Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code dealing with C++ exception related code generation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGCleanup.h"
     16 #include "CGObjCRuntime.h"
     17 #include "TargetInfo.h"
     18 #include "clang/AST/StmtCXX.h"
     19 #include "llvm/Intrinsics.h"
     20 #include "llvm/Support/CallSite.h"
     21 
     22 using namespace clang;
     23 using namespace CodeGen;
     24 
     25 static llvm::Constant *getAllocateExceptionFn(CodeGenFunction &CGF) {
     26   // void *__cxa_allocate_exception(size_t thrown_size);
     27 
     28   llvm::FunctionType *FTy =
     29     llvm::FunctionType::get(CGF.Int8PtrTy, CGF.SizeTy, /*IsVarArgs=*/false);
     30 
     31   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception");
     32 }
     33 
     34 static llvm::Constant *getFreeExceptionFn(CodeGenFunction &CGF) {
     35   // void __cxa_free_exception(void *thrown_exception);
     36 
     37   llvm::FunctionType *FTy =
     38     llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
     39 
     40   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception");
     41 }
     42 
     43 static llvm::Constant *getThrowFn(CodeGenFunction &CGF) {
     44   // void __cxa_throw(void *thrown_exception, std::type_info *tinfo,
     45   //                  void (*dest) (void *));
     46 
     47   llvm::Type *Args[3] = { CGF.Int8PtrTy, CGF.Int8PtrTy, CGF.Int8PtrTy };
     48   llvm::FunctionType *FTy =
     49     llvm::FunctionType::get(CGF.VoidTy, Args, /*IsVarArgs=*/false);
     50 
     51   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_throw");
     52 }
     53 
     54 static llvm::Constant *getReThrowFn(CodeGenFunction &CGF) {
     55   // void __cxa_rethrow();
     56 
     57   llvm::FunctionType *FTy =
     58     llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false);
     59 
     60   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow");
     61 }
     62 
     63 static llvm::Constant *getGetExceptionPtrFn(CodeGenFunction &CGF) {
     64   // void *__cxa_get_exception_ptr(void*);
     65 
     66   llvm::FunctionType *FTy =
     67     llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
     68 
     69   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr");
     70 }
     71 
     72 static llvm::Constant *getBeginCatchFn(CodeGenFunction &CGF) {
     73   // void *__cxa_begin_catch(void*);
     74 
     75   llvm::FunctionType *FTy =
     76     llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
     77 
     78   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch");
     79 }
     80 
     81 static llvm::Constant *getEndCatchFn(CodeGenFunction &CGF) {
     82   // void __cxa_end_catch();
     83 
     84   llvm::FunctionType *FTy =
     85     llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false);
     86 
     87   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch");
     88 }
     89 
     90 static llvm::Constant *getUnexpectedFn(CodeGenFunction &CGF) {
     91   // void __cxa_call_unexepcted(void *thrown_exception);
     92 
     93   llvm::FunctionType *FTy =
     94     llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
     95 
     96   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected");
     97 }
     98 
     99 llvm::Constant *CodeGenFunction::getUnwindResumeFn() {
    100   llvm::FunctionType *FTy =
    101     llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false);
    102 
    103   if (CGM.getLangOpts().SjLjExceptions)
    104     return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume");
    105   return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume");
    106 }
    107 
    108 llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() {
    109   llvm::FunctionType *FTy =
    110     llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false);
    111 
    112   if (CGM.getLangOpts().SjLjExceptions)
    113     return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow");
    114   return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow");
    115 }
    116 
    117 static llvm::Constant *getTerminateFn(CodeGenFunction &CGF) {
    118   // void __terminate();
    119 
    120   llvm::FunctionType *FTy =
    121     llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false);
    122 
    123   StringRef name;
    124 
    125   // In C++, use std::terminate().
    126   if (CGF.getLangOpts().CPlusPlus)
    127     name = "_ZSt9terminatev"; // FIXME: mangling!
    128   else if (CGF.getLangOpts().ObjC1 &&
    129            CGF.CGM.getCodeGenOpts().ObjCRuntimeHasTerminate)
    130     name = "objc_terminate";
    131   else
    132     name = "abort";
    133   return CGF.CGM.CreateRuntimeFunction(FTy, name);
    134 }
    135 
    136 static llvm::Constant *getCatchallRethrowFn(CodeGenFunction &CGF,
    137                                             StringRef Name) {
    138   llvm::FunctionType *FTy =
    139     llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, /*IsVarArgs=*/false);
    140 
    141   return CGF.CGM.CreateRuntimeFunction(FTy, Name);
    142 }
    143 
    144 namespace {
    145   /// The exceptions personality for a function.
    146   struct EHPersonality {
    147     const char *PersonalityFn;
    148 
    149     // If this is non-null, this personality requires a non-standard
    150     // function for rethrowing an exception after a catchall cleanup.
    151     // This function must have prototype void(void*).
    152     const char *CatchallRethrowFn;
    153 
    154     static const EHPersonality &get(const LangOptions &Lang);
    155     static const EHPersonality GNU_C;
    156     static const EHPersonality GNU_C_SJLJ;
    157     static const EHPersonality GNU_ObjC;
    158     static const EHPersonality GNU_ObjCXX;
    159     static const EHPersonality NeXT_ObjC;
    160     static const EHPersonality GNU_CPlusPlus;
    161     static const EHPersonality GNU_CPlusPlus_SJLJ;
    162   };
    163 }
    164 
    165 const EHPersonality EHPersonality::GNU_C = { "__gcc_personality_v0", 0 };
    166 const EHPersonality EHPersonality::GNU_C_SJLJ = { "__gcc_personality_sj0", 0 };
    167 const EHPersonality EHPersonality::NeXT_ObjC = { "__objc_personality_v0", 0 };
    168 const EHPersonality EHPersonality::GNU_CPlusPlus = { "__gxx_personality_v0", 0};
    169 const EHPersonality
    170 EHPersonality::GNU_CPlusPlus_SJLJ = { "__gxx_personality_sj0", 0 };
    171 const EHPersonality
    172 EHPersonality::GNU_ObjC = {"__gnu_objc_personality_v0", "objc_exception_throw"};
    173 const EHPersonality
    174 EHPersonality::GNU_ObjCXX = { "__gnustep_objcxx_personality_v0", 0 };
    175 
    176 static const EHPersonality &getCPersonality(const LangOptions &L) {
    177   if (L.SjLjExceptions)
    178     return EHPersonality::GNU_C_SJLJ;
    179   return EHPersonality::GNU_C;
    180 }
    181 
    182 static const EHPersonality &getObjCPersonality(const LangOptions &L) {
    183   if (L.NeXTRuntime) {
    184     if (L.ObjCNonFragileABI) return EHPersonality::NeXT_ObjC;
    185     else return getCPersonality(L);
    186   } else {
    187     return EHPersonality::GNU_ObjC;
    188   }
    189 }
    190 
    191 static const EHPersonality &getCXXPersonality(const LangOptions &L) {
    192   if (L.SjLjExceptions)
    193     return EHPersonality::GNU_CPlusPlus_SJLJ;
    194   else
    195     return EHPersonality::GNU_CPlusPlus;
    196 }
    197 
    198 /// Determines the personality function to use when both C++
    199 /// and Objective-C exceptions are being caught.
    200 static const EHPersonality &getObjCXXPersonality(const LangOptions &L) {
    201   // The ObjC personality defers to the C++ personality for non-ObjC
    202   // handlers.  Unlike the C++ case, we use the same personality
    203   // function on targets using (backend-driven) SJLJ EH.
    204   if (L.NeXTRuntime) {
    205     if (L.ObjCNonFragileABI)
    206       return EHPersonality::NeXT_ObjC;
    207 
    208     // In the fragile ABI, just use C++ exception handling and hope
    209     // they're not doing crazy exception mixing.
    210     else
    211       return getCXXPersonality(L);
    212   }
    213 
    214   // The GNU runtime's personality function inherently doesn't support
    215   // mixed EH.  Use the C++ personality just to avoid returning null.
    216   return EHPersonality::GNU_ObjCXX;
    217 }
    218 
    219 const EHPersonality &EHPersonality::get(const LangOptions &L) {
    220   if (L.CPlusPlus && L.ObjC1)
    221     return getObjCXXPersonality(L);
    222   else if (L.CPlusPlus)
    223     return getCXXPersonality(L);
    224   else if (L.ObjC1)
    225     return getObjCPersonality(L);
    226   else
    227     return getCPersonality(L);
    228 }
    229 
    230 static llvm::Constant *getPersonalityFn(CodeGenModule &CGM,
    231                                         const EHPersonality &Personality) {
    232   llvm::Constant *Fn =
    233     CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, true),
    234                               Personality.PersonalityFn);
    235   return Fn;
    236 }
    237 
    238 static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM,
    239                                         const EHPersonality &Personality) {
    240   llvm::Constant *Fn = getPersonalityFn(CGM, Personality);
    241   return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
    242 }
    243 
    244 /// Check whether a personality function could reasonably be swapped
    245 /// for a C++ personality function.
    246 static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) {
    247   for (llvm::Constant::use_iterator
    248          I = Fn->use_begin(), E = Fn->use_end(); I != E; ++I) {
    249     llvm::User *User = *I;
    250 
    251     // Conditionally white-list bitcasts.
    252     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(User)) {
    253       if (CE->getOpcode() != llvm::Instruction::BitCast) return false;
    254       if (!PersonalityHasOnlyCXXUses(CE))
    255         return false;
    256       continue;
    257     }
    258 
    259     // Otherwise, it has to be a landingpad instruction.
    260     llvm::LandingPadInst *LPI = dyn_cast<llvm::LandingPadInst>(User);
    261     if (!LPI) return false;
    262 
    263     for (unsigned I = 0, E = LPI->getNumClauses(); I != E; ++I) {
    264       // Look for something that would've been returned by the ObjC
    265       // runtime's GetEHType() method.
    266       llvm::Value *Val = LPI->getClause(I)->stripPointerCasts();
    267       if (LPI->isCatch(I)) {
    268         // Check if the catch value has the ObjC prefix.
    269         if (llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Val))
    270           // ObjC EH selector entries are always global variables with
    271           // names starting like this.
    272           if (GV->getName().startswith("OBJC_EHTYPE"))
    273             return false;
    274       } else {
    275         // Check if any of the filter values have the ObjC prefix.
    276         llvm::Constant *CVal = cast<llvm::Constant>(Val);
    277         for (llvm::User::op_iterator
    278                II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) {
    279           if (llvm::GlobalVariable *GV =
    280               cast<llvm::GlobalVariable>((*II)->stripPointerCasts()))
    281             // ObjC EH selector entries are always global variables with
    282             // names starting like this.
    283             if (GV->getName().startswith("OBJC_EHTYPE"))
    284               return false;
    285         }
    286       }
    287     }
    288   }
    289 
    290   return true;
    291 }
    292 
    293 /// Try to use the C++ personality function in ObjC++.  Not doing this
    294 /// can cause some incompatibilities with gcc, which is more
    295 /// aggressive about only using the ObjC++ personality in a function
    296 /// when it really needs it.
    297 void CodeGenModule::SimplifyPersonality() {
    298   // For now, this is really a Darwin-specific operation.
    299   if (!Context.getTargetInfo().getTriple().isOSDarwin())
    300     return;
    301 
    302   // If we're not in ObjC++ -fexceptions, there's nothing to do.
    303   if (!LangOpts.CPlusPlus || !LangOpts.ObjC1 || !LangOpts.Exceptions)
    304     return;
    305 
    306   const EHPersonality &ObjCXX = EHPersonality::get(LangOpts);
    307   const EHPersonality &CXX = getCXXPersonality(LangOpts);
    308   if (&ObjCXX == &CXX)
    309     return;
    310 
    311   assert(std::strcmp(ObjCXX.PersonalityFn, CXX.PersonalityFn) != 0 &&
    312          "Different EHPersonalities using the same personality function.");
    313 
    314   llvm::Function *Fn = getModule().getFunction(ObjCXX.PersonalityFn);
    315 
    316   // Nothing to do if it's unused.
    317   if (!Fn || Fn->use_empty()) return;
    318 
    319   // Can't do the optimization if it has non-C++ uses.
    320   if (!PersonalityHasOnlyCXXUses(Fn)) return;
    321 
    322   // Create the C++ personality function and kill off the old
    323   // function.
    324   llvm::Constant *CXXFn = getPersonalityFn(*this, CXX);
    325 
    326   // This can happen if the user is screwing with us.
    327   if (Fn->getType() != CXXFn->getType()) return;
    328 
    329   Fn->replaceAllUsesWith(CXXFn);
    330   Fn->eraseFromParent();
    331 }
    332 
    333 /// Returns the value to inject into a selector to indicate the
    334 /// presence of a catch-all.
    335 static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) {
    336   // Possibly we should use @llvm.eh.catch.all.value here.
    337   return llvm::ConstantPointerNull::get(CGF.Int8PtrTy);
    338 }
    339 
    340 namespace {
    341   /// A cleanup to free the exception object if its initialization
    342   /// throws.
    343   struct FreeException : EHScopeStack::Cleanup {
    344     llvm::Value *exn;
    345     FreeException(llvm::Value *exn) : exn(exn) {}
    346     void Emit(CodeGenFunction &CGF, Flags flags) {
    347       CGF.Builder.CreateCall(getFreeExceptionFn(CGF), exn)
    348         ->setDoesNotThrow();
    349     }
    350   };
    351 }
    352 
    353 // Emits an exception expression into the given location.  This
    354 // differs from EmitAnyExprToMem only in that, if a final copy-ctor
    355 // call is required, an exception within that copy ctor causes
    356 // std::terminate to be invoked.
    357 static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *e,
    358                              llvm::Value *addr) {
    359   // Make sure the exception object is cleaned up if there's an
    360   // exception during initialization.
    361   CGF.pushFullExprCleanup<FreeException>(EHCleanup, addr);
    362   EHScopeStack::stable_iterator cleanup = CGF.EHStack.stable_begin();
    363 
    364   // __cxa_allocate_exception returns a void*;  we need to cast this
    365   // to the appropriate type for the object.
    366   llvm::Type *ty = CGF.ConvertTypeForMem(e->getType())->getPointerTo();
    367   llvm::Value *typedAddr = CGF.Builder.CreateBitCast(addr, ty);
    368 
    369   // FIXME: this isn't quite right!  If there's a final unelided call
    370   // to a copy constructor, then according to [except.terminate]p1 we
    371   // must call std::terminate() if that constructor throws, because
    372   // technically that copy occurs after the exception expression is
    373   // evaluated but before the exception is caught.  But the best way
    374   // to handle that is to teach EmitAggExpr to do the final copy
    375   // differently if it can't be elided.
    376   CGF.EmitAnyExprToMem(e, typedAddr, e->getType().getQualifiers(),
    377                        /*IsInit*/ true);
    378 
    379   // Deactivate the cleanup block.
    380   CGF.DeactivateCleanupBlock(cleanup, cast<llvm::Instruction>(typedAddr));
    381 }
    382 
    383 llvm::Value *CodeGenFunction::getExceptionSlot() {
    384   if (!ExceptionSlot)
    385     ExceptionSlot = CreateTempAlloca(Int8PtrTy, "exn.slot");
    386   return ExceptionSlot;
    387 }
    388 
    389 llvm::Value *CodeGenFunction::getEHSelectorSlot() {
    390   if (!EHSelectorSlot)
    391     EHSelectorSlot = CreateTempAlloca(Int32Ty, "ehselector.slot");
    392   return EHSelectorSlot;
    393 }
    394 
    395 llvm::Value *CodeGenFunction::getExceptionFromSlot() {
    396   return Builder.CreateLoad(getExceptionSlot(), "exn");
    397 }
    398 
    399 llvm::Value *CodeGenFunction::getSelectorFromSlot() {
    400   return Builder.CreateLoad(getEHSelectorSlot(), "sel");
    401 }
    402 
    403 void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E) {
    404   if (!E->getSubExpr()) {
    405     if (getInvokeDest()) {
    406       Builder.CreateInvoke(getReThrowFn(*this),
    407                            getUnreachableBlock(),
    408                            getInvokeDest())
    409         ->setDoesNotReturn();
    410     } else {
    411       Builder.CreateCall(getReThrowFn(*this))->setDoesNotReturn();
    412       Builder.CreateUnreachable();
    413     }
    414 
    415     // throw is an expression, and the expression emitters expect us
    416     // to leave ourselves at a valid insertion point.
    417     EmitBlock(createBasicBlock("throw.cont"));
    418 
    419     return;
    420   }
    421 
    422   QualType ThrowType = E->getSubExpr()->getType();
    423 
    424   // Now allocate the exception object.
    425   llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
    426   uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity();
    427 
    428   llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(*this);
    429   llvm::CallInst *ExceptionPtr =
    430     Builder.CreateCall(AllocExceptionFn,
    431                        llvm::ConstantInt::get(SizeTy, TypeSize),
    432                        "exception");
    433   ExceptionPtr->setDoesNotThrow();
    434 
    435   EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr);
    436 
    437   // Now throw the exception.
    438   llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType,
    439                                                          /*ForEH=*/true);
    440 
    441   // The address of the destructor.  If the exception type has a
    442   // trivial destructor (or isn't a record), we just pass null.
    443   llvm::Constant *Dtor = 0;
    444   if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) {
    445     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
    446     if (!Record->hasTrivialDestructor()) {
    447       CXXDestructorDecl *DtorD = Record->getDestructor();
    448       Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete);
    449       Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy);
    450     }
    451   }
    452   if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy);
    453 
    454   if (getInvokeDest()) {
    455     llvm::InvokeInst *ThrowCall =
    456       Builder.CreateInvoke3(getThrowFn(*this),
    457                             getUnreachableBlock(), getInvokeDest(),
    458                             ExceptionPtr, TypeInfo, Dtor);
    459     ThrowCall->setDoesNotReturn();
    460   } else {
    461     llvm::CallInst *ThrowCall =
    462       Builder.CreateCall3(getThrowFn(*this), ExceptionPtr, TypeInfo, Dtor);
    463     ThrowCall->setDoesNotReturn();
    464     Builder.CreateUnreachable();
    465   }
    466 
    467   // throw is an expression, and the expression emitters expect us
    468   // to leave ourselves at a valid insertion point.
    469   EmitBlock(createBasicBlock("throw.cont"));
    470 }
    471 
    472 void CodeGenFunction::EmitStartEHSpec(const Decl *D) {
    473   if (!CGM.getLangOpts().CXXExceptions)
    474     return;
    475 
    476   const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
    477   if (FD == 0)
    478     return;
    479   const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
    480   if (Proto == 0)
    481     return;
    482 
    483   ExceptionSpecificationType EST = Proto->getExceptionSpecType();
    484   if (isNoexceptExceptionSpec(EST)) {
    485     if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) {
    486       // noexcept functions are simple terminate scopes.
    487       EHStack.pushTerminate();
    488     }
    489   } else if (EST == EST_Dynamic || EST == EST_DynamicNone) {
    490     unsigned NumExceptions = Proto->getNumExceptions();
    491     EHFilterScope *Filter = EHStack.pushFilter(NumExceptions);
    492 
    493     for (unsigned I = 0; I != NumExceptions; ++I) {
    494       QualType Ty = Proto->getExceptionType(I);
    495       QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType();
    496       llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType,
    497                                                         /*ForEH=*/true);
    498       Filter->setFilter(I, EHType);
    499     }
    500   }
    501 }
    502 
    503 /// Emit the dispatch block for a filter scope if necessary.
    504 static void emitFilterDispatchBlock(CodeGenFunction &CGF,
    505                                     EHFilterScope &filterScope) {
    506   llvm::BasicBlock *dispatchBlock = filterScope.getCachedEHDispatchBlock();
    507   if (!dispatchBlock) return;
    508   if (dispatchBlock->use_empty()) {
    509     delete dispatchBlock;
    510     return;
    511   }
    512 
    513   CGF.EmitBlockAfterUses(dispatchBlock);
    514 
    515   // If this isn't a catch-all filter, we need to check whether we got
    516   // here because the filter triggered.
    517   if (filterScope.getNumFilters()) {
    518     // Load the selector value.
    519     llvm::Value *selector = CGF.getSelectorFromSlot();
    520     llvm::BasicBlock *unexpectedBB = CGF.createBasicBlock("ehspec.unexpected");
    521 
    522     llvm::Value *zero = CGF.Builder.getInt32(0);
    523     llvm::Value *failsFilter =
    524       CGF.Builder.CreateICmpSLT(selector, zero, "ehspec.fails");
    525     CGF.Builder.CreateCondBr(failsFilter, unexpectedBB, CGF.getEHResumeBlock());
    526 
    527     CGF.EmitBlock(unexpectedBB);
    528   }
    529 
    530   // Call __cxa_call_unexpected.  This doesn't need to be an invoke
    531   // because __cxa_call_unexpected magically filters exceptions
    532   // according to the last landing pad the exception was thrown
    533   // into.  Seriously.
    534   llvm::Value *exn = CGF.getExceptionFromSlot();
    535   CGF.Builder.CreateCall(getUnexpectedFn(CGF), exn)
    536     ->setDoesNotReturn();
    537   CGF.Builder.CreateUnreachable();
    538 }
    539 
    540 void CodeGenFunction::EmitEndEHSpec(const Decl *D) {
    541   if (!CGM.getLangOpts().CXXExceptions)
    542     return;
    543 
    544   const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
    545   if (FD == 0)
    546     return;
    547   const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
    548   if (Proto == 0)
    549     return;
    550 
    551   ExceptionSpecificationType EST = Proto->getExceptionSpecType();
    552   if (isNoexceptExceptionSpec(EST)) {
    553     if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) {
    554       EHStack.popTerminate();
    555     }
    556   } else if (EST == EST_Dynamic || EST == EST_DynamicNone) {
    557     EHFilterScope &filterScope = cast<EHFilterScope>(*EHStack.begin());
    558     emitFilterDispatchBlock(*this, filterScope);
    559     EHStack.popFilter();
    560   }
    561 }
    562 
    563 void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) {
    564   EnterCXXTryStmt(S);
    565   EmitStmt(S.getTryBlock());
    566   ExitCXXTryStmt(S);
    567 }
    568 
    569 void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
    570   unsigned NumHandlers = S.getNumHandlers();
    571   EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers);
    572 
    573   for (unsigned I = 0; I != NumHandlers; ++I) {
    574     const CXXCatchStmt *C = S.getHandler(I);
    575 
    576     llvm::BasicBlock *Handler = createBasicBlock("catch");
    577     if (C->getExceptionDecl()) {
    578       // FIXME: Dropping the reference type on the type into makes it
    579       // impossible to correctly implement catch-by-reference
    580       // semantics for pointers.  Unfortunately, this is what all
    581       // existing compilers do, and it's not clear that the standard
    582       // personality routine is capable of doing this right.  See C++ DR 388:
    583       //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388
    584       QualType CaughtType = C->getCaughtType();
    585       CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType();
    586 
    587       llvm::Value *TypeInfo = 0;
    588       if (CaughtType->isObjCObjectPointerType())
    589         TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType);
    590       else
    591         TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, /*ForEH=*/true);
    592       CatchScope->setHandler(I, TypeInfo, Handler);
    593     } else {
    594       // No exception decl indicates '...', a catch-all.
    595       CatchScope->setCatchAllHandler(I, Handler);
    596     }
    597   }
    598 }
    599 
    600 llvm::BasicBlock *
    601 CodeGenFunction::getEHDispatchBlock(EHScopeStack::stable_iterator si) {
    602   // The dispatch block for the end of the scope chain is a block that
    603   // just resumes unwinding.
    604   if (si == EHStack.stable_end())
    605     return getEHResumeBlock();
    606 
    607   // Otherwise, we should look at the actual scope.
    608   EHScope &scope = *EHStack.find(si);
    609 
    610   llvm::BasicBlock *dispatchBlock = scope.getCachedEHDispatchBlock();
    611   if (!dispatchBlock) {
    612     switch (scope.getKind()) {
    613     case EHScope::Catch: {
    614       // Apply a special case to a single catch-all.
    615       EHCatchScope &catchScope = cast<EHCatchScope>(scope);
    616       if (catchScope.getNumHandlers() == 1 &&
    617           catchScope.getHandler(0).isCatchAll()) {
    618         dispatchBlock = catchScope.getHandler(0).Block;
    619 
    620       // Otherwise, make a dispatch block.
    621       } else {
    622         dispatchBlock = createBasicBlock("catch.dispatch");
    623       }
    624       break;
    625     }
    626 
    627     case EHScope::Cleanup:
    628       dispatchBlock = createBasicBlock("ehcleanup");
    629       break;
    630 
    631     case EHScope::Filter:
    632       dispatchBlock = createBasicBlock("filter.dispatch");
    633       break;
    634 
    635     case EHScope::Terminate:
    636       dispatchBlock = getTerminateHandler();
    637       break;
    638     }
    639     scope.setCachedEHDispatchBlock(dispatchBlock);
    640   }
    641   return dispatchBlock;
    642 }
    643 
    644 /// Check whether this is a non-EH scope, i.e. a scope which doesn't
    645 /// affect exception handling.  Currently, the only non-EH scopes are
    646 /// normal-only cleanup scopes.
    647 static bool isNonEHScope(const EHScope &S) {
    648   switch (S.getKind()) {
    649   case EHScope::Cleanup:
    650     return !cast<EHCleanupScope>(S).isEHCleanup();
    651   case EHScope::Filter:
    652   case EHScope::Catch:
    653   case EHScope::Terminate:
    654     return false;
    655   }
    656 
    657   llvm_unreachable("Invalid EHScope Kind!");
    658 }
    659 
    660 llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() {
    661   assert(EHStack.requiresLandingPad());
    662   assert(!EHStack.empty());
    663 
    664   if (!CGM.getLangOpts().Exceptions)
    665     return 0;
    666 
    667   // Check the innermost scope for a cached landing pad.  If this is
    668   // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad.
    669   llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad();
    670   if (LP) return LP;
    671 
    672   // Build the landing pad for this scope.
    673   LP = EmitLandingPad();
    674   assert(LP);
    675 
    676   // Cache the landing pad on the innermost scope.  If this is a
    677   // non-EH scope, cache the landing pad on the enclosing scope, too.
    678   for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) {
    679     ir->setCachedLandingPad(LP);
    680     if (!isNonEHScope(*ir)) break;
    681   }
    682 
    683   return LP;
    684 }
    685 
    686 // This code contains a hack to work around a design flaw in
    687 // LLVM's EH IR which breaks semantics after inlining.  This same
    688 // hack is implemented in llvm-gcc.
    689 //
    690 // The LLVM EH abstraction is basically a thin veneer over the
    691 // traditional GCC zero-cost design: for each range of instructions
    692 // in the function, there is (at most) one "landing pad" with an
    693 // associated chain of EH actions.  A language-specific personality
    694 // function interprets this chain of actions and (1) decides whether
    695 // or not to resume execution at the landing pad and (2) if so,
    696 // provides an integer indicating why it's stopping.  In LLVM IR,
    697 // the association of a landing pad with a range of instructions is
    698 // achieved via an invoke instruction, the chain of actions becomes
    699 // the arguments to the @llvm.eh.selector call, and the selector
    700 // call returns the integer indicator.  Other than the required
    701 // presence of two intrinsic function calls in the landing pad,
    702 // the IR exactly describes the layout of the output code.
    703 //
    704 // A principal advantage of this design is that it is completely
    705 // language-agnostic; in theory, the LLVM optimizers can treat
    706 // landing pads neutrally, and targets need only know how to lower
    707 // the intrinsics to have a functioning exceptions system (assuming
    708 // that platform exceptions follow something approximately like the
    709 // GCC design).  Unfortunately, landing pads cannot be combined in a
    710 // language-agnostic way: given selectors A and B, there is no way
    711 // to make a single landing pad which faithfully represents the
    712 // semantics of propagating an exception first through A, then
    713 // through B, without knowing how the personality will interpret the
    714 // (lowered form of the) selectors.  This means that inlining has no
    715 // choice but to crudely chain invokes (i.e., to ignore invokes in
    716 // the inlined function, but to turn all unwindable calls into
    717 // invokes), which is only semantically valid if every unwind stops
    718 // at every landing pad.
    719 //
    720 // Therefore, the invoke-inline hack is to guarantee that every
    721 // landing pad has a catch-all.
    722 enum CleanupHackLevel_t {
    723   /// A level of hack that requires that all landing pads have
    724   /// catch-alls.
    725   CHL_MandatoryCatchall,
    726 
    727   /// A level of hack that requires that all landing pads handle
    728   /// cleanups.
    729   CHL_MandatoryCleanup,
    730 
    731   /// No hacks at all;  ideal IR generation.
    732   CHL_Ideal
    733 };
    734 const CleanupHackLevel_t CleanupHackLevel = CHL_MandatoryCleanup;
    735 
    736 llvm::BasicBlock *CodeGenFunction::EmitLandingPad() {
    737   assert(EHStack.requiresLandingPad());
    738 
    739   EHScope &innermostEHScope = *EHStack.find(EHStack.getInnermostEHScope());
    740   switch (innermostEHScope.getKind()) {
    741   case EHScope::Terminate:
    742     return getTerminateLandingPad();
    743 
    744   case EHScope::Catch:
    745   case EHScope::Cleanup:
    746   case EHScope::Filter:
    747     if (llvm::BasicBlock *lpad = innermostEHScope.getCachedLandingPad())
    748       return lpad;
    749   }
    750 
    751   // Save the current IR generation state.
    752   CGBuilderTy::InsertPoint savedIP = Builder.saveAndClearIP();
    753 
    754   const EHPersonality &personality = EHPersonality::get(getLangOpts());
    755 
    756   // Create and configure the landing pad.
    757   llvm::BasicBlock *lpad = createBasicBlock("lpad");
    758   EmitBlock(lpad);
    759 
    760   llvm::LandingPadInst *LPadInst =
    761     Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL),
    762                              getOpaquePersonalityFn(CGM, personality), 0);
    763 
    764   llvm::Value *LPadExn = Builder.CreateExtractValue(LPadInst, 0);
    765   Builder.CreateStore(LPadExn, getExceptionSlot());
    766   llvm::Value *LPadSel = Builder.CreateExtractValue(LPadInst, 1);
    767   Builder.CreateStore(LPadSel, getEHSelectorSlot());
    768 
    769   // Save the exception pointer.  It's safe to use a single exception
    770   // pointer per function because EH cleanups can never have nested
    771   // try/catches.
    772   // Build the landingpad instruction.
    773 
    774   // Accumulate all the handlers in scope.
    775   bool hasCatchAll = false;
    776   bool hasCleanup = false;
    777   bool hasFilter = false;
    778   SmallVector<llvm::Value*, 4> filterTypes;
    779   llvm::SmallPtrSet<llvm::Value*, 4> catchTypes;
    780   for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end();
    781          I != E; ++I) {
    782 
    783     switch (I->getKind()) {
    784     case EHScope::Cleanup:
    785       // If we have a cleanup, remember that.
    786       hasCleanup = (hasCleanup || cast<EHCleanupScope>(*I).isEHCleanup());
    787       continue;
    788 
    789     case EHScope::Filter: {
    790       assert(I.next() == EHStack.end() && "EH filter is not end of EH stack");
    791       assert(!hasCatchAll && "EH filter reached after catch-all");
    792 
    793       // Filter scopes get added to the landingpad in weird ways.
    794       EHFilterScope &filter = cast<EHFilterScope>(*I);
    795       hasFilter = true;
    796 
    797       // Add all the filter values.
    798       for (unsigned i = 0, e = filter.getNumFilters(); i != e; ++i)
    799         filterTypes.push_back(filter.getFilter(i));
    800       goto done;
    801     }
    802 
    803     case EHScope::Terminate:
    804       // Terminate scopes are basically catch-alls.
    805       assert(!hasCatchAll);
    806       hasCatchAll = true;
    807       goto done;
    808 
    809     case EHScope::Catch:
    810       break;
    811     }
    812 
    813     EHCatchScope &catchScope = cast<EHCatchScope>(*I);
    814     for (unsigned hi = 0, he = catchScope.getNumHandlers(); hi != he; ++hi) {
    815       EHCatchScope::Handler handler = catchScope.getHandler(hi);
    816 
    817       // If this is a catch-all, register that and abort.
    818       if (!handler.Type) {
    819         assert(!hasCatchAll);
    820         hasCatchAll = true;
    821         goto done;
    822       }
    823 
    824       // Check whether we already have a handler for this type.
    825       if (catchTypes.insert(handler.Type))
    826         // If not, add it directly to the landingpad.
    827         LPadInst->addClause(handler.Type);
    828     }
    829   }
    830 
    831  done:
    832   // If we have a catch-all, add null to the landingpad.
    833   assert(!(hasCatchAll && hasFilter));
    834   if (hasCatchAll) {
    835     LPadInst->addClause(getCatchAllValue(*this));
    836 
    837   // If we have an EH filter, we need to add those handlers in the
    838   // right place in the landingpad, which is to say, at the end.
    839   } else if (hasFilter) {
    840     // Create a filter expression: a constant array indicating which filter
    841     // types there are. The personality routine only lands here if the filter
    842     // doesn't match.
    843     llvm::SmallVector<llvm::Constant*, 8> Filters;
    844     llvm::ArrayType *AType =
    845       llvm::ArrayType::get(!filterTypes.empty() ?
    846                              filterTypes[0]->getType() : Int8PtrTy,
    847                            filterTypes.size());
    848 
    849     for (unsigned i = 0, e = filterTypes.size(); i != e; ++i)
    850       Filters.push_back(cast<llvm::Constant>(filterTypes[i]));
    851     llvm::Constant *FilterArray = llvm::ConstantArray::get(AType, Filters);
    852     LPadInst->addClause(FilterArray);
    853 
    854     // Also check whether we need a cleanup.
    855     if (hasCleanup)
    856       LPadInst->setCleanup(true);
    857 
    858   // Otherwise, signal that we at least have cleanups.
    859   } else if (CleanupHackLevel == CHL_MandatoryCatchall || hasCleanup) {
    860     if (CleanupHackLevel == CHL_MandatoryCatchall)
    861       LPadInst->addClause(getCatchAllValue(*this));
    862     else
    863       LPadInst->setCleanup(true);
    864   }
    865 
    866   assert((LPadInst->getNumClauses() > 0 || LPadInst->isCleanup()) &&
    867          "landingpad instruction has no clauses!");
    868 
    869   // Tell the backend how to generate the landing pad.
    870   Builder.CreateBr(getEHDispatchBlock(EHStack.getInnermostEHScope()));
    871 
    872   // Restore the old IR generation state.
    873   Builder.restoreIP(savedIP);
    874 
    875   return lpad;
    876 }
    877 
    878 namespace {
    879   /// A cleanup to call __cxa_end_catch.  In many cases, the caught
    880   /// exception type lets us state definitively that the thrown exception
    881   /// type does not have a destructor.  In particular:
    882   ///   - Catch-alls tell us nothing, so we have to conservatively
    883   ///     assume that the thrown exception might have a destructor.
    884   ///   - Catches by reference behave according to their base types.
    885   ///   - Catches of non-record types will only trigger for exceptions
    886   ///     of non-record types, which never have destructors.
    887   ///   - Catches of record types can trigger for arbitrary subclasses
    888   ///     of the caught type, so we have to assume the actual thrown
    889   ///     exception type might have a throwing destructor, even if the
    890   ///     caught type's destructor is trivial or nothrow.
    891   struct CallEndCatch : EHScopeStack::Cleanup {
    892     CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {}
    893     bool MightThrow;
    894 
    895     void Emit(CodeGenFunction &CGF, Flags flags) {
    896       if (!MightThrow) {
    897         CGF.Builder.CreateCall(getEndCatchFn(CGF))->setDoesNotThrow();
    898         return;
    899       }
    900 
    901       CGF.EmitCallOrInvoke(getEndCatchFn(CGF));
    902     }
    903   };
    904 }
    905 
    906 /// Emits a call to __cxa_begin_catch and enters a cleanup to call
    907 /// __cxa_end_catch.
    908 ///
    909 /// \param EndMightThrow - true if __cxa_end_catch might throw
    910 static llvm::Value *CallBeginCatch(CodeGenFunction &CGF,
    911                                    llvm::Value *Exn,
    912                                    bool EndMightThrow) {
    913   llvm::CallInst *Call = CGF.Builder.CreateCall(getBeginCatchFn(CGF), Exn);
    914   Call->setDoesNotThrow();
    915 
    916   CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow);
    917 
    918   return Call;
    919 }
    920 
    921 /// A "special initializer" callback for initializing a catch
    922 /// parameter during catch initialization.
    923 static void InitCatchParam(CodeGenFunction &CGF,
    924                            const VarDecl &CatchParam,
    925                            llvm::Value *ParamAddr) {
    926   // Load the exception from where the landing pad saved it.
    927   llvm::Value *Exn = CGF.getExceptionFromSlot();
    928 
    929   CanQualType CatchType =
    930     CGF.CGM.getContext().getCanonicalType(CatchParam.getType());
    931   llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType);
    932 
    933   // If we're catching by reference, we can just cast the object
    934   // pointer to the appropriate pointer.
    935   if (isa<ReferenceType>(CatchType)) {
    936     QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType();
    937     bool EndCatchMightThrow = CaughtType->isRecordType();
    938 
    939     // __cxa_begin_catch returns the adjusted object pointer.
    940     llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow);
    941 
    942     // We have no way to tell the personality function that we're
    943     // catching by reference, so if we're catching a pointer,
    944     // __cxa_begin_catch will actually return that pointer by value.
    945     if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) {
    946       QualType PointeeType = PT->getPointeeType();
    947 
    948       // When catching by reference, generally we should just ignore
    949       // this by-value pointer and use the exception object instead.
    950       if (!PointeeType->isRecordType()) {
    951 
    952         // Exn points to the struct _Unwind_Exception header, which
    953         // we have to skip past in order to reach the exception data.
    954         unsigned HeaderSize =
    955           CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException();
    956         AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize);
    957 
    958       // However, if we're catching a pointer-to-record type that won't
    959       // work, because the personality function might have adjusted
    960       // the pointer.  There's actually no way for us to fully satisfy
    961       // the language/ABI contract here:  we can't use Exn because it
    962       // might have the wrong adjustment, but we can't use the by-value
    963       // pointer because it's off by a level of abstraction.
    964       //
    965       // The current solution is to dump the adjusted pointer into an
    966       // alloca, which breaks language semantics (because changing the
    967       // pointer doesn't change the exception) but at least works.
    968       // The better solution would be to filter out non-exact matches
    969       // and rethrow them, but this is tricky because the rethrow
    970       // really needs to be catchable by other sites at this landing
    971       // pad.  The best solution is to fix the personality function.
    972       } else {
    973         // Pull the pointer for the reference type off.
    974         llvm::Type *PtrTy =
    975           cast<llvm::PointerType>(LLVMCatchTy)->getElementType();
    976 
    977         // Create the temporary and write the adjusted pointer into it.
    978         llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp");
    979         llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
    980         CGF.Builder.CreateStore(Casted, ExnPtrTmp);
    981 
    982         // Bind the reference to the temporary.
    983         AdjustedExn = ExnPtrTmp;
    984       }
    985     }
    986 
    987     llvm::Value *ExnCast =
    988       CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref");
    989     CGF.Builder.CreateStore(ExnCast, ParamAddr);
    990     return;
    991   }
    992 
    993   // Non-aggregates (plus complexes).
    994   bool IsComplex = false;
    995   if (!CGF.hasAggregateLLVMType(CatchType) ||
    996       (IsComplex = CatchType->isAnyComplexType())) {
    997     llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false);
    998 
    999     // If the catch type is a pointer type, __cxa_begin_catch returns
   1000     // the pointer by value.
   1001     if (CatchType->hasPointerRepresentation()) {
   1002       llvm::Value *CastExn =
   1003         CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted");
   1004 
   1005       switch (CatchType.getQualifiers().getObjCLifetime()) {
   1006       case Qualifiers::OCL_Strong:
   1007         CastExn = CGF.EmitARCRetainNonBlock(CastExn);
   1008         // fallthrough
   1009 
   1010       case Qualifiers::OCL_None:
   1011       case Qualifiers::OCL_ExplicitNone:
   1012       case Qualifiers::OCL_Autoreleasing:
   1013         CGF.Builder.CreateStore(CastExn, ParamAddr);
   1014         return;
   1015 
   1016       case Qualifiers::OCL_Weak:
   1017         CGF.EmitARCInitWeak(ParamAddr, CastExn);
   1018         return;
   1019       }
   1020       llvm_unreachable("bad ownership qualifier!");
   1021     }
   1022 
   1023     // Otherwise, it returns a pointer into the exception object.
   1024 
   1025     llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
   1026     llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
   1027 
   1028     if (IsComplex) {
   1029       CGF.StoreComplexToAddr(CGF.LoadComplexFromAddr(Cast, /*volatile*/ false),
   1030                              ParamAddr, /*volatile*/ false);
   1031     } else {
   1032       unsigned Alignment =
   1033         CGF.getContext().getDeclAlign(&CatchParam).getQuantity();
   1034       llvm::Value *ExnLoad = CGF.Builder.CreateLoad(Cast, "exn.scalar");
   1035       CGF.EmitStoreOfScalar(ExnLoad, ParamAddr, /*volatile*/ false, Alignment,
   1036                             CatchType);
   1037     }
   1038     return;
   1039   }
   1040 
   1041   assert(isa<RecordType>(CatchType) && "unexpected catch type!");
   1042 
   1043   llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
   1044 
   1045   // Check for a copy expression.  If we don't have a copy expression,
   1046   // that means a trivial copy is okay.
   1047   const Expr *copyExpr = CatchParam.getInit();
   1048   if (!copyExpr) {
   1049     llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true);
   1050     llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy);
   1051     CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType);
   1052     return;
   1053   }
   1054 
   1055   // We have to call __cxa_get_exception_ptr to get the adjusted
   1056   // pointer before copying.
   1057   llvm::CallInst *rawAdjustedExn =
   1058     CGF.Builder.CreateCall(getGetExceptionPtrFn(CGF), Exn);
   1059   rawAdjustedExn->setDoesNotThrow();
   1060 
   1061   // Cast that to the appropriate type.
   1062   llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy);
   1063 
   1064   // The copy expression is defined in terms of an OpaqueValueExpr.
   1065   // Find it and map it to the adjusted expression.
   1066   CodeGenFunction::OpaqueValueMapping
   1067     opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr),
   1068            CGF.MakeAddrLValue(adjustedExn, CatchParam.getType()));
   1069 
   1070   // Call the copy ctor in a terminate scope.
   1071   CGF.EHStack.pushTerminate();
   1072 
   1073   // Perform the copy construction.
   1074   CharUnits Alignment = CGF.getContext().getDeclAlign(&CatchParam);
   1075   CGF.EmitAggExpr(copyExpr,
   1076                   AggValueSlot::forAddr(ParamAddr, Alignment, Qualifiers(),
   1077                                         AggValueSlot::IsNotDestructed,
   1078                                         AggValueSlot::DoesNotNeedGCBarriers,
   1079                                         AggValueSlot::IsNotAliased));
   1080 
   1081   // Leave the terminate scope.
   1082   CGF.EHStack.popTerminate();
   1083 
   1084   // Undo the opaque value mapping.
   1085   opaque.pop();
   1086 
   1087   // Finally we can call __cxa_begin_catch.
   1088   CallBeginCatch(CGF, Exn, true);
   1089 }
   1090 
   1091 /// Begins a catch statement by initializing the catch variable and
   1092 /// calling __cxa_begin_catch.
   1093 static void BeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) {
   1094   // We have to be very careful with the ordering of cleanups here:
   1095   //   C++ [except.throw]p4:
   1096   //     The destruction [of the exception temporary] occurs
   1097   //     immediately after the destruction of the object declared in
   1098   //     the exception-declaration in the handler.
   1099   //
   1100   // So the precise ordering is:
   1101   //   1.  Construct catch variable.
   1102   //   2.  __cxa_begin_catch
   1103   //   3.  Enter __cxa_end_catch cleanup
   1104   //   4.  Enter dtor cleanup
   1105   //
   1106   // We do this by using a slightly abnormal initialization process.
   1107   // Delegation sequence:
   1108   //   - ExitCXXTryStmt opens a RunCleanupsScope
   1109   //     - EmitAutoVarAlloca creates the variable and debug info
   1110   //       - InitCatchParam initializes the variable from the exception
   1111   //       - CallBeginCatch calls __cxa_begin_catch
   1112   //       - CallBeginCatch enters the __cxa_end_catch cleanup
   1113   //     - EmitAutoVarCleanups enters the variable destructor cleanup
   1114   //   - EmitCXXTryStmt emits the code for the catch body
   1115   //   - EmitCXXTryStmt close the RunCleanupsScope
   1116 
   1117   VarDecl *CatchParam = S->getExceptionDecl();
   1118   if (!CatchParam) {
   1119     llvm::Value *Exn = CGF.getExceptionFromSlot();
   1120     CallBeginCatch(CGF, Exn, true);
   1121     return;
   1122   }
   1123 
   1124   // Emit the local.
   1125   CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
   1126   InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF));
   1127   CGF.EmitAutoVarCleanups(var);
   1128 }
   1129 
   1130 namespace {
   1131   struct CallRethrow : EHScopeStack::Cleanup {
   1132     void Emit(CodeGenFunction &CGF, Flags flags) {
   1133       CGF.EmitCallOrInvoke(getReThrowFn(CGF));
   1134     }
   1135   };
   1136 }
   1137 
   1138 /// Emit the structure of the dispatch block for the given catch scope.
   1139 /// It is an invariant that the dispatch block already exists.
   1140 static void emitCatchDispatchBlock(CodeGenFunction &CGF,
   1141                                    EHCatchScope &catchScope) {
   1142   llvm::BasicBlock *dispatchBlock = catchScope.getCachedEHDispatchBlock();
   1143   assert(dispatchBlock);
   1144 
   1145   // If there's only a single catch-all, getEHDispatchBlock returned
   1146   // that catch-all as the dispatch block.
   1147   if (catchScope.getNumHandlers() == 1 &&
   1148       catchScope.getHandler(0).isCatchAll()) {
   1149     assert(dispatchBlock == catchScope.getHandler(0).Block);
   1150     return;
   1151   }
   1152 
   1153   CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveIP();
   1154   CGF.EmitBlockAfterUses(dispatchBlock);
   1155 
   1156   // Select the right handler.
   1157   llvm::Value *llvm_eh_typeid_for =
   1158     CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for);
   1159 
   1160   // Load the selector value.
   1161   llvm::Value *selector = CGF.getSelectorFromSlot();
   1162 
   1163   // Test against each of the exception types we claim to catch.
   1164   for (unsigned i = 0, e = catchScope.getNumHandlers(); ; ++i) {
   1165     assert(i < e && "ran off end of handlers!");
   1166     const EHCatchScope::Handler &handler = catchScope.getHandler(i);
   1167 
   1168     llvm::Value *typeValue = handler.Type;
   1169     assert(typeValue && "fell into catch-all case!");
   1170     typeValue = CGF.Builder.CreateBitCast(typeValue, CGF.Int8PtrTy);
   1171 
   1172     // Figure out the next block.
   1173     bool nextIsEnd;
   1174     llvm::BasicBlock *nextBlock;
   1175 
   1176     // If this is the last handler, we're at the end, and the next
   1177     // block is the block for the enclosing EH scope.
   1178     if (i + 1 == e) {
   1179       nextBlock = CGF.getEHDispatchBlock(catchScope.getEnclosingEHScope());
   1180       nextIsEnd = true;
   1181 
   1182     // If the next handler is a catch-all, we're at the end, and the
   1183     // next block is that handler.
   1184     } else if (catchScope.getHandler(i+1).isCatchAll()) {
   1185       nextBlock = catchScope.getHandler(i+1).Block;
   1186       nextIsEnd = true;
   1187 
   1188     // Otherwise, we're not at the end and we need a new block.
   1189     } else {
   1190       nextBlock = CGF.createBasicBlock("catch.fallthrough");
   1191       nextIsEnd = false;
   1192     }
   1193 
   1194     // Figure out the catch type's index in the LSDA's type table.
   1195     llvm::CallInst *typeIndex =
   1196       CGF.Builder.CreateCall(llvm_eh_typeid_for, typeValue);
   1197     typeIndex->setDoesNotThrow();
   1198 
   1199     llvm::Value *matchesTypeIndex =
   1200       CGF.Builder.CreateICmpEQ(selector, typeIndex, "matches");
   1201     CGF.Builder.CreateCondBr(matchesTypeIndex, handler.Block, nextBlock);
   1202 
   1203     // If the next handler is a catch-all, we're completely done.
   1204     if (nextIsEnd) {
   1205       CGF.Builder.restoreIP(savedIP);
   1206       return;
   1207     }
   1208     // Otherwise we need to emit and continue at that block.
   1209     CGF.EmitBlock(nextBlock);
   1210   }
   1211 }
   1212 
   1213 void CodeGenFunction::popCatchScope() {
   1214   EHCatchScope &catchScope = cast<EHCatchScope>(*EHStack.begin());
   1215   if (catchScope.hasEHBranches())
   1216     emitCatchDispatchBlock(*this, catchScope);
   1217   EHStack.popCatch();
   1218 }
   1219 
   1220 void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
   1221   unsigned NumHandlers = S.getNumHandlers();
   1222   EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin());
   1223   assert(CatchScope.getNumHandlers() == NumHandlers);
   1224 
   1225   // If the catch was not required, bail out now.
   1226   if (!CatchScope.hasEHBranches()) {
   1227     EHStack.popCatch();
   1228     return;
   1229   }
   1230 
   1231   // Emit the structure of the EH dispatch for this catch.
   1232   emitCatchDispatchBlock(*this, CatchScope);
   1233 
   1234   // Copy the handler blocks off before we pop the EH stack.  Emitting
   1235   // the handlers might scribble on this memory.
   1236   SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers);
   1237   memcpy(Handlers.data(), CatchScope.begin(),
   1238          NumHandlers * sizeof(EHCatchScope::Handler));
   1239 
   1240   EHStack.popCatch();
   1241 
   1242   // The fall-through block.
   1243   llvm::BasicBlock *ContBB = createBasicBlock("try.cont");
   1244 
   1245   // We just emitted the body of the try; jump to the continue block.
   1246   if (HaveInsertPoint())
   1247     Builder.CreateBr(ContBB);
   1248 
   1249   // Determine if we need an implicit rethrow for all these catch handlers.
   1250   bool ImplicitRethrow = false;
   1251   if (IsFnTryBlock)
   1252     ImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) ||
   1253                       isa<CXXConstructorDecl>(CurCodeDecl);
   1254 
   1255   // Perversely, we emit the handlers backwards precisely because we
   1256   // want them to appear in source order.  In all of these cases, the
   1257   // catch block will have exactly one predecessor, which will be a
   1258   // particular block in the catch dispatch.  However, in the case of
   1259   // a catch-all, one of the dispatch blocks will branch to two
   1260   // different handlers, and EmitBlockAfterUses will cause the second
   1261   // handler to be moved before the first.
   1262   for (unsigned I = NumHandlers; I != 0; --I) {
   1263     llvm::BasicBlock *CatchBlock = Handlers[I-1].Block;
   1264     EmitBlockAfterUses(CatchBlock);
   1265 
   1266     // Catch the exception if this isn't a catch-all.
   1267     const CXXCatchStmt *C = S.getHandler(I-1);
   1268 
   1269     // Enter a cleanup scope, including the catch variable and the
   1270     // end-catch.
   1271     RunCleanupsScope CatchScope(*this);
   1272 
   1273     // Initialize the catch variable and set up the cleanups.
   1274     BeginCatch(*this, C);
   1275 
   1276     // If there's an implicit rethrow, push a normal "cleanup" to call
   1277     // _cxa_rethrow.  This needs to happen before __cxa_end_catch is
   1278     // called, and so it is pushed after BeginCatch.
   1279     if (ImplicitRethrow)
   1280       EHStack.pushCleanup<CallRethrow>(NormalCleanup);
   1281 
   1282     // Perform the body of the catch.
   1283     EmitStmt(C->getHandlerBlock());
   1284 
   1285     // Fall out through the catch cleanups.
   1286     CatchScope.ForceCleanup();
   1287 
   1288     // Branch out of the try.
   1289     if (HaveInsertPoint())
   1290       Builder.CreateBr(ContBB);
   1291   }
   1292 
   1293   EmitBlock(ContBB);
   1294 }
   1295 
   1296 namespace {
   1297   struct CallEndCatchForFinally : EHScopeStack::Cleanup {
   1298     llvm::Value *ForEHVar;
   1299     llvm::Value *EndCatchFn;
   1300     CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn)
   1301       : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {}
   1302 
   1303     void Emit(CodeGenFunction &CGF, Flags flags) {
   1304       llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch");
   1305       llvm::BasicBlock *CleanupContBB =
   1306         CGF.createBasicBlock("finally.cleanup.cont");
   1307 
   1308       llvm::Value *ShouldEndCatch =
   1309         CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch");
   1310       CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB);
   1311       CGF.EmitBlock(EndCatchBB);
   1312       CGF.EmitCallOrInvoke(EndCatchFn); // catch-all, so might throw
   1313       CGF.EmitBlock(CleanupContBB);
   1314     }
   1315   };
   1316 
   1317   struct PerformFinally : EHScopeStack::Cleanup {
   1318     const Stmt *Body;
   1319     llvm::Value *ForEHVar;
   1320     llvm::Value *EndCatchFn;
   1321     llvm::Value *RethrowFn;
   1322     llvm::Value *SavedExnVar;
   1323 
   1324     PerformFinally(const Stmt *Body, llvm::Value *ForEHVar,
   1325                    llvm::Value *EndCatchFn,
   1326                    llvm::Value *RethrowFn, llvm::Value *SavedExnVar)
   1327       : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn),
   1328         RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {}
   1329 
   1330     void Emit(CodeGenFunction &CGF, Flags flags) {
   1331       // Enter a cleanup to call the end-catch function if one was provided.
   1332       if (EndCatchFn)
   1333         CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup,
   1334                                                         ForEHVar, EndCatchFn);
   1335 
   1336       // Save the current cleanup destination in case there are
   1337       // cleanups in the finally block.
   1338       llvm::Value *SavedCleanupDest =
   1339         CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(),
   1340                                "cleanup.dest.saved");
   1341 
   1342       // Emit the finally block.
   1343       CGF.EmitStmt(Body);
   1344 
   1345       // If the end of the finally is reachable, check whether this was
   1346       // for EH.  If so, rethrow.
   1347       if (CGF.HaveInsertPoint()) {
   1348         llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow");
   1349         llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont");
   1350 
   1351         llvm::Value *ShouldRethrow =
   1352           CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow");
   1353         CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB);
   1354 
   1355         CGF.EmitBlock(RethrowBB);
   1356         if (SavedExnVar) {
   1357           CGF.EmitCallOrInvoke(RethrowFn, CGF.Builder.CreateLoad(SavedExnVar));
   1358         } else {
   1359           CGF.EmitCallOrInvoke(RethrowFn);
   1360         }
   1361         CGF.Builder.CreateUnreachable();
   1362 
   1363         CGF.EmitBlock(ContBB);
   1364 
   1365         // Restore the cleanup destination.
   1366         CGF.Builder.CreateStore(SavedCleanupDest,
   1367                                 CGF.getNormalCleanupDestSlot());
   1368       }
   1369 
   1370       // Leave the end-catch cleanup.  As an optimization, pretend that
   1371       // the fallthrough path was inaccessible; we've dynamically proven
   1372       // that we're not in the EH case along that path.
   1373       if (EndCatchFn) {
   1374         CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();
   1375         CGF.PopCleanupBlock();
   1376         CGF.Builder.restoreIP(SavedIP);
   1377       }
   1378 
   1379       // Now make sure we actually have an insertion point or the
   1380       // cleanup gods will hate us.
   1381       CGF.EnsureInsertPoint();
   1382     }
   1383   };
   1384 }
   1385 
   1386 /// Enters a finally block for an implementation using zero-cost
   1387 /// exceptions.  This is mostly general, but hard-codes some
   1388 /// language/ABI-specific behavior in the catch-all sections.
   1389 void CodeGenFunction::FinallyInfo::enter(CodeGenFunction &CGF,
   1390                                          const Stmt *body,
   1391                                          llvm::Constant *beginCatchFn,
   1392                                          llvm::Constant *endCatchFn,
   1393                                          llvm::Constant *rethrowFn) {
   1394   assert((beginCatchFn != 0) == (endCatchFn != 0) &&
   1395          "begin/end catch functions not paired");
   1396   assert(rethrowFn && "rethrow function is required");
   1397 
   1398   BeginCatchFn = beginCatchFn;
   1399 
   1400   // The rethrow function has one of the following two types:
   1401   //   void (*)()
   1402   //   void (*)(void*)
   1403   // In the latter case we need to pass it the exception object.
   1404   // But we can't use the exception slot because the @finally might
   1405   // have a landing pad (which would overwrite the exception slot).
   1406   llvm::FunctionType *rethrowFnTy =
   1407     cast<llvm::FunctionType>(
   1408       cast<llvm::PointerType>(rethrowFn->getType())->getElementType());
   1409   SavedExnVar = 0;
   1410   if (rethrowFnTy->getNumParams())
   1411     SavedExnVar = CGF.CreateTempAlloca(CGF.Int8PtrTy, "finally.exn");
   1412 
   1413   // A finally block is a statement which must be executed on any edge
   1414   // out of a given scope.  Unlike a cleanup, the finally block may
   1415   // contain arbitrary control flow leading out of itself.  In
   1416   // addition, finally blocks should always be executed, even if there
   1417   // are no catch handlers higher on the stack.  Therefore, we
   1418   // surround the protected scope with a combination of a normal
   1419   // cleanup (to catch attempts to break out of the block via normal
   1420   // control flow) and an EH catch-all (semantically "outside" any try
   1421   // statement to which the finally block might have been attached).
   1422   // The finally block itself is generated in the context of a cleanup
   1423   // which conditionally leaves the catch-all.
   1424 
   1425   // Jump destination for performing the finally block on an exception
   1426   // edge.  We'll never actually reach this block, so unreachable is
   1427   // fine.
   1428   RethrowDest = CGF.getJumpDestInCurrentScope(CGF.getUnreachableBlock());
   1429 
   1430   // Whether the finally block is being executed for EH purposes.
   1431   ForEHVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "finally.for-eh");
   1432   CGF.Builder.CreateStore(CGF.Builder.getFalse(), ForEHVar);
   1433 
   1434   // Enter a normal cleanup which will perform the @finally block.
   1435   CGF.EHStack.pushCleanup<PerformFinally>(NormalCleanup, body,
   1436                                           ForEHVar, endCatchFn,
   1437                                           rethrowFn, SavedExnVar);
   1438 
   1439   // Enter a catch-all scope.
   1440   llvm::BasicBlock *catchBB = CGF.createBasicBlock("finally.catchall");
   1441   EHCatchScope *catchScope = CGF.EHStack.pushCatch(1);
   1442   catchScope->setCatchAllHandler(0, catchBB);
   1443 }
   1444 
   1445 void CodeGenFunction::FinallyInfo::exit(CodeGenFunction &CGF) {
   1446   // Leave the finally catch-all.
   1447   EHCatchScope &catchScope = cast<EHCatchScope>(*CGF.EHStack.begin());
   1448   llvm::BasicBlock *catchBB = catchScope.getHandler(0).Block;
   1449 
   1450   CGF.popCatchScope();
   1451 
   1452   // If there are any references to the catch-all block, emit it.
   1453   if (catchBB->use_empty()) {
   1454     delete catchBB;
   1455   } else {
   1456     CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveAndClearIP();
   1457     CGF.EmitBlock(catchBB);
   1458 
   1459     llvm::Value *exn = 0;
   1460 
   1461     // If there's a begin-catch function, call it.
   1462     if (BeginCatchFn) {
   1463       exn = CGF.getExceptionFromSlot();
   1464       CGF.Builder.CreateCall(BeginCatchFn, exn)->setDoesNotThrow();
   1465     }
   1466 
   1467     // If we need to remember the exception pointer to rethrow later, do so.
   1468     if (SavedExnVar) {
   1469       if (!exn) exn = CGF.getExceptionFromSlot();
   1470       CGF.Builder.CreateStore(exn, SavedExnVar);
   1471     }
   1472 
   1473     // Tell the cleanups in the finally block that we're do this for EH.
   1474     CGF.Builder.CreateStore(CGF.Builder.getTrue(), ForEHVar);
   1475 
   1476     // Thread a jump through the finally cleanup.
   1477     CGF.EmitBranchThroughCleanup(RethrowDest);
   1478 
   1479     CGF.Builder.restoreIP(savedIP);
   1480   }
   1481 
   1482   // Finally, leave the @finally cleanup.
   1483   CGF.PopCleanupBlock();
   1484 }
   1485 
   1486 llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() {
   1487   if (TerminateLandingPad)
   1488     return TerminateLandingPad;
   1489 
   1490   CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
   1491 
   1492   // This will get inserted at the end of the function.
   1493   TerminateLandingPad = createBasicBlock("terminate.lpad");
   1494   Builder.SetInsertPoint(TerminateLandingPad);
   1495 
   1496   // Tell the backend that this is a landing pad.
   1497   const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts());
   1498   llvm::LandingPadInst *LPadInst =
   1499     Builder.CreateLandingPad(llvm::StructType::get(Int8PtrTy, Int32Ty, NULL),
   1500                              getOpaquePersonalityFn(CGM, Personality), 0);
   1501   LPadInst->addClause(getCatchAllValue(*this));
   1502 
   1503   llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this));
   1504   TerminateCall->setDoesNotReturn();
   1505   TerminateCall->setDoesNotThrow();
   1506   Builder.CreateUnreachable();
   1507 
   1508   // Restore the saved insertion state.
   1509   Builder.restoreIP(SavedIP);
   1510 
   1511   return TerminateLandingPad;
   1512 }
   1513 
   1514 llvm::BasicBlock *CodeGenFunction::getTerminateHandler() {
   1515   if (TerminateHandler)
   1516     return TerminateHandler;
   1517 
   1518   CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
   1519 
   1520   // Set up the terminate handler.  This block is inserted at the very
   1521   // end of the function by FinishFunction.
   1522   TerminateHandler = createBasicBlock("terminate.handler");
   1523   Builder.SetInsertPoint(TerminateHandler);
   1524   llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this));
   1525   TerminateCall->setDoesNotReturn();
   1526   TerminateCall->setDoesNotThrow();
   1527   Builder.CreateUnreachable();
   1528 
   1529   // Restore the saved insertion state.
   1530   Builder.restoreIP(SavedIP);
   1531 
   1532   return TerminateHandler;
   1533 }
   1534 
   1535 llvm::BasicBlock *CodeGenFunction::getEHResumeBlock() {
   1536   if (EHResumeBlock) return EHResumeBlock;
   1537 
   1538   CGBuilderTy::InsertPoint SavedIP = Builder.saveIP();
   1539 
   1540   // We emit a jump to a notional label at the outermost unwind state.
   1541   EHResumeBlock = createBasicBlock("eh.resume");
   1542   Builder.SetInsertPoint(EHResumeBlock);
   1543 
   1544   const EHPersonality &Personality = EHPersonality::get(CGM.getLangOpts());
   1545 
   1546   // This can always be a call because we necessarily didn't find
   1547   // anything on the EH stack which needs our help.
   1548   const char *RethrowName = Personality.CatchallRethrowFn;
   1549   if (RethrowName != 0) {
   1550     Builder.CreateCall(getCatchallRethrowFn(*this, RethrowName),
   1551                        getExceptionFromSlot())
   1552       ->setDoesNotReturn();
   1553   } else {
   1554     switch (CleanupHackLevel) {
   1555     case CHL_MandatoryCatchall:
   1556       // In mandatory-catchall mode, we need to use
   1557       // _Unwind_Resume_or_Rethrow, or whatever the personality's
   1558       // equivalent is.
   1559       Builder.CreateCall(getUnwindResumeOrRethrowFn(),
   1560                          getExceptionFromSlot())
   1561         ->setDoesNotReturn();
   1562       break;
   1563     case CHL_MandatoryCleanup: {
   1564       // In mandatory-cleanup mode, we should use 'resume'.
   1565 
   1566       // Recreate the landingpad's return value for the 'resume' instruction.
   1567       llvm::Value *Exn = getExceptionFromSlot();
   1568       llvm::Value *Sel = getSelectorFromSlot();
   1569 
   1570       llvm::Type *LPadType = llvm::StructType::get(Exn->getType(),
   1571                                                    Sel->getType(), NULL);
   1572       llvm::Value *LPadVal = llvm::UndefValue::get(LPadType);
   1573       LPadVal = Builder.CreateInsertValue(LPadVal, Exn, 0, "lpad.val");
   1574       LPadVal = Builder.CreateInsertValue(LPadVal, Sel, 1, "lpad.val");
   1575 
   1576       Builder.CreateResume(LPadVal);
   1577       Builder.restoreIP(SavedIP);
   1578       return EHResumeBlock;
   1579     }
   1580     case CHL_Ideal:
   1581       // In an idealized mode where we don't have to worry about the
   1582       // optimizer combining landing pads, we should just use
   1583       // _Unwind_Resume (or the personality's equivalent).
   1584       Builder.CreateCall(getUnwindResumeFn(), getExceptionFromSlot())
   1585         ->setDoesNotReturn();
   1586       break;
   1587     }
   1588   }
   1589 
   1590   Builder.CreateUnreachable();
   1591 
   1592   Builder.restoreIP(SavedIP);
   1593 
   1594   return EHResumeBlock;
   1595 }
   1596