Home | History | Annotate | Download | only in ADT
      1 //===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the newly proposed standard C++ interfaces for hashing
     11 // arbitrary data and building hash functions for user-defined types. This
     12 // interface was originally proposed in N3333[1] and is currently under review
     13 // for inclusion in a future TR and/or standard.
     14 //
     15 // The primary interfaces provide are comprised of one type and three functions:
     16 //
     17 //  -- 'hash_code' class is an opaque type representing the hash code for some
     18 //     data. It is the intended product of hashing, and can be used to implement
     19 //     hash tables, checksumming, and other common uses of hashes. It is not an
     20 //     integer type (although it can be converted to one) because it is risky
     21 //     to assume much about the internals of a hash_code. In particular, each
     22 //     execution of the program has a high probability of producing a different
     23 //     hash_code for a given input. Thus their values are not stable to save or
     24 //     persist, and should only be used during the execution for the
     25 //     construction of hashing datastructures.
     26 //
     27 //  -- 'hash_value' is a function designed to be overloaded for each
     28 //     user-defined type which wishes to be used within a hashing context. It
     29 //     should be overloaded within the user-defined type's namespace and found
     30 //     via ADL. Overloads for primitive types are provided by this library.
     31 //
     32 //  -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
     33 //      programmers in easily and intuitively combining a set of data into
     34 //      a single hash_code for their object. They should only logically be used
     35 //      within the implementation of a 'hash_value' routine or similar context.
     36 //
     37 // Note that 'hash_combine_range' contains very special logic for hashing
     38 // a contiguous array of integers or pointers. This logic is *extremely* fast,
     39 // on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
     40 // benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
     41 // under 32-bytes.
     42 //
     43 //===----------------------------------------------------------------------===//
     44 
     45 #ifndef LLVM_ADT_HASHING_H
     46 #define LLVM_ADT_HASHING_H
     47 
     48 #include "llvm/ADT/STLExtras.h"
     49 #include "llvm/Support/DataTypes.h"
     50 #include "llvm/Support/Host.h"
     51 #include "llvm/Support/SwapByteOrder.h"
     52 #include "llvm/Support/type_traits.h"
     53 #include <algorithm>
     54 #include <cassert>
     55 #include <cstring>
     56 #include <iterator>
     57 #include <utility>
     58 
     59 // Allow detecting C++11 feature availability when building with Clang without
     60 // breaking other compilers.
     61 #ifndef __has_feature
     62 # define __has_feature(x) 0
     63 #endif
     64 
     65 namespace llvm {
     66 
     67 /// \brief An opaque object representing a hash code.
     68 ///
     69 /// This object represents the result of hashing some entity. It is intended to
     70 /// be used to implement hashtables or other hashing-based data structures.
     71 /// While it wraps and exposes a numeric value, this value should not be
     72 /// trusted to be stable or predictable across processes or executions.
     73 ///
     74 /// In order to obtain the hash_code for an object 'x':
     75 /// \code
     76 ///   using llvm::hash_value;
     77 ///   llvm::hash_code code = hash_value(x);
     78 /// \endcode
     79 ///
     80 /// Also note that there are two numerical values which are reserved, and the
     81 /// implementation ensures will never be produced for real hash_codes. These
     82 /// can be used as sentinels within hashing data structures.
     83 class hash_code {
     84   size_t value;
     85 
     86 public:
     87   /// \brief Default construct a hash_code.
     88   /// Note that this leaves the value uninitialized.
     89   hash_code() {}
     90 
     91   /// \brief Form a hash code directly from a numerical value.
     92   hash_code(size_t value) : value(value) {}
     93 
     94   /// \brief Convert the hash code to its numerical value for use.
     95   /*explicit*/ operator size_t() const { return value; }
     96 
     97   friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
     98     return lhs.value == rhs.value;
     99   }
    100   friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
    101     return lhs.value != rhs.value;
    102   }
    103 
    104   /// \brief Allow a hash_code to be directly run through hash_value.
    105   friend size_t hash_value(const hash_code &code) { return code.value; }
    106 };
    107 
    108 /// \brief Compute a hash_code for any integer value.
    109 ///
    110 /// Note that this function is intended to compute the same hash_code for
    111 /// a particular value without regard to the pre-promotion type. This is in
    112 /// contrast to hash_combine which may produce different hash_codes for
    113 /// differing argument types even if they would implicit promote to a common
    114 /// type without changing the value.
    115 template <typename T>
    116 typename enable_if<is_integral_or_enum<T>, hash_code>::type hash_value(T value);
    117 
    118 /// \brief Compute a hash_code for a pointer's address.
    119 ///
    120 /// N.B.: This hashes the *address*. Not the value and not the type.
    121 template <typename T> hash_code hash_value(const T *ptr);
    122 
    123 /// \brief Compute a hash_code for a pair of objects.
    124 template <typename T, typename U>
    125 hash_code hash_value(const std::pair<T, U> &arg);
    126 
    127 /// \brief Compute a hash_code for a standard string.
    128 template <typename T>
    129 hash_code hash_value(const std::basic_string<T> &arg);
    130 
    131 
    132 /// \brief Override the execution seed with a fixed value.
    133 ///
    134 /// This hashing library uses a per-execution seed designed to change on each
    135 /// run with high probability in order to ensure that the hash codes are not
    136 /// attackable and to ensure that output which is intended to be stable does
    137 /// not rely on the particulars of the hash codes produced.
    138 ///
    139 /// That said, there are use cases where it is important to be able to
    140 /// reproduce *exactly* a specific behavior. To that end, we provide a function
    141 /// which will forcibly set the seed to a fixed value. This must be done at the
    142 /// start of the program, before any hashes are computed. Also, it cannot be
    143 /// undone. This makes it thread-hostile and very hard to use outside of
    144 /// immediately on start of a simple program designed for reproducible
    145 /// behavior.
    146 void set_fixed_execution_hash_seed(size_t fixed_value);
    147 
    148 
    149 // All of the implementation details of actually computing the various hash
    150 // code values are held within this namespace. These routines are included in
    151 // the header file mainly to allow inlining and constant propagation.
    152 namespace hashing {
    153 namespace detail {
    154 
    155 inline uint64_t fetch64(const char *p) {
    156   uint64_t result;
    157   memcpy(&result, p, sizeof(result));
    158   if (sys::isBigEndianHost())
    159     return sys::SwapByteOrder(result);
    160   return result;
    161 }
    162 
    163 inline uint32_t fetch32(const char *p) {
    164   uint32_t result;
    165   memcpy(&result, p, sizeof(result));
    166   if (sys::isBigEndianHost())
    167     return sys::SwapByteOrder(result);
    168   return result;
    169 }
    170 
    171 /// Some primes between 2^63 and 2^64 for various uses.
    172 static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
    173 static const uint64_t k1 = 0xb492b66fbe98f273ULL;
    174 static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
    175 static const uint64_t k3 = 0xc949d7c7509e6557ULL;
    176 
    177 /// \brief Bitwise right rotate.
    178 /// Normally this will compile to a single instruction, especially if the
    179 /// shift is a manifest constant.
    180 inline uint64_t rotate(uint64_t val, size_t shift) {
    181   // Avoid shifting by 64: doing so yields an undefined result.
    182   return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
    183 }
    184 
    185 inline uint64_t shift_mix(uint64_t val) {
    186   return val ^ (val >> 47);
    187 }
    188 
    189 inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
    190   // Murmur-inspired hashing.
    191   const uint64_t kMul = 0x9ddfea08eb382d69ULL;
    192   uint64_t a = (low ^ high) * kMul;
    193   a ^= (a >> 47);
    194   uint64_t b = (high ^ a) * kMul;
    195   b ^= (b >> 47);
    196   b *= kMul;
    197   return b;
    198 }
    199 
    200 inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
    201   uint8_t a = s[0];
    202   uint8_t b = s[len >> 1];
    203   uint8_t c = s[len - 1];
    204   uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
    205   uint32_t z = len + (static_cast<uint32_t>(c) << 2);
    206   return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
    207 }
    208 
    209 inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
    210   uint64_t a = fetch32(s);
    211   return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
    212 }
    213 
    214 inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
    215   uint64_t a = fetch64(s);
    216   uint64_t b = fetch64(s + len - 8);
    217   return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
    218 }
    219 
    220 inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
    221   uint64_t a = fetch64(s) * k1;
    222   uint64_t b = fetch64(s + 8);
    223   uint64_t c = fetch64(s + len - 8) * k2;
    224   uint64_t d = fetch64(s + len - 16) * k0;
    225   return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d,
    226                        a + rotate(b ^ k3, 20) - c + len + seed);
    227 }
    228 
    229 inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
    230   uint64_t z = fetch64(s + 24);
    231   uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
    232   uint64_t b = rotate(a + z, 52);
    233   uint64_t c = rotate(a, 37);
    234   a += fetch64(s + 8);
    235   c += rotate(a, 7);
    236   a += fetch64(s + 16);
    237   uint64_t vf = a + z;
    238   uint64_t vs = b + rotate(a, 31) + c;
    239   a = fetch64(s + 16) + fetch64(s + len - 32);
    240   z = fetch64(s + len - 8);
    241   b = rotate(a + z, 52);
    242   c = rotate(a, 37);
    243   a += fetch64(s + len - 24);
    244   c += rotate(a, 7);
    245   a += fetch64(s + len - 16);
    246   uint64_t wf = a + z;
    247   uint64_t ws = b + rotate(a, 31) + c;
    248   uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
    249   return shift_mix((seed ^ (r * k0)) + vs) * k2;
    250 }
    251 
    252 inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
    253   if (length >= 4 && length <= 8)
    254     return hash_4to8_bytes(s, length, seed);
    255   if (length > 8 && length <= 16)
    256     return hash_9to16_bytes(s, length, seed);
    257   if (length > 16 && length <= 32)
    258     return hash_17to32_bytes(s, length, seed);
    259   if (length > 32)
    260     return hash_33to64_bytes(s, length, seed);
    261   if (length != 0)
    262     return hash_1to3_bytes(s, length, seed);
    263 
    264   return k2 ^ seed;
    265 }
    266 
    267 /// \brief The intermediate state used during hashing.
    268 /// Currently, the algorithm for computing hash codes is based on CityHash and
    269 /// keeps 56 bytes of arbitrary state.
    270 struct hash_state {
    271   uint64_t h0, h1, h2, h3, h4, h5, h6;
    272   uint64_t seed;
    273 
    274   /// \brief Create a new hash_state structure and initialize it based on the
    275   /// seed and the first 64-byte chunk.
    276   /// This effectively performs the initial mix.
    277   static hash_state create(const char *s, uint64_t seed) {
    278     hash_state state = {
    279       0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49),
    280       seed * k1, shift_mix(seed), 0, seed };
    281     state.h6 = hash_16_bytes(state.h4, state.h5);
    282     state.mix(s);
    283     return state;
    284   }
    285 
    286   /// \brief Mix 32-bytes from the input sequence into the 16-bytes of 'a'
    287   /// and 'b', including whatever is already in 'a' and 'b'.
    288   static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
    289     a += fetch64(s);
    290     uint64_t c = fetch64(s + 24);
    291     b = rotate(b + a + c, 21);
    292     uint64_t d = a;
    293     a += fetch64(s + 8) + fetch64(s + 16);
    294     b += rotate(a, 44) + d;
    295     a += c;
    296   }
    297 
    298   /// \brief Mix in a 64-byte buffer of data.
    299   /// We mix all 64 bytes even when the chunk length is smaller, but we
    300   /// record the actual length.
    301   void mix(const char *s) {
    302     h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
    303     h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1;
    304     h0 ^= h6;
    305     h1 += h3 + fetch64(s + 40);
    306     h2 = rotate(h2 + h5, 33) * k1;
    307     h3 = h4 * k1;
    308     h4 = h0 + h5;
    309     mix_32_bytes(s, h3, h4);
    310     h5 = h2 + h6;
    311     h6 = h1 + fetch64(s + 16);
    312     mix_32_bytes(s + 32, h5, h6);
    313     std::swap(h2, h0);
    314   }
    315 
    316   /// \brief Compute the final 64-bit hash code value based on the current
    317   /// state and the length of bytes hashed.
    318   uint64_t finalize(size_t length) {
    319     return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
    320                          hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
    321   }
    322 };
    323 
    324 
    325 /// \brief A global, fixed seed-override variable.
    326 ///
    327 /// This variable can be set using the \see llvm::set_fixed_execution_seed
    328 /// function. See that function for details. Do not, under any circumstances,
    329 /// set or read this variable.
    330 extern size_t fixed_seed_override;
    331 
    332 inline size_t get_execution_seed() {
    333   // FIXME: This needs to be a per-execution seed. This is just a placeholder
    334   // implementation. Switching to a per-execution seed is likely to flush out
    335   // instability bugs and so will happen as its own commit.
    336   //
    337   // However, if there is a fixed seed override set the first time this is
    338   // called, return that instead of the per-execution seed.
    339   const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
    340   static size_t seed = fixed_seed_override ? fixed_seed_override
    341                                            : (size_t)seed_prime;
    342   return seed;
    343 }
    344 
    345 
    346 /// \brief Trait to indicate whether a type's bits can be hashed directly.
    347 ///
    348 /// A type trait which is true if we want to combine values for hashing by
    349 /// reading the underlying data. It is false if values of this type must
    350 /// first be passed to hash_value, and the resulting hash_codes combined.
    351 //
    352 // FIXME: We want to replace is_integral_or_enum and is_pointer here with
    353 // a predicate which asserts that comparing the underlying storage of two
    354 // values of the type for equality is equivalent to comparing the two values
    355 // for equality. For all the platforms we care about, this holds for integers
    356 // and pointers, but there are platforms where it doesn't and we would like to
    357 // support user-defined types which happen to satisfy this property.
    358 template <typename T> struct is_hashable_data
    359   : integral_constant<bool, ((is_integral_or_enum<T>::value ||
    360                               is_pointer<T>::value) &&
    361                              64 % sizeof(T) == 0)> {};
    362 
    363 // Special case std::pair to detect when both types are viable and when there
    364 // is no alignment-derived padding in the pair. This is a bit of a lie because
    365 // std::pair isn't truly POD, but it's close enough in all reasonable
    366 // implementations for our use case of hashing the underlying data.
    367 template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
    368   : integral_constant<bool, (is_hashable_data<T>::value &&
    369                              is_hashable_data<U>::value &&
    370                              (sizeof(T) + sizeof(U)) ==
    371                               sizeof(std::pair<T, U>))> {};
    372 
    373 /// \brief Helper to get the hashable data representation for a type.
    374 /// This variant is enabled when the type itself can be used.
    375 template <typename T>
    376 typename enable_if<is_hashable_data<T>, T>::type
    377 get_hashable_data(const T &value) {
    378   return value;
    379 }
    380 /// \brief Helper to get the hashable data representation for a type.
    381 /// This variant is enabled when we must first call hash_value and use the
    382 /// result as our data.
    383 template <typename T>
    384 typename enable_if_c<!is_hashable_data<T>::value, size_t>::type
    385 get_hashable_data(const T &value) {
    386   using ::llvm::hash_value;
    387   return hash_value(value);
    388 }
    389 
    390 /// \brief Helper to store data from a value into a buffer and advance the
    391 /// pointer into that buffer.
    392 ///
    393 /// This routine first checks whether there is enough space in the provided
    394 /// buffer, and if not immediately returns false. If there is space, it
    395 /// copies the underlying bytes of value into the buffer, advances the
    396 /// buffer_ptr past the copied bytes, and returns true.
    397 template <typename T>
    398 bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
    399                        size_t offset = 0) {
    400   size_t store_size = sizeof(value) - offset;
    401   if (buffer_ptr + store_size > buffer_end)
    402     return false;
    403   const char *value_data = reinterpret_cast<const char *>(&value);
    404   memcpy(buffer_ptr, value_data + offset, store_size);
    405   buffer_ptr += store_size;
    406   return true;
    407 }
    408 
    409 /// \brief Implement the combining of integral values into a hash_code.
    410 ///
    411 /// This overload is selected when the value type of the iterator is
    412 /// integral. Rather than computing a hash_code for each object and then
    413 /// combining them, this (as an optimization) directly combines the integers.
    414 template <typename InputIteratorT>
    415 hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
    416   typedef typename std::iterator_traits<InputIteratorT>::value_type ValueT;
    417   const size_t seed = get_execution_seed();
    418   char buffer[64], *buffer_ptr = buffer;
    419   char *const buffer_end = buffer_ptr + array_lengthof(buffer);
    420   while (first != last && store_and_advance(buffer_ptr, buffer_end,
    421                                             get_hashable_data(*first)))
    422     ++first;
    423   if (first == last)
    424     return hash_short(buffer, buffer_ptr - buffer, seed);
    425   assert(buffer_ptr == buffer_end);
    426 
    427   hash_state state = state.create(buffer, seed);
    428   size_t length = 64;
    429   while (first != last) {
    430     // Fill up the buffer. We don't clear it, which re-mixes the last round
    431     // when only a partial 64-byte chunk is left.
    432     buffer_ptr = buffer;
    433     while (first != last && store_and_advance(buffer_ptr, buffer_end,
    434                                               get_hashable_data(*first)))
    435       ++first;
    436 
    437     // Rotate the buffer if we did a partial fill in order to simulate doing
    438     // a mix of the last 64-bytes. That is how the algorithm works when we
    439     // have a contiguous byte sequence, and we want to emulate that here.
    440     std::rotate(buffer, buffer_ptr, buffer_end);
    441 
    442     // Mix this chunk into the current state.
    443     state.mix(buffer);
    444     length += buffer_ptr - buffer;
    445   };
    446 
    447   return state.finalize(length);
    448 }
    449 
    450 /// \brief Implement the combining of integral values into a hash_code.
    451 ///
    452 /// This overload is selected when the value type of the iterator is integral
    453 /// and when the input iterator is actually a pointer. Rather than computing
    454 /// a hash_code for each object and then combining them, this (as an
    455 /// optimization) directly combines the integers. Also, because the integers
    456 /// are stored in contiguous memory, this routine avoids copying each value
    457 /// and directly reads from the underlying memory.
    458 template <typename ValueT>
    459 typename enable_if<is_hashable_data<ValueT>, hash_code>::type
    460 hash_combine_range_impl(ValueT *first, ValueT *last) {
    461   const size_t seed = get_execution_seed();
    462   const char *s_begin = reinterpret_cast<const char *>(first);
    463   const char *s_end = reinterpret_cast<const char *>(last);
    464   const size_t length = std::distance(s_begin, s_end);
    465   if (length <= 64)
    466     return hash_short(s_begin, length, seed);
    467 
    468   const char *s_aligned_end = s_begin + (length & ~63);
    469   hash_state state = state.create(s_begin, seed);
    470   s_begin += 64;
    471   while (s_begin != s_aligned_end) {
    472     state.mix(s_begin);
    473     s_begin += 64;
    474   }
    475   if (length & 63)
    476     state.mix(s_end - 64);
    477 
    478   return state.finalize(length);
    479 }
    480 
    481 } // namespace detail
    482 } // namespace hashing
    483 
    484 
    485 /// \brief Compute a hash_code for a sequence of values.
    486 ///
    487 /// This hashes a sequence of values. It produces the same hash_code as
    488 /// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
    489 /// and is significantly faster given pointers and types which can be hashed as
    490 /// a sequence of bytes.
    491 template <typename InputIteratorT>
    492 hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
    493   return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
    494 }
    495 
    496 
    497 // Implementation details for hash_combine.
    498 namespace hashing {
    499 namespace detail {
    500 
    501 /// \brief Helper class to manage the recursive combining of hash_combine
    502 /// arguments.
    503 ///
    504 /// This class exists to manage the state and various calls involved in the
    505 /// recursive combining of arguments used in hash_combine. It is particularly
    506 /// useful at minimizing the code in the recursive calls to ease the pain
    507 /// caused by a lack of variadic functions.
    508 struct hash_combine_recursive_helper {
    509   char buffer[64];
    510   hash_state state;
    511   const size_t seed;
    512 
    513 public:
    514   /// \brief Construct a recursive hash combining helper.
    515   ///
    516   /// This sets up the state for a recursive hash combine, including getting
    517   /// the seed and buffer setup.
    518   hash_combine_recursive_helper()
    519     : seed(get_execution_seed()) {}
    520 
    521   /// \brief Combine one chunk of data into the current in-flight hash.
    522   ///
    523   /// This merges one chunk of data into the hash. First it tries to buffer
    524   /// the data. If the buffer is full, it hashes the buffer into its
    525   /// hash_state, empties it, and then merges the new chunk in. This also
    526   /// handles cases where the data straddles the end of the buffer.
    527   template <typename T>
    528   char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
    529     if (!store_and_advance(buffer_ptr, buffer_end, data)) {
    530       // Check for skew which prevents the buffer from being packed, and do
    531       // a partial store into the buffer to fill it. This is only a concern
    532       // with the variadic combine because that formation can have varying
    533       // argument types.
    534       size_t partial_store_size = buffer_end - buffer_ptr;
    535       memcpy(buffer_ptr, &data, partial_store_size);
    536 
    537       // If the store fails, our buffer is full and ready to hash. We have to
    538       // either initialize the hash state (on the first full buffer) or mix
    539       // this buffer into the existing hash state. Length tracks the *hashed*
    540       // length, not the buffered length.
    541       if (length == 0) {
    542         state = state.create(buffer, seed);
    543         length = 64;
    544       } else {
    545         // Mix this chunk into the current state and bump length up by 64.
    546         state.mix(buffer);
    547         length += 64;
    548       }
    549       // Reset the buffer_ptr to the head of the buffer for the next chunk of
    550       // data.
    551       buffer_ptr = buffer;
    552 
    553       // Try again to store into the buffer -- this cannot fail as we only
    554       // store types smaller than the buffer.
    555       if (!store_and_advance(buffer_ptr, buffer_end, data,
    556                              partial_store_size))
    557         abort();
    558     }
    559     return buffer_ptr;
    560   }
    561 
    562 #if defined(__has_feature) && __has_feature(__cxx_variadic_templates__)
    563 
    564   /// \brief Recursive, variadic combining method.
    565   ///
    566   /// This function recurses through each argument, combining that argument
    567   /// into a single hash.
    568   template <typename T, typename ...Ts>
    569   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
    570                     const T &arg, const Ts &...args) {
    571     buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));
    572 
    573     // Recurse to the next argument.
    574     return combine(length, buffer_ptr, buffer_end, args...);
    575   }
    576 
    577 #else
    578   // Manually expanded recursive combining methods. See variadic above for
    579   // documentation.
    580 
    581   template <typename T1, typename T2, typename T3, typename T4, typename T5,
    582             typename T6>
    583   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
    584                     const T1 &arg1, const T2 &arg2, const T3 &arg3,
    585                     const T4 &arg4, const T5 &arg5, const T6 &arg6) {
    586     buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
    587     return combine(length, buffer_ptr, buffer_end, arg2, arg3, arg4, arg5, arg6);
    588   }
    589   template <typename T1, typename T2, typename T3, typename T4, typename T5>
    590   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
    591                     const T1 &arg1, const T2 &arg2, const T3 &arg3,
    592                     const T4 &arg4, const T5 &arg5) {
    593     buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
    594     return combine(length, buffer_ptr, buffer_end, arg2, arg3, arg4, arg5);
    595   }
    596   template <typename T1, typename T2, typename T3, typename T4>
    597   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
    598                     const T1 &arg1, const T2 &arg2, const T3 &arg3,
    599                     const T4 &arg4) {
    600     buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
    601     return combine(length, buffer_ptr, buffer_end, arg2, arg3, arg4);
    602   }
    603   template <typename T1, typename T2, typename T3>
    604   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
    605                     const T1 &arg1, const T2 &arg2, const T3 &arg3) {
    606     buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
    607     return combine(length, buffer_ptr, buffer_end, arg2, arg3);
    608   }
    609   template <typename T1, typename T2>
    610   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
    611                     const T1 &arg1, const T2 &arg2) {
    612     buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
    613     return combine(length, buffer_ptr, buffer_end, arg2);
    614   }
    615   template <typename T1>
    616   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
    617                     const T1 &arg1) {
    618     buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1));
    619     return combine(length, buffer_ptr, buffer_end);
    620   }
    621 
    622 #endif
    623 
    624   /// \brief Base case for recursive, variadic combining.
    625   ///
    626   /// The base case when combining arguments recursively is reached when all
    627   /// arguments have been handled. It flushes the remaining buffer and
    628   /// constructs a hash_code.
    629   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
    630     // Check whether the entire set of values fit in the buffer. If so, we'll
    631     // use the optimized short hashing routine and skip state entirely.
    632     if (length == 0)
    633       return hash_short(buffer, buffer_ptr - buffer, seed);
    634 
    635     // Mix the final buffer, rotating it if we did a partial fill in order to
    636     // simulate doing a mix of the last 64-bytes. That is how the algorithm
    637     // works when we have a contiguous byte sequence, and we want to emulate
    638     // that here.
    639     std::rotate(buffer, buffer_ptr, buffer_end);
    640 
    641     // Mix this chunk into the current state.
    642     state.mix(buffer);
    643     length += buffer_ptr - buffer;
    644 
    645     return state.finalize(length);
    646   }
    647 };
    648 
    649 } // namespace detail
    650 } // namespace hashing
    651 
    652 
    653 #if __has_feature(__cxx_variadic_templates__)
    654 
    655 /// \brief Combine values into a single hash_code.
    656 ///
    657 /// This routine accepts a varying number of arguments of any type. It will
    658 /// attempt to combine them into a single hash_code. For user-defined types it
    659 /// attempts to call a \see hash_value overload (via ADL) for the type. For
    660 /// integer and pointer types it directly combines their data into the
    661 /// resulting hash_code.
    662 ///
    663 /// The result is suitable for returning from a user's hash_value
    664 /// *implementation* for their user-defined type. Consumers of a type should
    665 /// *not* call this routine, they should instead call 'hash_value'.
    666 template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
    667   // Recursively hash each argument using a helper class.
    668   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
    669   return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
    670 }
    671 
    672 #else
    673 
    674 // What follows are manually exploded overloads for each argument width. See
    675 // the above variadic definition for documentation and specification.
    676 
    677 template <typename T1, typename T2, typename T3, typename T4, typename T5,
    678           typename T6>
    679 hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
    680                        const T4 &arg4, const T5 &arg5, const T6 &arg6) {
    681   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
    682   return helper.combine(0, helper.buffer, helper.buffer + 64,
    683                         arg1, arg2, arg3, arg4, arg5, arg6);
    684 }
    685 template <typename T1, typename T2, typename T3, typename T4, typename T5>
    686 hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
    687                        const T4 &arg4, const T5 &arg5) {
    688   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
    689   return helper.combine(0, helper.buffer, helper.buffer + 64,
    690                         arg1, arg2, arg3, arg4, arg5);
    691 }
    692 template <typename T1, typename T2, typename T3, typename T4>
    693 hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
    694                        const T4 &arg4) {
    695   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
    696   return helper.combine(0, helper.buffer, helper.buffer + 64,
    697                         arg1, arg2, arg3, arg4);
    698 }
    699 template <typename T1, typename T2, typename T3>
    700 hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3) {
    701   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
    702   return helper.combine(0, helper.buffer, helper.buffer + 64, arg1, arg2, arg3);
    703 }
    704 template <typename T1, typename T2>
    705 hash_code hash_combine(const T1 &arg1, const T2 &arg2) {
    706   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
    707   return helper.combine(0, helper.buffer, helper.buffer + 64, arg1, arg2);
    708 }
    709 template <typename T1>
    710 hash_code hash_combine(const T1 &arg1) {
    711   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
    712   return helper.combine(0, helper.buffer, helper.buffer + 64, arg1);
    713 }
    714 
    715 #endif
    716 
    717 
    718 // Implementation details for implementatinos of hash_value overloads provided
    719 // here.
    720 namespace hashing {
    721 namespace detail {
    722 
    723 /// \brief Helper to hash the value of a single integer.
    724 ///
    725 /// Overloads for smaller integer types are not provided to ensure consistent
    726 /// behavior in the presence of integral promotions. Essentially,
    727 /// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
    728 inline hash_code hash_integer_value(uint64_t value) {
    729   // Similar to hash_4to8_bytes but using a seed instead of length.
    730   const uint64_t seed = get_execution_seed();
    731   const char *s = reinterpret_cast<const char *>(&value);
    732   const uint64_t a = fetch32(s);
    733   return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
    734 }
    735 
    736 } // namespace detail
    737 } // namespace hashing
    738 
    739 // Declared and documented above, but defined here so that any of the hashing
    740 // infrastructure is available.
    741 template <typename T>
    742 typename enable_if<is_integral_or_enum<T>, hash_code>::type
    743 hash_value(T value) {
    744   return ::llvm::hashing::detail::hash_integer_value(value);
    745 }
    746 
    747 // Declared and documented above, but defined here so that any of the hashing
    748 // infrastructure is available.
    749 template <typename T> hash_code hash_value(const T *ptr) {
    750   return ::llvm::hashing::detail::hash_integer_value(
    751     reinterpret_cast<uintptr_t>(ptr));
    752 }
    753 
    754 // Declared and documented above, but defined here so that any of the hashing
    755 // infrastructure is available.
    756 template <typename T, typename U>
    757 hash_code hash_value(const std::pair<T, U> &arg) {
    758   return hash_combine(arg.first, arg.second);
    759 }
    760 
    761 // Declared and documented above, but defined here so that any of the hashing
    762 // infrastructure is available.
    763 template <typename T>
    764 hash_code hash_value(const std::basic_string<T> &arg) {
    765   return hash_combine_range(arg.begin(), arg.end());
    766 }
    767 
    768 } // namespace llvm
    769 
    770 #endif
    771