET_CLASS_FLAG(newClass, ACC_PUBLIC | ACC_FINAL | ACC_ABSTRACT); 349 newClass->primitiveType = primitiveType; 350 newClass->descriptorAlloc = NULL; 351 newClass->descriptor = descriptor; 352 newClass->super = NULL; 353 newClass->status = CLASS_INITIALIZED; 354 355 /* don't need to set newClass->objectSize */ 356 357 LOGVV("Constructed class for primitive type '%s'", newClass->descriptor); 358 359 *pClass = newClass; 360 dvmReleaseTrackedAlloc((Object*) newClass, NULL); 361 362 return true; 363 } 364 365 /* 366 * Create the initial class instances. These consist of the class 367 * Class and all of the classes representing primitive types. 368 */ 369 static bool createInitialClasses() { 370 /* 371 * Initialize the class Class. This has to be done specially, particularly 372 * because it is an instance of itself. 373 */ 374 ClassObject* clazz = (ClassObject*) 375 dvmMalloc(classObjectSize(CLASS_SFIELD_SLOTS), ALLOC_NON_MOVING); 376 if (clazz == NULL) { 377 return false; 378 } 379 DVM_OBJECT_INIT(clazz, clazz); 380 SET_CLASS_FLAG(clazz, ACC_PUBLIC | ACC_FINAL | CLASS_ISCLASS); 381 clazz->descriptor = "Ljava/lang/Class;"; 382 gDvm.classJavaLangClass = clazz; 383 LOGVV("Constructed the class Class."); 384 385 /* 386 * Initialize the classes representing primitive types. These are 387 * instances of the class Class, but other than that they're fairly 388 * different from regular classes. 389 */ 390 bool ok = true; 391 ok &= createPrimitiveType(PRIM_VOID, &gDvm.typeVoid); 392 ok &= createPrimitiveType(PRIM_BOOLEAN, &gDvm.typeBoolean); 393 ok &= createPrimitiveType(PRIM_BYTE, &gDvm.typeByte); 394 ok &= createPrimitiveType(PRIM_SHORT, &gDvm.typeShort); 395 ok &= createPrimitiveType(PRIM_CHAR, &gDvm.typeChar); 396 ok &= createPrimitiveType(PRIM_INT, &gDvm.typeInt); 397 ok &= createPrimitiveType(PRIM_LONG, &gDvm.typeLong); 398 ok &= createPrimitiveType(PRIM_FLOAT, &gDvm.typeFloat); 399 ok &= createPrimitiveType(PRIM_DOUBLE, &gDvm.typeDouble); 400 401 return ok; 402 } 403 404 /* 405 * Initialize the bootstrap class loader. 406 * 407 * Call this after the bootclasspath string has been finalized. 408 */ 409 bool dvmClassStartup() 410 { 411 /* make this a requirement -- don't currently support dirs in path */ 412 if (strcmp(gDvm.bootClassPathStr, ".") == 0) { 413 ALOGE("ERROR: must specify non-'.' bootclasspath"); 414 return false; 415 } 416 417 gDvm.loadedClasses = 418 dvmHashTableCreate(256, (HashFreeFunc) dvmFreeClassInnards); 419 420 gDvm.pBootLoaderAlloc = dvmLinearAllocCreate(NULL); 421 if (gDvm.pBootLoaderAlloc == NULL) 422 return false; 423 424 if (false) { 425 linearAllocTests(); 426 exit(0); 427 } 428 429 /* 430 * Class serial number. We start with a high value to make it distinct 431 * in binary dumps (e.g. hprof). 432 */ 433 gDvm.classSerialNumber = INITIAL_CLASS_SERIAL_NUMBER; 434 435 /* 436 * Set up the table we'll use for tracking initiating loaders for 437 * early classes. 438 * If it's NULL, we just fall back to the InitiatingLoaderList in the 439 * ClassObject, so it's not fatal to fail this allocation. 440 */ 441 gDvm.initiatingLoaderList = (InitiatingLoaderList*) 442 calloc(ZYGOTE_CLASS_CUTOFF, sizeof(InitiatingLoaderList)); 443 444 /* 445 * Create the initial classes. These are the first objects constructed 446 * within the nascent VM. 447 */ 448 if (!createInitialClasses()) { 449 return false; 450 } 451 452 /* 453 * Process the bootstrap class path. This means opening the specified 454 * DEX or Jar files and possibly running them through the optimizer. 455 */ 456 assert(gDvm.bootClassPath == NULL); 457 processClassPath(gDvm.bootClassPathStr, true); 458 459 if (gDvm.bootClassPath == NULL) 460 return false; 461 462 return true; 463 } 464 465 /* 466 * Clean up. 467 */ 468 void dvmClassShutdown() 469 { 470 /* discard all system-loaded classes */ 471 dvmHashTableFree(gDvm.loadedClasses); 472 gDvm.loadedClasses = NULL; 473 474 /* discard primitive classes created for arrays */ 475 dvmFreeClassInnards(gDvm.typeVoid); 476 dvmFreeClassInnards(gDvm.typeBoolean); 477 dvmFreeClassInnards(gDvm.typeByte); 478 dvmFreeClassInnards(gDvm.typeShort); 479 dvmFreeClassInnards(gDvm.typeChar); 480 dvmFreeClassInnards(gDvm.typeInt); 481 dvmFreeClassInnards(gDvm.typeLong); 482 dvmFreeClassInnards(gDvm.typeFloat); 483 dvmFreeClassInnards(gDvm.typeDouble); 484 485 /* this closes DEX files, JAR files, etc. */ 486 freeCpeArray(gDvm.bootClassPath); 487 gDvm.bootClassPath = NULL; 488 489 dvmLinearAllocDestroy(NULL); 490 491 free(gDvm.initiatingLoaderList); 492 } 493 494 495 /* 496 * =========================================================================== 497 * Bootstrap class loader 498 * =========================================================================== 499 */ 500 501 /* 502 * Dump the contents of a ClassPathEntry array. 503 */ 504 static void dumpClassPath(const ClassPathEntry* cpe) 505 { 506 int idx = 0; 507 508 while (cpe->kind != kCpeLastEntry) { 509 const char* kindStr; 510 511 switch (cpe->kind) { 512 case kCpeJar: kindStr = "jar"; break; 513 case kCpeDex: kindStr = "dex"; break; 514 default: kindStr = "???"; break; 515 } 516 517 ALOGI(" %2d: type=%s %s %p", idx, kindStr, cpe->fileName, cpe->ptr); 518 if (CALC_CACHE_STATS && cpe->kind == kCpeJar) { 519 JarFile* pJarFile = (JarFile*) cpe->ptr; 520 DvmDex* pDvmDex = dvmGetJarFileDex(pJarFile); 521 dvmDumpAtomicCacheStats(pDvmDex->pInterfaceCache); 522 } 523 524 cpe++; 525 idx++; 526 } 527 } 528 529 /* 530 * Dump the contents of the bootstrap class path. 531 */ 532 void dvmDumpBootClassPath() 533 { 534 dumpClassPath(gDvm.bootClassPath); 535 } 536 537 /* 538 * Returns "true" if the class path contains the specified path. 539 */ 540 bool dvmClassPathContains(const ClassPathEntry* cpe, const char* path) 541 { 542 while (cpe->kind != kCpeLastEntry) { 543 if (strcmp(cpe->fileName, path) == 0) 544 return true; 545 546 cpe++; 547 } 548 return false; 549 } 550 551 /* 552 * Free an array of ClassPathEntry structs. 553 * 554 * We release the contents of each entry, then free the array itself. 555 */ 556 static void freeCpeArray(ClassPathEntry* cpe) 557 { 558 ClassPathEntry* cpeStart = cpe; 559 560 if (cpe == NULL) 561 return; 562 563 while (cpe->kind != kCpeLastEntry) { 564 switch (cpe->kind) { 565 case kCpeJar: 566 /* free JarFile */ 567 dvmJarFileFree((JarFile*) cpe->ptr); 568 break; 569 case kCpeDex: 570 /* free RawDexFile */ 571 dvmRawDexFileFree((RawDexFile*) cpe->ptr); 572 break; 573 default: 574 assert(false); 575 break; 576 } 577 578 free(cpe->fileName); 579 cpe++; 580 } 581 582 free(cpeStart); 583 } 584 585 /* 586 * Get the filename suffix of the given file (everything after the 587 * last "." if any, or "<none>" if there's no apparent suffix). The 588 * passed-in buffer will always be '\0' terminated. 589 */ 590 static void getFileNameSuffix(const char* fileName, char* suffixBuf, size_t suffixBufLen) 591 { 592 const char* lastDot = strrchr(fileName, '.'); 593 594 strlcpy(suffixBuf, (lastDot == NULL) ? "<none>" : (lastDot + 1), suffixBufLen); 595 } 596 597 /* 598 * Prepare a ClassPathEntry struct, which at this point only has a valid 599 * filename. We need to figure out what kind of file it is, and for 600 * everything other than directories we need to open it up and see 601 * what's inside. 602 */ 603 static bool prepareCpe(ClassPathEntry* cpe, bool isBootstrap) 604 { 605 struct stat sb; 606 607 if (stat(cpe->fileName, &sb) < 0) { 608 ALOGD("Unable to stat classpath element '%s'", cpe->fileName); 609 return false; 610 } 611 if (S_ISDIR(sb.st_mode)) { 612 ALOGE("Directory classpath elements are not supported: %s", cpe->fileName); 613 return false; 614 } 615 616 char suffix[10]; 617 getFileNameSuffix(cpe->fileName, suffix, sizeof(suffix)); 618 619 if ((strcmp(suffix, "jar") == 0) || (strcmp(suffix, "zip") == 0) || 620 (strcmp(suffix, "apk") == 0)) { 621 JarFile* pJarFile = NULL; 622 if (dvmJarFileOpen(cpe->fileName, NULL, &pJarFile, isBootstrap) == 0) { 623 cpe->kind = kCpeJar; 624 cpe->ptr = pJarFile; 625 return true; 626 } 627 } else if (strcmp(suffix, "dex") == 0) { 628 RawDexFile* pRawDexFile = NULL; 629 if (dvmRawDexFileOpen(cpe->fileName, NULL, &pRawDexFile, isBootstrap) == 0) { 630 cpe->kind = kCpeDex; 631 cpe->ptr = pRawDexFile; 632 return true; 633 } 634 } else { 635 ALOGE("Unknown type suffix '%s'", suffix); 636 } 637 638 ALOGD("Unable to process classpath element '%s'", cpe->fileName); 639 return false; 640 } 641 642 /* 643 * Convert a colon-separated list of directories, Zip files, and DEX files 644 * into an array of ClassPathEntry structs. 645 * 646 * During normal startup we fail if there are no entries, because we won't 647 * get very far without the basic language support classes, but if we're 648 * optimizing a DEX file we allow it. 649 * 650 * If entries are added or removed from the bootstrap class path, the 651 * dependencies in the DEX files will break, and everything except the 652 * very first entry will need to be regenerated. 653 */ 654 static ClassPathEntry* processClassPath(const char* pathStr, bool isBootstrap) 655 { 656 ClassPathEntry* cpe = NULL; 657 char* mangle; 658 char* cp; 659 const char* end; 660 int idx, count; 661 662 assert(pathStr != NULL); 663 664 mangle = strdup(pathStr); 665 666 /* 667 * Run through and essentially strtok() the string. Get a count of 668 * the #of elements while we're at it. 669 * 670 * If the path was constructed strangely (e.g. ":foo::bar:") this will 671 * over-allocate, which isn't ideal but is mostly harmless. 672 */ 673 count = 1; 674 for (cp = mangle; *cp != '\0'; cp++) { 675 if (*cp == ':') { /* separates two entries */ 676 count++; 677 *cp = '\0'; 678 } 679 } 680 end = cp; 681 682 /* 683 * Allocate storage. We over-alloc by one so we can set an "end" marker. 684 */ 685 cpe = (ClassPathEntry*) calloc(count+1, sizeof(ClassPathEntry)); 686 687 /* 688 * Set the global pointer so the DEX file dependency stuff can find it. 689 */ 690 gDvm.bootClassPath = cpe; 691 692 /* 693 * Go through a second time, pulling stuff out. 694 */ 695 cp = mangle; 696 idx = 0; 697 while (cp < end) { 698 if (*cp == '\0') { 699 /* leading, trailing, or doubled ':'; ignore it */ 700 } else { 701 if (isBootstrap && 702 dvmPathToAbsolutePortion(cp) == NULL) { 703 ALOGE("Non-absolute bootclasspath entry '%s'", cp); 704 free(cpe); 705 cpe = NULL; 706 goto bail; 707 } 708 709 ClassPathEntry tmp; 710 tmp.kind = kCpeUnknown; 711 tmp.fileName = strdup(cp); 712 tmp.ptr = NULL; 713 714 /* 715 * Drop an end marker here so DEX loader can walk unfinished 716 * list. 717 */ 718 cpe[idx].kind = kCpeLastEntry; 719 cpe[idx].fileName = NULL; 720 cpe[idx].ptr = NULL; 721 722 if (!prepareCpe(&tmp, isBootstrap)) { 723 /* drop from list and continue on */ 724 free(tmp.fileName); 725 } else { 726 /* copy over, pointers and all */ 727 cpe[idx] = tmp; 728 idx++; 729 } 730 } 731 732 cp += strlen(cp) +1; 733 } 734 assert(idx <= count); 735 if (idx == 0 && !gDvm.optimizing) { 736 /* 737 * There's no way the vm will be doing anything if this is the 738 * case, so just bail out (reasonably) gracefully. 739 */ 740 ALOGE("No valid entries found in bootclasspath '%s'", pathStr); 741 gDvm.lastMessage = pathStr; 742 dvmAbort(); 743 } 744 745 LOGVV(" (filled %d of %d slots)", idx, count); 746 747 /* put end marker in over-alloc slot */ 748 cpe[idx].kind = kCpeLastEntry; 749 cpe[idx].fileName = NULL; 750 cpe[idx].ptr = NULL; 751 752 //dumpClassPath(cpe); 753 754 bail: 755 free(mangle); 756 gDvm.bootClassPath = cpe; 757 return cpe; 758 } 759 760 /* 761 * Search the DEX files we loaded from the bootstrap class path for a DEX 762 * file that has the class with the matching descriptor. 763 * 764 * Returns the matching DEX file and DexClassDef entry if found, otherwise 765 * returns NULL. 766 */ 767 static DvmDex* searchBootPathForClass(const char* descriptor, 768 const DexClassDef** ppClassDef) 769 { 770 const ClassPathEntry* cpe = gDvm.bootClassPath; 771 const DexClassDef* pFoundDef = NULL; 772 DvmDex* pFoundFile = NULL; 773 774 LOGVV("+++ class '%s' not yet loaded, scanning bootclasspath...", 775 descriptor); 776 777 while (cpe->kind != kCpeLastEntry) { 778 //ALOGV("+++ checking '%s' (%d)", cpe->fileName, cpe->kind); 779 780 switch (cpe->kind) { 781 case kCpeJar: 782 { 783 JarFile* pJarFile = (JarFile*) cpe->ptr; 784 const DexClassDef* pClassDef; 785 DvmDex* pDvmDex; 786 787 pDvmDex = dvmGetJarFileDex(pJarFile); 788 pClassDef = dexFindClass(pDvmDex->pDexFile, descriptor); 789 if (pClassDef != NULL) { 790 /* found */ 791 pFoundDef = pClassDef; 792 pFoundFile = pDvmDex; 793 goto found; 794 } 795 } 796 break; 797 case kCpeDex: 798 { 799 RawDexFile* pRawDexFile = (RawDexFile*) cpe->ptr; 800 const DexClassDef* pClassDef; 801 DvmDex* pDvmDex; 802 803 pDvmDex = dvmGetRawDexFileDex(pRawDexFile); 804 pClassDef = dexFindClass(pDvmDex->pDexFile, descriptor); 805 if (pClassDef != NULL) { 806 /* found */ 807 pFoundDef = pClassDef; 808 pFoundFile = pDvmDex; 809 goto found; 810 } 811 } 812 break; 813 default: 814 ALOGE("Unknown kind %d", cpe->kind); 815 assert(false); 816 break; 817 } 818 819 cpe++; 820 } 821 822 /* 823 * Special handling during verification + optimization. 824 * 825 * The DEX optimizer needs to load classes from the DEX file it's working 826 * on. Rather than trying to insert it into the bootstrap class path 827 * or synthesizing a class loader to manage it, we just make it available 828 * here. It logically comes after all existing entries in the bootstrap 829 * class path. 830 */ 831 if (gDvm.bootClassPathOptExtra != NULL) { 832 const DexClassDef* pClassDef; 833 834 pClassDef = 835 dexFindClass(gDvm.bootClassPathOptExtra->pDexFile, descriptor); 836 if (pClassDef != NULL) { 837 /* found */ 838 pFoundDef = pClassDef; 839 pFoundFile = gDvm.bootClassPathOptExtra; 840 } 841 } 842 843 found: 844 *ppClassDef = pFoundDef; 845 return pFoundFile; 846 } 847 848 /* 849 * Set the "extra" DEX, which becomes a de facto member of the bootstrap 850 * class set. 851 */ 852 void dvmSetBootPathExtraDex(DvmDex* pDvmDex) 853 { 854 gDvm.bootClassPathOptExtra = pDvmDex; 855 } 856 857 858 /* 859 * Return the #of entries in the bootstrap class path. 860 * 861 * (Used for ClassLoader.getResources().) 862 */ 863 int dvmGetBootPathSize() 864 { 865 const ClassPathEntry* cpe = gDvm.bootClassPath; 866 867 while (cpe->kind != kCpeLastEntry) 868 cpe++; 869 870 return cpe - gDvm.bootClassPath; 871 } 872 873 /* 874 * Find a resource with the specified name in entry N of the boot class path. 875 * 876 * We return a newly-allocated String of one of these forms: 877 * file://path/name 878 * jar:file://path!/name 879 * Where "path" is the bootstrap class path entry and "name" is the string 880 * passed into this method. "path" needs to be an absolute path (starting 881 * with '/'); if it's not we'd need to "absolutify" it as part of forming 882 * the URL string. 883 */ 884 StringObject* dvmGetBootPathResource(const char* name, int idx) 885 { 886 const int kUrlOverhead = 13; // worst case for Jar URL 887 const ClassPathEntry* cpe = gDvm.bootClassPath; 888 StringObject* urlObj = NULL; 889 890 ALOGV("+++ searching for resource '%s' in %d(%s)", 891 name, idx, cpe[idx].fileName); 892 893 /* we could use direct array index, but I don't entirely trust "idx" */ 894 while (idx-- && cpe->kind != kCpeLastEntry) 895 cpe++; 896 if (cpe->kind == kCpeLastEntry) { 897 assert(false); 898 return NULL; 899 } 900 901 char urlBuf[strlen(name) + strlen(cpe->fileName) + kUrlOverhead +1]; 902 903 switch (cpe->kind) { 904 case kCpeJar: 905 { 906 JarFile* pJarFile = (JarFile*) cpe->ptr; 907 if (dexZipFindEntry(&pJarFile->archive, name) == NULL) 908 goto bail; 909 sprintf(urlBuf, "jar:file://%s!/%s", cpe->fileName, name); 910 } 911 break; 912 case kCpeDex: 913 ALOGV("No resources in DEX files"); 914 goto bail; 915 default: 916 assert(false); 917 goto bail; 918 } 919 920 ALOGV("+++ using URL='%s'", urlBuf); 921 urlObj = dvmCreateStringFromCstr(urlBuf); 922 923 bail: 924 return urlObj; 925 } 926 927 928 /* 929 * =========================================================================== 930 * Class list management 931 * =========================================================================== 932 */ 933 934 /* search for these criteria in the Class hash table */ 935 struct ClassMatchCriteria { 936 const char* descriptor; 937 Object* loader; 938 }; 939 940 #define kInitLoaderInc 4 /* must be power of 2 */ 941 942 static InitiatingLoaderList *dvmGetInitiatingLoaderList(ClassObject* clazz) 943 { 944 assert(clazz->serialNumber >= INITIAL_CLASS_SERIAL_NUMBER); 945 int classIndex = clazz->serialNumber-INITIAL_CLASS_SERIAL_NUMBER; 946 if (gDvm.initiatingLoaderList != NULL && 947 classIndex < ZYGOTE_CLASS_CUTOFF) { 948 return &(gDvm.initiatingLoaderList[classIndex]); 949 } else { 950 return &(clazz->initiatingLoaderList); 951 } 952 } 953 954 /* 955 * Determine if "loader" appears in clazz' initiating loader list. 956 * 957 * The class hash table lock must be held when calling here, since 958 * it's also used when updating a class' initiating loader list. 959 * 960 * TODO: switch to some sort of lock-free data structure so we don't have 961 * to grab the lock to do a lookup. Among other things, this would improve 962 * the speed of compareDescriptorClasses(). 963 */ 964 bool dvmLoaderInInitiatingList(const ClassObject* clazz, const Object* loader) 965 { 966 /* 967 * The bootstrap class loader can't be just an initiating loader for 968 * anything (it's always the defining loader if the class is visible 969 * to it). We don't put defining loaders in the initiating list. 970 */ 971 if (loader == NULL) 972 return false; 973 974 /* 975 * Scan the list for a match. The list is expected to be short. 976 */ 977 /* Cast to remove the const from clazz, but use const loaderList */ 978 ClassObject* nonConstClazz = (ClassObject*) clazz; 979 const InitiatingLoaderList *loaderList = 980 dvmGetInitiatingLoaderList(nonConstClazz); 981 int i; 982 for (i = loaderList->initiatingLoaderCount-1; i >= 0; --i) { 983 if (loaderList->initiatingLoaders[i] == loader) { 984 //ALOGI("+++ found initiating match %p in %s", 985 // loader, clazz->descriptor); 986 return true; 987 } 988 } 989 return false; 990 } 991 992 /* 993 * Add "loader" to clazz's initiating loader set, unless it's the defining 994 * class loader. 995 * 996 * In the common case this will be a short list, so we don't need to do 997 * anything too fancy here. 998 * 999 * This locks gDvm.loadedClasses for synchronization, so don't hold it 1000 * when calling here. 1001 */ 1002 void dvmAddInitiatingLoader(ClassObject* clazz, Object* loader) 1003 { 1004 if (loader != clazz->classLoader) { 1005 assert(loader != NULL); 1006 1007 LOGVV("Adding %p to '%s' init list", loader, clazz->descriptor); 1008 dvmHashTableLock(gDvm.loadedClasses); 1009 1010 /* 1011 * Make sure nobody snuck in. The penalty for adding twice is 1012 * pretty minor, and probably outweighs the O(n^2) hit for 1013 * checking before every add, so we may not want to do this. 1014 */ 1015 //if (dvmLoaderInInitiatingList(clazz, loader)) { 1016 // ALOGW("WOW: simultaneous add of initiating class loader"); 1017 // goto bail_unlock; 1018 //} 1019 1020 /* 1021 * The list never shrinks, so we just keep a count of the 1022 * number of elements in it, and reallocate the buffer when 1023 * we run off the end. 1024 * 1025 * The pointer is initially NULL, so we *do* want to call realloc 1026 * when count==0. 1027 */ 1028 InitiatingLoaderList *loaderList = dvmGetInitiatingLoaderList(clazz); 1029 if ((loaderList->initiatingLoaderCount & (kInitLoaderInc-1)) == 0) { 1030 Object** newList; 1031 1032 newList = (Object**) realloc(loaderList->initiatingLoaders, 1033 (loaderList->initiatingLoaderCount + kInitLoaderInc) 1034 * sizeof(Object*)); 1035 if (newList == NULL) { 1036 /* this is mainly a cache, so it's not the EotW */ 1037 assert(false); 1038 goto bail_unlock; 1039 } 1040 loaderList->initiatingLoaders = newList; 1041 1042 //ALOGI("Expanded init list to %d (%s)", 1043 // loaderList->initiatingLoaderCount+kInitLoaderInc, 1044 // clazz->descriptor); 1045 } 1046 loaderList->initiatingLoaders[loaderList->initiatingLoaderCount++] = 1047 loader; 1048 1049 bail_unlock: 1050 dvmHashTableUnlock(gDvm.loadedClasses); 1051 } 1052 } 1053 1054 /* 1055 * (This is a dvmHashTableLookup callback.) 1056 * 1057 * Entries in the class hash table are stored as { descriptor, d-loader } 1058 * tuples. If the hashed class descriptor matches the requested descriptor, 1059 * and the hashed defining class loader matches the requested class 1060 * loader, we're good. If only the descriptor matches, we check to see if the 1061 * loader is in the hashed class' initiating loader list. If so, we 1062 * can return "true" immediately and skip some of the loadClass melodrama. 1063 * 1064 * The caller must lock the hash table before calling here. 1065 * 1066 * Returns 0 if a matching entry is found, nonzero otherwise. 1067 */ 1068 static int hashcmpClassByCrit(const void* vclazz, const void* vcrit) 1069 { 1070 const ClassObject* clazz = (const ClassObject*) vclazz; 1071 const ClassMatchCriteria* pCrit = (const ClassMatchCriteria*) vcrit; 1072 bool match; 1073 1074 match = (strcmp(clazz->descriptor, pCrit->descriptor) == 0 && 1075 (clazz->classLoader == pCrit->loader || 1076 (pCrit->loader != NULL && 1077 dvmLoaderInInitiatingList(clazz, pCrit->loader)) )); 1078 //if (match) 1079 // ALOGI("+++ %s %p matches existing %s %p", 1080 // pCrit->descriptor, pCrit->loader, 1081 // clazz->descriptor, clazz->classLoader); 1082 return !match; 1083 } 1084 1085 /* 1086 * Like hashcmpClassByCrit, but passing in a fully-formed ClassObject 1087 * instead of a ClassMatchCriteria. 1088 */ 1089 static int hashcmpClassByClass(const void* vclazz, const void* vaddclazz) 1090 { 1091 const ClassObject* clazz = (const ClassObject*) vclazz; 1092 const ClassObject* addClazz = (const ClassObject*) vaddclazz; 1093 bool match; 1094 1095 match = (strcmp(clazz->descriptor, addClazz->descriptor) == 0 && 1096 (clazz->classLoader == addClazz->classLoader || 1097 (addClazz->classLoader != NULL && 1098 dvmLoaderInInitiatingList(clazz, addClazz->classLoader)) )); 1099 return !match; 1100 } 1101 1102 /* 1103 * Search through the hash table to find an entry with a matching descriptor 1104 * and an initiating class loader that matches "loader". 1105 * 1106 * The table entries are hashed on descriptor only, because they're unique 1107 * on *defining* class loader, not *initiating* class loader. This isn't 1108 * great, because it guarantees we will have to probe when multiple 1109 * class loaders are used. 1110 * 1111 * Note this does NOT try to load a class; it just finds a class that 1112 * has already been loaded. 1113 * 1114 * If "unprepOkay" is set, this will return classes that have been added 1115 * to the hash table but are not yet fully loaded and linked. Otherwise, 1116 * such classes are ignored. (The only place that should set "unprepOkay" 1117 * is findClassNoInit(), which will wait for the prep to finish.) 1118 * 1119 * Returns NULL if not found. 1120 */ 1121 ClassObject* dvmLookupClass(const char* descriptor, Object* loader, 1122 bool unprepOkay) 1123 { 1124 ClassMatchCriteria crit; 1125 void* found; 1126 u4 hash; 1127 1128 crit.descriptor = descriptor; 1129 crit.loader = loader; 1130 hash = dvmComputeUtf8Hash(descriptor); 1131 1132 LOGVV("threadid=%d: dvmLookupClass searching for '%s' %p", 1133 dvmThreadSelf()->threadId, descriptor, loader); 1134 1135 dvmHashTableLock(gDvm.loadedClasses); 1136 found = dvmHashTableLookup(gDvm.loadedClasses, hash, &crit, 1137 hashcmpClassByCrit, false); 1138 dvmHashTableUnlock(gDvm.loadedClasses); 1139 1140 /* 1141 * The class has been added to the hash table but isn't ready for use. 1142 * We're going to act like we didn't see it, so that the caller will 1143 * go through the full "find class" path, which includes locking the 1144 * object and waiting until it's ready. We could do that lock/wait 1145 * here, but this is an extremely rare case, and it's simpler to have 1146 * the wait-for-class code centralized. 1147 */ 1148 if (found && !unprepOkay && !dvmIsClassLinked((ClassObject*)found)) { 1149 ALOGV("Ignoring not-yet-ready %s, using slow path", 1150 ((ClassObject*)found)->descriptor); 1151 found = NULL; 1152 } 1153 1154 return (ClassObject*) found; 1155 } 1156 1157 /* 1158 * Add a new class to the hash table. 1159 * 1160 * The class is considered "new" if it doesn't match on both the class 1161 * descriptor and the defining class loader. 1162 * 1163 * TODO: we should probably have separate hash tables for each 1164 * ClassLoader. This could speed up dvmLookupClass and 1165 * other common operations. It does imply a VM-visible data structure 1166 * for each ClassLoader object with loaded classes, which we don't 1167 * have yet. 1168 */ 1169 bool dvmAddClassToHash(ClassObject* clazz) 1170 { 1171 void* found; 1172 u4 hash; 1173 1174 hash = dvmComputeUtf8Hash(clazz->descriptor); 1175 1176 dvmHashTableLock(gDvm.loadedClasses); 1177 found = dvmHashTableLookup(gDvm.loadedClasses, hash, clazz, 1178 hashcmpClassByClass, true); 1179 dvmHashTableUnlock(gDvm.loadedClasses); 1180 1181 ALOGV("+++ dvmAddClassToHash '%s' %p (isnew=%d) --> %p", 1182 clazz->descriptor, clazz->classLoader, 1183 (found == (void*) clazz), clazz); 1184 1185 //dvmCheckClassTablePerf(); 1186 1187 /* can happen if two threads load the same class simultaneously */ 1188 return (found == (void*) clazz); 1189 } 1190 1191 #if 0 1192 /* 1193 * Compute hash value for a class. 1194 */ 1195 u4 hashcalcClass(const void* item) 1196 { 1197 return dvmComputeUtf8Hash(((const ClassObject*) item)->descriptor); 1198 } 1199 1200 /* 1201 * Check the performance of the "loadedClasses" hash table. 1202 */ 1203 void dvmCheckClassTablePerf() 1204 { 1205 dvmHashTableLock(gDvm.loadedClasses); 1206 dvmHashTableProbeCount(gDvm.loadedClasses, hashcalcClass, 1207 hashcmpClassByClass); 1208 dvmHashTableUnlock(gDvm.loadedClasses); 1209 } 1210 #endif 1211 1212 /* 1213 * Remove a class object from the hash table. 1214 */ 1215 static void removeClassFromHash(ClassObject* clazz) 1216 { 1217 ALOGV("+++ removeClassFromHash '%s'", clazz->descriptor); 1218 1219 u4 hash = dvmComputeUtf8Hash(clazz->descriptor); 1220 1221 dvmHashTableLock(gDvm.loadedClasses); 1222 if (!dvmHashTableRemove(gDvm.loadedClasses, hash, clazz)) 1223 ALOGW("Hash table remove failed on class '%s'", clazz->descriptor); 1224 dvmHashTableUnlock(gDvm.loadedClasses); 1225 } 1226 1227 1228 /* 1229 * =========================================================================== 1230 * Class creation 1231 * =========================================================================== 1232 */ 1233 1234 /* 1235 * Set clazz->serialNumber to the next available value. 1236 * 1237 * This usually happens *very* early in class creation, so don't expect 1238 * anything else in the class to be ready. 1239 */ 1240 void dvmSetClassSerialNumber(ClassObject* clazz) 1241 { 1242 assert(clazz->serialNumber == 0); 1243 clazz->serialNumber = android_atomic_inc(&gDvm.classSerialNumber); 1244 } 1245 1246 1247 /* 1248 * Find the named class (by descriptor), using the specified 1249 * initiating ClassLoader. 1250 * 1251 * The class will be loaded and initialized if it has not already been. 1252 * If necessary, the superclass will be loaded. 1253 * 1254 * If the class can't be found, returns NULL with an appropriate exception 1255 * raised. 1256 */ 1257 ClassObject* dvmFindClass(const char* descriptor, Object* loader) 1258 { 1259 ClassObject* clazz; 1260 1261 clazz = dvmFindClassNoInit(descriptor, loader); 1262 if (clazz != NULL && clazz->status < CLASS_INITIALIZED) { 1263 /* initialize class */ 1264 if (!dvmInitClass(clazz)) { 1265 /* init failed; leave it in the list, marked as bad */ 1266 assert(dvmCheckException(dvmThreadSelf())); 1267 assert(clazz->status == CLASS_ERROR); 1268 return NULL; 1269 } 1270 } 1271 1272 return clazz; 1273 } 1274 1275 /* 1276 * Find the named class (by descriptor), using the specified 1277 * initiating ClassLoader. 1278 * 1279 * The class will be loaded if it has not already been, as will its 1280 * superclass. It will not be initialized. 1281 * 1282 * If the class can't be found, returns NULL with an appropriate exception 1283 * raised. 1284 */ 1285 ClassObject* dvmFindClassNoInit(const char* descriptor, 1286 Object* loader) 1287 { 1288 assert(descriptor != NULL); 1289 //assert(loader != NULL); 1290 1291 LOGVV("FindClassNoInit '%s' %p", descriptor, loader); 1292 1293 if (*descriptor == '[') { 1294 /* 1295 * Array class. Find in table, generate if not found. 1296 */ 1297 return dvmFindArrayClass(descriptor, loader); 1298 } else { 1299 /* 1300 * Regular class. Find in table, load if not found. 1301 */ 1302 if (loader != NULL) { 1303 return findClassFromLoaderNoInit(descriptor, loader); 1304 } else { 1305 return dvmFindSystemClassNoInit(descriptor); 1306 } 1307 } 1308 } 1309 1310 /* 1311 * Load the named class (by descriptor) from the specified class 1312 * loader. This calls out to let the ClassLoader object do its thing. 1313 * 1314 * Returns with NULL and an exception raised on error. 1315 */ 1316 static ClassObject* findClassFromLoaderNoInit(const char* descriptor, 1317 Object* loader) 1318 { 1319 //ALOGI("##### findClassFromLoaderNoInit (%s,%p)", 1320 // descriptor, loader); 1321 1322 Thread* self = dvmThreadSelf(); 1323 1324 assert(loader != NULL); 1325 1326 /* 1327 * Do we already have it? 1328 * 1329 * The class loader code does the "is it already loaded" check as 1330 * well. However, this call is much faster than calling through 1331 * interpreted code. Doing this does mean that in the common case 1332 * (365 out of 420 calls booting the sim) we're doing the 1333 * lookup-by-descriptor twice. It appears this is still a win, so 1334 * I'm keeping it in. 1335 */ 1336 ClassObject* clazz = dvmLookupClass(descriptor, loader, false); 1337 if (clazz != NULL) { 1338 LOGVV("Already loaded: %s %p", descriptor, loader); 1339 return clazz; 1340 } else { 1341 LOGVV("Not already loaded: %s %p", descriptor, loader); 1342 } 1343 1344 char* dotName = NULL; 1345 StringObject* nameObj = NULL; 1346 1347 /* convert "Landroid/debug/Stuff;" to "android.debug.Stuff" */ 1348 dotName = dvmDescriptorToDot(descriptor); 1349 if (dotName == NULL) { 1350 dvmThrowOutOfMemoryError(NULL); 1351 return NULL; 1352 } 1353 nameObj = dvmCreateStringFromCstr(dotName); 1354 if (nameObj == NULL) { 1355 assert(dvmCheckException(self)); 1356 goto bail; 1357 } 1358 1359 dvmMethodTraceClassPrepBegin(); 1360 1361 /* 1362 * Invoke loadClass(). This will probably result in a couple of 1363 * exceptions being thrown, because the ClassLoader.loadClass() 1364 * implementation eventually calls VMClassLoader.loadClass to see if 1365 * the bootstrap class loader can find it before doing its own load. 1366 */ 1367 LOGVV("--- Invoking loadClass(%s, %p)", dotName, loader); 1368 { 1369 const Method* loadClass = 1370 loader->clazz->vtable[gDvm.voffJavaLangClassLoader_loadClass]; 1371 JValue result; 1372 dvmCallMethod(self, loadClass, loader, &result, nameObj); 1373 clazz = (ClassObject*) result.l; 1374 1375 dvmMethodTraceClassPrepEnd(); 1376 Object* excep = dvmGetException(self); 1377 if (excep != NULL) { 1378 #if DVM_SHOW_EXCEPTION >= 2 1379 ALOGD("NOTE: loadClass '%s' %p threw exception %s", 1380 dotName, loader, excep->clazz->descriptor); 1381 #endif 1382 dvmAddTrackedAlloc(excep, self); 1383 dvmClearException(self); 1384 dvmThrowChainedNoClassDefFoundError(descriptor, excep); 1385 dvmReleaseTrackedAlloc(excep, self); 1386 clazz = NULL; 1387 goto bail; 1388 } else if (clazz == NULL) { 1389 ALOGW("ClassLoader returned NULL w/o exception pending"); 1390 dvmThrowNullPointerException("ClassLoader returned null"); 1391 goto bail; 1392 } 1393 } 1394 1395 /* not adding clazz to tracked-alloc list, because it's a ClassObject */ 1396 1397 dvmAddInitiatingLoader(clazz, loader); 1398 1399 LOGVV("--- Successfully loaded %s %p (thisldr=%p clazz=%p)", 1400 descriptor, clazz->classLoader, loader, clazz); 1401 1402 bail: 1403 dvmReleaseTrackedAlloc((Object*)nameObj, NULL); 1404 free(dotName); 1405 return clazz; 1406 } 1407 1408 /* 1409 * Load the named class (by descriptor) from the specified DEX file. 1410 * Used by class loaders to instantiate a class object from a 1411 * VM-managed DEX. 1412 */ 1413 ClassObject* dvmDefineClass(DvmDex* pDvmDex, const char* descriptor, 1414 Object* classLoader) 1415 { 1416 assert(pDvmDex != NULL); 1417 1418 return findClassNoInit(descriptor, classLoader, pDvmDex); 1419 } 1420 1421 1422 /* 1423 * Find the named class (by descriptor), scanning through the 1424 * bootclasspath if it hasn't already been loaded. 1425 * 1426 * "descriptor" looks like "Landroid/debug/Stuff;". 1427 * 1428 * Uses NULL as the defining class loader. 1429 */ 1430 ClassObject* dvmFindSystemClass(const char* descriptor) 1431 { 1432 ClassObject* clazz; 1433 1434 clazz = dvmFindSystemClassNoInit(descriptor); 1435 if (clazz != NULL && clazz->status < CLASS_INITIALIZED) { 1436 /* initialize class */ 1437 if (!dvmInitClass(clazz)) { 1438 /* init failed; leave it in the list, marked as bad */ 1439 assert(dvmCheckException(dvmThreadSelf())); 1440 assert(clazz->status == CLASS_ERROR); 1441 return NULL; 1442 } 1443 } 1444 1445 return clazz; 1446 } 1447 1448 /* 1449 * Find the named class (by descriptor), searching for it in the 1450 * bootclasspath. 1451 * 1452 * On failure, this returns NULL with an exception raised. 1453 */ 1454 ClassObject* dvmFindSystemClassNoInit(const char* descriptor) 1455 { 1456 return findClassNoInit(descriptor, NULL, NULL); 1457 } 1458 1459 /* 1460 * Find the named class (by descriptor). If it's not already loaded, 1461 * we load it and link it, but don't execute <clinit>. (The VM has 1462 * specific limitations on which events can cause initialization.) 1463 * 1464 * If "pDexFile" is NULL, we will search the bootclasspath for an entry. 1465 * 1466 * On failure, this returns NULL with an exception raised. 1467 * 1468 * TODO: we need to return an indication of whether we loaded the class or 1469 * used an existing definition. If somebody deliberately tries to load a 1470 * class twice in the same class loader, they should get a LinkageError, 1471 * but inadvertent simultaneous class references should "just work". 1472 */ 1473 static ClassObject* findClassNoInit(const char* descriptor, Object* loader, 1474 DvmDex* pDvmDex) 1475 { 1476 Thread* self = dvmThreadSelf(); 1477 ClassObject* clazz; 1478 bool profilerNotified = false; 1479 1480 if (loader != NULL) { 1481 LOGVV("#### findClassNoInit(%s,%p,%p)", descriptor, loader, 1482 pDvmDex->pDexFile); 1483 } 1484 1485 /* 1486 * We don't expect an exception to be raised at this point. The 1487 * exception handling code is good about managing this. This *can* 1488 * happen if a JNI lookup fails and the JNI code doesn't do any 1489 * error checking before doing another class lookup, so we may just 1490 * want to clear this and restore it on exit. If we don't, some kinds 1491 * of failures can't be detected without rearranging other stuff. 1492 * 1493 * Most often when we hit this situation it means that something is 1494 * broken in the VM or in JNI code, so I'm keeping it in place (and 1495 * making it an informative abort rather than an assert). 1496 */ 1497 if (dvmCheckException(self)) { 1498 ALOGE("Class lookup %s attempted with exception pending", descriptor); 1499 ALOGW("Pending exception is:"); 1500 dvmLogExceptionStackTrace(); 1501 dvmDumpAllThreads(false); 1502 dvmAbort(); 1503 } 1504 1505 clazz = dvmLookupClass(descriptor, loader, true); 1506 if (clazz == NULL) { 1507 const DexClassDef* pClassDef; 1508 1509 dvmMethodTraceClassPrepBegin(); 1510 profilerNotified = true; 1511 1512 #if LOG_CLASS_LOADING 1513 u8 startTime = dvmGetThreadCpuTimeNsec(); 1514 #endif 1515 1516 if (pDvmDex == NULL) { 1517 assert(loader == NULL); /* shouldn't be here otherwise */ 1518 pDvmDex = searchBootPathForClass(descriptor, &pClassDef); 1519 } else { 1520 pClassDef = dexFindClass(pDvmDex->pDexFile, descriptor); 1521 } 1522 1523 if (pDvmDex == NULL || pClassDef == NULL) { 1524 if (gDvm.noClassDefFoundErrorObj != NULL) { 1525 /* usual case -- use prefabricated object */ 1526 dvmSetException(self, gDvm.noClassDefFoundErrorObj); 1527 } else { 1528 /* dexopt case -- can't guarantee prefab (core.jar) */ 1529 dvmThrowNoClassDefFoundError(descriptor); 1530 } 1531 goto bail; 1532 } 1533 1534 /* found a match, try to load it */ 1535 clazz = loadClassFromDex(pDvmDex, pClassDef, loader); 1536 if (dvmCheckException(self)) { 1537 /* class was found but had issues */ 1538 if (clazz != NULL) { 1539 dvmFreeClassInnards(clazz); 1540 dvmReleaseTrackedAlloc((Object*) clazz, NULL); 1541 } 1542 goto bail; 1543 } 1544 1545 /* 1546 * Lock the class while we link it so other threads must wait for us 1547 * to finish. Set the "initThreadId" so we can identify recursive 1548 * invocation. (Note all accesses to initThreadId here are 1549 * guarded by the class object's lock.) 1550 */ 1551 dvmLockObject(self, (Object*) clazz); 1552 clazz->initThreadId = self->threadId; 1553 1554 /* 1555 * Add to hash table so lookups succeed. 1556 * 1557 * [Are circular references possible when linking a class?] 1558 */ 1559 assert(clazz->classLoader == loader); 1560 if (!dvmAddClassToHash(clazz)) { 1561 /* 1562 * Another thread must have loaded the class after we 1563 * started but before we finished. Discard what we've 1564 * done and leave some hints for the GC. 1565 * 1566 * (Yes, this happens.) 1567 */ 1568 //ALOGW("WOW: somebody loaded %s simultaneously", descriptor); 1569 clazz->initThreadId = 0; 1570 dvmUnlockObject(self, (Object*) clazz); 1571 1572 /* Let the GC free the class. 1573 */ 1574 dvmFreeClassInnards(clazz); 1575 dvmReleaseTrackedAlloc((Object*) clazz, NULL); 1576 1577 /* Grab the winning class. 1578 */ 1579 clazz = dvmLookupClass(descriptor, loader, true); 1580 assert(clazz != NULL); 1581 goto got_class; 1582 } 1583 dvmReleaseTrackedAlloc((Object*) clazz, NULL); 1584 1585 #if LOG_CLASS_LOADING 1586 logClassLoadWithTime('>', clazz, startTime); 1587 #endif 1588 /* 1589 * Prepare and resolve. 1590 */ 1591 if (!dvmLinkClass(clazz)) { 1592 assert(dvmCheckException(self)); 1593 1594 /* Make note of the error and clean up the class. 1595 */ 1596 removeClassFromHash(clazz); 1597 clazz->status = CLASS_ERROR; 1598 dvmFreeClassInnards(clazz); 1599 1600 /* Let any waiters know. 1601 */ 1602 clazz->initThreadId = 0; 1603 dvmObjectNotifyAll(self, (Object*) clazz); 1604 dvmUnlockObject(self, (Object*) clazz); 1605 1606 #if LOG_CLASS_LOADING 1607 ALOG(LOG_INFO, "DVMLINK FAILED FOR CLASS ", "%s in %s", 1608 clazz->descriptor, get_process_name()); 1609 1610 /* 1611 * TODO: It would probably be better to use a new type code here (instead of '<') to 1612 * indicate the failure. This change would require a matching change in the parser 1613 * and analysis code in frameworks/base/tools/preload. 1614 */ 1615 logClassLoad('<', clazz); 1616 #endif 1617 clazz = NULL; 1618 if (gDvm.optimizing) { 1619 /* happens with "external" libs */ 1620 ALOGV("Link of class '%s' failed", descriptor); 1621 } else { 1622 ALOGW("Link of class '%s' failed", descriptor); 1623 } 1624 goto bail; 1625 } 1626 dvmObjectNotifyAll(self, (Object*) clazz); 1627 dvmUnlockObject(self, (Object*) clazz); 1628 1629 /* 1630 * Add class stats to global counters. 1631 * 1632 * TODO: these should probably be atomic ops. 1633 */ 1634 gDvm.numLoadedClasses++; 1635 gDvm.numDeclaredMethods += 1636 clazz->virtualMethodCount + clazz->directMethodCount; 1637 gDvm.numDeclaredInstFields += clazz->ifieldCount; 1638 gDvm.numDeclaredStaticFields += clazz->sfieldCount; 1639 1640 /* 1641 * Cache pointers to basic classes. We want to use these in 1642 * various places, and it's easiest to initialize them on first 1643 * use rather than trying to force them to initialize (startup 1644 * ordering makes it weird). 1645 */ 1646 if (gDvm.classJavaLangObject == NULL && 1647 strcmp(descriptor, "Ljava/lang/Object;") == 0) 1648 { 1649 /* It should be impossible to get here with anything 1650 * but the bootclasspath loader. 1651 */ 1652 assert(loader == NULL); 1653 gDvm.classJavaLangObject = clazz; 1654 } 1655 1656 #if LOG_CLASS_LOADING 1657 logClassLoad('<', clazz); 1658 #endif 1659 1660 } else { 1661 got_class: 1662 if (!dvmIsClassLinked(clazz) && clazz->status != CLASS_ERROR) { 1663 /* 1664 * We can race with other threads for class linking. We should 1665 * never get here recursively; doing so indicates that two 1666 * classes have circular dependencies. 1667 * 1668 * One exception: we force discovery of java.lang.Class in 1669 * dvmLinkClass(), and Class has Object as its superclass. So 1670 * if the first thing we ever load is Object, we will init 1671 * Object->Class->Object. The easiest way to avoid this is to 1672 * ensure that Object is never the first thing we look up, so 1673 * we get Foo->Class->Object instead. 1674 */ 1675 dvmLockObject(self, (Object*) clazz); 1676 if (!dvmIsClassLinked(clazz) && 1677 clazz->initThreadId == self->threadId) 1678 { 1679 ALOGW("Recursive link on class %s", clazz->descriptor); 1680 dvmUnlockObject(self, (Object*) clazz); 1681 dvmThrowClassCircularityError(clazz->descriptor); 1682 clazz = NULL; 1683 goto bail; 1684 } 1685 //ALOGI("WAITING for '%s' (owner=%d)", 1686 // clazz->descriptor, clazz->initThreadId); 1687 while (!dvmIsClassLinked(clazz) && clazz->status != CLASS_ERROR) { 1688 dvmObjectWait(self, (Object*) clazz, 0, 0, false); 1689 } 1690 dvmUnlockObject(self, (Object*) clazz); 1691 } 1692 if (clazz->status == CLASS_ERROR) { 1693 /* 1694 * Somebody else tried to load this and failed. We need to raise 1695 * an exception and report failure. 1696 */ 1697 throwEarlierClassFailure(clazz); 1698 clazz = NULL; 1699 goto bail; 1700 } 1701 } 1702 1703 /* check some invariants */ 1704 assert(dvmIsClassLinked(clazz)); 1705 assert(gDvm.classJavaLangClass != NULL); 1706 assert(clazz->clazz == gDvm.classJavaLangClass); 1707 assert(dvmIsClassObject(clazz)); 1708 assert(clazz == gDvm.classJavaLangObject || clazz->super != NULL); 1709 if (!dvmIsInterfaceClass(clazz)) { 1710 //ALOGI("class=%s vtableCount=%d, virtualMeth=%d", 1711 // clazz->descriptor, clazz->vtableCount, 1712 // clazz->virtualMethodCount); 1713 assert(clazz->vtableCount >= clazz->virtualMethodCount); 1714 } 1715 1716 bail: 1717 if (profilerNotified) 1718 dvmMethodTraceClassPrepEnd(); 1719 assert(clazz != NULL || dvmCheckException(self)); 1720 return clazz; 1721 } 1722 1723 /* 1724 * Helper for loadClassFromDex, which takes a DexClassDataHeader and 1725 * encoded data pointer in addition to the other arguments. 1726 */ 1727 static ClassObject* loadClassFromDex0(DvmDex* pDvmDex, 1728 const DexClassDef* pClassDef, const DexClassDataHeader* pHeader, 1729 const u1* pEncodedData, Object* classLoader) 1730 { 1731 ClassObject* newClass = NULL; 1732 const DexFile* pDexFile; 1733 const char* descriptor; 1734 int i; 1735 1736 pDexFile = pDvmDex->pDexFile; 1737 descriptor = dexGetClassDescriptor(pDexFile, pClassDef); 1738 1739 /* 1740 * Make sure the aren't any "bonus" flags set, since we use them for 1741 * runtime state. 1742 */ 1743 if ((pClassDef->accessFlags & ~EXPECTED_FILE_FLAGS) != 0) { 1744 ALOGW("Invalid file flags in class %s: %04x", 1745 descriptor, pClassDef->accessFlags); 1746 return NULL; 1747 } 1748 1749 /* 1750 * Allocate storage for the class object on the GC heap, so that other 1751 * objects can have references to it. We bypass the usual mechanism 1752 * (allocObject), because we don't have all the bits and pieces yet. 1753 * 1754 * Note that we assume that java.lang.Class does not override 1755 * finalize(). 1756 */ 1757 /* TODO: Can there be fewer special checks in the usual path? */ 1758 assert(descriptor != NULL); 1759 if (classLoader == NULL && 1760 strcmp(descriptor, "Ljava/lang/Class;") == 0) { 1761 assert(gDvm.classJavaLangClass != NULL); 1762 newClass = gDvm.classJavaLangClass; 1763 } else { 1764 size_t size = classObjectSize(pHeader->staticFieldsSize); 1765 newClass = (ClassObject*) dvmMalloc(size, ALLOC_NON_MOVING); 1766 } 1767 if (newClass == NULL) 1768 return NULL; 1769 1770 DVM_OBJECT_INIT(newClass, gDvm.classJavaLangClass); 1771 dvmSetClassSerialNumber(newClass); 1772 newClass->descriptor = descriptor; 1773 assert(newClass->descriptorAlloc == NULL); 1774 SET_CLASS_FLAG(newClass, pClassDef->accessFlags); 1775 dvmSetFieldObject((Object *)newClass, 1776 OFFSETOF_MEMBER(ClassObject, classLoader), 1777 (Object *)classLoader); 1778 newClass->pDvmDex = pDvmDex; 1779 newClass->primitiveType = PRIM_NOT; 1780 newClass->status = CLASS_IDX; 1781 1782 /* 1783 * Stuff the superclass index into the object pointer field. The linker 1784 * pulls it out and replaces it with a resolved ClassObject pointer. 1785 * I'm doing it this way (rather than having a dedicated superclassIdx 1786 * field) to save a few bytes of overhead per class. 1787 * 1788 * newClass->super is not traversed or freed by dvmFreeClassInnards, so 1789 * this is safe. 1790 */ 1791 assert(sizeof(u4) == sizeof(ClassObject*)); /* 32-bit check */ 1792 newClass->super = (ClassObject*) pClassDef->superclassIdx; 1793 1794 /* 1795 * Stuff class reference indices into the pointer fields. 1796 * 1797 * The elements of newClass->interfaces are not traversed or freed by 1798 * dvmFreeClassInnards, so this is GC-safe. 1799 */ 1800 const DexTypeList* pInterfacesList; 1801 pInterfacesList = dexGetInterfacesList(pDexFile, pClassDef); 1802 if (pInterfacesList != NULL) { 1803 newClass->interfaceCount = pInterfacesList->size; 1804 newClass->interfaces = (ClassObject**) dvmLinearAlloc(classLoader, 1805 newClass->interfaceCount * sizeof(ClassObject*)); 1806 1807 for (i = 0; i < newClass->interfaceCount; i++) { 1808 const DexTypeItem* pType = dexGetTypeItem(pInterfacesList, i); 1809 newClass->interfaces[i] = (ClassObject*)(u4) pType->typeIdx; 1810 } 1811 dvmLinearReadOnly(classLoader, newClass->interfaces); 1812 } 1813 1814 /* load field definitions */ 1815 1816 /* 1817 * Over-allocate the class object and append static field info 1818 * onto the end. It's fixed-size and known at alloc time. This 1819 * seems to increase zygote sharing. Heap compaction will have to 1820 * be careful if it ever tries to move ClassObject instances, 1821 * because we pass Field pointers around internally. But at least 1822 * now these Field pointers are in the object heap. 1823 */ 1824 1825 if (pHeader->staticFieldsSize != 0) { 1826 /* static fields stay on system heap; field data isn't "write once" */ 1827 int count = (int) pHeader->staticFieldsSize; 1828 u4 lastIndex = 0; 1829 DexField field; 1830 1831 newClass->sfieldCount = count; 1832 for (i = 0; i < count; i++) { 1833 dexReadClassDataField(&pEncodedData, &field, &lastIndex); 1834 loadSFieldFromDex(newClass, &field, &newClass->sfields[i]); 1835 } 1836 } 1837 1838 if (pHeader->instanceFieldsSize != 0) { 1839 int count = (int) pHeader->instanceFieldsSize; 1840 u4 lastIndex = 0; 1841 DexField field; 1842 1843 newClass->ifieldCount = count; 1844 newClass->ifields = (InstField*) dvmLinearAlloc(classLoader, 1845 count * sizeof(InstField)); 1846 for (i = 0; i < count; i++) { 1847 dexReadClassDataField(&pEncodedData, &field, &lastIndex); 1848 loadIFieldFromDex(newClass, &field, &newClass->ifields[i]); 1849 } 1850 dvmLinearReadOnly(classLoader, newClass->ifields); 1851 } 1852 1853 /* 1854 * Load method definitions. We do this in two batches, direct then 1855 * virtual. 1856 * 1857 * If register maps have already been generated for this class, and 1858 * precise GC is enabled, we pull out pointers to them. We know that 1859 * they were streamed to the DEX file in the same order in which the 1860 * methods appear. 1861 * 1862 * If the class wasn't pre-verified, the maps will be generated when 1863 * the class is verified during class initialization. 1864 */ 1865 u4 classDefIdx = dexGetIndexForClassDef(pDexFile, pClassDef); 1866 const void* classMapData; 1867 u4 numMethods; 1868 1869 if (gDvm.preciseGc) { 1870 classMapData = 1871 dvmRegisterMapGetClassData(pDexFile, classDefIdx, &numMethods); 1872 1873 /* sanity check */ 1874 if (classMapData != NULL && 1875 pHeader->directMethodsSize + pHeader->virtualMethodsSize != numMethods) 1876 { 1877 ALOGE("ERROR: in %s, direct=%d virtual=%d, maps have %d", 1878 newClass->descriptor, pHeader->directMethodsSize, 1879 pHeader->virtualMethodsSize, numMethods); 1880 assert(false); 1881 classMapData = NULL; /* abandon */ 1882 } 1883 } else { 1884 classMapData = NULL; 1885 } 1886 1887 if (pHeader->directMethodsSize != 0) { 1888 int count = (int) pHeader->directMethodsSize; 1889 u4 lastIndex = 0; 1890 DexMethod method; 1891 1892 newClass->directMethodCount = count; 1893 newClass->directMethods = (Method*) dvmLinearAlloc(classLoader, 1894 count * sizeof(Method)); 1895 for (i = 0; i < count; i++) { 1896 dexReadClassDataMethod(&pEncodedData, &method, &lastIndex); 1897 loadMethodFromDex(newClass, &method, &newClass->directMethods[i]); 1898 if (classMapData != NULL) { 1899 const RegisterMap* pMap = dvmRegisterMapGetNext(&classMapData); 1900 if (dvmRegisterMapGetFormat(pMap) != kRegMapFormatNone) { 1901 newClass->directMethods[i].registerMap = pMap; 1902 /* TODO: add rigorous checks */ 1903 assert((newClass->directMethods[i].registersSize+7) / 8 == 1904 newClass->directMethods[i].registerMap->regWidth); 1905 } 1906 } 1907 } 1908 dvmLinearReadOnly(classLoader, newClass->directMethods); 1909 } 1910 1911 if (pHeader->virtualMethodsSize != 0) { 1912 int count = (int) pHeader->virtualMethodsSize; 1913 u4 lastIndex = 0; 1914 DexMethod method; 1915 1916 newClass->virtualMethodCount = count; 1917 newClass->virtualMethods = (Method*) dvmLinearAlloc(classLoader, 1918 count * sizeof(Method)); 1919 for (i = 0; i < count; i++) { 1920 dexReadClassDataMethod(&pEncodedData, &method, &lastIndex); 1921 loadMethodFromDex(newClass, &method, &newClass->virtualMethods[i]); 1922 if (classMapData != NULL) { 1923 const RegisterMap* pMap = dvmRegisterMapGetNext(&classMapData); 1924 if (dvmRegisterMapGetFormat(pMap) != kRegMapFormatNone) { 1925 newClass->virtualMethods[i].registerMap = pMap; 1926 /* TODO: add rigorous checks */ 1927 assert((newClass->virtualMethods[i].registersSize+7) / 8 == 1928 newClass->virtualMethods[i].registerMap->regWidth); 1929 } 1930 } 1931 } 1932 dvmLinearReadOnly(classLoader, newClass->virtualMethods); 1933 } 1934 1935 newClass->sourceFile = dexGetSourceFile(pDexFile, pClassDef); 1936 1937 /* caller must call dvmReleaseTrackedAlloc */ 1938 return newClass; 1939 } 1940 1941 /* 1942 * Try to load the indicated class from the specified DEX file. 1943 * 1944 * This is effectively loadClass()+defineClass() for a DexClassDef. The 1945 * loading was largely done when we crunched through the DEX. 1946 * 1947 * Returns NULL on failure. If we locate the class but encounter an error 1948 * while processing it, an appropriate exception is thrown. 1949 */ 1950 static ClassObject* loadClassFromDex(DvmDex* pDvmDex, 1951 const DexClassDef* pClassDef, Object* classLoader) 1952 { 1953 ClassObject* result; 1954 DexClassDataHeader header; 1955 const u1* pEncodedData; 1956 const DexFile* pDexFile; 1957 1958 assert((pDvmDex != NULL) && (pClassDef != NULL)); 1959 pDexFile = pDvmDex->pDexFile; 1960 1961 if (gDvm.verboseClass) { 1962 ALOGV("CLASS: loading '%s'...", 1963 dexGetClassDescriptor(pDexFile, pClassDef)); 1964 } 1965 1966 pEncodedData = dexGetClassData(pDexFile, pClassDef); 1967 1968 if (pEncodedData != NULL) { 1969 dexReadClassDataHeader(&pEncodedData, &header); 1970 } else { 1971 // Provide an all-zeroes header for the rest of the loading. 1972 memset(&header, 0, sizeof(header)); 1973 } 1974 1975 result = loadClassFromDex0(pDvmDex, pClassDef, &header, pEncodedData, 1976 classLoader); 1977 1978 if (gDvm.verboseClass && (result != NULL)) { 1979 ALOGI("[Loaded %s from DEX %p (cl=%p)]", 1980 result->descriptor, pDvmDex, classLoader); 1981 } 1982 1983 return result; 1984 } 1985 1986 /* 1987 * Free anything in a ClassObject that was allocated on the system heap. 1988 * 1989 * The ClassObject itself is allocated on the GC heap, so we leave it for 1990 * the garbage collector. 1991 * 1992 * NOTE: this may be called with a partially-constructed object. 1993 * NOTE: there is no particular ordering imposed, so don't go poking at 1994 * superclasses. 1995 */ 1996 void dvmFreeClassInnards(ClassObject* clazz) 1997 { 1998 void *tp; 1999 int i; 2000 2001 if (clazz == NULL) 2002 return; 2003 2004 assert(clazz->clazz == gDvm.classJavaLangClass); 2005 assert(dvmIsClassObject(clazz)); 2006 2007 /* Guarantee that dvmFreeClassInnards can be called on a given 2008 * class multiple times by clearing things out as we free them. 2009 * We don't make any attempt at real atomicity here; higher 2010 * levels need to make sure that no two threads can free the 2011 * same ClassObject at the same time. 2012 * 2013 * TODO: maybe just make it so the GC will never free the 2014 * innards of an already-freed class. 2015 * 2016 * TODO: this #define isn't MT-safe -- the compiler could rearrange it. 2017 */ 2018 #define NULL_AND_FREE(p) \ 2019 do { \ 2020 if ((p) != NULL) { \ 2021 tp = (p); \ 2022 (p) = NULL; \ 2023 free(tp); \ 2024 } \ 2025 } while (0) 2026 #define NULL_AND_LINEAR_FREE(p) \ 2027 do { \ 2028 if ((p) != NULL) { \ 2029 tp = (p); \ 2030 (p) = NULL; \ 2031 dvmLinearFree(clazz->classLoader, tp); \ 2032 } \ 2033 } while (0) 2034 2035 /* arrays just point at Object's vtable; don't free vtable in this case. 2036 */ 2037 clazz->vtableCount = -1; 2038 if (clazz->vtable == gDvm.classJavaLangObject->vtable) { 2039 clazz->vtable = NULL; 2040 } else { 2041 NULL_AND_LINEAR_FREE(clazz->vtable); 2042 } 2043 2044 clazz->descriptor = NULL; 2045 NULL_AND_FREE(clazz->descriptorAlloc); 2046 2047 if (clazz->directMethods != NULL) { 2048 Method *directMethods = clazz->directMethods; 2049 int directMethodCount = clazz->directMethodCount; 2050 clazz->directMethods = NULL; 2051 clazz->directMethodCount = -1; 2052 dvmLinearReadWrite(clazz->classLoader, directMethods); 2053 for (i = 0; i < directMethodCount; i++) { 2054 freeMethodInnards(&directMethods[i]); 2055 } 2056 dvmLinearReadOnly(clazz->classLoader, directMethods); 2057 dvmLinearFree(clazz->classLoader, directMethods); 2058 } 2059 if (clazz->virtualMethods != NULL) { 2060 Method *virtualMethods = clazz->virtualMethods; 2061 int virtualMethodCount = clazz->virtualMethodCount; 2062 clazz->virtualMethodCount = -1; 2063 clazz->virtualMethods = NULL; 2064 dvmLinearReadWrite(clazz->classLoader, virtualMethods); 2065 for (i = 0; i < virtualMethodCount; i++) { 2066 freeMethodInnards(&virtualMethods[i]); 2067 } 2068 dvmLinearReadOnly(clazz->classLoader, virtualMethods); 2069 dvmLinearFree(clazz->classLoader, virtualMethods); 2070 } 2071 2072 InitiatingLoaderList *loaderList = dvmGetInitiatingLoaderList(clazz); 2073 loaderList->initiatingLoaderCount = -1; 2074 NULL_AND_FREE(loaderList->initiatingLoaders); 2075 2076 clazz->interfaceCount = -1; 2077 NULL_AND_LINEAR_FREE(clazz->interfaces); 2078 2079 clazz->iftableCount = -1; 2080 NULL_AND_LINEAR_FREE(clazz->iftable); 2081 2082 clazz->ifviPoolCount = -1; 2083 NULL_AND_LINEAR_FREE(clazz->ifviPool); 2084 2085 clazz->sfieldCount = -1; 2086 /* The sfields are attached to the ClassObject, and will be freed 2087 * with it. */ 2088 2089 clazz->ifieldCount = -1; 2090 NULL_AND_LINEAR_FREE(clazz->ifields); 2091 2092 #undef NULL_AND_FREE 2093 #undef NULL_AND_LINEAR_FREE 2094 } 2095 2096 /* 2097 * Free anything in a Method that was allocated on the system heap. 2098 * 2099 * The containing class is largely torn down by this point. 2100 */ 2101 static void freeMethodInnards(Method* meth) 2102 { 2103 #if 0 2104 free(meth->exceptions); 2105 free(meth->lines); 2106 free(meth->locals); 2107 #endif 2108 2109 /* 2110 * Some register maps are allocated on the heap, either because of late 2111 * verification or because we're caching an uncompressed form. 2112 */ 2113 const RegisterMap* pMap = meth->registerMap; 2114 if (pMap != NULL && dvmRegisterMapGetOnHeap(pMap)) { 2115 dvmFreeRegisterMap((RegisterMap*) pMap); 2116 meth->registerMap = NULL; 2117 } 2118 2119 /* 2120 * We may have copied the instructions. 2121 */ 2122 if (IS_METHOD_FLAG_SET(meth, METHOD_ISWRITABLE)) { 2123 DexCode* methodDexCode = (DexCode*) dvmGetMethodCode(meth); 2124 dvmLinearFree(meth->clazz->classLoader, methodDexCode); 2125 } 2126 } 2127 2128 /* 2129 * Clone a Method, making new copies of anything that will be freed up 2130 * by freeMethodInnards(). This is used for "miranda" methods. 2131 */ 2132 static void cloneMethod(Method* dst, const Method* src) 2133 { 2134 if (src->registerMap != NULL) { 2135 ALOGE("GLITCH: only expected abstract methods here"); 2136 ALOGE(" cloning %s.%s", src->clazz->descriptor, src->name); 2137 dvmAbort(); 2138 } 2139 memcpy(dst, src, sizeof(Method)); 2140 } 2141 2142 /* 2143 * Pull the interesting pieces out of a DexMethod. 2144 * 2145 * The DEX file isn't going anywhere, so we don't need to make copies of 2146 * the code area. 2147 */ 2148 static void loadMethodFromDex(ClassObject* clazz, const DexMethod* pDexMethod, 2149 Method* meth) 2150 { 2151 DexFile* pDexFile = clazz->pDvmDex->pDexFile; 2152 const DexMethodId* pMethodId; 2153 const DexCode* pDexCode; 2154 2155 pMethodId = dexGetMethodId(pDexFile, pDexMethod->methodIdx); 2156 2157 meth->name = dexStringById(pDexFile, pMethodId->nameIdx); 2158 dexProtoSetFromMethodId(&meth->prototype, pDexFile, pMethodId); 2159 meth->shorty = dexProtoGetShorty(&meth->prototype); 2160 meth->accessFlags = pDexMethod->accessFlags; 2161 meth->clazz = clazz; 2162 meth->jniArgInfo = 0; 2163 2164 if (dvmCompareNameDescriptorAndMethod("finalize", "()V", meth) == 0) { 2165 /* 2166 * The Enum class declares a "final" finalize() method to 2167 * prevent subclasses from introducing a finalizer. We don't 2168 * want to set the finalizable flag for Enum or its subclasses, 2169 * so we check for it here. 2170 * 2171 * We also want to avoid setting it on Object, but it's easier 2172 * to just strip that out later. 2173 */ 2174 if (clazz->classLoader != NULL || 2175 strcmp(clazz->descriptor, "Ljava/lang/Enum;") != 0) 2176 { 2177 SET_CLASS_FLAG(clazz, CLASS_ISFINALIZABLE); 2178 } 2179 } 2180 2181 pDexCode = dexGetCode(pDexFile, pDexMethod); 2182 if (pDexCode != NULL) { 2183 /* integer constants, copy over for faster access */ 2184 meth->registersSize = pDexCode->registersSize; 2185 meth->insSize = pDexCode->insSize; 2186 meth->outsSize = pDexCode->outsSize; 2187 2188 /* pointer to code area */ 2189 meth->insns = pDexCode->insns; 2190 } else { 2191 /* 2192 * We don't have a DexCode block, but we still want to know how 2193 * much space is needed for the arguments (so we don't have to 2194 * compute it later). We also take this opportunity to compute 2195 * JNI argument info. 2196 * 2197 * We do this for abstract methods as well, because we want to 2198 * be able to substitute our exception-throwing "stub" in. 2199 */ 2200 int argsSize = dvmComputeMethodArgsSize(meth); 2201 if (!dvmIsStaticMethod(meth)) 2202 argsSize++; 2203 meth->registersSize = meth->insSize = argsSize; 2204 assert(meth->outsSize == 0); 2205 assert(meth->insns == NULL); 2206 2207 if (dvmIsNativeMethod(meth)) { 2208 meth->nativeFunc = dvmResolveNativeMethod; 2209 meth->jniArgInfo = computeJniArgInfo(&meth->prototype); 2210 } 2211 } 2212 } 2213 2214 #if 0 /* replaced with private/read-write mapping */ 2215 /* 2216 * We usually map bytecode directly out of the DEX file, which is mapped 2217 * shared read-only. If we want to be able to modify it, we have to make 2218 * a new copy. 2219 * 2220 * Once copied, the code will be in the LinearAlloc region, which may be 2221 * marked read-only. 2222 * 2223 * The bytecode instructions are embedded inside a DexCode structure, so we 2224 * need to copy all of that. (The dvmGetMethodCode function backs up the 2225 * instruction pointer to find the start of the DexCode.) 2226 */ 2227 void dvmMakeCodeReadWrite(Method* meth) 2228 { 2229 DexCode* methodDexCode = (DexCode*) dvmGetMethodCode(meth); 2230 2231 if (IS_METHOD_FLAG_SET(meth, METHOD_ISWRITABLE)) { 2232 dvmLinearReadWrite(meth->clazz->classLoader, methodDexCode); 2233 return; 2234 } 2235 2236 assert(!dvmIsNativeMethod(meth) && !dvmIsAbstractMethod(meth)); 2237 2238 size_t dexCodeSize = dexGetDexCodeSize(methodDexCode); 2239 ALOGD("Making a copy of %s.%s code (%d bytes)", 2240 meth->clazz->descriptor, meth->name, dexCodeSize); 2241 2242 DexCode* newCode = 2243 (DexCode*) dvmLinearAlloc(meth->clazz->classLoader, dexCodeSize); 2244 memcpy(newCode, methodDexCode, dexCodeSize); 2245 2246 meth->insns = newCode->insns; 2247 SET_METHOD_FLAG(meth, METHOD_ISWRITABLE); 2248 } 2249 2250 /* 2251 * Mark the bytecode read-only. 2252 * 2253 * If the contents of the DexCode haven't actually changed, we could revert 2254 * to the original shared page. 2255 */ 2256 void dvmMakeCodeReadOnly(Method* meth) 2257 { 2258 DexCode* methodDexCode = (DexCode*) dvmGetMethodCode(meth); 2259 ALOGV("+++ marking %p read-only", methodDexCode); 2260 dvmLinearReadOnly(meth->clazz->classLoader, methodDexCode); 2261 } 2262 #endif 2263 2264 2265 /* 2266 * jniArgInfo (32-bit int) layout: 2267 * SRRRHHHH HHHHHHHH HHHHHHHH HHHHHHHH 2268 * 2269 * S - if set, do things the hard way (scan the signature) 2270 * R - return-type enumeration 2271 * H - target-specific hints 2272 * 2273 * This info is used at invocation time by dvmPlatformInvoke. In most 2274 * cases, the target-specific hints allow dvmPlatformInvoke to avoid 2275 * having to fully parse the signature. 2276 * 2277 * The return-type bits are always set, even if target-specific hint bits 2278 * are unavailable. 2279 */ 2280 static int computeJniArgInfo(const DexProto* proto) 2281 { 2282 const char* sig = dexProtoGetShorty(proto); 2283 int returnType, jniArgInfo; 2284 u4 hints; 2285 2286 /* The first shorty character is the return type. */ 2287 switch (*(sig++)) { 2288 case 'V': 2289 returnType = DALVIK_JNI_RETURN_VOID; 2290 break; 2291 case 'F': 2292 returnType = DALVIK_JNI_RETURN_FLOAT; 2293 break; 2294 case 'D': 2295 returnType = DALVIK_JNI_RETURN_DOUBLE; 2296 break; 2297 case 'J': 2298 returnType = DALVIK_JNI_RETURN_S8; 2299 break; 2300 case 'Z': 2301 case 'B': 2302 returnType = DALVIK_JNI_RETURN_S1; 2303 break; 2304 case 'C': 2305 returnType = DALVIK_JNI_RETURN_U2; 2306 break; 2307 case 'S': 2308 returnType = DALVIK_JNI_RETURN_S2; 2309 break; 2310 default: 2311 returnType = DALVIK_JNI_RETURN_S4; 2312 break; 2313 } 2314 2315 jniArgInfo = returnType << DALVIK_JNI_RETURN_SHIFT; 2316 2317 hints = dvmPlatformInvokeHints(proto); 2318 2319 if (hints & DALVIK_JNI_NO_ARG_INFO) { 2320 jniArgInfo |= DALVIK_JNI_NO_ARG_INFO; 2321 } else { 2322 assert((hints & DALVIK_JNI_RETURN_MASK) == 0); 2323 jniArgInfo |= hints; 2324 } 2325 2326 return jniArgInfo; 2327 } 2328 2329 /* 2330 * Load information about a static field. 2331 * 2332 * This also "prepares" static fields by initializing them 2333 * to their "standard default values". 2334 */ 2335 static void loadSFieldFromDex(ClassObject* clazz, 2336 const DexField* pDexSField, StaticField* sfield) 2337 { 2338 DexFile* pDexFile = clazz->pDvmDex->pDexFile; 2339 const DexFieldId* pFieldId; 2340 2341 pFieldId = dexGetFieldId(pDexFile, pDexSField->fieldIdx); 2342 2343 sfield->clazz = clazz; 2344 sfield->name = dexStringById(pDexFile, pFieldId->nameIdx); 2345 sfield->signature = dexStringByTypeIdx(pDexFile, pFieldId->typeIdx); 2346 sfield->accessFlags = pDexSField->accessFlags; 2347 2348 /* Static object field values are set to "standard default values" 2349 * (null or 0) until the class is initialized. We delay loading 2350 * constant values from the class until that time. 2351 */ 2352 //sfield->value.j = 0; 2353 assert(sfield->value.j == 0LL); // cleared earlier with calloc 2354 } 2355 2356 /* 2357 * Load information about an instance field. 2358 */ 2359 static void loadIFieldFromDex(ClassObject* clazz, 2360 const DexField* pDexIField, InstField* ifield) 2361 { 2362 DexFile* pDexFile = clazz->pDvmDex->pDexFile; 2363 const DexFieldId* pFieldId; 2364 2365 pFieldId = dexGetFieldId(pDexFile, pDexIField->fieldIdx); 2366 2367 ifield->clazz = clazz; 2368 ifield->name = dexStringById(pDexFile, pFieldId->nameIdx); 2369 ifield->signature = dexStringByTypeIdx(pDexFile, pFieldId->typeIdx); 2370 ifield->accessFlags = pDexIField->accessFlags; 2371 #ifndef NDEBUG 2372 assert(ifield->byteOffset == 0); // cleared earlier with calloc 2373 ifield->byteOffset = -1; // make it obvious if we fail to set later 2374 #endif 2375 } 2376 2377 /* 2378 * Cache java.lang.ref.Reference fields and methods. 2379 */ 2380 static bool precacheReferenceOffsets(ClassObject* clazz) 2381 { 2382 int i; 2383 2384 /* We trick the GC object scanner by not counting 2385 * java.lang.ref.Reference.referent as an object 2386 * field. It will get explicitly scanned as part 2387 * of the reference-walking process. 2388 * 2389 * Find the object field named "referent" and put it 2390 * just after the list of object reference fields. 2391 */ 2392 dvmLinearReadWrite(clazz->classLoader, clazz->ifields); 2393 for (i = 0; i < clazz->ifieldRefCount; i++) { 2394 InstField *pField = &clazz->ifields[i]; 2395 if (strcmp(pField->name, "referent") == 0) { 2396 int targetIndex; 2397 2398 /* Swap this field with the last object field. 2399 */ 2400 targetIndex = clazz->ifieldRefCount - 1; 2401 if (i != targetIndex) { 2402 InstField *swapField = &clazz->ifields[targetIndex]; 2403 InstField tmpField; 2404 int tmpByteOffset; 2405 2406 /* It's not currently strictly necessary 2407 * for the fields to be in byteOffset order, 2408 * but it's more predictable that way. 2409 */ 2410 tmpByteOffset = swapField->byteOffset; 2411 swapField->byteOffset = pField->byteOffset; 2412 pField->byteOffset = tmpByteOffset; 2413 2414 tmpField = *swapField; 2415 *swapField = *pField; 2416 *pField = tmpField; 2417 } 2418 2419 /* One fewer object field (wink wink). 2420 */ 2421 clazz->ifieldRefCount--; 2422 i--; /* don't trip "didn't find it" test if field was last */ 2423 break; 2424 } 2425 } 2426 dvmLinearReadOnly(clazz->classLoader, clazz->ifields); 2427 if (i == clazz->ifieldRefCount) { 2428 ALOGE("Unable to reorder 'referent' in %s", clazz->descriptor); 2429 return false; 2430 } 2431 2432 /* 2433 * Now that the above has been done, it is safe to cache 2434 * info about the class. 2435 */ 2436 if (!dvmFindReferenceMembers(clazz)) { 2437 ALOGE("Trouble with Reference setup"); 2438 return false; 2439 } 2440 2441 return true; 2442 } 2443 2444 2445 /* 2446 * Set the bitmap of reference offsets, refOffsets, from the ifields 2447 * list. 2448 */ 2449 static void computeRefOffsets(ClassObject* clazz) 2450 { 2451 if (clazz->super != NULL) { 2452 clazz->refOffsets = clazz->super->refOffsets; 2453 } else { 2454 clazz->refOffsets = 0; 2455 } 2456 /* 2457 * If our superclass overflowed, we don't stand a chance. 2458 */ 2459 if (clazz->refOffsets != CLASS_WALK_SUPER) { 2460 InstField *f; 2461 int i; 2462 2463 /* All of the fields that contain object references 2464 * are guaranteed to be at the beginning of the ifields list. 2465 */ 2466 f = clazz->ifields; 2467 const int ifieldRefCount = clazz->ifieldRefCount; 2468 for (i = 0; i < ifieldRefCount; i++) { 2469 /* 2470 * Note that, per the comment on struct InstField, 2471 * f->byteOffset is the offset from the beginning of 2472 * obj, not the offset into obj->instanceData. 2473 */ 2474 assert(f->byteOffset >= (int) CLASS_SMALLEST_OFFSET); 2475 assert((f->byteOffset & (CLASS_OFFSET_ALIGNMENT - 1)) == 0); 2476 if (CLASS_CAN_ENCODE_OFFSET(f->byteOffset)) { 2477 u4 newBit = CLASS_BIT_FROM_OFFSET(f->byteOffset); 2478 assert(newBit != 0); 2479 clazz->refOffsets |= newBit; 2480 } else { 2481 clazz->refOffsets = CLASS_WALK_SUPER; 2482 break; 2483 } 2484 f++; 2485 } 2486 } 2487 } 2488 2489 2490 /* 2491 * Link (prepare and resolve). Verification is deferred until later. 2492 * 2493 * This converts symbolic references into pointers. It's independent of 2494 * the source file format. 2495 * 2496 * If clazz->status is CLASS_IDX, then clazz->super and interfaces[] are 2497 * holding class reference indices rather than pointers. The class 2498 * references will be resolved during link. (This is done when 2499 * loading from DEX to avoid having to create additional storage to 2500 * pass the indices around.) 2501 * 2502 * Returns "false" with an exception pending on failure. 2503 */ 2504 bool dvmLinkClass(ClassObject* clazz) 2505 { 2506 u4 superclassIdx = 0; 2507 u4 *interfaceIdxArray = NULL; 2508 bool okay = false; 2509 int i; 2510 2511 assert(clazz != NULL); 2512 assert(clazz->descriptor != NULL); 2513 assert(clazz->status == CLASS_IDX || clazz->status == CLASS_LOADED); 2514 if (gDvm.verboseClass) 2515 ALOGV("CLASS: linking '%s'...", clazz->descriptor); 2516 2517 assert(gDvm.classJavaLangClass != NULL); 2518 assert(clazz->clazz == gDvm.classJavaLangClass); 2519 assert(dvmIsClassObject(clazz)); 2520 if (clazz->classLoader == NULL && 2521 (strcmp(clazz->descriptor, "Ljava/lang/Class;") == 0)) 2522 { 2523 if (gDvm.classJavaLangClass->ifieldCount > CLASS_FIELD_SLOTS) { 2524 ALOGE("java.lang.Class has %d instance fields (expected at most %d)", 2525 gDvm.classJavaLangClass->ifieldCount, CLASS_FIELD_SLOTS); 2526 dvmAbort(); 2527 } 2528 if (gDvm.classJavaLangClass->sfieldCount != CLASS_SFIELD_SLOTS) { 2529 ALOGE("java.lang.Class has %d static fields (expected %d)", 2530 gDvm.classJavaLangClass->sfieldCount, CLASS_SFIELD_SLOTS); 2531 dvmAbort(); 2532 } 2533 } 2534 2535 /* "Resolve" the class. 2536 * 2537 * At this point, clazz's reference fields may contain Dex file 2538 * indices instead of direct object references. Proxy objects are 2539 * an exception, and may be the only exception. We need to 2540 * translate those indices into real references, and let the GC 2541 * look inside this ClassObject. 2542 */ 2543 if (clazz->status == CLASS_IDX) { 2544 if (clazz->interfaceCount > 0) { 2545 /* Copy u4 DEX idx values out of the ClassObject* array 2546 * where we stashed them. 2547 */ 2548 assert(sizeof(*interfaceIdxArray) == sizeof(*clazz->interfaces)); 2549 size_t len = clazz->interfaceCount * sizeof(*interfaceIdxArray); 2550 interfaceIdxArray = (u4*)malloc(len); 2551 if (interfaceIdxArray == NULL) { 2552 ALOGW("Unable to allocate memory to link %s", clazz->descriptor); 2553 goto bail; 2554 } 2555 memcpy(interfaceIdxArray, clazz->interfaces, len); 2556 2557 dvmLinearReadWrite(clazz->classLoader, clazz->interfaces); 2558 memset(clazz->interfaces, 0, len); 2559 dvmLinearReadOnly(clazz->classLoader, clazz->interfaces); 2560 } 2561 2562 assert(sizeof(superclassIdx) == sizeof(clazz->super)); 2563 superclassIdx = (u4) clazz->super; 2564 clazz->super = NULL; 2565 /* After this line, clazz will be fair game for the GC. The 2566 * superclass and interfaces are all NULL. 2567 */ 2568 clazz->status = CLASS_LOADED; 2569 2570 if (superclassIdx != kDexNoIndex) { 2571 ClassObject* super = dvmResolveClass(clazz, superclassIdx, false); 2572 if (super == NULL) { 2573 assert(dvmCheckException(dvmThreadSelf())); 2574 if (gDvm.optimizing) { 2575 /* happens with "external" libs */ 2576 ALOGV("Unable to resolve superclass of %s (%d)", 2577 clazz->descriptor, superclassIdx); 2578 } else { 2579 ALOGW("Unable to resolve superclass of %s (%d)", 2580 clazz->descriptor, superclassIdx); 2581 } 2582 goto bail; 2583 } 2584 dvmSetFieldObject((Object *)clazz, 2585 OFFSETOF_MEMBER(ClassObject, super), 2586 (Object *)super); 2587 } 2588 2589 if (clazz->interfaceCount > 0) { 2590 /* Resolve the interfaces implemented directly by this class. */ 2591 assert(interfaceIdxArray != NULL); 2592 dvmLinearReadWrite(clazz->classLoader, clazz->interfaces); 2593 for (i = 0; i < clazz->interfaceCount; i++) { 2594 assert(interfaceIdxArray[i] != kDexNoIndex); 2595 clazz->interfaces[i] = 2596 dvmResolveClass(clazz, interfaceIdxArray[i], false); 2597 if (clazz->interfaces[i] == NULL) { 2598 const DexFile* pDexFile = clazz->pDvmDex->pDexFile; 2599 2600 assert(dvmCheckException(dvmThreadSelf())); 2601 dvmLinearReadOnly(clazz->classLoader, clazz->interfaces); 2602 2603 const char* classDescriptor; 2604 classDescriptor = 2605 dexStringByTypeIdx(pDexFile, interfaceIdxArray[i]); 2606 if (gDvm.optimizing) { 2607 /* happens with "external" libs */ 2608 ALOGV("Failed resolving %s interface %d '%s'", 2609 clazz->descriptor, interfaceIdxArray[i], 2610 classDescriptor); 2611 } else { 2612 ALOGI("Failed resolving %s interface %d '%s'", 2613 clazz->descriptor, interfaceIdxArray[i], 2614 classDescriptor); 2615 } 2616 goto bail; 2617 } 2618 2619 /* are we allowed to implement this interface? */ 2620 if (!dvmCheckClassAccess(clazz, clazz->interfaces[i])) { 2621 dvmLinearReadOnly(clazz->classLoader, clazz->interfaces); 2622 ALOGW("Interface '%s' is not accessible to '%s'", 2623 clazz->interfaces[i]->descriptor, clazz->descriptor); 2624 dvmThrowIllegalAccessError("interface not accessible"); 2625 goto bail; 2626 } 2627 LOGVV("+++ found interface '%s'", 2628 clazz->interfaces[i]->descriptor); 2629 } 2630 dvmLinearReadOnly(clazz->classLoader, clazz->interfaces); 2631 } 2632 } 2633 /* 2634 * There are now Class references visible to the GC in super and 2635 * interfaces. 2636 */ 2637 2638 /* 2639 * All classes have a direct superclass, except for 2640 * java/lang/Object and primitive classes. Primitive classes are 2641 * are created CLASS_INITIALIZED, so won't get here. 2642 */ 2643 assert(clazz->primitiveType == PRIM_NOT); 2644 if (strcmp(clazz->descriptor, "Ljava/lang/Object;") == 0) { 2645 if (clazz->super != NULL) { 2646 /* TODO: is this invariant true for all java/lang/Objects, 2647 * regardless of the class loader? For now, assume it is. 2648 */ 2649 dvmThrowClassFormatError("java.lang.Object has a superclass"); 2650 goto bail; 2651 } 2652 2653 /* Don't finalize objects whose classes use the 2654 * default (empty) Object.finalize(). 2655 */ 2656 CLEAR_CLASS_FLAG(clazz, CLASS_ISFINALIZABLE); 2657 } else { 2658 if (clazz->super == NULL) { 2659 dvmThrowLinkageError("no superclass defined"); 2660 goto bail; 2661 } 2662 /* verify */ 2663 if (dvmIsFinalClass(clazz->super)) { 2664 ALOGW("Superclass of '%s' is final '%s'", 2665 clazz->descriptor, clazz->super->descriptor); 2666 dvmThrowIncompatibleClassChangeError("superclass is final"); 2667 goto bail; 2668 } else if (dvmIsInterfaceClass(clazz->super)) { 2669 ALOGW("Superclass of '%s' is interface '%s'", 2670 clazz->descriptor, clazz->super->descriptor); 2671 dvmThrowIncompatibleClassChangeError("superclass is an interface"); 2672 goto bail; 2673 } else if (!dvmCheckClassAccess(clazz, clazz->super)) { 2674 ALOGW("Superclass of '%s' (%s) is not accessible", 2675 clazz->descriptor, clazz->super->descriptor); 2676 dvmThrowIllegalAccessError("superclass not accessible"); 2677 goto bail; 2678 } 2679 2680 /* Inherit finalizability from the superclass. If this 2681 * class also overrides finalize(), its CLASS_ISFINALIZABLE 2682 * bit will already be set. 2683 */ 2684 if (IS_CLASS_FLAG_SET(clazz->super, CLASS_ISFINALIZABLE)) { 2685 SET_CLASS_FLAG(clazz, CLASS_ISFINALIZABLE); 2686 } 2687 2688 /* See if this class descends from java.lang.Reference 2689 * and set the class flags appropriately. 2690 */ 2691 if (IS_CLASS_FLAG_SET(clazz->super, CLASS_ISREFERENCE)) { 2692 u4 superRefFlags; 2693 2694 /* We've already determined the reference type of this 2695 * inheritance chain. Inherit reference-ness from the superclass. 2696 */ 2697 superRefFlags = GET_CLASS_FLAG_GROUP(clazz->super, 2698 CLASS_ISREFERENCE | 2699 CLASS_ISWEAKREFERENCE | 2700 CLASS_ISFINALIZERREFERENCE | 2701 CLASS_ISPHANTOMREFERENCE); 2702 SET_CLASS_FLAG(clazz, superRefFlags); 2703 } else if (clazz->classLoader == NULL && 2704 clazz->super->classLoader == NULL && 2705 strcmp(clazz->super->descriptor, 2706 "Ljava/lang/ref/Reference;") == 0) 2707 { 2708 u4 refFlags; 2709 2710 /* This class extends Reference, which means it should 2711 * be one of the magic Soft/Weak/PhantomReference classes. 2712 */ 2713 refFlags = CLASS_ISREFERENCE; 2714 if (strcmp(clazz->descriptor, 2715 "Ljava/lang/ref/SoftReference;") == 0) 2716 { 2717 /* Only CLASS_ISREFERENCE is set for soft references. 2718 */ 2719 } else if (strcmp(clazz->descriptor, 2720 "Ljava/lang/ref/WeakReference;") == 0) 2721 { 2722 refFlags |= CLASS_ISWEAKREFERENCE; 2723 } else if (strcmp(clazz->descriptor, 2724 "Ljava/lang/ref/FinalizerReference;") == 0) 2725 { 2726 refFlags |= CLASS_ISFINALIZERREFERENCE; 2727 } else if (strcmp(clazz->descriptor, 2728 "Ljava/lang/ref/PhantomReference;") == 0) 2729 { 2730 refFlags |= CLASS_ISPHANTOMREFERENCE; 2731 } else { 2732 /* No-one else is allowed to inherit directly 2733 * from Reference. 2734 */ 2735 //xxx is this the right exception? better than an assertion. 2736 dvmThrowLinkageError("illegal inheritance from Reference"); 2737 goto bail; 2738 } 2739 2740 /* The class should not have any reference bits set yet. 2741 */ 2742 assert(GET_CLASS_FLAG_GROUP(clazz, 2743 CLASS_ISREFERENCE | 2744 CLASS_ISWEAKREFERENCE | 2745 CLASS_ISFINALIZERREFERENCE | 2746 CLASS_ISPHANTOMREFERENCE) == 0); 2747 2748 SET_CLASS_FLAG(clazz, refFlags); 2749 } 2750 } 2751 2752 /* 2753 * Populate vtable. 2754 */ 2755 if (dvmIsInterfaceClass(clazz)) { 2756 /* no vtable; just set the method indices */ 2757 int count = clazz->virtualMethodCount; 2758 2759 if (count != (u2) count) { 2760 ALOGE("Too many methods (%d) in interface '%s'", count, 2761 clazz->descriptor); 2762 goto bail; 2763 } 2764 2765 dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods); 2766 2767 for (i = 0; i < count; i++) 2768 clazz->virtualMethods[i].methodIndex = (u2) i; 2769 2770 dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods); 2771 } else { 2772 if (!createVtable(clazz)) { 2773 ALOGW("failed creating vtable"); 2774 goto bail; 2775 } 2776 } 2777 2778 /* 2779 * Populate interface method tables. Can alter the vtable. 2780 */ 2781 if (!createIftable(clazz)) 2782 goto bail; 2783 2784 /* 2785 * Insert special-purpose "stub" method implementations. 2786 */ 2787 if (!insertMethodStubs(clazz)) 2788 goto bail; 2789 2790 /* 2791 * Compute instance field offsets and, hence, the size of the object. 2792 */ 2793 if (!computeFieldOffsets(clazz)) 2794 goto bail; 2795 2796 /* 2797 * Cache field and method info for the class Reference (as loaded 2798 * by the boot classloader). This has to happen after the call to 2799 * computeFieldOffsets(). 2800 */ 2801 if ((clazz->classLoader == NULL) 2802 && (strcmp(clazz->descriptor, "Ljava/lang/ref/Reference;") == 0)) { 2803 if (!precacheReferenceOffsets(clazz)) { 2804 ALOGE("failed pre-caching Reference offsets"); 2805 dvmThrowInternalError(NULL); 2806 goto bail; 2807 } 2808 } 2809 2810 /* 2811 * Compact the offsets the GC has to examine into a bitmap, if 2812 * possible. (This has to happen after Reference.referent is 2813 * massaged in precacheReferenceOffsets.) 2814 */ 2815 computeRefOffsets(clazz); 2816 2817 /* 2818 * Done! 2819 */ 2820 if (IS_CLASS_FLAG_SET(clazz, CLASS_ISPREVERIFIED)) 2821 clazz->status = CLASS_VERIFIED; 2822 else 2823 clazz->status = CLASS_RESOLVED; 2824 okay = true; 2825 if (gDvm.verboseClass) 2826 ALOGV("CLASS: linked '%s'", clazz->descriptor); 2827 2828 /* 2829 * We send CLASS_PREPARE events to the debugger from here. The 2830 * definition of "preparation" is creating the static fields for a 2831 * class and initializing them to the standard default values, but not 2832 * executing any code (that comes later, during "initialization"). 2833 * 2834 * We did the static prep in loadSFieldFromDex() while loading the class. 2835 * 2836 * The class has been prepared and resolved but possibly not yet verified 2837 * at this point. 2838 */ 2839 if (gDvm.debuggerActive) { 2840 dvmDbgPostClassPrepare(clazz); 2841 } 2842 2843 bail: 2844 if (!okay) { 2845 clazz->status = CLASS_ERROR; 2846 if (!dvmCheckException(dvmThreadSelf())) { 2847 dvmThrowVirtualMachineError(NULL); 2848 } 2849 } 2850 if (interfaceIdxArray != NULL) { 2851 free(interfaceIdxArray); 2852 } 2853 2854 return okay; 2855 } 2856 2857 /* 2858 * Create the virtual method table. 2859 * 2860 * The top part of the table is a copy of the table from our superclass, 2861 * with our local methods overriding theirs. The bottom part of the table 2862 * has any new methods we defined. 2863 */ 2864 static bool createVtable(ClassObject* clazz) 2865 { 2866 bool result = false; 2867 int maxCount; 2868 int i; 2869 2870 if (clazz->super != NULL) { 2871 //ALOGI("SUPER METHODS %d %s->%s", clazz->super->vtableCount, 2872 // clazz->descriptor, clazz->super->descriptor); 2873 } 2874 2875 /* the virtual methods we define, plus the superclass vtable size */ 2876 maxCount = clazz->virtualMethodCount; 2877 if (clazz->super != NULL) { 2878 maxCount += clazz->super->vtableCount; 2879 } else { 2880 /* TODO: is this invariant true for all java/lang/Objects, 2881 * regardless of the class loader? For now, assume it is. 2882 */ 2883 assert(strcmp(clazz->descriptor, "Ljava/lang/Object;") == 0); 2884 } 2885 //ALOGD("+++ max vmethods for '%s' is %d", clazz->descriptor, maxCount); 2886 2887 /* 2888 * Over-allocate the table, then realloc it down if necessary. So 2889 * long as we don't allocate anything in between we won't cause 2890 * fragmentation, and reducing the size should be unlikely to cause 2891 * a buffer copy. 2892 */ 2893 dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods); 2894 clazz->vtable = (Method**) dvmLinearAlloc(clazz->classLoader, 2895 sizeof(Method*) * maxCount); 2896 if (clazz->vtable == NULL) 2897 goto bail; 2898 2899 if (clazz->super != NULL) { 2900 int actualCount; 2901 2902 memcpy(clazz->vtable, clazz->super->vtable, 2903 sizeof(*(clazz->vtable)) * clazz->super->vtableCount); 2904 actualCount = clazz->super->vtableCount; 2905 2906 /* 2907 * See if any of our virtual methods override the superclass. 2908 */ 2909 for (i = 0; i < clazz->virtualMethodCount; i++) { 2910 Method* localMeth = &clazz->virtualMethods[i]; 2911 int si; 2912 2913 for (si = 0; si < clazz->super->vtableCount; si++) { 2914 Method* superMeth = clazz->vtable[si]; 2915 2916 if (dvmCompareMethodNamesAndProtos(localMeth, superMeth) == 0) 2917 { 2918 /* verify */ 2919 if (dvmIsFinalMethod(superMeth)) { 2920 ALOGW("Method %s.%s overrides final %s.%s", 2921 localMeth->clazz->descriptor, localMeth->name, 2922 superMeth->clazz->descriptor, superMeth->name); 2923 goto bail; 2924 } 2925 clazz->vtable[si] = localMeth; 2926 localMeth->methodIndex = (u2) si; 2927 //ALOGV("+++ override %s.%s (slot %d)", 2928 // clazz->descriptor, localMeth->name, si); 2929 break; 2930 } 2931 } 2932 2933 if (si == clazz->super->vtableCount) { 2934 /* not an override, add to end */ 2935 clazz->vtable[actualCount] = localMeth; 2936 localMeth->methodIndex = (u2) actualCount; 2937 actualCount++; 2938 2939 //ALOGV("+++ add method %s.%s", 2940 // clazz->descriptor, localMeth->name); 2941 } 2942 } 2943 2944 if (actualCount != (u2) actualCount) { 2945 ALOGE("Too many methods (%d) in class '%s'", actualCount, 2946 clazz->descriptor); 2947 goto bail; 2948 } 2949 2950 assert(actualCount <= maxCount); 2951 2952 if (actualCount < maxCount) { 2953 assert(clazz->vtable != NULL); 2954 dvmLinearReadOnly(clazz->classLoader, clazz->vtable); 2955 clazz->vtable = (Method **)dvmLinearRealloc(clazz->classLoader, 2956 clazz->vtable, sizeof(*(clazz->vtable)) * actualCount); 2957 if (clazz->vtable == NULL) { 2958 ALOGE("vtable realloc failed"); 2959 goto bail; 2960 } else { 2961 LOGVV("+++ reduced vtable from %d to %d", 2962 maxCount, actualCount); 2963 } 2964 } 2965 2966 clazz->vtableCount = actualCount; 2967 } else { 2968 /* java/lang/Object case */ 2969 int count = clazz->virtualMethodCount; 2970 if (count != (u2) count) { 2971 ALOGE("Too many methods (%d) in base class '%s'", count, 2972 clazz->descriptor); 2973 goto bail; 2974 } 2975 2976 for (i = 0; i < count; i++) { 2977 clazz->vtable[i] = &clazz->virtualMethods[i]; 2978 clazz->virtualMethods[i].methodIndex = (u2) i; 2979 } 2980 clazz->vtableCount = clazz->virtualMethodCount; 2981 } 2982 2983 result = true; 2984 2985 bail: 2986 dvmLinearReadOnly(clazz->classLoader, clazz->vtable); 2987 dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods); 2988 return result; 2989 } 2990 2991 /* 2992 * Create and populate "iftable". 2993 * 2994 * The set of interfaces we support is the combination of the interfaces 2995 * we implement directly and those implemented by our superclass. Each 2996 * interface can have one or more "superinterfaces", which we must also 2997 * support. For speed we flatten the tree out. 2998 * 2999 * We might be able to speed this up when there are lots of interfaces 3000 * by merge-sorting the class pointers and binary-searching when removing 3001 * duplicates. We could also drop the duplicate removal -- it's only 3002 * there to reduce the memory footprint. 3003 * 3004 * Because of "Miranda methods", this may reallocate clazz->virtualMethods. 3005 * 3006 * Returns "true" on success. 3007 */ 3008 static bool createIftable(ClassObject* clazz) 3009 { 3010 bool result = false; 3011 bool zapIftable = false; 3012 bool zapVtable = false; 3013 bool zapIfvipool = false; 3014 int poolOffset = 0, poolSize = 0; 3015 Method** mirandaList = NULL; 3016 int mirandaCount = 0, mirandaAlloc = 0; 3017 3018 int superIfCount; 3019 if (clazz->super != NULL) 3020 superIfCount = clazz->super->iftableCount; 3021 else 3022 superIfCount = 0; 3023 3024 int ifCount = superIfCount; 3025 ifCount += clazz->interfaceCount; 3026 for (int i = 0; i < clazz->interfaceCount; i++) 3027 ifCount += clazz->interfaces[i]->iftableCount; 3028 3029 LOGVV("INTF: class '%s' direct w/supra=%d super=%d total=%d", 3030 clazz->descriptor, ifCount - superIfCount, superIfCount, ifCount); 3031 3032 if (ifCount == 0) { 3033 assert(clazz->iftableCount == 0); 3034 assert(clazz->iftable == NULL); 3035 return true; 3036 } 3037 3038 /* 3039 * Create a table with enough space for all interfaces, and copy the 3040 * superclass' table in. 3041 */ 3042 clazz->iftable = (InterfaceEntry*) dvmLinearAlloc(clazz->classLoader, 3043 sizeof(InterfaceEntry) * ifCount); 3044 zapIftable = true; 3045 memset(clazz->iftable, 0x00, sizeof(InterfaceEntry) * ifCount); 3046 if (superIfCount != 0) { 3047 memcpy(clazz->iftable, clazz->super->iftable, 3048 sizeof(InterfaceEntry) * superIfCount); 3049 } 3050 3051 /* 3052 * Create a flattened interface hierarchy of our immediate interfaces. 3053 */ 3054 int idx = superIfCount; 3055 3056 for (int i = 0; i < clazz->interfaceCount; i++) { 3057 ClassObject* interf = clazz->interfaces[i]; 3058 assert(interf != NULL); 3059 3060 /* make sure this is still an interface class */ 3061 if (!dvmIsInterfaceClass(interf)) { 3062 ALOGW("Class '%s' implements non-interface '%s'", 3063 clazz->descriptor, interf->descriptor); 3064 dvmThrowIncompatibleClassChangeErrorWithClassMessage( 3065 clazz->descriptor); 3066 goto bail; 3067 } 3068 3069 /* add entry for this interface */ 3070 clazz->iftable[idx++].clazz = interf; 3071 3072 /* add entries for the interface's superinterfaces */ 3073 for (int j = 0; j < interf->iftableCount; j++) { 3074 int k; 3075 ClassObject *cand; 3076 3077 cand = interf->iftable[j].clazz; 3078 3079 /* 3080 * Check if this interface was already added and add only if new. 3081 * This is to avoid a potential blowup in the number of 3082 * interfaces for sufficiently complicated interface hierarchies. 3083 * This has quadratic runtime in the number of interfaces. 3084 * However, in common cases with little interface inheritance, this 3085 * doesn't make much of a difference. 3086 */ 3087 for (k = 0; k < idx; k++) 3088 if (clazz->iftable[k].clazz == cand) 3089 break; 3090 3091 if (k == idx) 3092 clazz->iftable[idx++].clazz = cand; 3093 } 3094 } 3095 3096 assert(idx <= ifCount); 3097 3098 /* 3099 * Adjust the ifCount. We could reallocate the interface memory here, 3100 * but it's probably not worth the effort, the important thing here 3101 * is to avoid the interface blowup and keep the ifCount low. 3102 */ 3103 if (false) { 3104 if (idx != ifCount) { 3105 int newIfCount = idx; 3106 InterfaceEntry* oldmem = clazz->iftable; 3107 3108 clazz->iftable = (InterfaceEntry*) dvmLinearAlloc(clazz->classLoader, 3109 sizeof(InterfaceEntry) * newIfCount); 3110 memcpy(clazz->iftable, oldmem, sizeof(InterfaceEntry) * newIfCount); 3111 dvmLinearFree(clazz->classLoader, oldmem); 3112 } 3113 } 3114 3115 ifCount = idx; 3116 clazz->iftableCount = ifCount; 3117 3118 /* 3119 * If we're an interface, we don't need the vtable pointers, so 3120 * we're done. If this class doesn't implement an interface that our 3121 * superclass doesn't have, then we again have nothing to do. 3122 */ 3123 if (dvmIsInterfaceClass(clazz) || superIfCount == ifCount) { 3124 //dvmDumpClass(clazz, kDumpClassFullDetail); 3125 result = true; 3126 goto bail; 3127 } 3128 3129 /* 3130 * When we're handling invokeinterface, we probably have an object 3131 * whose type is an interface class rather than a concrete class. We 3132 * need to convert the method reference into a vtable index. So, for 3133 * every entry in "iftable", we create a list of vtable indices. 3134 * 3135 * Because our vtable encompasses the superclass vtable, we can use 3136 * the vtable indices from our superclass for all of the interfaces 3137 * that weren't directly implemented by us. 3138 * 3139 * Each entry in "iftable" has a pointer to the start of its set of 3140 * vtable offsets. The iftable entries in the superclass point to 3141 * storage allocated in the superclass, and the iftable entries added 3142 * for this class point to storage allocated in this class. "iftable" 3143 * is flat for fast access in a class and all of its subclasses, but 3144 * "ifviPool" is only created for the topmost implementor. 3145 */ 3146 for (int i = superIfCount; i < ifCount; i++) { 3147 /* 3148 * Note it's valid for an interface to have no methods (e.g. 3149 * java/io/Serializable). 3150 */ 3151 LOGVV("INTF: pool: %d from %s", 3152 clazz->iftable[i].clazz->virtualMethodCount, 3153 clazz->iftable[i].clazz->descriptor); 3154 poolSize += clazz->iftable[i].clazz->virtualMethodCount; 3155 } 3156 3157 if (poolSize == 0) { 3158 LOGVV("INTF: didn't find any new interfaces with methods"); 3159 result = true; 3160 goto bail; 3161 } 3162 3163 clazz->ifviPoolCount = poolSize; 3164 clazz->ifviPool = (int*) dvmLinearAlloc(clazz->classLoader, 3165 poolSize * sizeof(int*)); 3166 zapIfvipool = true; 3167 3168 /* 3169 * Fill in the vtable offsets for the interfaces that weren't part of 3170 * our superclass. 3171 */ 3172 for (int i = superIfCount; i < ifCount; i++) { 3173 ClassObject* interface; 3174 int methIdx; 3175 3176 clazz->iftable[i].methodIndexArray = clazz->ifviPool + poolOffset; 3177 interface = clazz->iftable[i].clazz; 3178 poolOffset += interface->virtualMethodCount; // end here 3179 3180 /* 3181 * For each method listed in the interface's method list, find the 3182 * matching method in our class's method list. We want to favor the 3183 * subclass over the superclass, which just requires walking 3184 * back from the end of the vtable. (This only matters if the 3185 * superclass defines a private method and this class redefines 3186 * it -- otherwise it would use the same vtable slot. In Dalvik 3187 * those don't end up in the virtual method table, so it shouldn't 3188 * matter which direction we go. We walk it backward anyway.) 3189 * 3190 * 3191 * Suppose we have the following arrangement: 3192 * public interface MyInterface 3193 * public boolean inInterface(); 3194 * public abstract class MirandaAbstract implements MirandaInterface 3195 * //public abstract boolean inInterface(); // not declared! 3196 * public boolean inAbstract() { stuff } // in vtable 3197 * public class MirandClass extends MirandaAbstract 3198 * public boolean inInterface() { stuff } 3199 * public boolean inAbstract() { stuff } // in vtable 3200 * 3201 * The javac compiler happily compiles MirandaAbstract even though 3202 * it doesn't declare all methods from its interface. When we try 3203 * to set up a vtable for MirandaAbstract, we find that we don't 3204 * have an slot for inInterface. To prevent this, we synthesize 3205 * abstract method declarations in MirandaAbstract. 3206 * 3207 * We have to expand vtable and update some things that point at it, 3208 * so we accumulate the method list and do it all at once below. 3209 */ 3210 for (methIdx = 0; methIdx < interface->virtualMethodCount; methIdx++) { 3211 Method* imeth = &interface->virtualMethods[methIdx]; 3212 int j; 3213 3214 IF_LOGVV() { 3215 char* desc = dexProtoCopyMethodDescriptor(&imeth->prototype); 3216 LOGVV("INTF: matching '%s' '%s'", imeth->name, desc); 3217 free(desc); 3218 } 3219 3220 for (j = clazz->vtableCount-1; j >= 0; j--) { 3221 if (dvmCompareMethodNamesAndProtos(imeth, clazz->vtable[j]) 3222 == 0) 3223 { 3224 LOGVV("INTF: matched at %d", j); 3225 if (!dvmIsPublicMethod(clazz->vtable[j])) { 3226 ALOGW("Implementation of %s.%s is not public", 3227 clazz->descriptor, clazz->vtable[j]->name); 3228 dvmThrowIllegalAccessError( 3229 "interface implementation not public"); 3230 goto bail; 3231 } 3232 clazz->iftable[i].methodIndexArray[methIdx] = j; 3233 break; 3234 } 3235 } 3236 if (j < 0) { 3237 IF_ALOGV() { 3238 char* desc = 3239 dexProtoCopyMethodDescriptor(&imeth->prototype); 3240 ALOGV("No match for '%s' '%s' in '%s' (creating miranda)", 3241 imeth->name, desc, clazz->descriptor); 3242 free(desc); 3243 } 3244 //dvmThrowRuntimeException("Miranda!"); 3245 //return false; 3246 3247 if (mirandaCount == mirandaAlloc) { 3248 mirandaAlloc += 8; 3249 if (mirandaList == NULL) { 3250 mirandaList = (Method**)dvmLinearAlloc( 3251 clazz->classLoader, 3252 mirandaAlloc * sizeof(Method*)); 3253 } else { 3254 dvmLinearReadOnly(clazz->classLoader, mirandaList); 3255 mirandaList = (Method**)dvmLinearRealloc( 3256 clazz->classLoader, 3257 mirandaList, mirandaAlloc * sizeof(Method*)); 3258 } 3259 assert(mirandaList != NULL); // mem failed + we leaked 3260 } 3261 3262 /* 3263 * These may be redundant (e.g. method with same name and 3264 * signature declared in two interfaces implemented by the 3265 * same abstract class). We can squeeze the duplicates 3266 * out here. 3267 */ 3268 int mir; 3269 for (mir = 0; mir < mirandaCount; mir++) { 3270 if (dvmCompareMethodNamesAndProtos( 3271 mirandaList[mir], imeth) == 0) 3272 { 3273 IF_LOGVV() { 3274 char* desc = dexProtoCopyMethodDescriptor( 3275 &imeth->prototype); 3276 LOGVV("MIRANDA dupe: %s and %s %s%s", 3277 mirandaList[mir]->clazz->descriptor, 3278 imeth->clazz->descriptor, 3279 imeth->name, desc); 3280 free(desc); 3281 } 3282 break; 3283 } 3284 } 3285 3286 /* point the iftable at a phantom slot index */ 3287 clazz->iftable[i].methodIndexArray[methIdx] = 3288 clazz->vtableCount + mir; 3289 LOGVV("MIRANDA: %s points at slot %d", 3290 imeth->name, clazz->vtableCount + mir); 3291 3292 /* if non-duplicate among Mirandas, add to Miranda list */ 3293 if (mir == mirandaCount) { 3294 //ALOGV("MIRANDA: holding '%s' in slot %d", 3295 // imeth->name, mir); 3296 mirandaList[mirandaCount++] = imeth; 3297 } 3298 } 3299 } 3300 } 3301 3302 if (mirandaCount != 0) { 3303 static const int kManyMirandas = 150; /* arbitrary */ 3304 Method* newVirtualMethods; 3305 Method* meth; 3306 int oldMethodCount, oldVtableCount; 3307 3308 for (int i = 0; i < mirandaCount; i++) { 3309 LOGVV("MIRANDA %d: %s.%s", i, 3310 mirandaList[i]->clazz->descriptor, mirandaList[i]->name); 3311 } 3312 if (mirandaCount > kManyMirandas) { 3313 /* 3314 * Some obfuscators like to create an interface with a huge 3315 * pile of methods, declare classes as implementing it, and then 3316 * only define a couple of methods. This leads to a rather 3317 * massive collection of Miranda methods and a lot of wasted 3318 * space, sometimes enough to blow out the LinearAlloc cap. 3319 */ 3320 ALOGD("Note: class %s has %d unimplemented (abstract) methods", 3321 clazz->descriptor, mirandaCount); 3322 } 3323 3324 /* 3325 * We found methods in one or more interfaces for which we do not 3326 * have vtable entries. We have to expand our virtualMethods 3327 * table (which might be empty) to hold some new entries. 3328 */ 3329 if (clazz->virtualMethods == NULL) { 3330 newVirtualMethods = (Method*) dvmLinearAlloc(clazz->classLoader, 3331 sizeof(Method) * (clazz->virtualMethodCount + mirandaCount)); 3332 } else { 3333 //dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods); 3334 newVirtualMethods = (Method*) dvmLinearRealloc(clazz->classLoader, 3335 clazz->virtualMethods, 3336 sizeof(Method) * (clazz->virtualMethodCount + mirandaCount)); 3337 } 3338 if (newVirtualMethods != clazz->virtualMethods) { 3339 /* 3340 * Table was moved in memory. We have to run through the 3341 * vtable and fix the pointers. The vtable entries might be 3342 * pointing at superclasses, so we flip it around: run through 3343 * all locally-defined virtual methods, and fix their entries 3344 * in the vtable. (This would get really messy if sub-classes 3345 * had already been loaded.) 3346 * 3347 * Reminder: clazz->virtualMethods and clazz->virtualMethodCount 3348 * hold the virtual methods declared by this class. The 3349 * method's methodIndex is the vtable index, and is the same 3350 * for all sub-classes (and all super classes in which it is 3351 * defined). We're messing with these because the Miranda 3352 * stuff makes it look like the class actually has an abstract 3353 * method declaration in it. 3354 */ 3355 LOGVV("MIRANDA fixing vtable pointers"); 3356 dvmLinearReadWrite(clazz->classLoader, clazz->vtable); 3357 Method* meth = newVirtualMethods; 3358 for (int i = 0; i < clazz->virtualMethodCount; i++, meth++) 3359 clazz->vtable[meth->methodIndex] = meth; 3360 dvmLinearReadOnly(clazz->classLoader, clazz->vtable); 3361 } 3362 3363 oldMethodCount = clazz->virtualMethodCount; 3364 clazz->virtualMethods = newVirtualMethods; 3365 clazz->virtualMethodCount += mirandaCount; 3366 3367 dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods); 3368 3369 /* 3370 * We also have to expand the vtable. 3371 */ 3372 assert(clazz->vtable != NULL); 3373 clazz->vtable = (Method**) dvmLinearRealloc(clazz->classLoader, 3374 clazz->vtable, 3375 sizeof(Method*) * (clazz->vtableCount + mirandaCount)); 3376 if (clazz->vtable == NULL) { 3377 assert(false); 3378 goto bail; 3379 } 3380 zapVtable = true; 3381 3382 oldVtableCount = clazz->vtableCount; 3383 clazz->vtableCount += mirandaCount; 3384 3385 /* 3386 * Now we need to create the fake methods. We clone the abstract 3387 * method definition from the interface and then replace a few 3388 * things. 3389 * 3390 * The Method will be an "abstract native", with nativeFunc set to 3391 * dvmAbstractMethodStub(). 3392 */ 3393 meth = clazz->virtualMethods + oldMethodCount; 3394 for (int i = 0; i < mirandaCount; i++, meth++) { 3395 dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods); 3396 cloneMethod(meth, mirandaList[i]); 3397 meth->clazz = clazz; 3398 meth->accessFlags |= ACC_MIRANDA; 3399 meth->methodIndex = (u2) (oldVtableCount + i); 3400 dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods); 3401 3402 /* point the new vtable entry at the new method */ 3403 clazz->vtable[oldVtableCount + i] = meth; 3404 } 3405 3406 dvmLinearReadOnly(clazz->classLoader, mirandaList); 3407 dvmLinearFree(clazz->classLoader, mirandaList); 3408 3409 } 3410 3411 /* 3412 * TODO? 3413 * Sort the interfaces by number of declared methods. All we really 3414 * want is to get the interfaces with zero methods at the end of the 3415 * list, so that when we walk through the list during invoke-interface 3416 * we don't examine interfaces that can't possibly be useful. 3417 * 3418 * The set will usually be small, so a simple insertion sort works. 3419 * 3420 * We have to be careful not to change the order of two interfaces 3421 * that define the same method. (Not a problem if we only move the 3422 * zero-method interfaces to the end.) 3423 * 3424 * PROBLEM: 3425 * If we do this, we will no longer be able to identify super vs. 3426 * current class interfaces by comparing clazz->super->iftableCount. This 3427 * breaks anything that only wants to find interfaces declared directly 3428 * by the class (dvmFindStaticFieldHier, ReferenceType.Interfaces, 3429 * dvmDbgOutputAllInterfaces, etc). Need to provide a workaround. 3430 * 3431 * We can sort just the interfaces implemented directly by this class, 3432 * but that doesn't seem like it would provide much of an advantage. I'm 3433 * not sure this is worthwhile. 3434 * 3435 * (This has been made largely obsolete by the interface cache mechanism.) 3436 */ 3437 3438 //dvmDumpClass(clazz); 3439 3440 result = true; 3441 3442 bail: 3443 if (zapIftable) 3444 dvmLinearReadOnly(clazz->classLoader, clazz->iftable); 3445 if (zapVtable) 3446 dvmLinearReadOnly(clazz->classLoader, clazz->vtable); 3447 if (zapIfvipool) 3448 dvmLinearReadOnly(clazz->classLoader, clazz->ifviPool); 3449 return result; 3450 } 3451 3452 3453 /* 3454 * Provide "stub" implementations for methods without them. 3455 * 3456 * Currently we provide an implementation for all abstract methods that 3457 * throws an AbstractMethodError exception. This allows us to avoid an 3458 * explicit check for abstract methods in every virtual call. 3459 * 3460 * NOTE: for Miranda methods, the method declaration is a clone of what 3461 * was found in the interface class. That copy may already have had the 3462 * function pointer filled in, so don't be surprised if it's not NULL. 3463 * 3464 * NOTE: this sets the "native" flag, giving us an "abstract native" method, 3465 * which is nonsensical. Need to make sure that this doesn't escape the 3466 * VM. We can either mask it out in reflection calls, or copy "native" 3467 * into the high 16 bits of accessFlags and check that internally. 3468 */ 3469 static bool insertMethodStubs(ClassObject* clazz) 3470 { 3471 dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods); 3472 3473 Method* meth; 3474 int i; 3475 3476 meth = clazz->virtualMethods; 3477 for (i = 0; i < clazz->virtualMethodCount; i++, meth++) { 3478 if (dvmIsAbstractMethod(meth)) { 3479 assert(meth->insns == NULL); 3480 assert(meth->nativeFunc == NULL || 3481 meth->nativeFunc == (DalvikBridgeFunc)dvmAbstractMethodStub); 3482 3483 meth->accessFlags |= ACC_NATIVE; 3484 meth->nativeFunc = (DalvikBridgeFunc) dvmAbstractMethodStub; 3485 } 3486 } 3487 3488 dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods); 3489 return true; 3490 } 3491 3492 3493 /* 3494 * Swap two instance fields. 3495 */ 3496 static inline void swapField(InstField* pOne, InstField* pTwo) 3497 { 3498 InstField swap; 3499 3500 LOGVV(" --- swap '%s' and '%s'", pOne->name, pTwo->name); 3501 swap = *pOne; 3502 *pOne = *pTwo; 3503 *pTwo = swap; 3504 } 3505 3506 /* 3507 * Assign instance fields to u4 slots. 3508 * 3509 * The top portion of the instance field area is occupied by the superclass 3510 * fields, the bottom by the fields for this class. 3511 * 3512 * "long" and "double" fields occupy two adjacent slots. On some 3513 * architectures, 64-bit quantities must be 64-bit aligned, so we need to 3514 * arrange fields (or introduce padding) to ensure this. We assume the 3515 * fields of the topmost superclass (i.e. Object) are 64-bit aligned, so 3516 * we can just ensure that the offset is "even". To avoid wasting space, 3517 * we want to move non-reference 32-bit fields into gaps rather than 3518 * creating pad words. 3519 * 3520 * In the worst case we will waste 4 bytes, but because objects are 3521 * allocated on >= 64-bit boundaries, those bytes may well be wasted anyway 3522 * (assuming this is the most-derived class). 3523 * 3524 * Pad words are not represented in the field table, so the field table 3525 * itself does not change size. 3526 * 3527 * The number of field slots determines the size of the object, so we 3528 * set that here too. 3529 * 3530 * This function feels a little more complicated than I'd like, but it 3531 * has the property of moving the smallest possible set of fields, which 3532 * should reduce the time required to load a class. 3533 * 3534 * NOTE: reference fields *must* come first, or precacheReferenceOffsets() 3535 * will break. 3536 */ 3537 static bool computeFieldOffsets(ClassObject* clazz) 3538 { 3539 int fieldOffset; 3540 int i, j; 3541 3542 dvmLinearReadWrite(clazz->classLoader, clazz->ifields); 3543 3544 if (clazz->super != NULL) 3545 fieldOffset = clazz->super->objectSize; 3546 else 3547 fieldOffset = OFFSETOF_MEMBER(DataObject, instanceData); 3548 3549 LOGVV("--- computeFieldOffsets '%s'", clazz->descriptor); 3550 3551 //ALOGI("OFFSETS fieldCount=%d", clazz->ifieldCount); 3552 //ALOGI("dataobj, instance: %d", offsetof(DataObject, instanceData)); 3553 //ALOGI("classobj, access: %d", offsetof(ClassObject, accessFlags)); 3554 //ALOGI("super=%p, fieldOffset=%d", clazz->super, fieldOffset); 3555 3556 /* 3557 * Start by moving all reference fields to the front. 3558 */ 3559 clazz->ifieldRefCount = 0; 3560 j = clazz->ifieldCount - 1; 3561 for (i = 0; i < clazz->ifieldCount; i++) { 3562 InstField* pField = &clazz->ifields[i]; 3563 char c = pField->signature[0]; 3564 3565 if (c != '[' && c != 'L') { 3566 /* This isn't a reference field; see if any reference fields 3567 * follow this one. If so, we'll move it to this position. 3568 * (quicksort-style partitioning) 3569 */ 3570 while (j > i) { 3571 InstField* refField = &clazz->ifields[j--]; 3572 char rc = refField->signature[0]; 3573 3574 if (rc == '[' || rc == 'L') { 3575 /* Here's a reference field that follows at least one 3576 * non-reference field. Swap it with the current field. 3577 * (When this returns, "pField" points to the reference 3578 * field, and "refField" points to the non-ref field.) 3579 */ 3580 swapField(pField, refField); 3581 3582 /* Fix the signature. 3583 */ 3584 c = rc; 3585 3586 clazz->ifieldRefCount++; 3587 break; 3588 } 3589 } 3590 /* We may or may not have swapped a field. 3591 */ 3592 } else { 3593 /* This is a reference field. 3594 */ 3595 clazz->ifieldRefCount++; 3596 } 3597 3598 /* 3599 * If we've hit the end of the reference fields, break. 3600 */ 3601 if (c != '[' && c != 'L') 3602 break; 3603 3604 pField->byteOffset = fieldOffset; 3605 fieldOffset += sizeof(u4); 3606 LOGVV(" --- offset1 '%s'=%d", pField->name,pField->byteOffset); 3607 } 3608 3609 /* 3610 * Now we want to pack all of the double-wide fields together. If we're 3611 * not aligned, though, we want to shuffle one 32-bit field into place. 3612 * If we can't find one, we'll have to pad it. 3613 */ 3614 if (i != clazz->ifieldCount && (fieldOffset & 0x04) != 0) { 3615 LOGVV(" +++ not aligned"); 3616 3617 InstField* pField = &clazz->ifields[i]; 3618 char c = pField->signature[0]; 3619 3620 if (c != 'J' && c != 'D') { 3621 /* 3622 * The field that comes next is 32-bit, so just advance past it. 3623 */ 3624 assert(c != '[' && c != 'L'); 3625 pField->byteOffset = fieldOffset; 3626 fieldOffset += sizeof(u4); 3627 i++; 3628 LOGVV(" --- offset2 '%s'=%d", 3629 pField->name, pField->byteOffset); 3630 } else { 3631 /* 3632 * Next field is 64-bit, so search for a 32-bit field we can 3633 * swap into it. 3634 */ 3635 bool found = false; 3636 j = clazz->ifieldCount - 1; 3637 while (j > i) { 3638 InstField* singleField = &clazz->ifields[j--]; 3639 char rc = singleField->signature[0]; 3640 3641 if (rc != 'J' && rc != 'D') { 3642 swapField(pField, singleField); 3643 //c = rc; 3644 LOGVV(" +++ swapped '%s' for alignment", 3645 pField->name); 3646 pField->byteOffset = fieldOffset; 3647 fieldOffset += sizeof(u4); 3648 LOGVV(" --- offset3 '%s'=%d", 3649 pField->name, pField->byteOffset); 3650 found = true; 3651 i++; 3652 break; 3653 } 3654 } 3655 if (!found) { 3656 ALOGV(" +++ inserting pad field in '%s'", clazz->descriptor); 3657 fieldOffset += sizeof(u4); 3658 } 3659 } 3660 } 3661 3662 /* 3663 * Alignment is good, shuffle any double-wide fields forward, and 3664 * finish assigning field offsets to all fields. 3665 */ 3666 assert(i == clazz->ifieldCount || (fieldOffset & 0x04) == 0); 3667 j = clazz->ifieldCount - 1; 3668 for ( ; i < clazz->ifieldCount; i++) { 3669 InstField* pField = &clazz->ifields[i]; 3670 char c = pField->signature[0]; 3671 3672 if (c != 'D' && c != 'J') { 3673 /* This isn't a double-wide field; see if any double fields 3674 * follow this one. If so, we'll move it to this position. 3675 * (quicksort-style partitioning) 3676 */ 3677 while (j > i) { 3678 InstField* doubleField = &clazz->ifields[j--]; 3679 char rc = doubleField->signature[0]; 3680 3681 if (rc == 'D' || rc == 'J') { 3682 /* Here's a double-wide field that follows at least one 3683 * non-double field. Swap it with the current field. 3684 * (When this returns, "pField" points to the reference 3685 * field, and "doubleField" points to the non-double field.) 3686 */ 3687 swapField(pField, doubleField); 3688 c = rc; 3689 3690 break; 3691 } 3692 } 3693 /* We may or may not have swapped a field. 3694 */ 3695 } else { 3696 /* This is a double-wide field, leave it be. 3697 */ 3698 } 3699 3700 pField->byteOffset = fieldOffset; 3701 LOGVV(" --- offset4 '%s'=%d", pField->name,pField->byteOffset); 3702 fieldOffset += sizeof(u4); 3703 if (c == 'J' || c == 'D') 3704 fieldOffset += sizeof(u4); 3705 } 3706 3707 #ifndef NDEBUG 3708 /* Make sure that all reference fields appear before 3709 * non-reference fields, and all double-wide fields are aligned. 3710 */ 3711 j = 0; // seen non-ref 3712 for (i = 0; i < clazz->ifieldCount; i++) { 3713 InstField *pField = &clazz->ifields[i]; 3714 char c = pField->signature[0]; 3715 3716 if (c == 'D' || c == 'J') { 3717 assert((pField->byteOffset & 0x07) == 0); 3718 } 3719 3720 if (c != '[' && c != 'L') { 3721 if (!j) { 3722 assert(i == clazz->ifieldRefCount); 3723 j = 1; 3724 } 3725 } else if (j) { 3726 assert(false); 3727 } 3728 } 3729 if (!j) { 3730 assert(clazz->ifieldRefCount == clazz->ifieldCount); 3731 } 3732 #endif 3733 3734 /* 3735 * We map a C struct directly on top of java/lang/Class objects. Make 3736 * sure we left enough room for the instance fields. 3737 */ 3738 assert(!dvmIsTheClassClass(clazz) || (size_t)fieldOffset < 3739 OFFSETOF_MEMBER(ClassObject, instanceData) + sizeof(clazz->instanceData)); 3740 3741 clazz->objectSize = fieldOffset; 3742 3743 dvmLinearReadOnly(clazz->classLoader, clazz->ifields); 3744 return true; 3745 } 3746 3747 /* 3748 * The class failed to initialize on a previous attempt, so we want to throw 3749 * a NoClassDefFoundError (v2 2.17.5). The exception to this rule is if we 3750 * failed in verification, in which case v2 5.4.1 says we need to re-throw 3751 * the previous error. 3752 */ 3753 static void throwEarlierClassFailure(ClassObject* clazz) 3754 { 3755 ALOGI("Rejecting re-init on previously-failed class %s v=%p", 3756 clazz->descriptor, clazz->verifyErrorClass); 3757 3758 if (clazz->verifyErrorClass == NULL) { 3759 dvmThrowNoClassDefFoundError(clazz->descriptor); 3760 } else { 3761 dvmThrowExceptionWithClassMessage(clazz->verifyErrorClass, 3762 clazz->descriptor); 3763 } 3764 } 3765 3766 /* 3767 * Initialize any static fields whose values are stored in 3768 * the DEX file. This must be done during class initialization. 3769 */ 3770 static void initSFields(ClassObject* clazz) 3771 { 3772 Thread* self = dvmThreadSelf(); /* for dvmReleaseTrackedAlloc() */ 3773 DexFile* pDexFile; 3774 const DexClassDef* pClassDef; 3775 const DexEncodedArray* pValueList; 3776 EncodedArrayIterator iterator; 3777 int i; 3778 3779 if (clazz->sfieldCount == 0) { 3780 return; 3781 } 3782 if (clazz->pDvmDex == NULL) { 3783 /* generated class; any static fields should already be set up */ 3784 ALOGV("Not initializing static fields in %s", clazz->descriptor); 3785 return; 3786 } 3787 pDexFile = clazz->pDvmDex->pDexFile; 3788 3789 pClassDef = dexFindClass(pDexFile, clazz->descriptor); 3790 assert(pClassDef != NULL); 3791 3792 pValueList = dexGetStaticValuesList(pDexFile, pClassDef); 3793 if (pValueList == NULL) { 3794 return; 3795 } 3796 3797 dvmEncodedArrayIteratorInitialize(&iterator, pValueList, clazz); 3798 3799 /* 3800 * Iterate over the initial values array, setting the corresponding 3801 * static field for each array element. 3802 */ 3803 3804 for (i = 0; dvmEncodedArrayIteratorHasNext(&iterator); i++) { 3805 AnnotationValue value; 3806 bool parsed = dvmEncodedArrayIteratorGetNext(&iterator, &value); 3807 StaticField* sfield = &clazz->sfields[i]; 3808 const char* descriptor = sfield->signature; 3809 bool isObj = false; 3810 3811 if (! parsed) { 3812 /* 3813 * TODO: Eventually verification should attempt to ensure 3814 * that this can't happen at least due to a data integrity 3815 * problem. 3816 */ 3817 ALOGE("Static initializer parse failed for %s at index %d", 3818 clazz->descriptor, i); 3819 dvmAbort(); 3820 } 3821 3822 /* Verify that the value we got was of a valid type. */ 3823 3824 switch (descriptor[0]) { 3825 case 'Z': parsed = (value.type == kDexAnnotationBoolean); break; 3826 case 'B': parsed = (value.type == kDexAnnotationByte); break; 3827 case 'C': parsed = (value.type == kDexAnnotationChar); break; 3828 case 'S': parsed = (value.type == kDexAnnotationShort); break; 3829 case 'I': parsed = (value.type == kDexAnnotationInt); break; 3830 case 'J': parsed = (value.type == kDexAnnotationLong); break; 3831 case 'F': parsed = (value.type == kDexAnnotationFloat); break; 3832 case 'D': parsed = (value.type == kDexAnnotationDouble); break; 3833 case '[': parsed = (value.type == kDexAnnotationNull); break; 3834 case 'L': { 3835 switch (value.type) { 3836 case kDexAnnotationNull: { 3837 /* No need for further tests. */ 3838 break; 3839 } 3840 case kDexAnnotationString: { 3841 parsed = 3842 (strcmp(descriptor, "Ljava/lang/String;") == 0); 3843 isObj = true; 3844 break; 3845 } 3846 case kDexAnnotationType: { 3847 parsed = 3848 (strcmp(descriptor, "Ljava/lang/Class;") == 0); 3849 isObj = true; 3850 break; 3851 } 3852 default: { 3853 parsed = false; 3854 break; 3855 } 3856 } 3857 break; 3858 } 3859 default: { 3860 parsed = false; 3861 break; 3862 } 3863 } 3864 3865 if (parsed) { 3866 /* 3867 * All's well, so store the value. 3868 */ 3869 if (isObj) { 3870 dvmSetStaticFieldObject(sfield, (Object*)value.value.l); 3871 dvmReleaseTrackedAlloc((Object*)value.value.l, self); 3872 } else { 3873 /* 3874 * Note: This always stores the full width of a 3875 * JValue, even though most of the time only the first 3876 * word is needed. 3877 */ 3878 sfield->value = value.value; 3879 } 3880 } else { 3881 /* 3882 * Something up above had a problem. TODO: See comment 3883 * above the switch about verfication. 3884 */ 3885 ALOGE("Bogus static initialization: value type %d in field type " 3886 "%s for %s at index %d", 3887 value.type, descriptor, clazz->descriptor, i); 3888 dvmAbort(); 3889 } 3890 } 3891 } 3892 3893 3894 /* 3895 * Determine whether "descriptor" yields the same class object in the 3896 * context of clazz1 and clazz2. 3897 * 3898 * The caller must hold gDvm.loadedClasses. 3899 * 3900 * Returns "true" if they match. 3901 */ 3902 static bool compareDescriptorClasses(const char* descriptor, 3903 const ClassObject* clazz1, const ClassObject* clazz2) 3904 { 3905 ClassObject* result1; 3906 ClassObject* result2; 3907 3908 /* 3909 * Do the first lookup by name. 3910 */ 3911 result1 = dvmFindClassNoInit(descriptor, clazz1->classLoader); 3912 3913 /* 3914 * We can skip a second lookup by name if the second class loader is 3915 * in the initiating loader list of the class object we retrieved. 3916 * (This means that somebody already did a lookup of this class through 3917 * the second loader, and it resolved to the same class.) If it's not 3918 * there, we may simply not have had an opportunity to add it yet, so 3919 * we do the full lookup. 3920 * 3921 * The initiating loader test should catch the majority of cases 3922 * (in particular, the zillions of references to String/Object). 3923 * 3924 * Unfortunately we're still stuck grabbing a mutex to do the lookup. 3925 * 3926 * For this to work, the superclass/interface should be the first 3927 * argument, so that way if it's from the bootstrap loader this test 3928 * will work. (The bootstrap loader, by definition, never shows up 3929 * as the initiating loader of a class defined by some other loader.) 3930 */ 3931 dvmHashTableLock(gDvm.loadedClasses); 3932 bool isInit = dvmLoaderInInitiatingList(result1, clazz2->classLoader); 3933 dvmHashTableUnlock(gDvm.loadedClasses); 3934 3935 if (isInit) { 3936 //printf("%s(obj=%p) / %s(cl=%p): initiating\n", 3937 // result1->descriptor, result1, 3938 // clazz2->descriptor, clazz2->classLoader); 3939 return true; 3940 } else { 3941 //printf("%s(obj=%p) / %s(cl=%p): RAW\n", 3942 // result1->descriptor, result1, 3943 // clazz2->descriptor, clazz2->classLoader); 3944 result2 = dvmFindClassNoInit(descriptor, clazz2->classLoader); 3945 } 3946 3947 if (result1 == NULL || result2 == NULL) { 3948 dvmClearException(dvmThreadSelf()); 3949 if (result1 == result2) { 3950 /* 3951 * Neither class loader could find this class. Apparently it 3952 * doesn't exist. 3953 * 3954 * We can either throw some sort of exception now, or just 3955 * assume that it'll fail later when something actually tries 3956 * to use the class. For strict handling we should throw now, 3957 * because a "tricky" class loader could start returning 3958 * something later, and a pair of "tricky" loaders could set 3959 * us up for confusion. 3960 * 3961 * I'm not sure if we're allowed to complain about nonexistent 3962 * classes in method signatures during class init, so for now 3963 * this will just return "true" and let nature take its course. 3964 */ 3965 return true; 3966 } else { 3967 /* only one was found, so clearly they're not the same */ 3968 return false; 3969 } 3970 } 3971 3972 return result1 == result2; 3973 } 3974 3975 /* 3976 * For every component in the method descriptor, resolve the class in the 3977 * context of the two classes and compare the results. 3978 * 3979 * For best results, the "superclass" class should be first. 3980 * 3981 * Returns "true" if the classes match, "false" otherwise. 3982 */ 3983 static bool checkMethodDescriptorClasses(const Method* meth, 3984 const ClassObject* clazz1, const ClassObject* clazz2) 3985 { 3986 DexParameterIterator iterator; 3987 const char* descriptor; 3988 3989 /* walk through the list of parameters */ 3990 dexParameterIteratorInit(&iterator, &meth->prototype); 3991 while (true) { 3992 descriptor = dexParameterIteratorNextDescriptor(&iterator); 3993 3994 if (descriptor == NULL) 3995 break; 3996 3997 if (descriptor[0] == 'L' || descriptor[0] == '[') { 3998 /* non-primitive type */ 3999 if (!compareDescriptorClasses(descriptor, clazz1, clazz2)) 4000 return false; 4001 } 4002 } 4003 4004 /* check the return type */ 4005 descriptor = dexProtoGetReturnType(&meth->prototype); 4006 if (descriptor[0] == 'L' || descriptor[0] == '[') { 4007 if (!compareDescriptorClasses(descriptor, clazz1, clazz2)) 4008 return false; 4009 } 4010 return true; 4011 } 4012 4013 /* 4014 * Validate the descriptors in the superclass and interfaces. 4015 * 4016 * What we need to do is ensure that the classes named in the method 4017 * descriptors in our ancestors and ourselves resolve to the same class 4018 * objects. We can get conflicts when the classes come from different 4019 * class loaders, and the resolver comes up with different results for 4020 * the same class name in different contexts. 4021 * 4022 * An easy way to cause the problem is to declare a base class that uses 4023 * class Foo in a method signature (e.g. as the return type). Then, 4024 * define a subclass and a different version of Foo, and load them from a 4025 * different class loader. If the subclass overrides the method, it will 4026 * have a different concept of what Foo is than its parent does, so even 4027 * though the method signature strings are identical, they actually mean 4028 * different things. 4029 * 4030 * A call to the method through a base-class reference would be treated 4031 * differently than a call to the method through a subclass reference, which 4032 * isn't the way polymorphism works, so we have to reject the subclass. 4033 * If the subclass doesn't override the base method, then there's no 4034 * problem, because calls through base-class references and subclass 4035 * references end up in the same place. 4036 * 4037 * We don't need to check to see if an interface's methods match with its 4038 * superinterface's methods, because you can't instantiate an interface 4039 * and do something inappropriate with it. If interface I1 extends I2 4040 * and is implemented by C, and I1 and I2 are in separate class loaders 4041 * and have conflicting views of other classes, we will catch the conflict 4042 * when we process C. Anything that implements I1 is doomed to failure, 4043 * but we don't need to catch that while processing I1. 4044 * 4045 * On failure, throws an exception and returns "false". 4046 */ 4047 static bool validateSuperDescriptors(const ClassObject* clazz) 4048 { 4049 int i; 4050 4051 if (dvmIsInterfaceClass(clazz)) 4052 return true; 4053 4054 /* 4055 * Start with the superclass-declared methods. 4056 */ 4057 if (clazz->super != NULL && 4058 clazz->classLoader != clazz->super->classLoader) 4059 { 4060 /* 4061 * Walk through every overridden method and compare resolved 4062 * descriptor components. We pull the Method structs out of 4063 * the vtable. It doesn't matter whether we get the struct from 4064 * the parent or child, since we just need the UTF-8 descriptor, 4065 * which must match. 4066 * 4067 * We need to do this even for the stuff inherited from Object, 4068 * because it's possible that the new class loader has redefined 4069 * a basic class like String. 4070 * 4071 * We don't need to check stuff defined in a superclass because 4072 * it was checked when the superclass was loaded. 4073 */ 4074 const Method* meth; 4075 4076 //printf("Checking %s %p vs %s %p\n", 4077 // clazz->descriptor, clazz->classLoader, 4078 // clazz->super->descriptor, clazz->super->classLoader); 4079 for (i = clazz->super->vtableCount - 1; i >= 0; i--) { 4080 meth = clazz->vtable[i]; 4081 if (meth != clazz->super->vtable[i] && 4082 !checkMethodDescriptorClasses(meth, clazz->super, clazz)) 4083 { 4084 ALOGW("Method mismatch: %s in %s (cl=%p) and super %s (cl=%p)", 4085 meth->name, clazz->descriptor, clazz->classLoader, 4086 clazz->super->descriptor, clazz->super->classLoader); 4087 dvmThrowLinkageError( 4088 "Classes resolve differently in superclass"); 4089 return false; 4090 } 4091 } 4092 } 4093 4094 /* 4095 * Check the methods defined by this class against the interfaces it 4096 * implements. If we inherited the implementation from a superclass, 4097 * we have to check it against the superclass (which might be in a 4098 * different class loader). If the superclass also implements the 4099 * interface, we could skip the check since by definition it was 4100 * performed when the class was loaded. 4101 */ 4102 for (i = 0; i < clazz->iftableCount; i++) { 4103 const InterfaceEntry* iftable = &clazz->iftable[i]; 4104 4105 if (clazz->classLoader != iftable->clazz->classLoader) { 4106 const ClassObject* iface = iftable->clazz; 4107 int j; 4108 4109 for (j = 0; j < iface->virtualMethodCount; j++) { 4110 const Method* meth; 4111 int vtableIndex; 4112 4113 vtableIndex = iftable->methodIndexArray[j]; 4114 meth = clazz->vtable[vtableIndex]; 4115 4116 if (!checkMethodDescriptorClasses(meth, iface, meth->clazz)) { 4117 ALOGW("Method mismatch: %s in %s (cl=%p) and " 4118 "iface %s (cl=%p)", 4119 meth->name, clazz->descriptor, clazz->classLoader, 4120 iface->descriptor, iface->classLoader); 4121 dvmThrowLinkageError( 4122 "Classes resolve differently in interface"); 4123 return false; 4124 } 4125 } 4126 } 4127 } 4128 4129 return true; 4130 } 4131 4132 /* 4133 * Returns true if the class is being initialized by us (which means that 4134 * calling dvmInitClass will return immediately after fiddling with locks). 4135 * Returns false if it's not being initialized, or if it's being 4136 * initialized by another thread. 4137 * 4138 * The value for initThreadId is always set to "self->threadId", by the 4139 * thread doing the initializing. If it was done by the current thread, 4140 * we are guaranteed to see "initializing" and our thread ID, even on SMP. 4141 * If it was done by another thread, the only bad situation is one in 4142 * which we see "initializing" and a stale copy of our own thread ID 4143 * while another thread is actually handling init. 4144 * 4145 * The initThreadId field is used during class linking, so it *is* 4146 * possible to have a stale value floating around. We need to ensure 4147 * that memory accesses happen in the correct order. 4148 */ 4149 bool dvmIsClassInitializing(const ClassObject* clazz) 4150 { 4151 const int32_t* addr = (const int32_t*)(const void*)&clazz->status; 4152 int32_t value = android_atomic_acquire_load(addr); 4153 ClassStatus status = static_cast<ClassStatus>(value); 4154 return (status == CLASS_INITIALIZING && 4155 clazz->initThreadId == dvmThreadSelf()->threadId); 4156 } 4157 4158 /* 4159 * If a class has not been initialized, do so by executing the code in 4160 * <clinit>. The sequence is described in the VM spec v2 2.17.5. 4161 * 4162 * It is possible for multiple threads to arrive here simultaneously, so 4163 * we need to lock the class while we check stuff. We know that no 4164 * interpreted code has access to the class yet, so we can use the class's 4165 * monitor lock. 4166 * 4167 * We will often be called recursively, e.g. when the <clinit> code resolves 4168 * one of its fields, the field resolution will try to initialize the class. 4169 * In that case we will return "true" even though the class isn't actually 4170 * ready to go. The ambiguity can be resolved with dvmIsClassInitializing(). 4171 * (TODO: consider having this return an enum to avoid the extra call -- 4172 * return -1 on failure, 0 on success, 1 on still-initializing. Looks like 4173 * dvmIsClassInitializing() is always paired with *Initialized()) 4174 * 4175 * This can get very interesting if a class has a static field initialized 4176 * to a new instance of itself. <clinit> will end up calling <init> on 4177 * the members it is initializing, which is fine unless it uses the contents 4178 * of static fields to initialize instance fields. This will leave the 4179 * static-referenced objects in a partially initialized state. This is 4180 * reasonably rare and can sometimes be cured with proper field ordering. 4181 * 4182 * On failure, returns "false" with an exception raised. 4183 * 4184 * ----- 4185 * 4186 * It is possible to cause a deadlock by having a situation like this: 4187 * class A { static { sleep(10000); new B(); } } 4188 * class B { static { sleep(10000); new A(); } } 4189 * new Thread() { public void run() { new A(); } }.start(); 4190 * new Thread() { public void run() { new B(); } }.start(); 4191 * This appears to be expected under the spec. 4192 * 4193 * The interesting question is what to do if somebody calls Thread.interrupt() 4194 * on one of the deadlocked threads. According to the VM spec, they're both 4195 * sitting in "wait". Should the interrupt code quietly raise the 4196 * "interrupted" flag, or should the "wait" return immediately with an 4197 * exception raised? 4198 * 4199 * This gets a little murky. The VM spec says we call "wait", and the 4200 * spec for Thread.interrupt says Object.wait is interruptible. So it 4201 * seems that, if we get unlucky and interrupt class initialization, we 4202 * are expected to throw (which gets converted to ExceptionInInitializerError 4203 * since InterruptedException is checked). 4204 * 4205 * There are a couple of problems here. First, all threads are expected to 4206 * present a consistent view of class initialization, so we can't have it 4207 * fail in one thread and succeed in another. Second, once a class fails 4208 * to initialize, it must *always* fail. This means that a stray interrupt() 4209 * call could render a class unusable for the lifetime of the VM. 4210 * 4211 * In most cases -- the deadlock example above being a counter-example -- 4212 * the interrupting thread can't tell whether the target thread handled 4213 * the initialization itself or had to wait while another thread did the 4214 * work. Refusing to interrupt class initialization is, in most cases, 4215 * not something that a program can reliably detect. 4216 * 4217 * On the assumption that interrupting class initialization is highly 4218 * undesirable in most circumstances, and that failing to do so does not 4219 * deviate from the spec in a meaningful way, we don't allow class init 4220 * to be interrupted by Thread.interrupt(). 4221 */ 4222 bool dvmInitClass(ClassObject* clazz) 4223 { 4224 u8 startWhen = 0; 4225 4226 #if LOG_CLASS_LOADING 4227 bool initializedByUs = false; 4228 #endif 4229 4230 Thread* self = dvmThreadSelf(); 4231 const Method* method; 4232 4233 dvmLockObject(self, (Object*) clazz); 4234 assert(dvmIsClassLinked(clazz) || clazz->status == CLASS_ERROR); 4235 4236 /* 4237 * If the class hasn't been verified yet, do so now. 4238 */ 4239 if (clazz->status < CLASS_VERIFIED) { 4240 /* 4241 * If we're in an "erroneous" state, throw an exception and bail. 4242 */ 4243 if (clazz->status == CLASS_ERROR) { 4244 throwEarlierClassFailure(clazz); 4245 goto bail_unlock; 4246 } 4247 4248 assert(clazz->status == CLASS_RESOLVED); 4249 assert(!IS_CLASS_FLAG_SET(clazz, CLASS_ISPREVERIFIED)); 4250 4251 if (gDvm.classVerifyMode == VERIFY_MODE_NONE || 4252 (gDvm.classVerifyMode == VERIFY_MODE_REMOTE && 4253 clazz->classLoader == NULL)) 4254 { 4255 /* advance to "verified" state */ 4256 ALOGV("+++ not verifying class %s (cl=%p)", 4257 clazz->descriptor, clazz->classLoader); 4258 clazz->status = CLASS_VERIFIED; 4259 goto noverify; 4260 } 4261 4262 if (!gDvm.optimizing) 4263 ALOGV("+++ late verify on %s", clazz->descriptor); 4264 4265 /* 4266 * We're not supposed to optimize an unverified class, but during 4267 * development this mode was useful. We can't verify an optimized 4268 * class because the optimization process discards information. 4269 */ 4270 if (IS_CLASS_FLAG_SET(clazz, CLASS_ISOPTIMIZED)) { 4271 ALOGW("Class '%s' was optimized without verification; " 4272 "not verifying now", 4273 clazz->descriptor); 4274 ALOGW(" ('rm /data/dalvik-cache/*' and restart to fix this)"); 4275 goto verify_failed; 4276 } 4277 4278 clazz->status = CLASS_VERIFYING; 4279 if (!dvmVerifyClass(clazz)) { 4280 verify_failed: 4281 dvmThrowVerifyError(clazz->descriptor); 4282 dvmSetFieldObject((Object*) clazz, 4283 OFFSETOF_MEMBER(ClassObject, verifyErrorClass), 4284 (Object*) dvmGetException(self)->clazz); 4285 clazz->status = CLASS_ERROR; 4286 goto bail_unlock; 4287 } 4288 4289 clazz->status = CLASS_VERIFIED; 4290 } 4291 noverify: 4292 4293 /* 4294 * We need to ensure that certain instructions, notably accesses to 4295 * volatile fields, are replaced before any code is executed. This 4296 * must happen even if DEX optimizations are disabled. 4297 * 4298 * The only exception to this rule is that we don't want to do this 4299 * during dexopt. We don't generally initialize classes at all 4300 * during dexopt, but because we're loading classes we need Class and 4301 * Object (and possibly some Throwable stuff if a class isn't found). 4302 * If optimizations are disabled, we don't want to output optimized 4303 * instructions at this time. This means we will be executing <clinit> 4304 * code with un-fixed volatiles, but we're only doing it for a few 4305 * system classes, and dexopt runs single-threaded. 4306 */ 4307 if (!IS_CLASS_FLAG_SET(clazz, CLASS_ISOPTIMIZED) && !gDvm.optimizing) { 4308 ALOGV("+++ late optimize on %s (pv=%d)", 4309 clazz->descriptor, IS_CLASS_FLAG_SET(clazz, CLASS_ISPREVERIFIED)); 4310 bool essentialOnly = (gDvm.dexOptMode != OPTIMIZE_MODE_FULL); 4311 dvmOptimizeClass(clazz, essentialOnly); 4312 SET_CLASS_FLAG(clazz, CLASS_ISOPTIMIZED); 4313 } 4314 4315 /* update instruction stream now that verification + optimization is done */ 4316 dvmFlushBreakpoints(clazz); 4317 4318 if (clazz->status == CLASS_INITIALIZED) 4319 goto bail_unlock; 4320 4321 while (clazz->status == CLASS_INITIALIZING) { 4322 /* we caught somebody else in the act; was it us? */ 4323 if (clazz->initThreadId == self->threadId) { 4324 //ALOGV("HEY: found a recursive <clinit>"); 4325 goto bail_unlock; 4326 } 4327 4328 if (dvmCheckException(self)) { 4329 ALOGW("GLITCH: exception pending at start of class init"); 4330 dvmAbort(); 4331 } 4332 4333 /* 4334 * Wait for the other thread to finish initialization. We pass 4335 * "false" for the "interruptShouldThrow" arg so it doesn't throw 4336 * an exception on interrupt. 4337 */ 4338 dvmObjectWait(self, (Object*) clazz, 0, 0, false); 4339 4340 /* 4341 * When we wake up, repeat the test for init-in-progress. If there's 4342 * an exception pending (only possible if "interruptShouldThrow" 4343 * was set), bail out. 4344 */ 4345 if (dvmCheckException(self)) { 4346 ALOGI("Class init of '%s' failing with wait() exception", 4347 clazz->descriptor); 4348 /* 4349 * TODO: this is bogus, because it means the two threads have a 4350 * different idea of the class status. We need to flag the 4351 * class as bad and ensure that the initializer thread respects 4352 * our notice. If we get lucky and wake up after the class has 4353 * finished initialization but before being woken, we have to 4354 * swallow the exception, perhaps raising thread->interrupted 4355 * to preserve semantics. 4356 * 4357 * Since we're not currently allowing interrupts, this should 4358 * never happen and we don't need to fix this. 4359 */ 4360 assert(false); 4361 dvmThrowExceptionInInitializerError(); 4362 clazz->status = CLASS_ERROR; 4363 goto bail_unlock; 4364 } 4365 if (clazz->status == CLASS_INITIALIZING) { 4366 ALOGI("Waiting again for class init"); 4367 continue; 4368 } 4369 assert(clazz->status == CLASS_INITIALIZED || 4370 clazz->status == CLASS_ERROR); 4371 if (clazz->status == CLASS_ERROR) { 4372 /* 4373 * The caller wants an exception, but it was thrown in a 4374 * different thread. Synthesize one here. 4375 */ 4376 dvmThrowUnsatisfiedLinkError( 4377 "(<clinit> failed, see exception in other thread)"); 4378 } 4379 goto bail_unlock; 4380 } 4381 4382 /* see if we failed previously */ 4383 if (clazz->status == CLASS_ERROR) { 4384 // might be wise to unlock before throwing; depends on which class 4385 // it is that we have locked 4386 dvmUnlockObject(self, (Object*) clazz); 4387 throwEarlierClassFailure(clazz); 4388 return false; 4389 } 4390 4391 if (gDvm.allocProf.enabled) { 4392 startWhen = dvmGetRelativeTimeNsec(); 4393 } 4394 4395 /* 4396 * We're ready to go, and have exclusive access to the class. 4397 * 4398 * Before we start initialization, we need to do one extra bit of 4399 * validation: make sure that the methods declared here match up 4400 * with our superclass and interfaces. We know that the UTF-8 4401 * descriptors match, but classes from different class loaders can 4402 * have the same name. 4403 * 4404 * We do this now, rather than at load/link time, for the same reason 4405 * that we defer verification. 4406 * 4407 * It's unfortunate that we need to do this at all, but we risk 4408 * mixing reference types with identical names (see Dalvik test 068). 4409 */ 4410 if (!validateSuperDescriptors(clazz)) { 4411 assert(dvmCheckException(self)); 4412 clazz->status = CLASS_ERROR; 4413 goto bail_unlock; 4414 } 4415 4416 /* 4417 * Let's initialize this thing. 4418 * 4419 * We unlock the object so that other threads can politely sleep on 4420 * our mutex with Object.wait(), instead of hanging or spinning trying 4421 * to grab our mutex. 4422 */ 4423 assert(clazz->status < CLASS_INITIALIZING); 4424 4425 #if LOG_CLASS_LOADING 4426 // We started initializing. 4427 logClassLoad('+', clazz); 4428 initializedByUs = true; 4429 #endif 4430 4431 /* order matters here, esp. interaction with dvmIsClassInitializing */ 4432 clazz->initThreadId = self->threadId; 4433 android_atomic_release_store(CLASS_INITIALIZING, 4434 (int32_t*)(void*)&clazz->status); 4435 dvmUnlockObject(self, (Object*) clazz); 4436 4437 /* init our superclass */ 4438 if (clazz->super != NULL && clazz->super->status != CLASS_INITIALIZED) { 4439 assert(!dvmIsInterfaceClass(clazz)); 4440 if (!dvmInitClass(clazz->super)) { 4441 assert(dvmCheckException(self)); 4442 clazz->status = CLASS_ERROR; 4443 /* wake up anybody who started waiting while we were unlocked */ 4444 dvmLockObject(self, (Object*) clazz); 4445 goto bail_notify; 4446 } 4447 } 4448 4449 /* Initialize any static fields whose values are 4450 * stored in the Dex file. This should include all of the 4451 * simple "final static" fields, which are required to 4452 * be initialized first. (vmspec 2 sec 2.17.5 item 8) 4453 * More-complicated final static fields should be set 4454 * at the beginning of <clinit>; all we can do is trust 4455 * that the compiler did the right thing. 4456 */ 4457 initSFields(clazz); 4458 4459 /* Execute any static initialization code. 4460 */ 4461 method = dvmFindDirectMethodByDescriptor(clazz, "<clinit>", "()V"); 4462 if (method == NULL) { 4463 LOGVV("No <clinit> found for %s", clazz->descriptor); 4464 } else { 4465 LOGVV("Invoking %s.<clinit>", clazz->descriptor); 4466 JValue unused; 4467 dvmCallMethod(self, method, NULL, &unused); 4468 } 4469 4470 if (dvmCheckException(self)) { 4471 /* 4472 * We've had an exception thrown during static initialization. We 4473 * need to throw an ExceptionInInitializerError, but we want to 4474 * tuck the original exception into the "cause" field. 4475 */ 4476 ALOGW("Exception %s thrown while initializing %s", 4477 (dvmGetException(self)->clazz)->descriptor, clazz->descriptor); 4478 dvmThrowExceptionInInitializerError(); 4479 //ALOGW("+++ replaced"); 4480 4481 dvmLockObject(self, (Object*) clazz); 4482 clazz->status = CLASS_ERROR; 4483 } else { 4484 /* success! */ 4485 dvmLockObject(self, (Object*) clazz); 4486 clazz->status = CLASS_INITIALIZED; 4487 LOGVV("Initialized class: %s", clazz->descriptor); 4488 4489 /* 4490 * Update alloc counters. TODO: guard with mutex. 4491 */ 4492 if (gDvm.allocProf.enabled && startWhen != 0) { 4493 u8 initDuration = dvmGetRelativeTimeNsec() - startWhen; 4494 gDvm.allocProf.classInitTime += initDuration; 4495 self->allocProf.classInitTime += initDuration; 4496 gDvm.allocProf.classInitCount++; 4497 self->allocProf.classInitCount++; 4498 } 4499 } 4500 4501 bail_notify: 4502 /* 4503 * Notify anybody waiting on the object. 4504 */ 4505 dvmObjectNotifyAll(self, (Object*) clazz); 4506 4507 bail_unlock: 4508 4509 #if LOG_CLASS_LOADING 4510 if (initializedByUs) { 4511 // We finished initializing. 4512 logClassLoad('-', clazz); 4513 } 4514 #endif 4515 4516 dvmUnlockObject(self, (Object*) clazz); 4517 4518 return (clazz->status != CLASS_ERROR); 4519 } 4520 4521 /* 4522 * Replace method->nativeFunc and method->insns with new values. This is 4523 * commonly performed after successful resolution of a native method. 4524 * 4525 * There are three basic states: 4526 * (1) (initial) nativeFunc = dvmResolveNativeMethod, insns = NULL 4527 * (2) (internal native) nativeFunc = <impl>, insns = NULL 4528 * (3) (JNI) nativeFunc = JNI call bridge, insns = <impl> 4529 * 4530 * nativeFunc must never be NULL for a native method. 4531 * 4532 * The most common transitions are (1)->(2) and (1)->(3). The former is 4533 * atomic, since only one field is updated; the latter is not, but since 4534 * dvmResolveNativeMethod ignores the "insns" field we just need to make 4535 * sure the update happens in the correct order. 4536 * 4537 * A transition from (2)->(1) would work fine, but (3)->(1) will not, 4538 * because both fields change. If we did this while a thread was executing 4539 * in the call bridge, we could null out the "insns" field right before 4540 * the bridge tried to call through it. So, once "insns" is set, we do 4541 * not allow it to be cleared. A NULL value for the "insns" argument is 4542 * treated as "do not change existing value". 4543 */ 4544 void dvmSetNativeFunc(Method* method, DalvikBridgeFunc func, 4545 const u2* insns) 4546 { 4547 ClassObject* clazz = method->clazz; 4548 4549 assert(func != NULL); 4550 4551 /* just open up both; easier that way */ 4552 dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods); 4553 dvmLinearReadWrite(clazz->classLoader, clazz->directMethods); 4554 4555 if (insns != NULL) { 4556 /* update both, ensuring that "insns" is observed first */ 4557 method->insns = insns; 4558 android_atomic_release_store((int32_t) func, 4559 (volatile int32_t*)(void*) &method->nativeFunc); 4560 } else { 4561 /* only update nativeFunc */ 4562 method->nativeFunc = func; 4563 } 4564 4565 dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods); 4566 dvmLinearReadOnly(clazz->classLoader, clazz->directMethods); 4567 } 4568 4569 /* 4570 * Add a RegisterMap to a Method. This is done when we verify the class 4571 * and compute the register maps at class initialization time (i.e. when 4572 * we don't have a pre-generated map). This means "pMap" is on the heap 4573 * and should be freed when the Method is discarded. 4574 */ 4575 void dvmSetRegisterMap(Method* method, const RegisterMap* pMap) 4576 { 4577 ClassObject* clazz = method->clazz; 4578 4579 if (method->registerMap != NULL) { 4580 /* unexpected during class loading, okay on first use (uncompress) */ 4581 ALOGV("NOTE: registerMap already set for %s.%s", 4582 method->clazz->descriptor, method->name); 4583 /* keep going */ 4584 } 4585 assert(!dvmIsNativeMethod(method) && !dvmIsAbstractMethod(method)); 4586 4587 /* might be virtual or direct */ 4588 dvmLinearReadWrite(clazz->classLoader, clazz->virtualMethods); 4589 dvmLinearReadWrite(clazz->classLoader, clazz->directMethods); 4590 4591 method->registerMap = pMap; 4592 4593 dvmLinearReadOnly(clazz->classLoader, clazz->virtualMethods); 4594 dvmLinearReadOnly(clazz->classLoader, clazz->directMethods); 4595 } 4596 4597 /* 4598 * dvmHashForeach callback. A nonzero return value causes foreach to 4599 * bail out. 4600 */ 4601 static int findClassCallback(void* vclazz, void* arg) 4602 { 4603 ClassObject* clazz = (ClassObject*)vclazz; 4604 const char* descriptor = (const char*) arg; 4605 4606 if (strcmp(clazz->descriptor, descriptor) == 0) 4607 return (int) clazz; 4608 return 0; 4609 } 4610 4611 /* 4612 * Find a loaded class by descriptor. Returns the first one found. 4613 * Because there can be more than one if class loaders are involved, 4614 * this is not an especially good API. (Currently only used by the 4615 * debugger and "checking" JNI.) 4616 * 4617 * "descriptor" should have the form "Ljava/lang/Class;" or 4618 * "[Ljava/lang/Class;", i.e. a descriptor and not an internal-form 4619 * class name. 4620 */ 4621 ClassObject* dvmFindLoadedClass(const char* descriptor) 4622 { 4623 int result; 4624 4625 dvmHashTableLock(gDvm.loadedClasses); 4626 result = dvmHashForeach(gDvm.loadedClasses, findClassCallback, 4627 (void*) descriptor); 4628 dvmHashTableUnlock(gDvm.loadedClasses); 4629 4630 return (ClassObject*) result; 4631 } 4632 4633 /* 4634 * Retrieve the system (a/k/a application) class loader. 4635 * 4636 * The caller must call dvmReleaseTrackedAlloc on the result. 4637 */ 4638 Object* dvmGetSystemClassLoader() 4639 { 4640 Thread* self = dvmThreadSelf(); 4641 ClassObject* clClass = gDvm.classJavaLangClassLoader; 4642 4643 if (!dvmIsClassInitialized(clClass) && !dvmInitClass(clClass)) 4644 return NULL; 4645 4646 JValue result; 4647 dvmCallMethod(self, gDvm.methJavaLangClassLoader_getSystemClassLoader, 4648 NULL, &result); 4649 Object* loader = (Object*)result.l; 4650 dvmAddTrackedAlloc(loader, self); 4651 return loader; 4652 } 4653 4654 4655 /* 4656 * This is a dvmHashForeach callback. 4657 */ 4658 static int dumpClass(void* vclazz, void* varg) 4659 { 4660 const ClassObject* clazz = (const ClassObject*) vclazz; 4661 const ClassObject* super; 4662 int flags = (int) varg; 4663 char* desc; 4664 int i; 4665 4666 if (clazz == NULL) { 4667 ALOGI("dumpClass: ignoring request to dump null class"); 4668 return 0; 4669 } 4670 4671 if ((flags & kDumpClassFullDetail) == 0) { 4672 bool showInit = (flags & kDumpClassInitialized) != 0; 4673 bool showLoader = (flags & kDumpClassClassLoader) != 0; 4674 const char* initStr; 4675 4676 initStr = dvmIsClassInitialized(clazz) ? "true" : "false"; 4677 4678 if (showInit && showLoader) 4679 ALOGI("%s %p %s", clazz->descriptor, clazz->classLoader, initStr); 4680 else if (showInit) 4681 ALOGI("%s %s", clazz->descriptor, initStr); 4682 else if (showLoader) 4683 ALOGI("%s %p", clazz->descriptor, clazz->classLoader); 4684 else 4685 ALOGI("%s", clazz->descriptor); 4686 4687 return 0; 4688 } 4689 4690 /* clazz->super briefly holds the superclass index during class prep */ 4691 if ((u4)clazz->super > 0x10000 && (u4) clazz->super != (u4)-1) 4692 super = clazz->super; 4693 else 4694 super = NULL; 4695 4696 ALOGI("----- %s '%s' cl=%p ser=0x%08x -----", 4697 dvmIsInterfaceClass(clazz) ? "interface" : "class", 4698 clazz->descriptor, clazz->classLoader, clazz->serialNumber); 4699 ALOGI(" objectSize=%d (%d from super)", (int) clazz->objectSize, 4700 super != NULL ? (int) super->objectSize : -1); 4701 ALOGI(" access=0x%04x.%04x", clazz->accessFlags >> 16, 4702 clazz->accessFlags & JAVA_FLAGS_MASK); 4703 if (super != NULL) 4704 ALOGI(" super='%s' (cl=%p)", super->descriptor, super->classLoader); 4705 if (dvmIsArrayClass(clazz)) { 4706 ALOGI(" dimensions=%d elementClass=%s", 4707 clazz->arrayDim, clazz->elementClass->descriptor); 4708 } 4709 if (clazz->iftableCount > 0) { 4710 ALOGI(" interfaces (%d):", clazz->iftableCount); 4711 for (i = 0; i < clazz->iftableCount; i++) { 4712 InterfaceEntry* ent = &clazz->iftable[i]; 4713 int j; 4714 4715 ALOGI(" %2d: %s (cl=%p)", 4716 i, ent->clazz->descriptor, ent->clazz->classLoader); 4717 4718 /* enable when needed */ 4719 if (false && ent->methodIndexArray != NULL) { 4720 for (j = 0; j < ent->clazz->virtualMethodCount; j++) 4721 ALOGI(" %2d: %d %s %s", 4722 j, ent->methodIndexArray[j], 4723 ent->clazz->virtualMethods[j].name, 4724 clazz->vtable[ent->methodIndexArray[j]]->name); 4725 } 4726 } 4727 } 4728 if (!dvmIsInterfaceClass(clazz)) { 4729 ALOGI(" vtable (%d entries, %d in super):", clazz->vtableCount, 4730 super != NULL ? super->vtableCount : 0); 4731 for (i = 0; i < clazz->vtableCount; i++) { 4732 desc = dexProtoCopyMethodDescriptor(&clazz->vtable[i]->prototype); 4733 ALOGI(" %s%2d: %p %20s %s", 4734 (i != clazz->vtable[i]->methodIndex) ? "*** " : "", 4735 (u4) clazz->vtable[i]->methodIndex, clazz->vtable[i], 4736 clazz->vtable[i]->name, desc); 4737 free(desc); 4738 } 4739 ALOGI(" direct methods (%d entries):", clazz->directMethodCount); 4740 for (i = 0; i < clazz->directMethodCount; i++) { 4741 desc = dexProtoCopyMethodDescriptor( 4742 &clazz->directMethods[i].prototype); 4743 ALOGI(" %2d: %20s %s", i, clazz->directMethods[i].name, 4744 desc); 4745 free(desc); 4746 } 4747 } else { 4748 ALOGI(" interface methods (%d):", clazz->virtualMethodCount); 4749 for (i = 0; i < clazz->virtualMethodCount; i++) { 4750 desc = dexProtoCopyMethodDescriptor( 4751 &clazz->virtualMethods[i].prototype); 4752 ALOGI(" %2d: %2d %20s %s", i, 4753 (u4) clazz->virtualMethods[i].methodIndex, 4754 clazz->virtualMethods[i].name, 4755 desc); 4756 free(desc); 4757 } 4758 } 4759 if (clazz->sfieldCount > 0) { 4760 ALOGI(" static fields (%d entries):", clazz->sfieldCount); 4761 for (i = 0; i < clazz->sfieldCount; i++) { 4762 ALOGI(" %2d: %20s %s", i, clazz->sfields[i].name, 4763 clazz->sfields[i].signature); 4764 } 4765 } 4766 if (clazz->ifieldCount > 0) { 4767 ALOGI(" instance fields (%d entries):", clazz->ifieldCount); 4768 for (i = 0; i < clazz->ifieldCount; i++) { 4769 ALOGI(" %2d: %20s %s", i, clazz->ifields[i].name, 4770 clazz->ifields[i].signature); 4771 } 4772 } 4773 return 0; 4774 } 4775 4776 /* 4777 * Dump the contents of a single class. 4778 * 4779 * Pass kDumpClassFullDetail into "flags" to get lots of detail. 4780 */ 4781 void dvmDumpClass(const ClassObject* clazz, int flags) 4782 { 4783 dumpClass((void*) clazz, (void*) flags); 4784 } 4785 4786 /* 4787 * Dump the contents of all classes. 4788 */ 4789 void dvmDumpAllClasses(int flags) 4790 { 4791 dvmHashTableLock(gDvm.loadedClasses); 4792 dvmHashForeach(gDvm.loadedClasses, dumpClass, (void*) flags); 4793 dvmHashTableUnlock(gDvm.loadedClasses); 4794 } 4795 4796 /* 4797 * Get the number of loaded classes 4798 */ 4799 int dvmGetNumLoadedClasses() 4800 { 4801 int count; 4802 dvmHashTableLock(gDvm.loadedClasses); 4803 count = dvmHashTableNumEntries(gDvm.loadedClasses); 4804 dvmHashTableUnlock(gDvm.loadedClasses); 4805 return count; 4806 } 4807 4808 /* 4809 * Write some statistics to the log file. 4810 */ 4811 void dvmDumpLoaderStats(const char* msg) 4812 { 4813 ALOGV("VM stats (%s): cls=%d/%d meth=%d ifld=%d sfld=%d linear=%d", 4814 msg, gDvm.numLoadedClasses, dvmHashTableNumEntries(gDvm.loadedClasses), 4815 gDvm.numDeclaredMethods, gDvm.numDeclaredInstFields, 4816 gDvm.numDeclaredStaticFields, gDvm.pBootLoaderAlloc->curOffset); 4817 #ifdef COUNT_PRECISE_METHODS 4818 ALOGI("GC precise methods: %d", 4819 dvmPointerSetGetCount(gDvm.preciseMethods)); 4820 #endif 4821 } 4822 4823 /* 4824 * =========================================================================== 4825 * Method Prototypes and Descriptors 4826 * =========================================================================== 4827 */ 4828 4829 /* 4830 * Compare the two method names and prototypes, a la strcmp(). The 4831 * name is considered the "major" order and the prototype the "minor" 4832 * order. The prototypes are compared as if by dvmCompareMethodProtos(). 4833 */ 4834 int dvmCompareMethodNamesAndProtos(const Method* method1, 4835 const Method* method2) 4836 { 4837 int result = strcmp(method1->name, method2->name); 4838 4839 if (result != 0) { 4840 return result; 4841 } 4842 4843 return dvmCompareMethodProtos(method1, method2); 4844 } 4845 4846 /* 4847 * Compare the two method names and prototypes, a la strcmp(), ignoring 4848 * the return value. The name is considered the "major" order and the 4849 * prototype the "minor" order. The prototypes are compared as if by 4850 * dvmCompareMethodArgProtos(). 4851 */ 4852 int dvmCompareMethodNamesAndParameterProtos(const Method* method1, 4853 const Method* method2) 4854 { 4855 int result = strcmp(method1->name, method2->name); 4856 4857 if (result != 0) { 4858 return result; 4859 } 4860 4861 return dvmCompareMethodParameterProtos(method1, method2); 4862 } 4863 4864 /* 4865 * Compare a (name, prototype) pair with the (name, prototype) of 4866 * a method, a la strcmp(). The name is considered the "major" order and 4867 * the prototype the "minor" order. The descriptor and prototype are 4868 * compared as if by dvmCompareDescriptorAndMethodProto(). 4869 */ 4870 int dvmCompareNameProtoAndMethod(const char* name, 4871 const DexProto* proto, const Method* method) 4872 { 4873 int result = strcmp(name, method->name); 4874 4875 if (result != 0) { 4876 return result; 4877 } 4878 4879 return dexProtoCompare(proto, &method->prototype); 4880 } 4881 4882 /* 4883 * Compare a (name, method descriptor) pair with the (name, prototype) of 4884 * a method, a la strcmp(). The name is considered the "major" order and 4885 * the prototype the "minor" order. The descriptor and prototype are 4886 * compared as if by dvmCompareDescriptorAndMethodProto(). 4887 */ 4888 int dvmCompareNameDescriptorAndMethod(const char* name, 4889 const char* descriptor, const Method* method) 4890 { 4891 int result = strcmp(name, method->name); 4892 4893 if (result != 0) { 4894 return result; 4895 } 4896 4897 return dvmCompareDescriptorAndMethodProto(descriptor, method); 4898 } 4899