Home | History | Annotate | Download | only in Analysis
      1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements an analysis that determines, for a given memory
     11 // operation, what preceding memory operations it depends on.  It builds on
     12 // alias analysis information, and tries to provide a lazy, caching interface to
     13 // a common kind of alias information query.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #define DEBUG_TYPE "memdep"
     18 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     19 #include "llvm/Analysis/ValueTracking.h"
     20 #include "llvm/Instructions.h"
     21 #include "llvm/IntrinsicInst.h"
     22 #include "llvm/Function.h"
     23 #include "llvm/LLVMContext.h"
     24 #include "llvm/Analysis/AliasAnalysis.h"
     25 #include "llvm/Analysis/CaptureTracking.h"
     26 #include "llvm/Analysis/Dominators.h"
     27 #include "llvm/Analysis/InstructionSimplify.h"
     28 #include "llvm/Analysis/MemoryBuiltins.h"
     29 #include "llvm/Analysis/PHITransAddr.h"
     30 #include "llvm/Analysis/ValueTracking.h"
     31 #include "llvm/ADT/Statistic.h"
     32 #include "llvm/ADT/STLExtras.h"
     33 #include "llvm/Support/PredIteratorCache.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Target/TargetData.h"
     36 using namespace llvm;
     37 
     38 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
     39 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
     40 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
     41 
     42 STATISTIC(NumCacheNonLocalPtr,
     43           "Number of fully cached non-local ptr responses");
     44 STATISTIC(NumCacheDirtyNonLocalPtr,
     45           "Number of cached, but dirty, non-local ptr responses");
     46 STATISTIC(NumUncacheNonLocalPtr,
     47           "Number of uncached non-local ptr responses");
     48 STATISTIC(NumCacheCompleteNonLocalPtr,
     49           "Number of block queries that were completely cached");
     50 
     51 // Limit for the number of instructions to scan in a block.
     52 // FIXME: Figure out what a sane value is for this.
     53 //        (500 is relatively insane.)
     54 static const int BlockScanLimit = 500;
     55 
     56 char MemoryDependenceAnalysis::ID = 0;
     57 
     58 // Register this pass...
     59 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
     60                 "Memory Dependence Analysis", false, true)
     61 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
     62 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
     63                       "Memory Dependence Analysis", false, true)
     64 
     65 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
     66 : FunctionPass(ID), PredCache(0) {
     67   initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
     68 }
     69 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
     70 }
     71 
     72 /// Clean up memory in between runs
     73 void MemoryDependenceAnalysis::releaseMemory() {
     74   LocalDeps.clear();
     75   NonLocalDeps.clear();
     76   NonLocalPointerDeps.clear();
     77   ReverseLocalDeps.clear();
     78   ReverseNonLocalDeps.clear();
     79   ReverseNonLocalPtrDeps.clear();
     80   PredCache->clear();
     81 }
     82 
     83 
     84 
     85 /// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
     86 ///
     87 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
     88   AU.setPreservesAll();
     89   AU.addRequiredTransitive<AliasAnalysis>();
     90 }
     91 
     92 bool MemoryDependenceAnalysis::runOnFunction(Function &) {
     93   AA = &getAnalysis<AliasAnalysis>();
     94   TD = getAnalysisIfAvailable<TargetData>();
     95   DT = getAnalysisIfAvailable<DominatorTree>();
     96   if (PredCache == 0)
     97     PredCache.reset(new PredIteratorCache());
     98   return false;
     99 }
    100 
    101 /// RemoveFromReverseMap - This is a helper function that removes Val from
    102 /// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
    103 template <typename KeyTy>
    104 static void RemoveFromReverseMap(DenseMap<Instruction*,
    105                                  SmallPtrSet<KeyTy, 4> > &ReverseMap,
    106                                  Instruction *Inst, KeyTy Val) {
    107   typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
    108   InstIt = ReverseMap.find(Inst);
    109   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
    110   bool Found = InstIt->second.erase(Val);
    111   assert(Found && "Invalid reverse map!"); (void)Found;
    112   if (InstIt->second.empty())
    113     ReverseMap.erase(InstIt);
    114 }
    115 
    116 /// GetLocation - If the given instruction references a specific memory
    117 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
    118 /// Return a ModRefInfo value describing the general behavior of the
    119 /// instruction.
    120 static
    121 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
    122                                         AliasAnalysis::Location &Loc,
    123                                         AliasAnalysis *AA) {
    124   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
    125     if (LI->isUnordered()) {
    126       Loc = AA->getLocation(LI);
    127       return AliasAnalysis::Ref;
    128     } else if (LI->getOrdering() == Monotonic) {
    129       Loc = AA->getLocation(LI);
    130       return AliasAnalysis::ModRef;
    131     }
    132     Loc = AliasAnalysis::Location();
    133     return AliasAnalysis::ModRef;
    134   }
    135 
    136   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    137     if (SI->isUnordered()) {
    138       Loc = AA->getLocation(SI);
    139       return AliasAnalysis::Mod;
    140     } else if (SI->getOrdering() == Monotonic) {
    141       Loc = AA->getLocation(SI);
    142       return AliasAnalysis::ModRef;
    143     }
    144     Loc = AliasAnalysis::Location();
    145     return AliasAnalysis::ModRef;
    146   }
    147 
    148   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
    149     Loc = AA->getLocation(V);
    150     return AliasAnalysis::ModRef;
    151   }
    152 
    153   if (const CallInst *CI = isFreeCall(Inst)) {
    154     // calls to free() deallocate the entire structure
    155     Loc = AliasAnalysis::Location(CI->getArgOperand(0));
    156     return AliasAnalysis::Mod;
    157   }
    158 
    159   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
    160     switch (II->getIntrinsicID()) {
    161     case Intrinsic::lifetime_start:
    162     case Intrinsic::lifetime_end:
    163     case Intrinsic::invariant_start:
    164       Loc = AliasAnalysis::Location(II->getArgOperand(1),
    165                                     cast<ConstantInt>(II->getArgOperand(0))
    166                                       ->getZExtValue(),
    167                                     II->getMetadata(LLVMContext::MD_tbaa));
    168       // These intrinsics don't really modify the memory, but returning Mod
    169       // will allow them to be handled conservatively.
    170       return AliasAnalysis::Mod;
    171     case Intrinsic::invariant_end:
    172       Loc = AliasAnalysis::Location(II->getArgOperand(2),
    173                                     cast<ConstantInt>(II->getArgOperand(1))
    174                                       ->getZExtValue(),
    175                                     II->getMetadata(LLVMContext::MD_tbaa));
    176       // These intrinsics don't really modify the memory, but returning Mod
    177       // will allow them to be handled conservatively.
    178       return AliasAnalysis::Mod;
    179     default:
    180       break;
    181     }
    182 
    183   // Otherwise, just do the coarse-grained thing that always works.
    184   if (Inst->mayWriteToMemory())
    185     return AliasAnalysis::ModRef;
    186   if (Inst->mayReadFromMemory())
    187     return AliasAnalysis::Ref;
    188   return AliasAnalysis::NoModRef;
    189 }
    190 
    191 /// getCallSiteDependencyFrom - Private helper for finding the local
    192 /// dependencies of a call site.
    193 MemDepResult MemoryDependenceAnalysis::
    194 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
    195                           BasicBlock::iterator ScanIt, BasicBlock *BB) {
    196   unsigned Limit = BlockScanLimit;
    197 
    198   // Walk backwards through the block, looking for dependencies
    199   while (ScanIt != BB->begin()) {
    200     // Limit the amount of scanning we do so we don't end up with quadratic
    201     // running time on extreme testcases.
    202     --Limit;
    203     if (!Limit)
    204       return MemDepResult::getUnknown();
    205 
    206     Instruction *Inst = --ScanIt;
    207 
    208     // If this inst is a memory op, get the pointer it accessed
    209     AliasAnalysis::Location Loc;
    210     AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
    211     if (Loc.Ptr) {
    212       // A simple instruction.
    213       if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
    214         return MemDepResult::getClobber(Inst);
    215       continue;
    216     }
    217 
    218     if (CallSite InstCS = cast<Value>(Inst)) {
    219       // Debug intrinsics don't cause dependences.
    220       if (isa<DbgInfoIntrinsic>(Inst)) continue;
    221       // If these two calls do not interfere, look past it.
    222       switch (AA->getModRefInfo(CS, InstCS)) {
    223       case AliasAnalysis::NoModRef:
    224         // If the two calls are the same, return InstCS as a Def, so that
    225         // CS can be found redundant and eliminated.
    226         if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
    227             CS.getInstruction()->isIdenticalToWhenDefined(Inst))
    228           return MemDepResult::getDef(Inst);
    229 
    230         // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
    231         // keep scanning.
    232         break;
    233       default:
    234         return MemDepResult::getClobber(Inst);
    235       }
    236     }
    237   }
    238 
    239   // No dependence found.  If this is the entry block of the function, it is
    240   // unknown, otherwise it is non-local.
    241   if (BB != &BB->getParent()->getEntryBlock())
    242     return MemDepResult::getNonLocal();
    243   return MemDepResult::getNonFuncLocal();
    244 }
    245 
    246 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
    247 /// would fully overlap MemLoc if done as a wider legal integer load.
    248 ///
    249 /// MemLocBase, MemLocOffset are lazily computed here the first time the
    250 /// base/offs of memloc is needed.
    251 static bool
    252 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
    253                                        const Value *&MemLocBase,
    254                                        int64_t &MemLocOffs,
    255                                        const LoadInst *LI,
    256                                        const TargetData *TD) {
    257   // If we have no target data, we can't do this.
    258   if (TD == 0) return false;
    259 
    260   // If we haven't already computed the base/offset of MemLoc, do so now.
    261   if (MemLocBase == 0)
    262     MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, *TD);
    263 
    264   unsigned Size = MemoryDependenceAnalysis::
    265     getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
    266                                     LI, *TD);
    267   return Size != 0;
    268 }
    269 
    270 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
    271 /// looks at a memory location for a load (specified by MemLocBase, Offs,
    272 /// and Size) and compares it against a load.  If the specified load could
    273 /// be safely widened to a larger integer load that is 1) still efficient,
    274 /// 2) safe for the target, and 3) would provide the specified memory
    275 /// location value, then this function returns the size in bytes of the
    276 /// load width to use.  If not, this returns zero.
    277 unsigned MemoryDependenceAnalysis::
    278 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
    279                                 unsigned MemLocSize, const LoadInst *LI,
    280                                 const TargetData &TD) {
    281   // We can only extend simple integer loads.
    282   if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
    283 
    284   // Get the base of this load.
    285   int64_t LIOffs = 0;
    286   const Value *LIBase =
    287     GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, TD);
    288 
    289   // If the two pointers are not based on the same pointer, we can't tell that
    290   // they are related.
    291   if (LIBase != MemLocBase) return 0;
    292 
    293   // Okay, the two values are based on the same pointer, but returned as
    294   // no-alias.  This happens when we have things like two byte loads at "P+1"
    295   // and "P+3".  Check to see if increasing the size of the "LI" load up to its
    296   // alignment (or the largest native integer type) will allow us to load all
    297   // the bits required by MemLoc.
    298 
    299   // If MemLoc is before LI, then no widening of LI will help us out.
    300   if (MemLocOffs < LIOffs) return 0;
    301 
    302   // Get the alignment of the load in bytes.  We assume that it is safe to load
    303   // any legal integer up to this size without a problem.  For example, if we're
    304   // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
    305   // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
    306   // to i16.
    307   unsigned LoadAlign = LI->getAlignment();
    308 
    309   int64_t MemLocEnd = MemLocOffs+MemLocSize;
    310 
    311   // If no amount of rounding up will let MemLoc fit into LI, then bail out.
    312   if (LIOffs+LoadAlign < MemLocEnd) return 0;
    313 
    314   // This is the size of the load to try.  Start with the next larger power of
    315   // two.
    316   unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
    317   NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
    318 
    319   while (1) {
    320     // If this load size is bigger than our known alignment or would not fit
    321     // into a native integer register, then we fail.
    322     if (NewLoadByteSize > LoadAlign ||
    323         !TD.fitsInLegalInteger(NewLoadByteSize*8))
    324       return 0;
    325 
    326     if (LIOffs+NewLoadByteSize > MemLocEnd &&
    327         LI->getParent()->getParent()->hasFnAttr(Attribute::AddressSafety)) {
    328       // We will be reading past the location accessed by the original program.
    329       // While this is safe in a regular build, Address Safety analysis tools
    330       // may start reporting false warnings. So, don't do widening.
    331       return 0;
    332     }
    333 
    334     // If a load of this width would include all of MemLoc, then we succeed.
    335     if (LIOffs+NewLoadByteSize >= MemLocEnd)
    336       return NewLoadByteSize;
    337 
    338     NewLoadByteSize <<= 1;
    339   }
    340 }
    341 
    342 namespace {
    343   /// Only find pointer captures which happen before the given instruction. Uses
    344   /// the dominator tree to determine whether one instruction is before another.
    345   struct CapturesBefore : public CaptureTracker {
    346     CapturesBefore(const Instruction *I, DominatorTree *DT)
    347       : BeforeHere(I), DT(DT), Captured(false) {}
    348 
    349     void tooManyUses() { Captured = true; }
    350 
    351     bool shouldExplore(Use *U) {
    352       Instruction *I = cast<Instruction>(U->getUser());
    353       BasicBlock *BB = I->getParent();
    354       if (BeforeHere != I &&
    355           (!DT->isReachableFromEntry(BB) || DT->dominates(BeforeHere, I)))
    356         return false;
    357       return true;
    358     }
    359 
    360     bool captured(Use *U) {
    361       Instruction *I = cast<Instruction>(U->getUser());
    362       BasicBlock *BB = I->getParent();
    363       if (BeforeHere != I &&
    364           (!DT->isReachableFromEntry(BB) || DT->dominates(BeforeHere, I)))
    365         return false;
    366       Captured = true;
    367       return true;
    368     }
    369 
    370     const Instruction *BeforeHere;
    371     DominatorTree *DT;
    372 
    373     bool Captured;
    374   };
    375 }
    376 
    377 AliasAnalysis::ModRefResult
    378 MemoryDependenceAnalysis::getModRefInfo(const Instruction *Inst,
    379                                         const AliasAnalysis::Location &MemLoc) {
    380   AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc);
    381   if (MR != AliasAnalysis::ModRef) return MR;
    382 
    383   // FIXME: this is really just shoring-up a deficiency in alias analysis.
    384   // BasicAA isn't willing to spend linear time determining whether an alloca
    385   // was captured before or after this particular call, while we are. However,
    386   // with a smarter AA in place, this test is just wasting compile time.
    387   if (!DT) return AliasAnalysis::ModRef;
    388   const Value *Object = GetUnderlyingObject(MemLoc.Ptr, TD);
    389   if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object))
    390     return AliasAnalysis::ModRef;
    391   ImmutableCallSite CS(Inst);
    392   if (!CS.getInstruction()) return AliasAnalysis::ModRef;
    393 
    394   CapturesBefore CB(Inst, DT);
    395   llvm::PointerMayBeCaptured(Object, &CB);
    396 
    397   if (isa<Constant>(Object) || CS.getInstruction() == Object || CB.Captured)
    398     return AliasAnalysis::ModRef;
    399 
    400   unsigned ArgNo = 0;
    401   for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
    402        CI != CE; ++CI, ++ArgNo) {
    403     // Only look at the no-capture or byval pointer arguments.  If this
    404     // pointer were passed to arguments that were neither of these, then it
    405     // couldn't be no-capture.
    406     if (!(*CI)->getType()->isPointerTy() ||
    407         (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
    408       continue;
    409 
    410     // If this is a no-capture pointer argument, see if we can tell that it
    411     // is impossible to alias the pointer we're checking.  If not, we have to
    412     // assume that the call could touch the pointer, even though it doesn't
    413     // escape.
    414     if (!AA->isNoAlias(AliasAnalysis::Location(*CI),
    415                        AliasAnalysis::Location(Object))) {
    416       return AliasAnalysis::ModRef;
    417     }
    418   }
    419   return AliasAnalysis::NoModRef;
    420 }
    421 
    422 /// getPointerDependencyFrom - Return the instruction on which a memory
    423 /// location depends.  If isLoad is true, this routine ignores may-aliases with
    424 /// read-only operations.  If isLoad is false, this routine ignores may-aliases
    425 /// with reads from read-only locations.
    426 MemDepResult MemoryDependenceAnalysis::
    427 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
    428                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
    429 
    430   const Value *MemLocBase = 0;
    431   int64_t MemLocOffset = 0;
    432 
    433   unsigned Limit = BlockScanLimit;
    434 
    435   // Walk backwards through the basic block, looking for dependencies.
    436   while (ScanIt != BB->begin()) {
    437     // Limit the amount of scanning we do so we don't end up with quadratic
    438     // running time on extreme testcases.
    439     --Limit;
    440     if (!Limit)
    441       return MemDepResult::getUnknown();
    442 
    443     Instruction *Inst = --ScanIt;
    444 
    445     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    446       // Debug intrinsics don't (and can't) cause dependences.
    447       if (isa<DbgInfoIntrinsic>(II)) continue;
    448 
    449       // If we reach a lifetime begin or end marker, then the query ends here
    450       // because the value is undefined.
    451       if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
    452         // FIXME: This only considers queries directly on the invariant-tagged
    453         // pointer, not on query pointers that are indexed off of them.  It'd
    454         // be nice to handle that at some point (the right approach is to use
    455         // GetPointerBaseWithConstantOffset).
    456         if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
    457                             MemLoc))
    458           return MemDepResult::getDef(II);
    459         continue;
    460       }
    461     }
    462 
    463     // Values depend on loads if the pointers are must aliased.  This means that
    464     // a load depends on another must aliased load from the same value.
    465     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
    466       // Atomic loads have complications involved.
    467       // FIXME: This is overly conservative.
    468       if (!LI->isUnordered())
    469         return MemDepResult::getClobber(LI);
    470 
    471       AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
    472 
    473       // If we found a pointer, check if it could be the same as our pointer.
    474       AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
    475 
    476       if (isLoad) {
    477         if (R == AliasAnalysis::NoAlias) {
    478           // If this is an over-aligned integer load (for example,
    479           // "load i8* %P, align 4") see if it would obviously overlap with the
    480           // queried location if widened to a larger load (e.g. if the queried
    481           // location is 1 byte at P+1).  If so, return it as a load/load
    482           // clobber result, allowing the client to decide to widen the load if
    483           // it wants to.
    484           if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
    485             if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
    486                 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
    487                                                        MemLocOffset, LI, TD))
    488               return MemDepResult::getClobber(Inst);
    489 
    490           continue;
    491         }
    492 
    493         // Must aliased loads are defs of each other.
    494         if (R == AliasAnalysis::MustAlias)
    495           return MemDepResult::getDef(Inst);
    496 
    497 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
    498       // in terms of clobbering loads, but since it does this by looking
    499       // at the clobbering load directly, it doesn't know about any
    500       // phi translation that may have happened along the way.
    501 
    502         // If we have a partial alias, then return this as a clobber for the
    503         // client to handle.
    504         if (R == AliasAnalysis::PartialAlias)
    505           return MemDepResult::getClobber(Inst);
    506 #endif
    507 
    508         // Random may-alias loads don't depend on each other without a
    509         // dependence.
    510         continue;
    511       }
    512 
    513       // Stores don't depend on other no-aliased accesses.
    514       if (R == AliasAnalysis::NoAlias)
    515         continue;
    516 
    517       // Stores don't alias loads from read-only memory.
    518       if (AA->pointsToConstantMemory(LoadLoc))
    519         continue;
    520 
    521       // Stores depend on may/must aliased loads.
    522       return MemDepResult::getDef(Inst);
    523     }
    524 
    525     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    526       // Atomic stores have complications involved.
    527       // FIXME: This is overly conservative.
    528       if (!SI->isUnordered())
    529         return MemDepResult::getClobber(SI);
    530 
    531       // If alias analysis can tell that this store is guaranteed to not modify
    532       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
    533       // the query pointer points to constant memory etc.
    534       if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
    535         continue;
    536 
    537       // Ok, this store might clobber the query pointer.  Check to see if it is
    538       // a must alias: in this case, we want to return this as a def.
    539       AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
    540 
    541       // If we found a pointer, check if it could be the same as our pointer.
    542       AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
    543 
    544       if (R == AliasAnalysis::NoAlias)
    545         continue;
    546       if (R == AliasAnalysis::MustAlias)
    547         return MemDepResult::getDef(Inst);
    548       return MemDepResult::getClobber(Inst);
    549     }
    550 
    551     // If this is an allocation, and if we know that the accessed pointer is to
    552     // the allocation, return Def.  This means that there is no dependence and
    553     // the access can be optimized based on that.  For example, a load could
    554     // turn into undef.
    555     // Note: Only determine this to be a malloc if Inst is the malloc call, not
    556     // a subsequent bitcast of the malloc call result.  There can be stores to
    557     // the malloced memory between the malloc call and its bitcast uses, and we
    558     // need to continue scanning until the malloc call.
    559     if (isa<AllocaInst>(Inst) ||
    560         (isa<CallInst>(Inst) && extractMallocCall(Inst))) {
    561       const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD);
    562 
    563       if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
    564         return MemDepResult::getDef(Inst);
    565       continue;
    566     }
    567 
    568     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
    569     switch (getModRefInfo(Inst, MemLoc)) {
    570     case AliasAnalysis::NoModRef:
    571       // If the call has no effect on the queried pointer, just ignore it.
    572       continue;
    573     case AliasAnalysis::Mod:
    574       return MemDepResult::getClobber(Inst);
    575     case AliasAnalysis::Ref:
    576       // If the call is known to never store to the pointer, and if this is a
    577       // load query, we can safely ignore it (scan past it).
    578       if (isLoad)
    579         continue;
    580     default:
    581       // Otherwise, there is a potential dependence.  Return a clobber.
    582       return MemDepResult::getClobber(Inst);
    583     }
    584   }
    585 
    586   // No dependence found.  If this is the entry block of the function, it is
    587   // unknown, otherwise it is non-local.
    588   if (BB != &BB->getParent()->getEntryBlock())
    589     return MemDepResult::getNonLocal();
    590   return MemDepResult::getNonFuncLocal();
    591 }
    592 
    593 /// getDependency - Return the instruction on which a memory operation
    594 /// depends.
    595 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
    596   Instruction *ScanPos = QueryInst;
    597 
    598   // Check for a cached result
    599   MemDepResult &LocalCache = LocalDeps[QueryInst];
    600 
    601   // If the cached entry is non-dirty, just return it.  Note that this depends
    602   // on MemDepResult's default constructing to 'dirty'.
    603   if (!LocalCache.isDirty())
    604     return LocalCache;
    605 
    606   // Otherwise, if we have a dirty entry, we know we can start the scan at that
    607   // instruction, which may save us some work.
    608   if (Instruction *Inst = LocalCache.getInst()) {
    609     ScanPos = Inst;
    610 
    611     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
    612   }
    613 
    614   BasicBlock *QueryParent = QueryInst->getParent();
    615 
    616   // Do the scan.
    617   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
    618     // No dependence found.  If this is the entry block of the function, it is
    619     // unknown, otherwise it is non-local.
    620     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
    621       LocalCache = MemDepResult::getNonLocal();
    622     else
    623       LocalCache = MemDepResult::getNonFuncLocal();
    624   } else {
    625     AliasAnalysis::Location MemLoc;
    626     AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
    627     if (MemLoc.Ptr) {
    628       // If we can do a pointer scan, make it happen.
    629       bool isLoad = !(MR & AliasAnalysis::Mod);
    630       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
    631         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
    632 
    633       LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
    634                                             QueryParent);
    635     } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
    636       CallSite QueryCS(QueryInst);
    637       bool isReadOnly = AA->onlyReadsMemory(QueryCS);
    638       LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
    639                                              QueryParent);
    640     } else
    641       // Non-memory instruction.
    642       LocalCache = MemDepResult::getUnknown();
    643   }
    644 
    645   // Remember the result!
    646   if (Instruction *I = LocalCache.getInst())
    647     ReverseLocalDeps[I].insert(QueryInst);
    648 
    649   return LocalCache;
    650 }
    651 
    652 #ifndef NDEBUG
    653 /// AssertSorted - This method is used when -debug is specified to verify that
    654 /// cache arrays are properly kept sorted.
    655 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
    656                          int Count = -1) {
    657   if (Count == -1) Count = Cache.size();
    658   if (Count == 0) return;
    659 
    660   for (unsigned i = 1; i != unsigned(Count); ++i)
    661     assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
    662 }
    663 #endif
    664 
    665 /// getNonLocalCallDependency - Perform a full dependency query for the
    666 /// specified call, returning the set of blocks that the value is
    667 /// potentially live across.  The returned set of results will include a
    668 /// "NonLocal" result for all blocks where the value is live across.
    669 ///
    670 /// This method assumes the instruction returns a "NonLocal" dependency
    671 /// within its own block.
    672 ///
    673 /// This returns a reference to an internal data structure that may be
    674 /// invalidated on the next non-local query or when an instruction is
    675 /// removed.  Clients must copy this data if they want it around longer than
    676 /// that.
    677 const MemoryDependenceAnalysis::NonLocalDepInfo &
    678 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
    679   assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
    680  "getNonLocalCallDependency should only be used on calls with non-local deps!");
    681   PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
    682   NonLocalDepInfo &Cache = CacheP.first;
    683 
    684   /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
    685   /// the cached case, this can happen due to instructions being deleted etc. In
    686   /// the uncached case, this starts out as the set of predecessors we care
    687   /// about.
    688   SmallVector<BasicBlock*, 32> DirtyBlocks;
    689 
    690   if (!Cache.empty()) {
    691     // Okay, we have a cache entry.  If we know it is not dirty, just return it
    692     // with no computation.
    693     if (!CacheP.second) {
    694       ++NumCacheNonLocal;
    695       return Cache;
    696     }
    697 
    698     // If we already have a partially computed set of results, scan them to
    699     // determine what is dirty, seeding our initial DirtyBlocks worklist.
    700     for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
    701        I != E; ++I)
    702       if (I->getResult().isDirty())
    703         DirtyBlocks.push_back(I->getBB());
    704 
    705     // Sort the cache so that we can do fast binary search lookups below.
    706     std::sort(Cache.begin(), Cache.end());
    707 
    708     ++NumCacheDirtyNonLocal;
    709     //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
    710     //     << Cache.size() << " cached: " << *QueryInst;
    711   } else {
    712     // Seed DirtyBlocks with each of the preds of QueryInst's block.
    713     BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
    714     for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
    715       DirtyBlocks.push_back(*PI);
    716     ++NumUncacheNonLocal;
    717   }
    718 
    719   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
    720   bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
    721 
    722   SmallPtrSet<BasicBlock*, 64> Visited;
    723 
    724   unsigned NumSortedEntries = Cache.size();
    725   DEBUG(AssertSorted(Cache));
    726 
    727   // Iterate while we still have blocks to update.
    728   while (!DirtyBlocks.empty()) {
    729     BasicBlock *DirtyBB = DirtyBlocks.back();
    730     DirtyBlocks.pop_back();
    731 
    732     // Already processed this block?
    733     if (!Visited.insert(DirtyBB))
    734       continue;
    735 
    736     // Do a binary search to see if we already have an entry for this block in
    737     // the cache set.  If so, find it.
    738     DEBUG(AssertSorted(Cache, NumSortedEntries));
    739     NonLocalDepInfo::iterator Entry =
    740       std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
    741                        NonLocalDepEntry(DirtyBB));
    742     if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
    743       --Entry;
    744 
    745     NonLocalDepEntry *ExistingResult = 0;
    746     if (Entry != Cache.begin()+NumSortedEntries &&
    747         Entry->getBB() == DirtyBB) {
    748       // If we already have an entry, and if it isn't already dirty, the block
    749       // is done.
    750       if (!Entry->getResult().isDirty())
    751         continue;
    752 
    753       // Otherwise, remember this slot so we can update the value.
    754       ExistingResult = &*Entry;
    755     }
    756 
    757     // If the dirty entry has a pointer, start scanning from it so we don't have
    758     // to rescan the entire block.
    759     BasicBlock::iterator ScanPos = DirtyBB->end();
    760     if (ExistingResult) {
    761       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
    762         ScanPos = Inst;
    763         // We're removing QueryInst's use of Inst.
    764         RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
    765                              QueryCS.getInstruction());
    766       }
    767     }
    768 
    769     // Find out if this block has a local dependency for QueryInst.
    770     MemDepResult Dep;
    771 
    772     if (ScanPos != DirtyBB->begin()) {
    773       Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
    774     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
    775       // No dependence found.  If this is the entry block of the function, it is
    776       // a clobber, otherwise it is unknown.
    777       Dep = MemDepResult::getNonLocal();
    778     } else {
    779       Dep = MemDepResult::getNonFuncLocal();
    780     }
    781 
    782     // If we had a dirty entry for the block, update it.  Otherwise, just add
    783     // a new entry.
    784     if (ExistingResult)
    785       ExistingResult->setResult(Dep);
    786     else
    787       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
    788 
    789     // If the block has a dependency (i.e. it isn't completely transparent to
    790     // the value), remember the association!
    791     if (!Dep.isNonLocal()) {
    792       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
    793       // update this when we remove instructions.
    794       if (Instruction *Inst = Dep.getInst())
    795         ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
    796     } else {
    797 
    798       // If the block *is* completely transparent to the load, we need to check
    799       // the predecessors of this block.  Add them to our worklist.
    800       for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
    801         DirtyBlocks.push_back(*PI);
    802     }
    803   }
    804 
    805   return Cache;
    806 }
    807 
    808 /// getNonLocalPointerDependency - Perform a full dependency query for an
    809 /// access to the specified (non-volatile) memory location, returning the
    810 /// set of instructions that either define or clobber the value.
    811 ///
    812 /// This method assumes the pointer has a "NonLocal" dependency within its
    813 /// own block.
    814 ///
    815 void MemoryDependenceAnalysis::
    816 getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
    817                              BasicBlock *FromBB,
    818                              SmallVectorImpl<NonLocalDepResult> &Result) {
    819   assert(Loc.Ptr->getType()->isPointerTy() &&
    820          "Can't get pointer deps of a non-pointer!");
    821   Result.clear();
    822 
    823   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
    824 
    825   // This is the set of blocks we've inspected, and the pointer we consider in
    826   // each block.  Because of critical edges, we currently bail out if querying
    827   // a block with multiple different pointers.  This can happen during PHI
    828   // translation.
    829   DenseMap<BasicBlock*, Value*> Visited;
    830   if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
    831                                    Result, Visited, true))
    832     return;
    833   Result.clear();
    834   Result.push_back(NonLocalDepResult(FromBB,
    835                                      MemDepResult::getUnknown(),
    836                                      const_cast<Value *>(Loc.Ptr)));
    837 }
    838 
    839 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
    840 /// Pointer/PointeeSize using either cached information in Cache or by doing a
    841 /// lookup (which may use dirty cache info if available).  If we do a lookup,
    842 /// add the result to the cache.
    843 MemDepResult MemoryDependenceAnalysis::
    844 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
    845                         bool isLoad, BasicBlock *BB,
    846                         NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
    847 
    848   // Do a binary search to see if we already have an entry for this block in
    849   // the cache set.  If so, find it.
    850   NonLocalDepInfo::iterator Entry =
    851     std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
    852                      NonLocalDepEntry(BB));
    853   if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
    854     --Entry;
    855 
    856   NonLocalDepEntry *ExistingResult = 0;
    857   if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
    858     ExistingResult = &*Entry;
    859 
    860   // If we have a cached entry, and it is non-dirty, use it as the value for
    861   // this dependency.
    862   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
    863     ++NumCacheNonLocalPtr;
    864     return ExistingResult->getResult();
    865   }
    866 
    867   // Otherwise, we have to scan for the value.  If we have a dirty cache
    868   // entry, start scanning from its position, otherwise we scan from the end
    869   // of the block.
    870   BasicBlock::iterator ScanPos = BB->end();
    871   if (ExistingResult && ExistingResult->getResult().getInst()) {
    872     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
    873            "Instruction invalidated?");
    874     ++NumCacheDirtyNonLocalPtr;
    875     ScanPos = ExistingResult->getResult().getInst();
    876 
    877     // Eliminating the dirty entry from 'Cache', so update the reverse info.
    878     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
    879     RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
    880   } else {
    881     ++NumUncacheNonLocalPtr;
    882   }
    883 
    884   // Scan the block for the dependency.
    885   MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
    886 
    887   // If we had a dirty entry for the block, update it.  Otherwise, just add
    888   // a new entry.
    889   if (ExistingResult)
    890     ExistingResult->setResult(Dep);
    891   else
    892     Cache->push_back(NonLocalDepEntry(BB, Dep));
    893 
    894   // If the block has a dependency (i.e. it isn't completely transparent to
    895   // the value), remember the reverse association because we just added it
    896   // to Cache!
    897   if (!Dep.isDef() && !Dep.isClobber())
    898     return Dep;
    899 
    900   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
    901   // update MemDep when we remove instructions.
    902   Instruction *Inst = Dep.getInst();
    903   assert(Inst && "Didn't depend on anything?");
    904   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
    905   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
    906   return Dep;
    907 }
    908 
    909 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
    910 /// number of elements in the array that are already properly ordered.  This is
    911 /// optimized for the case when only a few entries are added.
    912 static void
    913 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
    914                          unsigned NumSortedEntries) {
    915   switch (Cache.size() - NumSortedEntries) {
    916   case 0:
    917     // done, no new entries.
    918     break;
    919   case 2: {
    920     // Two new entries, insert the last one into place.
    921     NonLocalDepEntry Val = Cache.back();
    922     Cache.pop_back();
    923     MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
    924       std::upper_bound(Cache.begin(), Cache.end()-1, Val);
    925     Cache.insert(Entry, Val);
    926     // FALL THROUGH.
    927   }
    928   case 1:
    929     // One new entry, Just insert the new value at the appropriate position.
    930     if (Cache.size() != 1) {
    931       NonLocalDepEntry Val = Cache.back();
    932       Cache.pop_back();
    933       MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
    934         std::upper_bound(Cache.begin(), Cache.end(), Val);
    935       Cache.insert(Entry, Val);
    936     }
    937     break;
    938   default:
    939     // Added many values, do a full scale sort.
    940     std::sort(Cache.begin(), Cache.end());
    941     break;
    942   }
    943 }
    944 
    945 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
    946 /// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
    947 /// results to the results vector and keep track of which blocks are visited in
    948 /// 'Visited'.
    949 ///
    950 /// This has special behavior for the first block queries (when SkipFirstBlock
    951 /// is true).  In this special case, it ignores the contents of the specified
    952 /// block and starts returning dependence info for its predecessors.
    953 ///
    954 /// This function returns false on success, or true to indicate that it could
    955 /// not compute dependence information for some reason.  This should be treated
    956 /// as a clobber dependence on the first instruction in the predecessor block.
    957 bool MemoryDependenceAnalysis::
    958 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
    959                             const AliasAnalysis::Location &Loc,
    960                             bool isLoad, BasicBlock *StartBB,
    961                             SmallVectorImpl<NonLocalDepResult> &Result,
    962                             DenseMap<BasicBlock*, Value*> &Visited,
    963                             bool SkipFirstBlock) {
    964 
    965   // Look up the cached info for Pointer.
    966   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
    967 
    968   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
    969   // CacheKey, this value will be inserted as the associated value. Otherwise,
    970   // it'll be ignored, and we'll have to check to see if the cached size and
    971   // tbaa tag are consistent with the current query.
    972   NonLocalPointerInfo InitialNLPI;
    973   InitialNLPI.Size = Loc.Size;
    974   InitialNLPI.TBAATag = Loc.TBAATag;
    975 
    976   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
    977   // already have one.
    978   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
    979     NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
    980   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
    981 
    982   // If we already have a cache entry for this CacheKey, we may need to do some
    983   // work to reconcile the cache entry and the current query.
    984   if (!Pair.second) {
    985     if (CacheInfo->Size < Loc.Size) {
    986       // The query's Size is greater than the cached one. Throw out the
    987       // cached data and procede with the query at the greater size.
    988       CacheInfo->Pair = BBSkipFirstBlockPair();
    989       CacheInfo->Size = Loc.Size;
    990       for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
    991            DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
    992         if (Instruction *Inst = DI->getResult().getInst())
    993           RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
    994       CacheInfo->NonLocalDeps.clear();
    995     } else if (CacheInfo->Size > Loc.Size) {
    996       // This query's Size is less than the cached one. Conservatively restart
    997       // the query using the greater size.
    998       return getNonLocalPointerDepFromBB(Pointer,
    999                                          Loc.getWithNewSize(CacheInfo->Size),
   1000                                          isLoad, StartBB, Result, Visited,
   1001                                          SkipFirstBlock);
   1002     }
   1003 
   1004     // If the query's TBAATag is inconsistent with the cached one,
   1005     // conservatively throw out the cached data and restart the query with
   1006     // no tag if needed.
   1007     if (CacheInfo->TBAATag != Loc.TBAATag) {
   1008       if (CacheInfo->TBAATag) {
   1009         CacheInfo->Pair = BBSkipFirstBlockPair();
   1010         CacheInfo->TBAATag = 0;
   1011         for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
   1012              DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
   1013           if (Instruction *Inst = DI->getResult().getInst())
   1014             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
   1015         CacheInfo->NonLocalDeps.clear();
   1016       }
   1017       if (Loc.TBAATag)
   1018         return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
   1019                                            isLoad, StartBB, Result, Visited,
   1020                                            SkipFirstBlock);
   1021     }
   1022   }
   1023 
   1024   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
   1025 
   1026   // If we have valid cached information for exactly the block we are
   1027   // investigating, just return it with no recomputation.
   1028   if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
   1029     // We have a fully cached result for this query then we can just return the
   1030     // cached results and populate the visited set.  However, we have to verify
   1031     // that we don't already have conflicting results for these blocks.  Check
   1032     // to ensure that if a block in the results set is in the visited set that
   1033     // it was for the same pointer query.
   1034     if (!Visited.empty()) {
   1035       for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
   1036            I != E; ++I) {
   1037         DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
   1038         if (VI == Visited.end() || VI->second == Pointer.getAddr())
   1039           continue;
   1040 
   1041         // We have a pointer mismatch in a block.  Just return clobber, saying
   1042         // that something was clobbered in this result.  We could also do a
   1043         // non-fully cached query, but there is little point in doing this.
   1044         return true;
   1045       }
   1046     }
   1047 
   1048     Value *Addr = Pointer.getAddr();
   1049     for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
   1050          I != E; ++I) {
   1051       Visited.insert(std::make_pair(I->getBB(), Addr));
   1052       if (!I->getResult().isNonLocal())
   1053         Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
   1054     }
   1055     ++NumCacheCompleteNonLocalPtr;
   1056     return false;
   1057   }
   1058 
   1059   // Otherwise, either this is a new block, a block with an invalid cache
   1060   // pointer or one that we're about to invalidate by putting more info into it
   1061   // than its valid cache info.  If empty, the result will be valid cache info,
   1062   // otherwise it isn't.
   1063   if (Cache->empty())
   1064     CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
   1065   else
   1066     CacheInfo->Pair = BBSkipFirstBlockPair();
   1067 
   1068   SmallVector<BasicBlock*, 32> Worklist;
   1069   Worklist.push_back(StartBB);
   1070 
   1071   // PredList used inside loop.
   1072   SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
   1073 
   1074   // Keep track of the entries that we know are sorted.  Previously cached
   1075   // entries will all be sorted.  The entries we add we only sort on demand (we
   1076   // don't insert every element into its sorted position).  We know that we
   1077   // won't get any reuse from currently inserted values, because we don't
   1078   // revisit blocks after we insert info for them.
   1079   unsigned NumSortedEntries = Cache->size();
   1080   DEBUG(AssertSorted(*Cache));
   1081 
   1082   while (!Worklist.empty()) {
   1083     BasicBlock *BB = Worklist.pop_back_val();
   1084 
   1085     // Skip the first block if we have it.
   1086     if (!SkipFirstBlock) {
   1087       // Analyze the dependency of *Pointer in FromBB.  See if we already have
   1088       // been here.
   1089       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
   1090 
   1091       // Get the dependency info for Pointer in BB.  If we have cached
   1092       // information, we will use it, otherwise we compute it.
   1093       DEBUG(AssertSorted(*Cache, NumSortedEntries));
   1094       MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
   1095                                                  NumSortedEntries);
   1096 
   1097       // If we got a Def or Clobber, add this to the list of results.
   1098       if (!Dep.isNonLocal()) {
   1099         Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
   1100         continue;
   1101       }
   1102     }
   1103 
   1104     // If 'Pointer' is an instruction defined in this block, then we need to do
   1105     // phi translation to change it into a value live in the predecessor block.
   1106     // If not, we just add the predecessors to the worklist and scan them with
   1107     // the same Pointer.
   1108     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
   1109       SkipFirstBlock = false;
   1110       SmallVector<BasicBlock*, 16> NewBlocks;
   1111       for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
   1112         // Verify that we haven't looked at this block yet.
   1113         std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
   1114           InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
   1115         if (InsertRes.second) {
   1116           // First time we've looked at *PI.
   1117           NewBlocks.push_back(*PI);
   1118           continue;
   1119         }
   1120 
   1121         // If we have seen this block before, but it was with a different
   1122         // pointer then we have a phi translation failure and we have to treat
   1123         // this as a clobber.
   1124         if (InsertRes.first->second != Pointer.getAddr()) {
   1125           // Make sure to clean up the Visited map before continuing on to
   1126           // PredTranslationFailure.
   1127           for (unsigned i = 0; i < NewBlocks.size(); i++)
   1128             Visited.erase(NewBlocks[i]);
   1129           goto PredTranslationFailure;
   1130         }
   1131       }
   1132       Worklist.append(NewBlocks.begin(), NewBlocks.end());
   1133       continue;
   1134     }
   1135 
   1136     // We do need to do phi translation, if we know ahead of time we can't phi
   1137     // translate this value, don't even try.
   1138     if (!Pointer.IsPotentiallyPHITranslatable())
   1139       goto PredTranslationFailure;
   1140 
   1141     // We may have added values to the cache list before this PHI translation.
   1142     // If so, we haven't done anything to ensure that the cache remains sorted.
   1143     // Sort it now (if needed) so that recursive invocations of
   1144     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
   1145     // value will only see properly sorted cache arrays.
   1146     if (Cache && NumSortedEntries != Cache->size()) {
   1147       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
   1148       NumSortedEntries = Cache->size();
   1149     }
   1150     Cache = 0;
   1151 
   1152     PredList.clear();
   1153     for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
   1154       BasicBlock *Pred = *PI;
   1155       PredList.push_back(std::make_pair(Pred, Pointer));
   1156 
   1157       // Get the PHI translated pointer in this predecessor.  This can fail if
   1158       // not translatable, in which case the getAddr() returns null.
   1159       PHITransAddr &PredPointer = PredList.back().second;
   1160       PredPointer.PHITranslateValue(BB, Pred, 0);
   1161 
   1162       Value *PredPtrVal = PredPointer.getAddr();
   1163 
   1164       // Check to see if we have already visited this pred block with another
   1165       // pointer.  If so, we can't do this lookup.  This failure can occur
   1166       // with PHI translation when a critical edge exists and the PHI node in
   1167       // the successor translates to a pointer value different than the
   1168       // pointer the block was first analyzed with.
   1169       std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
   1170         InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
   1171 
   1172       if (!InsertRes.second) {
   1173         // We found the pred; take it off the list of preds to visit.
   1174         PredList.pop_back();
   1175 
   1176         // If the predecessor was visited with PredPtr, then we already did
   1177         // the analysis and can ignore it.
   1178         if (InsertRes.first->second == PredPtrVal)
   1179           continue;
   1180 
   1181         // Otherwise, the block was previously analyzed with a different
   1182         // pointer.  We can't represent the result of this case, so we just
   1183         // treat this as a phi translation failure.
   1184 
   1185         // Make sure to clean up the Visited map before continuing on to
   1186         // PredTranslationFailure.
   1187         for (unsigned i = 0; i < PredList.size(); i++)
   1188           Visited.erase(PredList[i].first);
   1189 
   1190         goto PredTranslationFailure;
   1191       }
   1192     }
   1193 
   1194     // Actually process results here; this need to be a separate loop to avoid
   1195     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
   1196     // any results for.  (getNonLocalPointerDepFromBB will modify our
   1197     // datastructures in ways the code after the PredTranslationFailure label
   1198     // doesn't expect.)
   1199     for (unsigned i = 0; i < PredList.size(); i++) {
   1200       BasicBlock *Pred = PredList[i].first;
   1201       PHITransAddr &PredPointer = PredList[i].second;
   1202       Value *PredPtrVal = PredPointer.getAddr();
   1203 
   1204       bool CanTranslate = true;
   1205       // If PHI translation was unable to find an available pointer in this
   1206       // predecessor, then we have to assume that the pointer is clobbered in
   1207       // that predecessor.  We can still do PRE of the load, which would insert
   1208       // a computation of the pointer in this predecessor.
   1209       if (PredPtrVal == 0)
   1210         CanTranslate = false;
   1211 
   1212       // FIXME: it is entirely possible that PHI translating will end up with
   1213       // the same value.  Consider PHI translating something like:
   1214       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
   1215       // to recurse here, pedantically speaking.
   1216 
   1217       // If getNonLocalPointerDepFromBB fails here, that means the cached
   1218       // result conflicted with the Visited list; we have to conservatively
   1219       // assume it is unknown, but this also does not block PRE of the load.
   1220       if (!CanTranslate ||
   1221           getNonLocalPointerDepFromBB(PredPointer,
   1222                                       Loc.getWithNewPtr(PredPtrVal),
   1223                                       isLoad, Pred,
   1224                                       Result, Visited)) {
   1225         // Add the entry to the Result list.
   1226         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
   1227         Result.push_back(Entry);
   1228 
   1229         // Since we had a phi translation failure, the cache for CacheKey won't
   1230         // include all of the entries that we need to immediately satisfy future
   1231         // queries.  Mark this in NonLocalPointerDeps by setting the
   1232         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
   1233         // cached value to do more work but not miss the phi trans failure.
   1234         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
   1235         NLPI.Pair = BBSkipFirstBlockPair();
   1236         continue;
   1237       }
   1238     }
   1239 
   1240     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
   1241     CacheInfo = &NonLocalPointerDeps[CacheKey];
   1242     Cache = &CacheInfo->NonLocalDeps;
   1243     NumSortedEntries = Cache->size();
   1244 
   1245     // Since we did phi translation, the "Cache" set won't contain all of the
   1246     // results for the query.  This is ok (we can still use it to accelerate
   1247     // specific block queries) but we can't do the fastpath "return all
   1248     // results from the set"  Clear out the indicator for this.
   1249     CacheInfo->Pair = BBSkipFirstBlockPair();
   1250     SkipFirstBlock = false;
   1251     continue;
   1252 
   1253   PredTranslationFailure:
   1254     // The following code is "failure"; we can't produce a sane translation
   1255     // for the given block.  It assumes that we haven't modified any of
   1256     // our datastructures while processing the current block.
   1257 
   1258     if (Cache == 0) {
   1259       // Refresh the CacheInfo/Cache pointer if it got invalidated.
   1260       CacheInfo = &NonLocalPointerDeps[CacheKey];
   1261       Cache = &CacheInfo->NonLocalDeps;
   1262       NumSortedEntries = Cache->size();
   1263     }
   1264 
   1265     // Since we failed phi translation, the "Cache" set won't contain all of the
   1266     // results for the query.  This is ok (we can still use it to accelerate
   1267     // specific block queries) but we can't do the fastpath "return all
   1268     // results from the set".  Clear out the indicator for this.
   1269     CacheInfo->Pair = BBSkipFirstBlockPair();
   1270 
   1271     // If *nothing* works, mark the pointer as unknown.
   1272     //
   1273     // If this is the magic first block, return this as a clobber of the whole
   1274     // incoming value.  Since we can't phi translate to one of the predecessors,
   1275     // we have to bail out.
   1276     if (SkipFirstBlock)
   1277       return true;
   1278 
   1279     for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
   1280       assert(I != Cache->rend() && "Didn't find current block??");
   1281       if (I->getBB() != BB)
   1282         continue;
   1283 
   1284       assert(I->getResult().isNonLocal() &&
   1285              "Should only be here with transparent block");
   1286       I->setResult(MemDepResult::getUnknown());
   1287       Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
   1288                                          Pointer.getAddr()));
   1289       break;
   1290     }
   1291   }
   1292 
   1293   // Okay, we're done now.  If we added new values to the cache, re-sort it.
   1294   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
   1295   DEBUG(AssertSorted(*Cache));
   1296   return false;
   1297 }
   1298 
   1299 /// RemoveCachedNonLocalPointerDependencies - If P exists in
   1300 /// CachedNonLocalPointerInfo, remove it.
   1301 void MemoryDependenceAnalysis::
   1302 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
   1303   CachedNonLocalPointerInfo::iterator It =
   1304     NonLocalPointerDeps.find(P);
   1305   if (It == NonLocalPointerDeps.end()) return;
   1306 
   1307   // Remove all of the entries in the BB->val map.  This involves removing
   1308   // instructions from the reverse map.
   1309   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
   1310 
   1311   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
   1312     Instruction *Target = PInfo[i].getResult().getInst();
   1313     if (Target == 0) continue;  // Ignore non-local dep results.
   1314     assert(Target->getParent() == PInfo[i].getBB());
   1315 
   1316     // Eliminating the dirty entry from 'Cache', so update the reverse info.
   1317     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
   1318   }
   1319 
   1320   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
   1321   NonLocalPointerDeps.erase(It);
   1322 }
   1323 
   1324 
   1325 /// invalidateCachedPointerInfo - This method is used to invalidate cached
   1326 /// information about the specified pointer, because it may be too
   1327 /// conservative in memdep.  This is an optional call that can be used when
   1328 /// the client detects an equivalence between the pointer and some other
   1329 /// value and replaces the other value with ptr. This can make Ptr available
   1330 /// in more places that cached info does not necessarily keep.
   1331 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
   1332   // If Ptr isn't really a pointer, just ignore it.
   1333   if (!Ptr->getType()->isPointerTy()) return;
   1334   // Flush store info for the pointer.
   1335   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
   1336   // Flush load info for the pointer.
   1337   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
   1338 }
   1339 
   1340 /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
   1341 /// This needs to be done when the CFG changes, e.g., due to splitting
   1342 /// critical edges.
   1343 void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
   1344   PredCache->clear();
   1345 }
   1346 
   1347 /// removeInstruction - Remove an instruction from the dependence analysis,
   1348 /// updating the dependence of instructions that previously depended on it.
   1349 /// This method attempts to keep the cache coherent using the reverse map.
   1350 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
   1351   // Walk through the Non-local dependencies, removing this one as the value
   1352   // for any cached queries.
   1353   NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
   1354   if (NLDI != NonLocalDeps.end()) {
   1355     NonLocalDepInfo &BlockMap = NLDI->second.first;
   1356     for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
   1357          DI != DE; ++DI)
   1358       if (Instruction *Inst = DI->getResult().getInst())
   1359         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
   1360     NonLocalDeps.erase(NLDI);
   1361   }
   1362 
   1363   // If we have a cached local dependence query for this instruction, remove it.
   1364   //
   1365   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
   1366   if (LocalDepEntry != LocalDeps.end()) {
   1367     // Remove us from DepInst's reverse set now that the local dep info is gone.
   1368     if (Instruction *Inst = LocalDepEntry->second.getInst())
   1369       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
   1370 
   1371     // Remove this local dependency info.
   1372     LocalDeps.erase(LocalDepEntry);
   1373   }
   1374 
   1375   // If we have any cached pointer dependencies on this instruction, remove
   1376   // them.  If the instruction has non-pointer type, then it can't be a pointer
   1377   // base.
   1378 
   1379   // Remove it from both the load info and the store info.  The instruction
   1380   // can't be in either of these maps if it is non-pointer.
   1381   if (RemInst->getType()->isPointerTy()) {
   1382     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
   1383     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
   1384   }
   1385 
   1386   // Loop over all of the things that depend on the instruction we're removing.
   1387   //
   1388   SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
   1389 
   1390   // If we find RemInst as a clobber or Def in any of the maps for other values,
   1391   // we need to replace its entry with a dirty version of the instruction after
   1392   // it.  If RemInst is a terminator, we use a null dirty value.
   1393   //
   1394   // Using a dirty version of the instruction after RemInst saves having to scan
   1395   // the entire block to get to this point.
   1396   MemDepResult NewDirtyVal;
   1397   if (!RemInst->isTerminator())
   1398     NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
   1399 
   1400   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
   1401   if (ReverseDepIt != ReverseLocalDeps.end()) {
   1402     SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
   1403     // RemInst can't be the terminator if it has local stuff depending on it.
   1404     assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
   1405            "Nothing can locally depend on a terminator");
   1406 
   1407     for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
   1408          E = ReverseDeps.end(); I != E; ++I) {
   1409       Instruction *InstDependingOnRemInst = *I;
   1410       assert(InstDependingOnRemInst != RemInst &&
   1411              "Already removed our local dep info");
   1412 
   1413       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
   1414 
   1415       // Make sure to remember that new things depend on NewDepInst.
   1416       assert(NewDirtyVal.getInst() && "There is no way something else can have "
   1417              "a local dep on this if it is a terminator!");
   1418       ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
   1419                                                 InstDependingOnRemInst));
   1420     }
   1421 
   1422     ReverseLocalDeps.erase(ReverseDepIt);
   1423 
   1424     // Add new reverse deps after scanning the set, to avoid invalidating the
   1425     // 'ReverseDeps' reference.
   1426     while (!ReverseDepsToAdd.empty()) {
   1427       ReverseLocalDeps[ReverseDepsToAdd.back().first]
   1428         .insert(ReverseDepsToAdd.back().second);
   1429       ReverseDepsToAdd.pop_back();
   1430     }
   1431   }
   1432 
   1433   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
   1434   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
   1435     SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
   1436     for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
   1437          I != E; ++I) {
   1438       assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
   1439 
   1440       PerInstNLInfo &INLD = NonLocalDeps[*I];
   1441       // The information is now dirty!
   1442       INLD.second = true;
   1443 
   1444       for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
   1445            DE = INLD.first.end(); DI != DE; ++DI) {
   1446         if (DI->getResult().getInst() != RemInst) continue;
   1447 
   1448         // Convert to a dirty entry for the subsequent instruction.
   1449         DI->setResult(NewDirtyVal);
   1450 
   1451         if (Instruction *NextI = NewDirtyVal.getInst())
   1452           ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
   1453       }
   1454     }
   1455 
   1456     ReverseNonLocalDeps.erase(ReverseDepIt);
   1457 
   1458     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
   1459     while (!ReverseDepsToAdd.empty()) {
   1460       ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
   1461         .insert(ReverseDepsToAdd.back().second);
   1462       ReverseDepsToAdd.pop_back();
   1463     }
   1464   }
   1465 
   1466   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
   1467   // value in the NonLocalPointerDeps info.
   1468   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
   1469     ReverseNonLocalPtrDeps.find(RemInst);
   1470   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
   1471     SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
   1472     SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
   1473 
   1474     for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
   1475          E = Set.end(); I != E; ++I) {
   1476       ValueIsLoadPair P = *I;
   1477       assert(P.getPointer() != RemInst &&
   1478              "Already removed NonLocalPointerDeps info for RemInst");
   1479 
   1480       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
   1481 
   1482       // The cache is not valid for any specific block anymore.
   1483       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
   1484 
   1485       // Update any entries for RemInst to use the instruction after it.
   1486       for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
   1487            DI != DE; ++DI) {
   1488         if (DI->getResult().getInst() != RemInst) continue;
   1489 
   1490         // Convert to a dirty entry for the subsequent instruction.
   1491         DI->setResult(NewDirtyVal);
   1492 
   1493         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
   1494           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
   1495       }
   1496 
   1497       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
   1498       // subsequent value may invalidate the sortedness.
   1499       std::sort(NLPDI.begin(), NLPDI.end());
   1500     }
   1501 
   1502     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
   1503 
   1504     while (!ReversePtrDepsToAdd.empty()) {
   1505       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
   1506         .insert(ReversePtrDepsToAdd.back().second);
   1507       ReversePtrDepsToAdd.pop_back();
   1508     }
   1509   }
   1510 
   1511 
   1512   assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
   1513   AA->deleteValue(RemInst);
   1514   DEBUG(verifyRemoved(RemInst));
   1515 }
   1516 /// verifyRemoved - Verify that the specified instruction does not occur
   1517 /// in our internal data structures.
   1518 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
   1519   for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
   1520        E = LocalDeps.end(); I != E; ++I) {
   1521     assert(I->first != D && "Inst occurs in data structures");
   1522     assert(I->second.getInst() != D &&
   1523            "Inst occurs in data structures");
   1524   }
   1525 
   1526   for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
   1527        E = NonLocalPointerDeps.end(); I != E; ++I) {
   1528     assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
   1529     const NonLocalDepInfo &Val = I->second.NonLocalDeps;
   1530     for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
   1531          II != E; ++II)
   1532       assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
   1533   }
   1534 
   1535   for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
   1536        E = NonLocalDeps.end(); I != E; ++I) {
   1537     assert(I->first != D && "Inst occurs in data structures");
   1538     const PerInstNLInfo &INLD = I->second;
   1539     for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
   1540          EE = INLD.first.end(); II  != EE; ++II)
   1541       assert(II->getResult().getInst() != D && "Inst occurs in data structures");
   1542   }
   1543 
   1544   for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
   1545        E = ReverseLocalDeps.end(); I != E; ++I) {
   1546     assert(I->first != D && "Inst occurs in data structures");
   1547     for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
   1548          EE = I->second.end(); II != EE; ++II)
   1549       assert(*II != D && "Inst occurs in data structures");
   1550   }
   1551 
   1552   for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
   1553        E = ReverseNonLocalDeps.end();
   1554        I != E; ++I) {
   1555     assert(I->first != D && "Inst occurs in data structures");
   1556     for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
   1557          EE = I->second.end(); II != EE; ++II)
   1558       assert(*II != D && "Inst occurs in data structures");
   1559   }
   1560 
   1561   for (ReverseNonLocalPtrDepTy::const_iterator
   1562        I = ReverseNonLocalPtrDeps.begin(),
   1563        E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
   1564     assert(I->first != D && "Inst occurs in rev NLPD map");
   1565 
   1566     for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
   1567          E = I->second.end(); II != E; ++II)
   1568       assert(*II != ValueIsLoadPair(D, false) &&
   1569              *II != ValueIsLoadPair(D, true) &&
   1570              "Inst occurs in ReverseNonLocalPtrDeps map");
   1571   }
   1572 
   1573 }
   1574