1 //===-- Constants.cpp - Implement Constant nodes --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Constant* classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Constants.h" 15 #include "LLVMContextImpl.h" 16 #include "ConstantFold.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/GlobalValue.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Module.h" 21 #include "llvm/Operator.h" 22 #include "llvm/ADT/FoldingSet.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/Support/Compiler.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Support/GetElementPtrTypeIterator.h" 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include <algorithm> 36 #include <cstdarg> 37 using namespace llvm; 38 39 //===----------------------------------------------------------------------===// 40 // Constant Class 41 //===----------------------------------------------------------------------===// 42 43 void Constant::anchor() { } 44 45 bool Constant::isNegativeZeroValue() const { 46 // Floating point values have an explicit -0.0 value. 47 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 48 return CFP->isZero() && CFP->isNegative(); 49 50 // Otherwise, just use +0.0. 51 return isNullValue(); 52 } 53 54 bool Constant::isNullValue() const { 55 // 0 is null. 56 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 57 return CI->isZero(); 58 59 // +0.0 is null. 60 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 61 return CFP->isZero() && !CFP->isNegative(); 62 63 // constant zero is zero for aggregates and cpnull is null for pointers. 64 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this); 65 } 66 67 bool Constant::isAllOnesValue() const { 68 // Check for -1 integers 69 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 70 return CI->isMinusOne(); 71 72 // Check for FP which are bitcasted from -1 integers 73 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 74 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue(); 75 76 // Check for constant vectors which are splats of -1 values. 77 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 78 if (Constant *Splat = CV->getSplatValue()) 79 return Splat->isAllOnesValue(); 80 81 // Check for constant vectors which are splats of -1 values. 82 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 83 if (Constant *Splat = CV->getSplatValue()) 84 return Splat->isAllOnesValue(); 85 86 return false; 87 } 88 89 // Constructor to create a '0' constant of arbitrary type... 90 Constant *Constant::getNullValue(Type *Ty) { 91 switch (Ty->getTypeID()) { 92 case Type::IntegerTyID: 93 return ConstantInt::get(Ty, 0); 94 case Type::HalfTyID: 95 return ConstantFP::get(Ty->getContext(), 96 APFloat::getZero(APFloat::IEEEhalf)); 97 case Type::FloatTyID: 98 return ConstantFP::get(Ty->getContext(), 99 APFloat::getZero(APFloat::IEEEsingle)); 100 case Type::DoubleTyID: 101 return ConstantFP::get(Ty->getContext(), 102 APFloat::getZero(APFloat::IEEEdouble)); 103 case Type::X86_FP80TyID: 104 return ConstantFP::get(Ty->getContext(), 105 APFloat::getZero(APFloat::x87DoubleExtended)); 106 case Type::FP128TyID: 107 return ConstantFP::get(Ty->getContext(), 108 APFloat::getZero(APFloat::IEEEquad)); 109 case Type::PPC_FP128TyID: 110 return ConstantFP::get(Ty->getContext(), 111 APFloat(APInt::getNullValue(128))); 112 case Type::PointerTyID: 113 return ConstantPointerNull::get(cast<PointerType>(Ty)); 114 case Type::StructTyID: 115 case Type::ArrayTyID: 116 case Type::VectorTyID: 117 return ConstantAggregateZero::get(Ty); 118 default: 119 // Function, Label, or Opaque type? 120 llvm_unreachable("Cannot create a null constant of that type!"); 121 } 122 } 123 124 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { 125 Type *ScalarTy = Ty->getScalarType(); 126 127 // Create the base integer constant. 128 Constant *C = ConstantInt::get(Ty->getContext(), V); 129 130 // Convert an integer to a pointer, if necessary. 131 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) 132 C = ConstantExpr::getIntToPtr(C, PTy); 133 134 // Broadcast a scalar to a vector, if necessary. 135 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 136 C = ConstantVector::getSplat(VTy->getNumElements(), C); 137 138 return C; 139 } 140 141 Constant *Constant::getAllOnesValue(Type *Ty) { 142 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 143 return ConstantInt::get(Ty->getContext(), 144 APInt::getAllOnesValue(ITy->getBitWidth())); 145 146 if (Ty->isFloatingPointTy()) { 147 APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(), 148 !Ty->isPPC_FP128Ty()); 149 return ConstantFP::get(Ty->getContext(), FL); 150 } 151 152 VectorType *VTy = cast<VectorType>(Ty); 153 return ConstantVector::getSplat(VTy->getNumElements(), 154 getAllOnesValue(VTy->getElementType())); 155 } 156 157 /// getAggregateElement - For aggregates (struct/array/vector) return the 158 /// constant that corresponds to the specified element if possible, or null if 159 /// not. This can return null if the element index is a ConstantExpr, or if 160 /// 'this' is a constant expr. 161 Constant *Constant::getAggregateElement(unsigned Elt) const { 162 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this)) 163 return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0; 164 165 if (const ConstantArray *CA = dyn_cast<ConstantArray>(this)) 166 return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0; 167 168 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 169 return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0; 170 171 if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this)) 172 return CAZ->getElementValue(Elt); 173 174 if (const UndefValue *UV = dyn_cast<UndefValue>(this)) 175 return UV->getElementValue(Elt); 176 177 if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this)) 178 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0; 179 return 0; 180 } 181 182 Constant *Constant::getAggregateElement(Constant *Elt) const { 183 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); 184 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) 185 return getAggregateElement(CI->getZExtValue()); 186 return 0; 187 } 188 189 190 void Constant::destroyConstantImpl() { 191 // When a Constant is destroyed, there may be lingering 192 // references to the constant by other constants in the constant pool. These 193 // constants are implicitly dependent on the module that is being deleted, 194 // but they don't know that. Because we only find out when the CPV is 195 // deleted, we must now notify all of our users (that should only be 196 // Constants) that they are, in fact, invalid now and should be deleted. 197 // 198 while (!use_empty()) { 199 Value *V = use_back(); 200 #ifndef NDEBUG // Only in -g mode... 201 if (!isa<Constant>(V)) { 202 dbgs() << "While deleting: " << *this 203 << "\n\nUse still stuck around after Def is destroyed: " 204 << *V << "\n\n"; 205 } 206 #endif 207 assert(isa<Constant>(V) && "References remain to Constant being destroyed"); 208 cast<Constant>(V)->destroyConstant(); 209 210 // The constant should remove itself from our use list... 211 assert((use_empty() || use_back() != V) && "Constant not removed!"); 212 } 213 214 // Value has no outstanding references it is safe to delete it now... 215 delete this; 216 } 217 218 /// canTrap - Return true if evaluation of this constant could trap. This is 219 /// true for things like constant expressions that could divide by zero. 220 bool Constant::canTrap() const { 221 assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); 222 // The only thing that could possibly trap are constant exprs. 223 const ConstantExpr *CE = dyn_cast<ConstantExpr>(this); 224 if (!CE) return false; 225 226 // ConstantExpr traps if any operands can trap. 227 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 228 if (CE->getOperand(i)->canTrap()) 229 return true; 230 231 // Otherwise, only specific operations can trap. 232 switch (CE->getOpcode()) { 233 default: 234 return false; 235 case Instruction::UDiv: 236 case Instruction::SDiv: 237 case Instruction::FDiv: 238 case Instruction::URem: 239 case Instruction::SRem: 240 case Instruction::FRem: 241 // Div and rem can trap if the RHS is not known to be non-zero. 242 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) 243 return true; 244 return false; 245 } 246 } 247 248 /// isConstantUsed - Return true if the constant has users other than constant 249 /// exprs and other dangling things. 250 bool Constant::isConstantUsed() const { 251 for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 252 const Constant *UC = dyn_cast<Constant>(*UI); 253 if (UC == 0 || isa<GlobalValue>(UC)) 254 return true; 255 256 if (UC->isConstantUsed()) 257 return true; 258 } 259 return false; 260 } 261 262 263 264 /// getRelocationInfo - This method classifies the entry according to 265 /// whether or not it may generate a relocation entry. This must be 266 /// conservative, so if it might codegen to a relocatable entry, it should say 267 /// so. The return values are: 268 /// 269 /// NoRelocation: This constant pool entry is guaranteed to never have a 270 /// relocation applied to it (because it holds a simple constant like 271 /// '4'). 272 /// LocalRelocation: This entry has relocations, but the entries are 273 /// guaranteed to be resolvable by the static linker, so the dynamic 274 /// linker will never see them. 275 /// GlobalRelocations: This entry may have arbitrary relocations. 276 /// 277 /// FIXME: This really should not be in VMCore. 278 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { 279 if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { 280 if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) 281 return LocalRelocation; // Local to this file/library. 282 return GlobalRelocations; // Global reference. 283 } 284 285 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) 286 return BA->getFunction()->getRelocationInfo(); 287 288 // While raw uses of blockaddress need to be relocated, differences between 289 // two of them don't when they are for labels in the same function. This is a 290 // common idiom when creating a table for the indirect goto extension, so we 291 // handle it efficiently here. 292 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) 293 if (CE->getOpcode() == Instruction::Sub) { 294 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); 295 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); 296 if (LHS && RHS && 297 LHS->getOpcode() == Instruction::PtrToInt && 298 RHS->getOpcode() == Instruction::PtrToInt && 299 isa<BlockAddress>(LHS->getOperand(0)) && 300 isa<BlockAddress>(RHS->getOperand(0)) && 301 cast<BlockAddress>(LHS->getOperand(0))->getFunction() == 302 cast<BlockAddress>(RHS->getOperand(0))->getFunction()) 303 return NoRelocation; 304 } 305 306 PossibleRelocationsTy Result = NoRelocation; 307 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 308 Result = std::max(Result, 309 cast<Constant>(getOperand(i))->getRelocationInfo()); 310 311 return Result; 312 } 313 314 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove 315 /// it. This involves recursively eliminating any dead users of the 316 /// constantexpr. 317 static bool removeDeadUsersOfConstant(const Constant *C) { 318 if (isa<GlobalValue>(C)) return false; // Cannot remove this 319 320 while (!C->use_empty()) { 321 const Constant *User = dyn_cast<Constant>(C->use_back()); 322 if (!User) return false; // Non-constant usage; 323 if (!removeDeadUsersOfConstant(User)) 324 return false; // Constant wasn't dead 325 } 326 327 const_cast<Constant*>(C)->destroyConstant(); 328 return true; 329 } 330 331 332 /// removeDeadConstantUsers - If there are any dead constant users dangling 333 /// off of this constant, remove them. This method is useful for clients 334 /// that want to check to see if a global is unused, but don't want to deal 335 /// with potentially dead constants hanging off of the globals. 336 void Constant::removeDeadConstantUsers() const { 337 Value::const_use_iterator I = use_begin(), E = use_end(); 338 Value::const_use_iterator LastNonDeadUser = E; 339 while (I != E) { 340 const Constant *User = dyn_cast<Constant>(*I); 341 if (User == 0) { 342 LastNonDeadUser = I; 343 ++I; 344 continue; 345 } 346 347 if (!removeDeadUsersOfConstant(User)) { 348 // If the constant wasn't dead, remember that this was the last live use 349 // and move on to the next constant. 350 LastNonDeadUser = I; 351 ++I; 352 continue; 353 } 354 355 // If the constant was dead, then the iterator is invalidated. 356 if (LastNonDeadUser == E) { 357 I = use_begin(); 358 if (I == E) break; 359 } else { 360 I = LastNonDeadUser; 361 ++I; 362 } 363 } 364 } 365 366 367 368 //===----------------------------------------------------------------------===// 369 // ConstantInt 370 //===----------------------------------------------------------------------===// 371 372 void ConstantInt::anchor() { } 373 374 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V) 375 : Constant(Ty, ConstantIntVal, 0, 0), Val(V) { 376 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); 377 } 378 379 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { 380 LLVMContextImpl *pImpl = Context.pImpl; 381 if (!pImpl->TheTrueVal) 382 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); 383 return pImpl->TheTrueVal; 384 } 385 386 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { 387 LLVMContextImpl *pImpl = Context.pImpl; 388 if (!pImpl->TheFalseVal) 389 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); 390 return pImpl->TheFalseVal; 391 } 392 393 Constant *ConstantInt::getTrue(Type *Ty) { 394 VectorType *VTy = dyn_cast<VectorType>(Ty); 395 if (!VTy) { 396 assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1."); 397 return ConstantInt::getTrue(Ty->getContext()); 398 } 399 assert(VTy->getElementType()->isIntegerTy(1) && 400 "True must be vector of i1 or i1."); 401 return ConstantVector::getSplat(VTy->getNumElements(), 402 ConstantInt::getTrue(Ty->getContext())); 403 } 404 405 Constant *ConstantInt::getFalse(Type *Ty) { 406 VectorType *VTy = dyn_cast<VectorType>(Ty); 407 if (!VTy) { 408 assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1."); 409 return ConstantInt::getFalse(Ty->getContext()); 410 } 411 assert(VTy->getElementType()->isIntegerTy(1) && 412 "False must be vector of i1 or i1."); 413 return ConstantVector::getSplat(VTy->getNumElements(), 414 ConstantInt::getFalse(Ty->getContext())); 415 } 416 417 418 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap 419 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the 420 // operator== and operator!= to ensure that the DenseMap doesn't attempt to 421 // compare APInt's of different widths, which would violate an APInt class 422 // invariant which generates an assertion. 423 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { 424 // Get the corresponding integer type for the bit width of the value. 425 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); 426 // get an existing value or the insertion position 427 DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); 428 ConstantInt *&Slot = Context.pImpl->IntConstants[Key]; 429 if (!Slot) Slot = new ConstantInt(ITy, V); 430 return Slot; 431 } 432 433 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { 434 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); 435 436 // For vectors, broadcast the value. 437 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 438 return ConstantVector::getSplat(VTy->getNumElements(), C); 439 440 return C; 441 } 442 443 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, 444 bool isSigned) { 445 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); 446 } 447 448 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { 449 return get(Ty, V, true); 450 } 451 452 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { 453 return get(Ty, V, true); 454 } 455 456 Constant *ConstantInt::get(Type *Ty, const APInt& V) { 457 ConstantInt *C = get(Ty->getContext(), V); 458 assert(C->getType() == Ty->getScalarType() && 459 "ConstantInt type doesn't match the type implied by its value!"); 460 461 // For vectors, broadcast the value. 462 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 463 return ConstantVector::getSplat(VTy->getNumElements(), C); 464 465 return C; 466 } 467 468 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, 469 uint8_t radix) { 470 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); 471 } 472 473 //===----------------------------------------------------------------------===// 474 // ConstantFP 475 //===----------------------------------------------------------------------===// 476 477 static const fltSemantics *TypeToFloatSemantics(Type *Ty) { 478 if (Ty->isHalfTy()) 479 return &APFloat::IEEEhalf; 480 if (Ty->isFloatTy()) 481 return &APFloat::IEEEsingle; 482 if (Ty->isDoubleTy()) 483 return &APFloat::IEEEdouble; 484 if (Ty->isX86_FP80Ty()) 485 return &APFloat::x87DoubleExtended; 486 else if (Ty->isFP128Ty()) 487 return &APFloat::IEEEquad; 488 489 assert(Ty->isPPC_FP128Ty() && "Unknown FP format"); 490 return &APFloat::PPCDoubleDouble; 491 } 492 493 void ConstantFP::anchor() { } 494 495 /// get() - This returns a constant fp for the specified value in the 496 /// specified type. This should only be used for simple constant values like 497 /// 2.0/1.0 etc, that are known-valid both as double and as the target format. 498 Constant *ConstantFP::get(Type *Ty, double V) { 499 LLVMContext &Context = Ty->getContext(); 500 501 APFloat FV(V); 502 bool ignored; 503 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), 504 APFloat::rmNearestTiesToEven, &ignored); 505 Constant *C = get(Context, FV); 506 507 // For vectors, broadcast the value. 508 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 509 return ConstantVector::getSplat(VTy->getNumElements(), C); 510 511 return C; 512 } 513 514 515 Constant *ConstantFP::get(Type *Ty, StringRef Str) { 516 LLVMContext &Context = Ty->getContext(); 517 518 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); 519 Constant *C = get(Context, FV); 520 521 // For vectors, broadcast the value. 522 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 523 return ConstantVector::getSplat(VTy->getNumElements(), C); 524 525 return C; 526 } 527 528 529 ConstantFP *ConstantFP::getNegativeZero(Type *Ty) { 530 LLVMContext &Context = Ty->getContext(); 531 APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF(); 532 apf.changeSign(); 533 return get(Context, apf); 534 } 535 536 537 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { 538 Type *ScalarTy = Ty->getScalarType(); 539 if (ScalarTy->isFloatingPointTy()) { 540 Constant *C = getNegativeZero(ScalarTy); 541 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 542 return ConstantVector::getSplat(VTy->getNumElements(), C); 543 return C; 544 } 545 546 return Constant::getNullValue(Ty); 547 } 548 549 550 // ConstantFP accessors. 551 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { 552 DenseMapAPFloatKeyInfo::KeyTy Key(V); 553 554 LLVMContextImpl* pImpl = Context.pImpl; 555 556 ConstantFP *&Slot = pImpl->FPConstants[Key]; 557 558 if (!Slot) { 559 Type *Ty; 560 if (&V.getSemantics() == &APFloat::IEEEhalf) 561 Ty = Type::getHalfTy(Context); 562 else if (&V.getSemantics() == &APFloat::IEEEsingle) 563 Ty = Type::getFloatTy(Context); 564 else if (&V.getSemantics() == &APFloat::IEEEdouble) 565 Ty = Type::getDoubleTy(Context); 566 else if (&V.getSemantics() == &APFloat::x87DoubleExtended) 567 Ty = Type::getX86_FP80Ty(Context); 568 else if (&V.getSemantics() == &APFloat::IEEEquad) 569 Ty = Type::getFP128Ty(Context); 570 else { 571 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && 572 "Unknown FP format"); 573 Ty = Type::getPPC_FP128Ty(Context); 574 } 575 Slot = new ConstantFP(Ty, V); 576 } 577 578 return Slot; 579 } 580 581 ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) { 582 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty); 583 return ConstantFP::get(Ty->getContext(), 584 APFloat::getInf(Semantics, Negative)); 585 } 586 587 ConstantFP::ConstantFP(Type *Ty, const APFloat& V) 588 : Constant(Ty, ConstantFPVal, 0, 0), Val(V) { 589 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && 590 "FP type Mismatch"); 591 } 592 593 bool ConstantFP::isExactlyValue(const APFloat &V) const { 594 return Val.bitwiseIsEqual(V); 595 } 596 597 //===----------------------------------------------------------------------===// 598 // ConstantAggregateZero Implementation 599 //===----------------------------------------------------------------------===// 600 601 /// getSequentialElement - If this CAZ has array or vector type, return a zero 602 /// with the right element type. 603 Constant *ConstantAggregateZero::getSequentialElement() const { 604 return Constant::getNullValue(getType()->getSequentialElementType()); 605 } 606 607 /// getStructElement - If this CAZ has struct type, return a zero with the 608 /// right element type for the specified element. 609 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { 610 return Constant::getNullValue(getType()->getStructElementType(Elt)); 611 } 612 613 /// getElementValue - Return a zero of the right value for the specified GEP 614 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr). 615 Constant *ConstantAggregateZero::getElementValue(Constant *C) const { 616 if (isa<SequentialType>(getType())) 617 return getSequentialElement(); 618 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 619 } 620 621 /// getElementValue - Return a zero of the right value for the specified GEP 622 /// index. 623 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { 624 if (isa<SequentialType>(getType())) 625 return getSequentialElement(); 626 return getStructElement(Idx); 627 } 628 629 630 //===----------------------------------------------------------------------===// 631 // UndefValue Implementation 632 //===----------------------------------------------------------------------===// 633 634 /// getSequentialElement - If this undef has array or vector type, return an 635 /// undef with the right element type. 636 UndefValue *UndefValue::getSequentialElement() const { 637 return UndefValue::get(getType()->getSequentialElementType()); 638 } 639 640 /// getStructElement - If this undef has struct type, return a zero with the 641 /// right element type for the specified element. 642 UndefValue *UndefValue::getStructElement(unsigned Elt) const { 643 return UndefValue::get(getType()->getStructElementType(Elt)); 644 } 645 646 /// getElementValue - Return an undef of the right value for the specified GEP 647 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr). 648 UndefValue *UndefValue::getElementValue(Constant *C) const { 649 if (isa<SequentialType>(getType())) 650 return getSequentialElement(); 651 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 652 } 653 654 /// getElementValue - Return an undef of the right value for the specified GEP 655 /// index. 656 UndefValue *UndefValue::getElementValue(unsigned Idx) const { 657 if (isa<SequentialType>(getType())) 658 return getSequentialElement(); 659 return getStructElement(Idx); 660 } 661 662 663 664 //===----------------------------------------------------------------------===// 665 // ConstantXXX Classes 666 //===----------------------------------------------------------------------===// 667 668 template <typename ItTy, typename EltTy> 669 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { 670 for (; Start != End; ++Start) 671 if (*Start != Elt) 672 return false; 673 return true; 674 } 675 676 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) 677 : Constant(T, ConstantArrayVal, 678 OperandTraits<ConstantArray>::op_end(this) - V.size(), 679 V.size()) { 680 assert(V.size() == T->getNumElements() && 681 "Invalid initializer vector for constant array"); 682 for (unsigned i = 0, e = V.size(); i != e; ++i) 683 assert(V[i]->getType() == T->getElementType() && 684 "Initializer for array element doesn't match array element type!"); 685 std::copy(V.begin(), V.end(), op_begin()); 686 } 687 688 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { 689 // Empty arrays are canonicalized to ConstantAggregateZero. 690 if (V.empty()) 691 return ConstantAggregateZero::get(Ty); 692 693 for (unsigned i = 0, e = V.size(); i != e; ++i) { 694 assert(V[i]->getType() == Ty->getElementType() && 695 "Wrong type in array element initializer"); 696 } 697 LLVMContextImpl *pImpl = Ty->getContext().pImpl; 698 699 // If this is an all-zero array, return a ConstantAggregateZero object. If 700 // all undef, return an UndefValue, if "all simple", then return a 701 // ConstantDataArray. 702 Constant *C = V[0]; 703 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) 704 return UndefValue::get(Ty); 705 706 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) 707 return ConstantAggregateZero::get(Ty); 708 709 // Check to see if all of the elements are ConstantFP or ConstantInt and if 710 // the element type is compatible with ConstantDataVector. If so, use it. 711 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) { 712 // We speculatively build the elements here even if it turns out that there 713 // is a constantexpr or something else weird in the array, since it is so 714 // uncommon for that to happen. 715 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 716 if (CI->getType()->isIntegerTy(8)) { 717 SmallVector<uint8_t, 16> Elts; 718 for (unsigned i = 0, e = V.size(); i != e; ++i) 719 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) 720 Elts.push_back(CI->getZExtValue()); 721 else 722 break; 723 if (Elts.size() == V.size()) 724 return ConstantDataArray::get(C->getContext(), Elts); 725 } else if (CI->getType()->isIntegerTy(16)) { 726 SmallVector<uint16_t, 16> Elts; 727 for (unsigned i = 0, e = V.size(); i != e; ++i) 728 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) 729 Elts.push_back(CI->getZExtValue()); 730 else 731 break; 732 if (Elts.size() == V.size()) 733 return ConstantDataArray::get(C->getContext(), Elts); 734 } else if (CI->getType()->isIntegerTy(32)) { 735 SmallVector<uint32_t, 16> Elts; 736 for (unsigned i = 0, e = V.size(); i != e; ++i) 737 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) 738 Elts.push_back(CI->getZExtValue()); 739 else 740 break; 741 if (Elts.size() == V.size()) 742 return ConstantDataArray::get(C->getContext(), Elts); 743 } else if (CI->getType()->isIntegerTy(64)) { 744 SmallVector<uint64_t, 16> Elts; 745 for (unsigned i = 0, e = V.size(); i != e; ++i) 746 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) 747 Elts.push_back(CI->getZExtValue()); 748 else 749 break; 750 if (Elts.size() == V.size()) 751 return ConstantDataArray::get(C->getContext(), Elts); 752 } 753 } 754 755 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 756 if (CFP->getType()->isFloatTy()) { 757 SmallVector<float, 16> Elts; 758 for (unsigned i = 0, e = V.size(); i != e; ++i) 759 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) 760 Elts.push_back(CFP->getValueAPF().convertToFloat()); 761 else 762 break; 763 if (Elts.size() == V.size()) 764 return ConstantDataArray::get(C->getContext(), Elts); 765 } else if (CFP->getType()->isDoubleTy()) { 766 SmallVector<double, 16> Elts; 767 for (unsigned i = 0, e = V.size(); i != e; ++i) 768 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) 769 Elts.push_back(CFP->getValueAPF().convertToDouble()); 770 else 771 break; 772 if (Elts.size() == V.size()) 773 return ConstantDataArray::get(C->getContext(), Elts); 774 } 775 } 776 } 777 778 // Otherwise, we really do want to create a ConstantArray. 779 return pImpl->ArrayConstants.getOrCreate(Ty, V); 780 } 781 782 /// getTypeForElements - Return an anonymous struct type to use for a constant 783 /// with the specified set of elements. The list must not be empty. 784 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, 785 ArrayRef<Constant*> V, 786 bool Packed) { 787 unsigned VecSize = V.size(); 788 SmallVector<Type*, 16> EltTypes(VecSize); 789 for (unsigned i = 0; i != VecSize; ++i) 790 EltTypes[i] = V[i]->getType(); 791 792 return StructType::get(Context, EltTypes, Packed); 793 } 794 795 796 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, 797 bool Packed) { 798 assert(!V.empty() && 799 "ConstantStruct::getTypeForElements cannot be called on empty list"); 800 return getTypeForElements(V[0]->getContext(), V, Packed); 801 } 802 803 804 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) 805 : Constant(T, ConstantStructVal, 806 OperandTraits<ConstantStruct>::op_end(this) - V.size(), 807 V.size()) { 808 assert(V.size() == T->getNumElements() && 809 "Invalid initializer vector for constant structure"); 810 for (unsigned i = 0, e = V.size(); i != e; ++i) 811 assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) && 812 "Initializer for struct element doesn't match struct element type!"); 813 std::copy(V.begin(), V.end(), op_begin()); 814 } 815 816 // ConstantStruct accessors. 817 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { 818 assert((ST->isOpaque() || ST->getNumElements() == V.size()) && 819 "Incorrect # elements specified to ConstantStruct::get"); 820 821 // Create a ConstantAggregateZero value if all elements are zeros. 822 bool isZero = true; 823 bool isUndef = false; 824 825 if (!V.empty()) { 826 isUndef = isa<UndefValue>(V[0]); 827 isZero = V[0]->isNullValue(); 828 if (isUndef || isZero) { 829 for (unsigned i = 0, e = V.size(); i != e; ++i) { 830 if (!V[i]->isNullValue()) 831 isZero = false; 832 if (!isa<UndefValue>(V[i])) 833 isUndef = false; 834 } 835 } 836 } 837 if (isZero) 838 return ConstantAggregateZero::get(ST); 839 if (isUndef) 840 return UndefValue::get(ST); 841 842 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); 843 } 844 845 Constant *ConstantStruct::get(StructType *T, ...) { 846 va_list ap; 847 SmallVector<Constant*, 8> Values; 848 va_start(ap, T); 849 while (Constant *Val = va_arg(ap, llvm::Constant*)) 850 Values.push_back(Val); 851 va_end(ap); 852 return get(T, Values); 853 } 854 855 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) 856 : Constant(T, ConstantVectorVal, 857 OperandTraits<ConstantVector>::op_end(this) - V.size(), 858 V.size()) { 859 for (size_t i = 0, e = V.size(); i != e; i++) 860 assert(V[i]->getType() == T->getElementType() && 861 "Initializer for vector element doesn't match vector element type!"); 862 std::copy(V.begin(), V.end(), op_begin()); 863 } 864 865 // ConstantVector accessors. 866 Constant *ConstantVector::get(ArrayRef<Constant*> V) { 867 assert(!V.empty() && "Vectors can't be empty"); 868 VectorType *T = VectorType::get(V.front()->getType(), V.size()); 869 LLVMContextImpl *pImpl = T->getContext().pImpl; 870 871 // If this is an all-undef or all-zero vector, return a 872 // ConstantAggregateZero or UndefValue. 873 Constant *C = V[0]; 874 bool isZero = C->isNullValue(); 875 bool isUndef = isa<UndefValue>(C); 876 877 if (isZero || isUndef) { 878 for (unsigned i = 1, e = V.size(); i != e; ++i) 879 if (V[i] != C) { 880 isZero = isUndef = false; 881 break; 882 } 883 } 884 885 if (isZero) 886 return ConstantAggregateZero::get(T); 887 if (isUndef) 888 return UndefValue::get(T); 889 890 // Check to see if all of the elements are ConstantFP or ConstantInt and if 891 // the element type is compatible with ConstantDataVector. If so, use it. 892 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) { 893 // We speculatively build the elements here even if it turns out that there 894 // is a constantexpr or something else weird in the array, since it is so 895 // uncommon for that to happen. 896 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 897 if (CI->getType()->isIntegerTy(8)) { 898 SmallVector<uint8_t, 16> Elts; 899 for (unsigned i = 0, e = V.size(); i != e; ++i) 900 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) 901 Elts.push_back(CI->getZExtValue()); 902 else 903 break; 904 if (Elts.size() == V.size()) 905 return ConstantDataVector::get(C->getContext(), Elts); 906 } else if (CI->getType()->isIntegerTy(16)) { 907 SmallVector<uint16_t, 16> Elts; 908 for (unsigned i = 0, e = V.size(); i != e; ++i) 909 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) 910 Elts.push_back(CI->getZExtValue()); 911 else 912 break; 913 if (Elts.size() == V.size()) 914 return ConstantDataVector::get(C->getContext(), Elts); 915 } else if (CI->getType()->isIntegerTy(32)) { 916 SmallVector<uint32_t, 16> Elts; 917 for (unsigned i = 0, e = V.size(); i != e; ++i) 918 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) 919 Elts.push_back(CI->getZExtValue()); 920 else 921 break; 922 if (Elts.size() == V.size()) 923 return ConstantDataVector::get(C->getContext(), Elts); 924 } else if (CI->getType()->isIntegerTy(64)) { 925 SmallVector<uint64_t, 16> Elts; 926 for (unsigned i = 0, e = V.size(); i != e; ++i) 927 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) 928 Elts.push_back(CI->getZExtValue()); 929 else 930 break; 931 if (Elts.size() == V.size()) 932 return ConstantDataVector::get(C->getContext(), Elts); 933 } 934 } 935 936 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 937 if (CFP->getType()->isFloatTy()) { 938 SmallVector<float, 16> Elts; 939 for (unsigned i = 0, e = V.size(); i != e; ++i) 940 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) 941 Elts.push_back(CFP->getValueAPF().convertToFloat()); 942 else 943 break; 944 if (Elts.size() == V.size()) 945 return ConstantDataVector::get(C->getContext(), Elts); 946 } else if (CFP->getType()->isDoubleTy()) { 947 SmallVector<double, 16> Elts; 948 for (unsigned i = 0, e = V.size(); i != e; ++i) 949 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) 950 Elts.push_back(CFP->getValueAPF().convertToDouble()); 951 else 952 break; 953 if (Elts.size() == V.size()) 954 return ConstantDataVector::get(C->getContext(), Elts); 955 } 956 } 957 } 958 959 // Otherwise, the element type isn't compatible with ConstantDataVector, or 960 // the operand list constants a ConstantExpr or something else strange. 961 return pImpl->VectorConstants.getOrCreate(T, V); 962 } 963 964 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) { 965 // If this splat is compatible with ConstantDataVector, use it instead of 966 // ConstantVector. 967 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && 968 ConstantDataSequential::isElementTypeCompatible(V->getType())) 969 return ConstantDataVector::getSplat(NumElts, V); 970 971 SmallVector<Constant*, 32> Elts(NumElts, V); 972 return get(Elts); 973 } 974 975 976 // Utility function for determining if a ConstantExpr is a CastOp or not. This 977 // can't be inline because we don't want to #include Instruction.h into 978 // Constant.h 979 bool ConstantExpr::isCast() const { 980 return Instruction::isCast(getOpcode()); 981 } 982 983 bool ConstantExpr::isCompare() const { 984 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; 985 } 986 987 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { 988 if (getOpcode() != Instruction::GetElementPtr) return false; 989 990 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); 991 User::const_op_iterator OI = llvm::next(this->op_begin()); 992 993 // Skip the first index, as it has no static limit. 994 ++GEPI; 995 ++OI; 996 997 // The remaining indices must be compile-time known integers within the 998 // bounds of the corresponding notional static array types. 999 for (; GEPI != E; ++GEPI, ++OI) { 1000 ConstantInt *CI = dyn_cast<ConstantInt>(*OI); 1001 if (!CI) return false; 1002 if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI)) 1003 if (CI->getValue().getActiveBits() > 64 || 1004 CI->getZExtValue() >= ATy->getNumElements()) 1005 return false; 1006 } 1007 1008 // All the indices checked out. 1009 return true; 1010 } 1011 1012 bool ConstantExpr::hasIndices() const { 1013 return getOpcode() == Instruction::ExtractValue || 1014 getOpcode() == Instruction::InsertValue; 1015 } 1016 1017 ArrayRef<unsigned> ConstantExpr::getIndices() const { 1018 if (const ExtractValueConstantExpr *EVCE = 1019 dyn_cast<ExtractValueConstantExpr>(this)) 1020 return EVCE->Indices; 1021 1022 return cast<InsertValueConstantExpr>(this)->Indices; 1023 } 1024 1025 unsigned ConstantExpr::getPredicate() const { 1026 assert(isCompare()); 1027 return ((const CompareConstantExpr*)this)->predicate; 1028 } 1029 1030 /// getWithOperandReplaced - Return a constant expression identical to this 1031 /// one, but with the specified operand set to the specified value. 1032 Constant * 1033 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { 1034 assert(Op->getType() == getOperand(OpNo)->getType() && 1035 "Replacing operand with value of different type!"); 1036 if (getOperand(OpNo) == Op) 1037 return const_cast<ConstantExpr*>(this); 1038 1039 SmallVector<Constant*, 8> NewOps; 1040 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1041 NewOps.push_back(i == OpNo ? Op : getOperand(i)); 1042 1043 return getWithOperands(NewOps); 1044 } 1045 1046 /// getWithOperands - This returns the current constant expression with the 1047 /// operands replaced with the specified values. The specified array must 1048 /// have the same number of operands as our current one. 1049 Constant *ConstantExpr:: 1050 getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const { 1051 assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); 1052 bool AnyChange = Ty != getType(); 1053 for (unsigned i = 0; i != Ops.size(); ++i) 1054 AnyChange |= Ops[i] != getOperand(i); 1055 1056 if (!AnyChange) // No operands changed, return self. 1057 return const_cast<ConstantExpr*>(this); 1058 1059 switch (getOpcode()) { 1060 case Instruction::Trunc: 1061 case Instruction::ZExt: 1062 case Instruction::SExt: 1063 case Instruction::FPTrunc: 1064 case Instruction::FPExt: 1065 case Instruction::UIToFP: 1066 case Instruction::SIToFP: 1067 case Instruction::FPToUI: 1068 case Instruction::FPToSI: 1069 case Instruction::PtrToInt: 1070 case Instruction::IntToPtr: 1071 case Instruction::BitCast: 1072 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty); 1073 case Instruction::Select: 1074 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); 1075 case Instruction::InsertElement: 1076 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); 1077 case Instruction::ExtractElement: 1078 return ConstantExpr::getExtractElement(Ops[0], Ops[1]); 1079 case Instruction::InsertValue: 1080 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices()); 1081 case Instruction::ExtractValue: 1082 return ConstantExpr::getExtractValue(Ops[0], getIndices()); 1083 case Instruction::ShuffleVector: 1084 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); 1085 case Instruction::GetElementPtr: 1086 return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1), 1087 cast<GEPOperator>(this)->isInBounds()); 1088 case Instruction::ICmp: 1089 case Instruction::FCmp: 1090 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]); 1091 default: 1092 assert(getNumOperands() == 2 && "Must be binary operator?"); 1093 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData); 1094 } 1095 } 1096 1097 1098 //===----------------------------------------------------------------------===// 1099 // isValueValidForType implementations 1100 1101 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { 1102 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay 1103 if (Ty->isIntegerTy(1)) 1104 return Val == 0 || Val == 1; 1105 if (NumBits >= 64) 1106 return true; // always true, has to fit in largest type 1107 uint64_t Max = (1ll << NumBits) - 1; 1108 return Val <= Max; 1109 } 1110 1111 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { 1112 unsigned NumBits = Ty->getIntegerBitWidth(); 1113 if (Ty->isIntegerTy(1)) 1114 return Val == 0 || Val == 1 || Val == -1; 1115 if (NumBits >= 64) 1116 return true; // always true, has to fit in largest type 1117 int64_t Min = -(1ll << (NumBits-1)); 1118 int64_t Max = (1ll << (NumBits-1)) - 1; 1119 return (Val >= Min && Val <= Max); 1120 } 1121 1122 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { 1123 // convert modifies in place, so make a copy. 1124 APFloat Val2 = APFloat(Val); 1125 bool losesInfo; 1126 switch (Ty->getTypeID()) { 1127 default: 1128 return false; // These can't be represented as floating point! 1129 1130 // FIXME rounding mode needs to be more flexible 1131 case Type::HalfTyID: { 1132 if (&Val2.getSemantics() == &APFloat::IEEEhalf) 1133 return true; 1134 Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo); 1135 return !losesInfo; 1136 } 1137 case Type::FloatTyID: { 1138 if (&Val2.getSemantics() == &APFloat::IEEEsingle) 1139 return true; 1140 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo); 1141 return !losesInfo; 1142 } 1143 case Type::DoubleTyID: { 1144 if (&Val2.getSemantics() == &APFloat::IEEEhalf || 1145 &Val2.getSemantics() == &APFloat::IEEEsingle || 1146 &Val2.getSemantics() == &APFloat::IEEEdouble) 1147 return true; 1148 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo); 1149 return !losesInfo; 1150 } 1151 case Type::X86_FP80TyID: 1152 return &Val2.getSemantics() == &APFloat::IEEEhalf || 1153 &Val2.getSemantics() == &APFloat::IEEEsingle || 1154 &Val2.getSemantics() == &APFloat::IEEEdouble || 1155 &Val2.getSemantics() == &APFloat::x87DoubleExtended; 1156 case Type::FP128TyID: 1157 return &Val2.getSemantics() == &APFloat::IEEEhalf || 1158 &Val2.getSemantics() == &APFloat::IEEEsingle || 1159 &Val2.getSemantics() == &APFloat::IEEEdouble || 1160 &Val2.getSemantics() == &APFloat::IEEEquad; 1161 case Type::PPC_FP128TyID: 1162 return &Val2.getSemantics() == &APFloat::IEEEhalf || 1163 &Val2.getSemantics() == &APFloat::IEEEsingle || 1164 &Val2.getSemantics() == &APFloat::IEEEdouble || 1165 &Val2.getSemantics() == &APFloat::PPCDoubleDouble; 1166 } 1167 } 1168 1169 1170 //===----------------------------------------------------------------------===// 1171 // Factory Function Implementation 1172 1173 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { 1174 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && 1175 "Cannot create an aggregate zero of non-aggregate type!"); 1176 1177 ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty]; 1178 if (Entry == 0) 1179 Entry = new ConstantAggregateZero(Ty); 1180 1181 return Entry; 1182 } 1183 1184 /// destroyConstant - Remove the constant from the constant table. 1185 /// 1186 void ConstantAggregateZero::destroyConstant() { 1187 getContext().pImpl->CAZConstants.erase(getType()); 1188 destroyConstantImpl(); 1189 } 1190 1191 /// destroyConstant - Remove the constant from the constant table... 1192 /// 1193 void ConstantArray::destroyConstant() { 1194 getType()->getContext().pImpl->ArrayConstants.remove(this); 1195 destroyConstantImpl(); 1196 } 1197 1198 1199 //---- ConstantStruct::get() implementation... 1200 // 1201 1202 // destroyConstant - Remove the constant from the constant table... 1203 // 1204 void ConstantStruct::destroyConstant() { 1205 getType()->getContext().pImpl->StructConstants.remove(this); 1206 destroyConstantImpl(); 1207 } 1208 1209 // destroyConstant - Remove the constant from the constant table... 1210 // 1211 void ConstantVector::destroyConstant() { 1212 getType()->getContext().pImpl->VectorConstants.remove(this); 1213 destroyConstantImpl(); 1214 } 1215 1216 /// getSplatValue - If this is a splat constant, where all of the 1217 /// elements have the same value, return that value. Otherwise return null. 1218 Constant *ConstantVector::getSplatValue() const { 1219 // Check out first element. 1220 Constant *Elt = getOperand(0); 1221 // Then make sure all remaining elements point to the same value. 1222 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) 1223 if (getOperand(I) != Elt) 1224 return 0; 1225 return Elt; 1226 } 1227 1228 //---- ConstantPointerNull::get() implementation. 1229 // 1230 1231 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { 1232 ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty]; 1233 if (Entry == 0) 1234 Entry = new ConstantPointerNull(Ty); 1235 1236 return Entry; 1237 } 1238 1239 // destroyConstant - Remove the constant from the constant table... 1240 // 1241 void ConstantPointerNull::destroyConstant() { 1242 getContext().pImpl->CPNConstants.erase(getType()); 1243 // Free the constant and any dangling references to it. 1244 destroyConstantImpl(); 1245 } 1246 1247 1248 //---- UndefValue::get() implementation. 1249 // 1250 1251 UndefValue *UndefValue::get(Type *Ty) { 1252 UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty]; 1253 if (Entry == 0) 1254 Entry = new UndefValue(Ty); 1255 1256 return Entry; 1257 } 1258 1259 // destroyConstant - Remove the constant from the constant table. 1260 // 1261 void UndefValue::destroyConstant() { 1262 // Free the constant and any dangling references to it. 1263 getContext().pImpl->UVConstants.erase(getType()); 1264 destroyConstantImpl(); 1265 } 1266 1267 //---- BlockAddress::get() implementation. 1268 // 1269 1270 BlockAddress *BlockAddress::get(BasicBlock *BB) { 1271 assert(BB->getParent() != 0 && "Block must have a parent"); 1272 return get(BB->getParent(), BB); 1273 } 1274 1275 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { 1276 BlockAddress *&BA = 1277 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; 1278 if (BA == 0) 1279 BA = new BlockAddress(F, BB); 1280 1281 assert(BA->getFunction() == F && "Basic block moved between functions"); 1282 return BA; 1283 } 1284 1285 BlockAddress::BlockAddress(Function *F, BasicBlock *BB) 1286 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal, 1287 &Op<0>(), 2) { 1288 setOperand(0, F); 1289 setOperand(1, BB); 1290 BB->AdjustBlockAddressRefCount(1); 1291 } 1292 1293 1294 // destroyConstant - Remove the constant from the constant table. 1295 // 1296 void BlockAddress::destroyConstant() { 1297 getFunction()->getType()->getContext().pImpl 1298 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); 1299 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1300 destroyConstantImpl(); 1301 } 1302 1303 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { 1304 // This could be replacing either the Basic Block or the Function. In either 1305 // case, we have to remove the map entry. 1306 Function *NewF = getFunction(); 1307 BasicBlock *NewBB = getBasicBlock(); 1308 1309 if (U == &Op<0>()) 1310 NewF = cast<Function>(To); 1311 else 1312 NewBB = cast<BasicBlock>(To); 1313 1314 // See if the 'new' entry already exists, if not, just update this in place 1315 // and return early. 1316 BlockAddress *&NewBA = 1317 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; 1318 if (NewBA == 0) { 1319 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1320 1321 // Remove the old entry, this can't cause the map to rehash (just a 1322 // tombstone will get added). 1323 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), 1324 getBasicBlock())); 1325 NewBA = this; 1326 setOperand(0, NewF); 1327 setOperand(1, NewBB); 1328 getBasicBlock()->AdjustBlockAddressRefCount(1); 1329 return; 1330 } 1331 1332 // Otherwise, I do need to replace this with an existing value. 1333 assert(NewBA != this && "I didn't contain From!"); 1334 1335 // Everyone using this now uses the replacement. 1336 replaceAllUsesWith(NewBA); 1337 1338 destroyConstant(); 1339 } 1340 1341 //---- ConstantExpr::get() implementations. 1342 // 1343 1344 /// This is a utility function to handle folding of casts and lookup of the 1345 /// cast in the ExprConstants map. It is used by the various get* methods below. 1346 static inline Constant *getFoldedCast( 1347 Instruction::CastOps opc, Constant *C, Type *Ty) { 1348 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); 1349 // Fold a few common cases 1350 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) 1351 return FC; 1352 1353 LLVMContextImpl *pImpl = Ty->getContext().pImpl; 1354 1355 // Look up the constant in the table first to ensure uniqueness 1356 std::vector<Constant*> argVec(1, C); 1357 ExprMapKeyType Key(opc, argVec); 1358 1359 return pImpl->ExprConstants.getOrCreate(Ty, Key); 1360 } 1361 1362 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) { 1363 Instruction::CastOps opc = Instruction::CastOps(oc); 1364 assert(Instruction::isCast(opc) && "opcode out of range"); 1365 assert(C && Ty && "Null arguments to getCast"); 1366 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); 1367 1368 switch (opc) { 1369 default: 1370 llvm_unreachable("Invalid cast opcode"); 1371 case Instruction::Trunc: return getTrunc(C, Ty); 1372 case Instruction::ZExt: return getZExt(C, Ty); 1373 case Instruction::SExt: return getSExt(C, Ty); 1374 case Instruction::FPTrunc: return getFPTrunc(C, Ty); 1375 case Instruction::FPExt: return getFPExtend(C, Ty); 1376 case Instruction::UIToFP: return getUIToFP(C, Ty); 1377 case Instruction::SIToFP: return getSIToFP(C, Ty); 1378 case Instruction::FPToUI: return getFPToUI(C, Ty); 1379 case Instruction::FPToSI: return getFPToSI(C, Ty); 1380 case Instruction::PtrToInt: return getPtrToInt(C, Ty); 1381 case Instruction::IntToPtr: return getIntToPtr(C, Ty); 1382 case Instruction::BitCast: return getBitCast(C, Ty); 1383 } 1384 } 1385 1386 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { 1387 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1388 return getBitCast(C, Ty); 1389 return getZExt(C, Ty); 1390 } 1391 1392 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { 1393 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1394 return getBitCast(C, Ty); 1395 return getSExt(C, Ty); 1396 } 1397 1398 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { 1399 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 1400 return getBitCast(C, Ty); 1401 return getTrunc(C, Ty); 1402 } 1403 1404 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { 1405 assert(S->getType()->isPointerTy() && "Invalid cast"); 1406 assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast"); 1407 1408 if (Ty->isIntegerTy()) 1409 return getPtrToInt(S, Ty); 1410 return getBitCast(S, Ty); 1411 } 1412 1413 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, 1414 bool isSigned) { 1415 assert(C->getType()->isIntOrIntVectorTy() && 1416 Ty->isIntOrIntVectorTy() && "Invalid cast"); 1417 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 1418 unsigned DstBits = Ty->getScalarSizeInBits(); 1419 Instruction::CastOps opcode = 1420 (SrcBits == DstBits ? Instruction::BitCast : 1421 (SrcBits > DstBits ? Instruction::Trunc : 1422 (isSigned ? Instruction::SExt : Instruction::ZExt))); 1423 return getCast(opcode, C, Ty); 1424 } 1425 1426 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { 1427 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 1428 "Invalid cast"); 1429 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 1430 unsigned DstBits = Ty->getScalarSizeInBits(); 1431 if (SrcBits == DstBits) 1432 return C; // Avoid a useless cast 1433 Instruction::CastOps opcode = 1434 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); 1435 return getCast(opcode, C, Ty); 1436 } 1437 1438 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) { 1439 #ifndef NDEBUG 1440 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1441 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1442 #endif 1443 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1444 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); 1445 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); 1446 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 1447 "SrcTy must be larger than DestTy for Trunc!"); 1448 1449 return getFoldedCast(Instruction::Trunc, C, Ty); 1450 } 1451 1452 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) { 1453 #ifndef NDEBUG 1454 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1455 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1456 #endif 1457 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1458 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); 1459 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); 1460 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 1461 "SrcTy must be smaller than DestTy for SExt!"); 1462 1463 return getFoldedCast(Instruction::SExt, C, Ty); 1464 } 1465 1466 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) { 1467 #ifndef NDEBUG 1468 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1469 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1470 #endif 1471 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1472 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); 1473 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); 1474 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 1475 "SrcTy must be smaller than DestTy for ZExt!"); 1476 1477 return getFoldedCast(Instruction::ZExt, C, Ty); 1478 } 1479 1480 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) { 1481 #ifndef NDEBUG 1482 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1483 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1484 #endif 1485 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1486 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 1487 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 1488 "This is an illegal floating point truncation!"); 1489 return getFoldedCast(Instruction::FPTrunc, C, Ty); 1490 } 1491 1492 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) { 1493 #ifndef NDEBUG 1494 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1495 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1496 #endif 1497 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1498 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 1499 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 1500 "This is an illegal floating point extension!"); 1501 return getFoldedCast(Instruction::FPExt, C, Ty); 1502 } 1503 1504 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) { 1505 #ifndef NDEBUG 1506 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1507 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1508 #endif 1509 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1510 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 1511 "This is an illegal uint to floating point cast!"); 1512 return getFoldedCast(Instruction::UIToFP, C, Ty); 1513 } 1514 1515 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) { 1516 #ifndef NDEBUG 1517 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1518 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1519 #endif 1520 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1521 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 1522 "This is an illegal sint to floating point cast!"); 1523 return getFoldedCast(Instruction::SIToFP, C, Ty); 1524 } 1525 1526 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) { 1527 #ifndef NDEBUG 1528 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1529 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1530 #endif 1531 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1532 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 1533 "This is an illegal floating point to uint cast!"); 1534 return getFoldedCast(Instruction::FPToUI, C, Ty); 1535 } 1536 1537 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) { 1538 #ifndef NDEBUG 1539 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; 1540 bool toVec = Ty->getTypeID() == Type::VectorTyID; 1541 #endif 1542 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 1543 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 1544 "This is an illegal floating point to sint cast!"); 1545 return getFoldedCast(Instruction::FPToSI, C, Ty); 1546 } 1547 1548 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) { 1549 assert(C->getType()->getScalarType()->isPointerTy() && 1550 "PtrToInt source must be pointer or pointer vector"); 1551 assert(DstTy->getScalarType()->isIntegerTy() && 1552 "PtrToInt destination must be integer or integer vector"); 1553 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 1554 if (isa<VectorType>(C->getType())) 1555 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& 1556 "Invalid cast between a different number of vector elements"); 1557 return getFoldedCast(Instruction::PtrToInt, C, DstTy); 1558 } 1559 1560 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) { 1561 assert(C->getType()->getScalarType()->isIntegerTy() && 1562 "IntToPtr source must be integer or integer vector"); 1563 assert(DstTy->getScalarType()->isPointerTy() && 1564 "IntToPtr destination must be a pointer or pointer vector"); 1565 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 1566 if (isa<VectorType>(C->getType())) 1567 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& 1568 "Invalid cast between a different number of vector elements"); 1569 return getFoldedCast(Instruction::IntToPtr, C, DstTy); 1570 } 1571 1572 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) { 1573 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && 1574 "Invalid constantexpr bitcast!"); 1575 1576 // It is common to ask for a bitcast of a value to its own type, handle this 1577 // speedily. 1578 if (C->getType() == DstTy) return C; 1579 1580 return getFoldedCast(Instruction::BitCast, C, DstTy); 1581 } 1582 1583 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, 1584 unsigned Flags) { 1585 // Check the operands for consistency first. 1586 assert(Opcode >= Instruction::BinaryOpsBegin && 1587 Opcode < Instruction::BinaryOpsEnd && 1588 "Invalid opcode in binary constant expression"); 1589 assert(C1->getType() == C2->getType() && 1590 "Operand types in binary constant expression should match"); 1591 1592 #ifndef NDEBUG 1593 switch (Opcode) { 1594 case Instruction::Add: 1595 case Instruction::Sub: 1596 case Instruction::Mul: 1597 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 1598 assert(C1->getType()->isIntOrIntVectorTy() && 1599 "Tried to create an integer operation on a non-integer type!"); 1600 break; 1601 case Instruction::FAdd: 1602 case Instruction::FSub: 1603 case Instruction::FMul: 1604 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 1605 assert(C1->getType()->isFPOrFPVectorTy() && 1606 "Tried to create a floating-point operation on a " 1607 "non-floating-point type!"); 1608 break; 1609 case Instruction::UDiv: 1610 case Instruction::SDiv: 1611 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 1612 assert(C1->getType()->isIntOrIntVectorTy() && 1613 "Tried to create an arithmetic operation on a non-arithmetic type!"); 1614 break; 1615 case Instruction::FDiv: 1616 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 1617 assert(C1->getType()->isFPOrFPVectorTy() && 1618 "Tried to create an arithmetic operation on a non-arithmetic type!"); 1619 break; 1620 case Instruction::URem: 1621 case Instruction::SRem: 1622 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 1623 assert(C1->getType()->isIntOrIntVectorTy() && 1624 "Tried to create an arithmetic operation on a non-arithmetic type!"); 1625 break; 1626 case Instruction::FRem: 1627 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 1628 assert(C1->getType()->isFPOrFPVectorTy() && 1629 "Tried to create an arithmetic operation on a non-arithmetic type!"); 1630 break; 1631 case Instruction::And: 1632 case Instruction::Or: 1633 case Instruction::Xor: 1634 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 1635 assert(C1->getType()->isIntOrIntVectorTy() && 1636 "Tried to create a logical operation on a non-integral type!"); 1637 break; 1638 case Instruction::Shl: 1639 case Instruction::LShr: 1640 case Instruction::AShr: 1641 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 1642 assert(C1->getType()->isIntOrIntVectorTy() && 1643 "Tried to create a shift operation on a non-integer type!"); 1644 break; 1645 default: 1646 break; 1647 } 1648 #endif 1649 1650 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) 1651 return FC; // Fold a few common cases. 1652 1653 std::vector<Constant*> argVec(1, C1); 1654 argVec.push_back(C2); 1655 ExprMapKeyType Key(Opcode, argVec, 0, Flags); 1656 1657 LLVMContextImpl *pImpl = C1->getContext().pImpl; 1658 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); 1659 } 1660 1661 Constant *ConstantExpr::getSizeOf(Type* Ty) { 1662 // sizeof is implemented as: (i64) gep (Ty*)null, 1 1663 // Note that a non-inbounds gep is used, as null isn't within any object. 1664 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 1665 Constant *GEP = getGetElementPtr( 1666 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 1667 return getPtrToInt(GEP, 1668 Type::getInt64Ty(Ty->getContext())); 1669 } 1670 1671 Constant *ConstantExpr::getAlignOf(Type* Ty) { 1672 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 1673 // Note that a non-inbounds gep is used, as null isn't within any object. 1674 Type *AligningTy = 1675 StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL); 1676 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo()); 1677 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); 1678 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 1679 Constant *Indices[2] = { Zero, One }; 1680 Constant *GEP = getGetElementPtr(NullPtr, Indices); 1681 return getPtrToInt(GEP, 1682 Type::getInt64Ty(Ty->getContext())); 1683 } 1684 1685 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { 1686 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), 1687 FieldNo)); 1688 } 1689 1690 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { 1691 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo 1692 // Note that a non-inbounds gep is used, as null isn't within any object. 1693 Constant *GEPIdx[] = { 1694 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), 1695 FieldNo 1696 }; 1697 Constant *GEP = getGetElementPtr( 1698 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 1699 return getPtrToInt(GEP, 1700 Type::getInt64Ty(Ty->getContext())); 1701 } 1702 1703 Constant *ConstantExpr::getCompare(unsigned short Predicate, 1704 Constant *C1, Constant *C2) { 1705 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 1706 1707 switch (Predicate) { 1708 default: llvm_unreachable("Invalid CmpInst predicate"); 1709 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: 1710 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: 1711 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: 1712 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: 1713 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: 1714 case CmpInst::FCMP_TRUE: 1715 return getFCmp(Predicate, C1, C2); 1716 1717 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: 1718 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: 1719 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: 1720 case CmpInst::ICMP_SLE: 1721 return getICmp(Predicate, C1, C2); 1722 } 1723 } 1724 1725 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) { 1726 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); 1727 1728 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) 1729 return SC; // Fold common cases 1730 1731 std::vector<Constant*> argVec(3, C); 1732 argVec[1] = V1; 1733 argVec[2] = V2; 1734 ExprMapKeyType Key(Instruction::Select, argVec); 1735 1736 LLVMContextImpl *pImpl = C->getContext().pImpl; 1737 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); 1738 } 1739 1740 Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs, 1741 bool InBounds) { 1742 if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs)) 1743 return FC; // Fold a few common cases. 1744 1745 // Get the result type of the getelementptr! 1746 Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs); 1747 assert(Ty && "GEP indices invalid!"); 1748 unsigned AS = C->getType()->getPointerAddressSpace(); 1749 Type *ReqTy = Ty->getPointerTo(AS); 1750 1751 assert(C->getType()->isPointerTy() && 1752 "Non-pointer type for constant GetElementPtr expression"); 1753 // Look up the constant in the table first to ensure uniqueness 1754 std::vector<Constant*> ArgVec; 1755 ArgVec.reserve(1 + Idxs.size()); 1756 ArgVec.push_back(C); 1757 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) 1758 ArgVec.push_back(cast<Constant>(Idxs[i])); 1759 const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0, 1760 InBounds ? GEPOperator::IsInBounds : 0); 1761 1762 LLVMContextImpl *pImpl = C->getContext().pImpl; 1763 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 1764 } 1765 1766 Constant * 1767 ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) { 1768 assert(LHS->getType() == RHS->getType()); 1769 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && 1770 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); 1771 1772 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) 1773 return FC; // Fold a few common cases... 1774 1775 // Look up the constant in the table first to ensure uniqueness 1776 std::vector<Constant*> ArgVec; 1777 ArgVec.push_back(LHS); 1778 ArgVec.push_back(RHS); 1779 // Get the key type with both the opcode and predicate 1780 const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred); 1781 1782 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 1783 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 1784 ResultTy = VectorType::get(ResultTy, VT->getNumElements()); 1785 1786 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 1787 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 1788 } 1789 1790 Constant * 1791 ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) { 1792 assert(LHS->getType() == RHS->getType()); 1793 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate"); 1794 1795 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) 1796 return FC; // Fold a few common cases... 1797 1798 // Look up the constant in the table first to ensure uniqueness 1799 std::vector<Constant*> ArgVec; 1800 ArgVec.push_back(LHS); 1801 ArgVec.push_back(RHS); 1802 // Get the key type with both the opcode and predicate 1803 const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred); 1804 1805 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 1806 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 1807 ResultTy = VectorType::get(ResultTy, VT->getNumElements()); 1808 1809 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 1810 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 1811 } 1812 1813 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { 1814 assert(Val->getType()->isVectorTy() && 1815 "Tried to create extractelement operation on non-vector type!"); 1816 assert(Idx->getType()->isIntegerTy(32) && 1817 "Extractelement index must be i32 type!"); 1818 1819 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) 1820 return FC; // Fold a few common cases. 1821 1822 // Look up the constant in the table first to ensure uniqueness 1823 std::vector<Constant*> ArgVec(1, Val); 1824 ArgVec.push_back(Idx); 1825 const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec); 1826 1827 LLVMContextImpl *pImpl = Val->getContext().pImpl; 1828 Type *ReqTy = Val->getType()->getVectorElementType(); 1829 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 1830 } 1831 1832 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 1833 Constant *Idx) { 1834 assert(Val->getType()->isVectorTy() && 1835 "Tried to create insertelement operation on non-vector type!"); 1836 assert(Elt->getType() == Val->getType()->getVectorElementType() && 1837 "Insertelement types must match!"); 1838 assert(Idx->getType()->isIntegerTy(32) && 1839 "Insertelement index must be i32 type!"); 1840 1841 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) 1842 return FC; // Fold a few common cases. 1843 // Look up the constant in the table first to ensure uniqueness 1844 std::vector<Constant*> ArgVec(1, Val); 1845 ArgVec.push_back(Elt); 1846 ArgVec.push_back(Idx); 1847 const ExprMapKeyType Key(Instruction::InsertElement,ArgVec); 1848 1849 LLVMContextImpl *pImpl = Val->getContext().pImpl; 1850 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); 1851 } 1852 1853 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 1854 Constant *Mask) { 1855 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && 1856 "Invalid shuffle vector constant expr operands!"); 1857 1858 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) 1859 return FC; // Fold a few common cases. 1860 1861 unsigned NElts = Mask->getType()->getVectorNumElements(); 1862 Type *EltTy = V1->getType()->getVectorElementType(); 1863 Type *ShufTy = VectorType::get(EltTy, NElts); 1864 1865 // Look up the constant in the table first to ensure uniqueness 1866 std::vector<Constant*> ArgVec(1, V1); 1867 ArgVec.push_back(V2); 1868 ArgVec.push_back(Mask); 1869 const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec); 1870 1871 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; 1872 return pImpl->ExprConstants.getOrCreate(ShufTy, Key); 1873 } 1874 1875 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, 1876 ArrayRef<unsigned> Idxs) { 1877 assert(ExtractValueInst::getIndexedType(Agg->getType(), 1878 Idxs) == Val->getType() && 1879 "insertvalue indices invalid!"); 1880 assert(Agg->getType()->isFirstClassType() && 1881 "Non-first-class type for constant insertvalue expression"); 1882 Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs); 1883 assert(FC && "insertvalue constant expr couldn't be folded!"); 1884 return FC; 1885 } 1886 1887 Constant *ConstantExpr::getExtractValue(Constant *Agg, 1888 ArrayRef<unsigned> Idxs) { 1889 assert(Agg->getType()->isFirstClassType() && 1890 "Tried to create extractelement operation on non-first-class type!"); 1891 1892 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs); 1893 (void)ReqTy; 1894 assert(ReqTy && "extractvalue indices invalid!"); 1895 1896 assert(Agg->getType()->isFirstClassType() && 1897 "Non-first-class type for constant extractvalue expression"); 1898 Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs); 1899 assert(FC && "ExtractValue constant expr couldn't be folded!"); 1900 return FC; 1901 } 1902 1903 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { 1904 assert(C->getType()->isIntOrIntVectorTy() && 1905 "Cannot NEG a nonintegral value!"); 1906 return getSub(ConstantFP::getZeroValueForNegation(C->getType()), 1907 C, HasNUW, HasNSW); 1908 } 1909 1910 Constant *ConstantExpr::getFNeg(Constant *C) { 1911 assert(C->getType()->isFPOrFPVectorTy() && 1912 "Cannot FNEG a non-floating-point value!"); 1913 return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C); 1914 } 1915 1916 Constant *ConstantExpr::getNot(Constant *C) { 1917 assert(C->getType()->isIntOrIntVectorTy() && 1918 "Cannot NOT a nonintegral value!"); 1919 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); 1920 } 1921 1922 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, 1923 bool HasNUW, bool HasNSW) { 1924 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 1925 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 1926 return get(Instruction::Add, C1, C2, Flags); 1927 } 1928 1929 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { 1930 return get(Instruction::FAdd, C1, C2); 1931 } 1932 1933 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, 1934 bool HasNUW, bool HasNSW) { 1935 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 1936 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 1937 return get(Instruction::Sub, C1, C2, Flags); 1938 } 1939 1940 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { 1941 return get(Instruction::FSub, C1, C2); 1942 } 1943 1944 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, 1945 bool HasNUW, bool HasNSW) { 1946 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 1947 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 1948 return get(Instruction::Mul, C1, C2, Flags); 1949 } 1950 1951 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { 1952 return get(Instruction::FMul, C1, C2); 1953 } 1954 1955 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) { 1956 return get(Instruction::UDiv, C1, C2, 1957 isExact ? PossiblyExactOperator::IsExact : 0); 1958 } 1959 1960 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) { 1961 return get(Instruction::SDiv, C1, C2, 1962 isExact ? PossiblyExactOperator::IsExact : 0); 1963 } 1964 1965 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { 1966 return get(Instruction::FDiv, C1, C2); 1967 } 1968 1969 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { 1970 return get(Instruction::URem, C1, C2); 1971 } 1972 1973 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { 1974 return get(Instruction::SRem, C1, C2); 1975 } 1976 1977 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { 1978 return get(Instruction::FRem, C1, C2); 1979 } 1980 1981 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { 1982 return get(Instruction::And, C1, C2); 1983 } 1984 1985 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { 1986 return get(Instruction::Or, C1, C2); 1987 } 1988 1989 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { 1990 return get(Instruction::Xor, C1, C2); 1991 } 1992 1993 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, 1994 bool HasNUW, bool HasNSW) { 1995 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 1996 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 1997 return get(Instruction::Shl, C1, C2, Flags); 1998 } 1999 2000 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { 2001 return get(Instruction::LShr, C1, C2, 2002 isExact ? PossiblyExactOperator::IsExact : 0); 2003 } 2004 2005 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { 2006 return get(Instruction::AShr, C1, C2, 2007 isExact ? PossiblyExactOperator::IsExact : 0); 2008 } 2009 2010 // destroyConstant - Remove the constant from the constant table... 2011 // 2012 void ConstantExpr::destroyConstant() { 2013 getType()->getContext().pImpl->ExprConstants.remove(this); 2014 destroyConstantImpl(); 2015 } 2016 2017 const char *ConstantExpr::getOpcodeName() const { 2018 return Instruction::getOpcodeName(getOpcode()); 2019 } 2020 2021 2022 2023 GetElementPtrConstantExpr:: 2024 GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList, 2025 Type *DestTy) 2026 : ConstantExpr(DestTy, Instruction::GetElementPtr, 2027 OperandTraits<GetElementPtrConstantExpr>::op_end(this) 2028 - (IdxList.size()+1), IdxList.size()+1) { 2029 OperandList[0] = C; 2030 for (unsigned i = 0, E = IdxList.size(); i != E; ++i) 2031 OperandList[i+1] = IdxList[i]; 2032 } 2033 2034 //===----------------------------------------------------------------------===// 2035 // ConstantData* implementations 2036 2037 void ConstantDataArray::anchor() {} 2038 void ConstantDataVector::anchor() {} 2039 2040 /// getElementType - Return the element type of the array/vector. 2041 Type *ConstantDataSequential::getElementType() const { 2042 return getType()->getElementType(); 2043 } 2044 2045 StringRef ConstantDataSequential::getRawDataValues() const { 2046 return StringRef(DataElements, getNumElements()*getElementByteSize()); 2047 } 2048 2049 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be 2050 /// formed with a vector or array of the specified element type. 2051 /// ConstantDataArray only works with normal float and int types that are 2052 /// stored densely in memory, not with things like i42 or x86_f80. 2053 bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) { 2054 if (Ty->isFloatTy() || Ty->isDoubleTy()) return true; 2055 if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) { 2056 switch (IT->getBitWidth()) { 2057 case 8: 2058 case 16: 2059 case 32: 2060 case 64: 2061 return true; 2062 default: break; 2063 } 2064 } 2065 return false; 2066 } 2067 2068 /// getNumElements - Return the number of elements in the array or vector. 2069 unsigned ConstantDataSequential::getNumElements() const { 2070 if (ArrayType *AT = dyn_cast<ArrayType>(getType())) 2071 return AT->getNumElements(); 2072 return getType()->getVectorNumElements(); 2073 } 2074 2075 2076 /// getElementByteSize - Return the size in bytes of the elements in the data. 2077 uint64_t ConstantDataSequential::getElementByteSize() const { 2078 return getElementType()->getPrimitiveSizeInBits()/8; 2079 } 2080 2081 /// getElementPointer - Return the start of the specified element. 2082 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { 2083 assert(Elt < getNumElements() && "Invalid Elt"); 2084 return DataElements+Elt*getElementByteSize(); 2085 } 2086 2087 2088 /// isAllZeros - return true if the array is empty or all zeros. 2089 static bool isAllZeros(StringRef Arr) { 2090 for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I) 2091 if (*I != 0) 2092 return false; 2093 return true; 2094 } 2095 2096 /// getImpl - This is the underlying implementation of all of the 2097 /// ConstantDataSequential::get methods. They all thunk down to here, providing 2098 /// the correct element type. We take the bytes in as a StringRef because 2099 /// we *want* an underlying "char*" to avoid TBAA type punning violations. 2100 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { 2101 assert(isElementTypeCompatible(Ty->getSequentialElementType())); 2102 // If the elements are all zero or there are no elements, return a CAZ, which 2103 // is more dense and canonical. 2104 if (isAllZeros(Elements)) 2105 return ConstantAggregateZero::get(Ty); 2106 2107 // Do a lookup to see if we have already formed one of these. 2108 StringMap<ConstantDataSequential*>::MapEntryTy &Slot = 2109 Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements); 2110 2111 // The bucket can point to a linked list of different CDS's that have the same 2112 // body but different types. For example, 0,0,0,1 could be a 4 element array 2113 // of i8, or a 1-element array of i32. They'll both end up in the same 2114 /// StringMap bucket, linked up by their Next pointers. Walk the list. 2115 ConstantDataSequential **Entry = &Slot.getValue(); 2116 for (ConstantDataSequential *Node = *Entry; Node != 0; 2117 Entry = &Node->Next, Node = *Entry) 2118 if (Node->getType() == Ty) 2119 return Node; 2120 2121 // Okay, we didn't get a hit. Create a node of the right class, link it in, 2122 // and return it. 2123 if (isa<ArrayType>(Ty)) 2124 return *Entry = new ConstantDataArray(Ty, Slot.getKeyData()); 2125 2126 assert(isa<VectorType>(Ty)); 2127 return *Entry = new ConstantDataVector(Ty, Slot.getKeyData()); 2128 } 2129 2130 void ConstantDataSequential::destroyConstant() { 2131 // Remove the constant from the StringMap. 2132 StringMap<ConstantDataSequential*> &CDSConstants = 2133 getType()->getContext().pImpl->CDSConstants; 2134 2135 StringMap<ConstantDataSequential*>::iterator Slot = 2136 CDSConstants.find(getRawDataValues()); 2137 2138 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); 2139 2140 ConstantDataSequential **Entry = &Slot->getValue(); 2141 2142 // Remove the entry from the hash table. 2143 if ((*Entry)->Next == 0) { 2144 // If there is only one value in the bucket (common case) it must be this 2145 // entry, and removing the entry should remove the bucket completely. 2146 assert((*Entry) == this && "Hash mismatch in ConstantDataSequential"); 2147 getContext().pImpl->CDSConstants.erase(Slot); 2148 } else { 2149 // Otherwise, there are multiple entries linked off the bucket, unlink the 2150 // node we care about but keep the bucket around. 2151 for (ConstantDataSequential *Node = *Entry; ; 2152 Entry = &Node->Next, Node = *Entry) { 2153 assert(Node && "Didn't find entry in its uniquing hash table!"); 2154 // If we found our entry, unlink it from the list and we're done. 2155 if (Node == this) { 2156 *Entry = Node->Next; 2157 break; 2158 } 2159 } 2160 } 2161 2162 // If we were part of a list, make sure that we don't delete the list that is 2163 // still owned by the uniquing map. 2164 Next = 0; 2165 2166 // Finally, actually delete it. 2167 destroyConstantImpl(); 2168 } 2169 2170 /// get() constructors - Return a constant with array type with an element 2171 /// count and element type matching the ArrayRef passed in. Note that this 2172 /// can return a ConstantAggregateZero object. 2173 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) { 2174 Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size()); 2175 return getImpl(StringRef((char*)Elts.data(), Elts.size()*1), Ty); 2176 } 2177 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ 2178 Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size()); 2179 return getImpl(StringRef((char*)Elts.data(), Elts.size()*2), Ty); 2180 } 2181 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ 2182 Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size()); 2183 return getImpl(StringRef((char*)Elts.data(), Elts.size()*4), Ty); 2184 } 2185 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ 2186 Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size()); 2187 return getImpl(StringRef((char*)Elts.data(), Elts.size()*8), Ty); 2188 } 2189 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) { 2190 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size()); 2191 return getImpl(StringRef((char*)Elts.data(), Elts.size()*4), Ty); 2192 } 2193 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) { 2194 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size()); 2195 return getImpl(StringRef((char*)Elts.data(), Elts.size()*8), Ty); 2196 } 2197 2198 /// getString - This method constructs a CDS and initializes it with a text 2199 /// string. The default behavior (AddNull==true) causes a null terminator to 2200 /// be placed at the end of the array (increasing the length of the string by 2201 /// one more than the StringRef would normally indicate. Pass AddNull=false 2202 /// to disable this behavior. 2203 Constant *ConstantDataArray::getString(LLVMContext &Context, 2204 StringRef Str, bool AddNull) { 2205 if (!AddNull) 2206 return get(Context, ArrayRef<uint8_t>((uint8_t*)Str.data(), Str.size())); 2207 2208 SmallVector<uint8_t, 64> ElementVals; 2209 ElementVals.append(Str.begin(), Str.end()); 2210 ElementVals.push_back(0); 2211 return get(Context, ElementVals); 2212 } 2213 2214 /// get() constructors - Return a constant with vector type with an element 2215 /// count and element type matching the ArrayRef passed in. Note that this 2216 /// can return a ConstantAggregateZero object. 2217 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ 2218 Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size()); 2219 return getImpl(StringRef((char*)Elts.data(), Elts.size()*1), Ty); 2220 } 2221 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ 2222 Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size()); 2223 return getImpl(StringRef((char*)Elts.data(), Elts.size()*2), Ty); 2224 } 2225 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ 2226 Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size()); 2227 return getImpl(StringRef((char*)Elts.data(), Elts.size()*4), Ty); 2228 } 2229 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ 2230 Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size()); 2231 return getImpl(StringRef((char*)Elts.data(), Elts.size()*8), Ty); 2232 } 2233 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { 2234 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size()); 2235 return getImpl(StringRef((char*)Elts.data(), Elts.size()*4), Ty); 2236 } 2237 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { 2238 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size()); 2239 return getImpl(StringRef((char*)Elts.data(), Elts.size()*8), Ty); 2240 } 2241 2242 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { 2243 assert(isElementTypeCompatible(V->getType()) && 2244 "Element type not compatible with ConstantData"); 2245 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2246 if (CI->getType()->isIntegerTy(8)) { 2247 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); 2248 return get(V->getContext(), Elts); 2249 } 2250 if (CI->getType()->isIntegerTy(16)) { 2251 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); 2252 return get(V->getContext(), Elts); 2253 } 2254 if (CI->getType()->isIntegerTy(32)) { 2255 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); 2256 return get(V->getContext(), Elts); 2257 } 2258 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); 2259 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); 2260 return get(V->getContext(), Elts); 2261 } 2262 2263 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2264 if (CFP->getType()->isFloatTy()) { 2265 SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat()); 2266 return get(V->getContext(), Elts); 2267 } 2268 if (CFP->getType()->isDoubleTy()) { 2269 SmallVector<double, 16> Elts(NumElts, 2270 CFP->getValueAPF().convertToDouble()); 2271 return get(V->getContext(), Elts); 2272 } 2273 } 2274 return ConstantVector::getSplat(NumElts, V); 2275 } 2276 2277 2278 /// getElementAsInteger - If this is a sequential container of integers (of 2279 /// any size), return the specified element in the low bits of a uint64_t. 2280 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { 2281 assert(isa<IntegerType>(getElementType()) && 2282 "Accessor can only be used when element is an integer"); 2283 const char *EltPtr = getElementPointer(Elt); 2284 2285 // The data is stored in host byte order, make sure to cast back to the right 2286 // type to load with the right endianness. 2287 switch (getElementType()->getIntegerBitWidth()) { 2288 default: llvm_unreachable("Invalid bitwidth for CDS"); 2289 case 8: return *(uint8_t*)EltPtr; 2290 case 16: return *(uint16_t*)EltPtr; 2291 case 32: return *(uint32_t*)EltPtr; 2292 case 64: return *(uint64_t*)EltPtr; 2293 } 2294 } 2295 2296 /// getElementAsAPFloat - If this is a sequential container of floating point 2297 /// type, return the specified element as an APFloat. 2298 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { 2299 const char *EltPtr = getElementPointer(Elt); 2300 2301 switch (getElementType()->getTypeID()) { 2302 default: 2303 llvm_unreachable("Accessor can only be used when element is float/double!"); 2304 case Type::FloatTyID: return APFloat(*(float*)EltPtr); 2305 case Type::DoubleTyID: return APFloat(*(double*)EltPtr); 2306 } 2307 } 2308 2309 /// getElementAsFloat - If this is an sequential container of floats, return 2310 /// the specified element as a float. 2311 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { 2312 assert(getElementType()->isFloatTy() && 2313 "Accessor can only be used when element is a 'float'"); 2314 return *(float*)getElementPointer(Elt); 2315 } 2316 2317 /// getElementAsDouble - If this is an sequential container of doubles, return 2318 /// the specified element as a float. 2319 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { 2320 assert(getElementType()->isDoubleTy() && 2321 "Accessor can only be used when element is a 'float'"); 2322 return *(double*)getElementPointer(Elt); 2323 } 2324 2325 /// getElementAsConstant - Return a Constant for a specified index's element. 2326 /// Note that this has to compute a new constant to return, so it isn't as 2327 /// efficient as getElementAsInteger/Float/Double. 2328 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { 2329 if (getElementType()->isFloatTy() || getElementType()->isDoubleTy()) 2330 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); 2331 2332 return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); 2333 } 2334 2335 /// isString - This method returns true if this is an array of i8. 2336 bool ConstantDataSequential::isString() const { 2337 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8); 2338 } 2339 2340 /// isCString - This method returns true if the array "isString", ends with a 2341 /// nul byte, and does not contains any other nul bytes. 2342 bool ConstantDataSequential::isCString() const { 2343 if (!isString()) 2344 return false; 2345 2346 StringRef Str = getAsString(); 2347 2348 // The last value must be nul. 2349 if (Str.back() != 0) return false; 2350 2351 // Other elements must be non-nul. 2352 return Str.drop_back().find(0) == StringRef::npos; 2353 } 2354 2355 /// getSplatValue - If this is a splat constant, meaning that all of the 2356 /// elements have the same value, return that value. Otherwise return NULL. 2357 Constant *ConstantDataVector::getSplatValue() const { 2358 const char *Base = getRawDataValues().data(); 2359 2360 // Compare elements 1+ to the 0'th element. 2361 unsigned EltSize = getElementByteSize(); 2362 for (unsigned i = 1, e = getNumElements(); i != e; ++i) 2363 if (memcmp(Base, Base+i*EltSize, EltSize)) 2364 return 0; 2365 2366 // If they're all the same, return the 0th one as a representative. 2367 return getElementAsConstant(0); 2368 } 2369 2370 //===----------------------------------------------------------------------===// 2371 // replaceUsesOfWithOnConstant implementations 2372 2373 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of 2374 /// 'From' to be uses of 'To'. This must update the uniquing data structures 2375 /// etc. 2376 /// 2377 /// Note that we intentionally replace all uses of From with To here. Consider 2378 /// a large array that uses 'From' 1000 times. By handling this case all here, 2379 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that 2380 /// single invocation handles all 1000 uses. Handling them one at a time would 2381 /// work, but would be really slow because it would have to unique each updated 2382 /// array instance. 2383 /// 2384 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, 2385 Use *U) { 2386 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 2387 Constant *ToC = cast<Constant>(To); 2388 2389 LLVMContextImpl *pImpl = getType()->getContext().pImpl; 2390 2391 SmallVector<Constant*, 8> Values; 2392 LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup; 2393 Lookup.first = cast<ArrayType>(getType()); 2394 Values.reserve(getNumOperands()); // Build replacement array. 2395 2396 // Fill values with the modified operands of the constant array. Also, 2397 // compute whether this turns into an all-zeros array. 2398 unsigned NumUpdated = 0; 2399 2400 // Keep track of whether all the values in the array are "ToC". 2401 bool AllSame = true; 2402 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { 2403 Constant *Val = cast<Constant>(O->get()); 2404 if (Val == From) { 2405 Val = ToC; 2406 ++NumUpdated; 2407 } 2408 Values.push_back(Val); 2409 AllSame &= Val == ToC; 2410 } 2411 2412 Constant *Replacement = 0; 2413 if (AllSame && ToC->isNullValue()) { 2414 Replacement = ConstantAggregateZero::get(getType()); 2415 } else if (AllSame && isa<UndefValue>(ToC)) { 2416 Replacement = UndefValue::get(getType()); 2417 } else { 2418 // Check to see if we have this array type already. 2419 Lookup.second = makeArrayRef(Values); 2420 LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I = 2421 pImpl->ArrayConstants.find(Lookup); 2422 2423 if (I != pImpl->ArrayConstants.map_end()) { 2424 Replacement = I->first; 2425 } else { 2426 // Okay, the new shape doesn't exist in the system yet. Instead of 2427 // creating a new constant array, inserting it, replaceallusesof'ing the 2428 // old with the new, then deleting the old... just update the current one 2429 // in place! 2430 pImpl->ArrayConstants.remove(this); 2431 2432 // Update to the new value. Optimize for the case when we have a single 2433 // operand that we're changing, but handle bulk updates efficiently. 2434 if (NumUpdated == 1) { 2435 unsigned OperandToUpdate = U - OperandList; 2436 assert(getOperand(OperandToUpdate) == From && 2437 "ReplaceAllUsesWith broken!"); 2438 setOperand(OperandToUpdate, ToC); 2439 } else { 2440 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 2441 if (getOperand(i) == From) 2442 setOperand(i, ToC); 2443 } 2444 pImpl->ArrayConstants.insert(this); 2445 return; 2446 } 2447 } 2448 2449 // Otherwise, I do need to replace this with an existing value. 2450 assert(Replacement != this && "I didn't contain From!"); 2451 2452 // Everyone using this now uses the replacement. 2453 replaceAllUsesWith(Replacement); 2454 2455 // Delete the old constant! 2456 destroyConstant(); 2457 } 2458 2459 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, 2460 Use *U) { 2461 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 2462 Constant *ToC = cast<Constant>(To); 2463 2464 unsigned OperandToUpdate = U-OperandList; 2465 assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); 2466 2467 SmallVector<Constant*, 8> Values; 2468 LLVMContextImpl::StructConstantsTy::LookupKey Lookup; 2469 Lookup.first = cast<StructType>(getType()); 2470 Values.reserve(getNumOperands()); // Build replacement struct. 2471 2472 // Fill values with the modified operands of the constant struct. Also, 2473 // compute whether this turns into an all-zeros struct. 2474 bool isAllZeros = false; 2475 bool isAllUndef = false; 2476 if (ToC->isNullValue()) { 2477 isAllZeros = true; 2478 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { 2479 Constant *Val = cast<Constant>(O->get()); 2480 Values.push_back(Val); 2481 if (isAllZeros) isAllZeros = Val->isNullValue(); 2482 } 2483 } else if (isa<UndefValue>(ToC)) { 2484 isAllUndef = true; 2485 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { 2486 Constant *Val = cast<Constant>(O->get()); 2487 Values.push_back(Val); 2488 if (isAllUndef) isAllUndef = isa<UndefValue>(Val); 2489 } 2490 } else { 2491 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) 2492 Values.push_back(cast<Constant>(O->get())); 2493 } 2494 Values[OperandToUpdate] = ToC; 2495 2496 LLVMContextImpl *pImpl = getContext().pImpl; 2497 2498 Constant *Replacement = 0; 2499 if (isAllZeros) { 2500 Replacement = ConstantAggregateZero::get(getType()); 2501 } else if (isAllUndef) { 2502 Replacement = UndefValue::get(getType()); 2503 } else { 2504 // Check to see if we have this struct type already. 2505 Lookup.second = makeArrayRef(Values); 2506 LLVMContextImpl::StructConstantsTy::MapTy::iterator I = 2507 pImpl->StructConstants.find(Lookup); 2508 2509 if (I != pImpl->StructConstants.map_end()) { 2510 Replacement = I->first; 2511 } else { 2512 // Okay, the new shape doesn't exist in the system yet. Instead of 2513 // creating a new constant struct, inserting it, replaceallusesof'ing the 2514 // old with the new, then deleting the old... just update the current one 2515 // in place! 2516 pImpl->StructConstants.remove(this); 2517 2518 // Update to the new value. 2519 setOperand(OperandToUpdate, ToC); 2520 pImpl->StructConstants.insert(this); 2521 return; 2522 } 2523 } 2524 2525 assert(Replacement != this && "I didn't contain From!"); 2526 2527 // Everyone using this now uses the replacement. 2528 replaceAllUsesWith(Replacement); 2529 2530 // Delete the old constant! 2531 destroyConstant(); 2532 } 2533 2534 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To, 2535 Use *U) { 2536 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 2537 2538 SmallVector<Constant*, 8> Values; 2539 Values.reserve(getNumOperands()); // Build replacement array... 2540 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2541 Constant *Val = getOperand(i); 2542 if (Val == From) Val = cast<Constant>(To); 2543 Values.push_back(Val); 2544 } 2545 2546 Constant *Replacement = get(Values); 2547 assert(Replacement != this && "I didn't contain From!"); 2548 2549 // Everyone using this now uses the replacement. 2550 replaceAllUsesWith(Replacement); 2551 2552 // Delete the old constant! 2553 destroyConstant(); 2554 } 2555 2556 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, 2557 Use *U) { 2558 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); 2559 Constant *To = cast<Constant>(ToV); 2560 2561 SmallVector<Constant*, 8> NewOps; 2562 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 2563 Constant *Op = getOperand(i); 2564 NewOps.push_back(Op == From ? To : Op); 2565 } 2566 2567 Constant *Replacement = getWithOperands(NewOps); 2568 assert(Replacement != this && "I didn't contain From!"); 2569 2570 // Everyone using this now uses the replacement. 2571 replaceAllUsesWith(Replacement); 2572 2573 // Delete the old constant! 2574 destroyConstant(); 2575 } 2576