Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the LoopInfo class that is used to identify natural loops
     11 // and determine the loop depth of various nodes of the CFG.  A natural loop
     12 // has exactly one entry-point, which is called the header. Note that natural
     13 // loops may actually be several loops that share the same header node.
     14 //
     15 // This analysis calculates the nesting structure of loops in a function.  For
     16 // each natural loop identified, this analysis identifies natural loops
     17 // contained entirely within the loop and the basic blocks the make up the loop.
     18 //
     19 // It can calculate on the fly various bits of information, for example:
     20 //
     21 //  * whether there is a preheader for the loop
     22 //  * the number of back edges to the header
     23 //  * whether or not a particular block branches out of the loop
     24 //  * the successor blocks of the loop
     25 //  * the loop depth
     26 //  * etc...
     27 //
     28 //===----------------------------------------------------------------------===//
     29 
     30 #ifndef LLVM_ANALYSIS_LOOP_INFO_H
     31 #define LLVM_ANALYSIS_LOOP_INFO_H
     32 
     33 #include "llvm/Pass.h"
     34 #include "llvm/ADT/DenseMap.h"
     35 #include "llvm/ADT/DenseSet.h"
     36 #include "llvm/ADT/DepthFirstIterator.h"
     37 #include "llvm/ADT/GraphTraits.h"
     38 #include "llvm/ADT/SmallVector.h"
     39 #include "llvm/ADT/STLExtras.h"
     40 #include "llvm/Analysis/Dominators.h"
     41 #include "llvm/Support/CFG.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 #include <algorithm>
     44 #include <map>
     45 
     46 namespace llvm {
     47 
     48 template<typename T>
     49 static void RemoveFromVector(std::vector<T*> &V, T *N) {
     50   typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
     51   assert(I != V.end() && "N is not in this list!");
     52   V.erase(I);
     53 }
     54 
     55 class DominatorTree;
     56 class LoopInfo;
     57 class Loop;
     58 class PHINode;
     59 template<class N, class M> class LoopInfoBase;
     60 template<class N, class M> class LoopBase;
     61 
     62 //===----------------------------------------------------------------------===//
     63 /// LoopBase class - Instances of this class are used to represent loops that
     64 /// are detected in the flow graph
     65 ///
     66 template<class BlockT, class LoopT>
     67 class LoopBase {
     68   LoopT *ParentLoop;
     69   // SubLoops - Loops contained entirely within this one.
     70   std::vector<LoopT *> SubLoops;
     71 
     72   // Blocks - The list of blocks in this loop.  First entry is the header node.
     73   std::vector<BlockT*> Blocks;
     74 
     75   // DO NOT IMPLEMENT
     76   LoopBase(const LoopBase<BlockT, LoopT> &);
     77   // DO NOT IMPLEMENT
     78   const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
     79 public:
     80   /// Loop ctor - This creates an empty loop.
     81   LoopBase() : ParentLoop(0) {}
     82   ~LoopBase() {
     83     for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
     84       delete SubLoops[i];
     85   }
     86 
     87   /// getLoopDepth - Return the nesting level of this loop.  An outer-most
     88   /// loop has depth 1, for consistency with loop depth values used for basic
     89   /// blocks, where depth 0 is used for blocks not inside any loops.
     90   unsigned getLoopDepth() const {
     91     unsigned D = 1;
     92     for (const LoopT *CurLoop = ParentLoop; CurLoop;
     93          CurLoop = CurLoop->ParentLoop)
     94       ++D;
     95     return D;
     96   }
     97   BlockT *getHeader() const { return Blocks.front(); }
     98   LoopT *getParentLoop() const { return ParentLoop; }
     99 
    100   /// contains - Return true if the specified loop is contained within in
    101   /// this loop.
    102   ///
    103   bool contains(const LoopT *L) const {
    104     if (L == this) return true;
    105     if (L == 0)    return false;
    106     return contains(L->getParentLoop());
    107   }
    108 
    109   /// contains - Return true if the specified basic block is in this loop.
    110   ///
    111   bool contains(const BlockT *BB) const {
    112     return std::find(block_begin(), block_end(), BB) != block_end();
    113   }
    114 
    115   /// contains - Return true if the specified instruction is in this loop.
    116   ///
    117   template<class InstT>
    118   bool contains(const InstT *Inst) const {
    119     return contains(Inst->getParent());
    120   }
    121 
    122   /// iterator/begin/end - Return the loops contained entirely within this loop.
    123   ///
    124   const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
    125   typedef typename std::vector<LoopT *>::const_iterator iterator;
    126   iterator begin() const { return SubLoops.begin(); }
    127   iterator end() const { return SubLoops.end(); }
    128   bool empty() const { return SubLoops.empty(); }
    129 
    130   /// getBlocks - Get a list of the basic blocks which make up this loop.
    131   ///
    132   const std::vector<BlockT*> &getBlocks() const { return Blocks; }
    133   typedef typename std::vector<BlockT*>::const_iterator block_iterator;
    134   block_iterator block_begin() const { return Blocks.begin(); }
    135   block_iterator block_end() const { return Blocks.end(); }
    136 
    137   /// getNumBlocks - Get the number of blocks in this loop in constant time.
    138   unsigned getNumBlocks() const {
    139     return Blocks.size();
    140   }
    141 
    142   /// isLoopExiting - True if terminator in the block can branch to another
    143   /// block that is outside of the current loop.
    144   ///
    145   bool isLoopExiting(const BlockT *BB) const {
    146     typedef GraphTraits<BlockT*> BlockTraits;
    147     for (typename BlockTraits::ChildIteratorType SI =
    148          BlockTraits::child_begin(const_cast<BlockT*>(BB)),
    149          SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
    150       if (!contains(*SI))
    151         return true;
    152     }
    153     return false;
    154   }
    155 
    156   /// getNumBackEdges - Calculate the number of back edges to the loop header
    157   ///
    158   unsigned getNumBackEdges() const {
    159     unsigned NumBackEdges = 0;
    160     BlockT *H = getHeader();
    161 
    162     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    163     for (typename InvBlockTraits::ChildIteratorType I =
    164          InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
    165          E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
    166       if (contains(*I))
    167         ++NumBackEdges;
    168 
    169     return NumBackEdges;
    170   }
    171 
    172   //===--------------------------------------------------------------------===//
    173   // APIs for simple analysis of the loop.
    174   //
    175   // Note that all of these methods can fail on general loops (ie, there may not
    176   // be a preheader, etc).  For best success, the loop simplification and
    177   // induction variable canonicalization pass should be used to normalize loops
    178   // for easy analysis.  These methods assume canonical loops.
    179 
    180   /// getExitingBlocks - Return all blocks inside the loop that have successors
    181   /// outside of the loop.  These are the blocks _inside of the current loop_
    182   /// which branch out.  The returned list is always unique.
    183   ///
    184   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
    185     // Sort the blocks vector so that we can use binary search to do quick
    186     // lookups.
    187     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
    188     std::sort(LoopBBs.begin(), LoopBBs.end());
    189 
    190     typedef GraphTraits<BlockT*> BlockTraits;
    191     for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
    192       for (typename BlockTraits::ChildIteratorType I =
    193           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
    194           I != E; ++I)
    195         if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
    196           // Not in current loop? It must be an exit block.
    197           ExitingBlocks.push_back(*BI);
    198           break;
    199         }
    200   }
    201 
    202   /// getExitingBlock - If getExitingBlocks would return exactly one block,
    203   /// return that block. Otherwise return null.
    204   BlockT *getExitingBlock() const {
    205     SmallVector<BlockT*, 8> ExitingBlocks;
    206     getExitingBlocks(ExitingBlocks);
    207     if (ExitingBlocks.size() == 1)
    208       return ExitingBlocks[0];
    209     return 0;
    210   }
    211 
    212   /// getExitBlocks - Return all of the successor blocks of this loop.  These
    213   /// are the blocks _outside of the current loop_ which are branched to.
    214   ///
    215   void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
    216     // Sort the blocks vector so that we can use binary search to do quick
    217     // lookups.
    218     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
    219     std::sort(LoopBBs.begin(), LoopBBs.end());
    220 
    221     typedef GraphTraits<BlockT*> BlockTraits;
    222     for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
    223       for (typename BlockTraits::ChildIteratorType I =
    224            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
    225            I != E; ++I)
    226         if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
    227           // Not in current loop? It must be an exit block.
    228           ExitBlocks.push_back(*I);
    229   }
    230 
    231   /// getExitBlock - If getExitBlocks would return exactly one block,
    232   /// return that block. Otherwise return null.
    233   BlockT *getExitBlock() const {
    234     SmallVector<BlockT*, 8> ExitBlocks;
    235     getExitBlocks(ExitBlocks);
    236     if (ExitBlocks.size() == 1)
    237       return ExitBlocks[0];
    238     return 0;
    239   }
    240 
    241   /// Edge type.
    242   typedef std::pair<BlockT*, BlockT*> Edge;
    243 
    244   /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
    245   template <typename EdgeT>
    246   void getExitEdges(SmallVectorImpl<EdgeT> &ExitEdges) const {
    247     // Sort the blocks vector so that we can use binary search to do quick
    248     // lookups.
    249     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
    250     array_pod_sort(LoopBBs.begin(), LoopBBs.end());
    251 
    252     typedef GraphTraits<BlockT*> BlockTraits;
    253     for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
    254       for (typename BlockTraits::ChildIteratorType I =
    255            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
    256            I != E; ++I)
    257         if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
    258           // Not in current loop? It must be an exit block.
    259           ExitEdges.push_back(EdgeT(*BI, *I));
    260   }
    261 
    262   /// getLoopPreheader - If there is a preheader for this loop, return it.  A
    263   /// loop has a preheader if there is only one edge to the header of the loop
    264   /// from outside of the loop.  If this is the case, the block branching to the
    265   /// header of the loop is the preheader node.
    266   ///
    267   /// This method returns null if there is no preheader for the loop.
    268   ///
    269   BlockT *getLoopPreheader() const {
    270     // Keep track of nodes outside the loop branching to the header...
    271     BlockT *Out = getLoopPredecessor();
    272     if (!Out) return 0;
    273 
    274     // Make sure there is only one exit out of the preheader.
    275     typedef GraphTraits<BlockT*> BlockTraits;
    276     typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
    277     ++SI;
    278     if (SI != BlockTraits::child_end(Out))
    279       return 0;  // Multiple exits from the block, must not be a preheader.
    280 
    281     // The predecessor has exactly one successor, so it is a preheader.
    282     return Out;
    283   }
    284 
    285   /// getLoopPredecessor - If the given loop's header has exactly one unique
    286   /// predecessor outside the loop, return it. Otherwise return null.
    287   /// This is less strict that the loop "preheader" concept, which requires
    288   /// the predecessor to have exactly one successor.
    289   ///
    290   BlockT *getLoopPredecessor() const {
    291     // Keep track of nodes outside the loop branching to the header...
    292     BlockT *Out = 0;
    293 
    294     // Loop over the predecessors of the header node...
    295     BlockT *Header = getHeader();
    296     typedef GraphTraits<BlockT*> BlockTraits;
    297     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    298     for (typename InvBlockTraits::ChildIteratorType PI =
    299          InvBlockTraits::child_begin(Header),
    300          PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
    301       typename InvBlockTraits::NodeType *N = *PI;
    302       if (!contains(N)) {     // If the block is not in the loop...
    303         if (Out && Out != N)
    304           return 0;             // Multiple predecessors outside the loop
    305         Out = N;
    306       }
    307     }
    308 
    309     // Make sure there is only one exit out of the preheader.
    310     assert(Out && "Header of loop has no predecessors from outside loop?");
    311     return Out;
    312   }
    313 
    314   /// getLoopLatch - If there is a single latch block for this loop, return it.
    315   /// A latch block is a block that contains a branch back to the header.
    316   BlockT *getLoopLatch() const {
    317     BlockT *Header = getHeader();
    318     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    319     typename InvBlockTraits::ChildIteratorType PI =
    320                                             InvBlockTraits::child_begin(Header);
    321     typename InvBlockTraits::ChildIteratorType PE =
    322                                               InvBlockTraits::child_end(Header);
    323     BlockT *Latch = 0;
    324     for (; PI != PE; ++PI) {
    325       typename InvBlockTraits::NodeType *N = *PI;
    326       if (contains(N)) {
    327         if (Latch) return 0;
    328         Latch = N;
    329       }
    330     }
    331 
    332     return Latch;
    333   }
    334 
    335   //===--------------------------------------------------------------------===//
    336   // APIs for updating loop information after changing the CFG
    337   //
    338 
    339   /// addBasicBlockToLoop - This method is used by other analyses to update loop
    340   /// information.  NewBB is set to be a new member of the current loop.
    341   /// Because of this, it is added as a member of all parent loops, and is added
    342   /// to the specified LoopInfo object as being in the current basic block.  It
    343   /// is not valid to replace the loop header with this method.
    344   ///
    345   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
    346 
    347   /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
    348   /// the OldChild entry in our children list with NewChild, and updates the
    349   /// parent pointer of OldChild to be null and the NewChild to be this loop.
    350   /// This updates the loop depth of the new child.
    351   void replaceChildLoopWith(LoopT *OldChild,
    352                             LoopT *NewChild) {
    353     assert(OldChild->ParentLoop == this && "This loop is already broken!");
    354     assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
    355     typename std::vector<LoopT *>::iterator I =
    356                           std::find(SubLoops.begin(), SubLoops.end(), OldChild);
    357     assert(I != SubLoops.end() && "OldChild not in loop!");
    358     *I = NewChild;
    359     OldChild->ParentLoop = 0;
    360     NewChild->ParentLoop = static_cast<LoopT *>(this);
    361   }
    362 
    363   /// addChildLoop - Add the specified loop to be a child of this loop.  This
    364   /// updates the loop depth of the new child.
    365   ///
    366   void addChildLoop(LoopT *NewChild) {
    367     assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
    368     NewChild->ParentLoop = static_cast<LoopT *>(this);
    369     SubLoops.push_back(NewChild);
    370   }
    371 
    372   /// removeChildLoop - This removes the specified child from being a subloop of
    373   /// this loop.  The loop is not deleted, as it will presumably be inserted
    374   /// into another loop.
    375   LoopT *removeChildLoop(iterator I) {
    376     assert(I != SubLoops.end() && "Cannot remove end iterator!");
    377     LoopT *Child = *I;
    378     assert(Child->ParentLoop == this && "Child is not a child of this loop!");
    379     SubLoops.erase(SubLoops.begin()+(I-begin()));
    380     Child->ParentLoop = 0;
    381     return Child;
    382   }
    383 
    384   /// addBlockEntry - This adds a basic block directly to the basic block list.
    385   /// This should only be used by transformations that create new loops.  Other
    386   /// transformations should use addBasicBlockToLoop.
    387   void addBlockEntry(BlockT *BB) {
    388     Blocks.push_back(BB);
    389   }
    390 
    391   /// moveToHeader - This method is used to move BB (which must be part of this
    392   /// loop) to be the loop header of the loop (the block that dominates all
    393   /// others).
    394   void moveToHeader(BlockT *BB) {
    395     if (Blocks[0] == BB) return;
    396     for (unsigned i = 0; ; ++i) {
    397       assert(i != Blocks.size() && "Loop does not contain BB!");
    398       if (Blocks[i] == BB) {
    399         Blocks[i] = Blocks[0];
    400         Blocks[0] = BB;
    401         return;
    402       }
    403     }
    404   }
    405 
    406   /// removeBlockFromLoop - This removes the specified basic block from the
    407   /// current loop, updating the Blocks as appropriate.  This does not update
    408   /// the mapping in the LoopInfo class.
    409   void removeBlockFromLoop(BlockT *BB) {
    410     RemoveFromVector(Blocks, BB);
    411   }
    412 
    413   /// verifyLoop - Verify loop structure
    414   void verifyLoop() const {
    415 #ifndef NDEBUG
    416     assert(!Blocks.empty() && "Loop header is missing");
    417 
    418     // Setup for using a depth-first iterator to visit every block in the loop.
    419     SmallVector<BlockT*, 8> ExitBBs;
    420     getExitBlocks(ExitBBs);
    421     llvm::SmallPtrSet<BlockT*, 8> VisitSet;
    422     VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
    423     df_ext_iterator<BlockT*, llvm::SmallPtrSet<BlockT*, 8> >
    424         BI = df_ext_begin(getHeader(), VisitSet),
    425         BE = df_ext_end(getHeader(), VisitSet);
    426 
    427     // Keep track of the number of BBs visited.
    428     unsigned NumVisited = 0;
    429 
    430     // Sort the blocks vector so that we can use binary search to do quick
    431     // lookups.
    432     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
    433     std::sort(LoopBBs.begin(), LoopBBs.end());
    434 
    435     // Check the individual blocks.
    436     for ( ; BI != BE; ++BI) {
    437       BlockT *BB = *BI;
    438       bool HasInsideLoopSuccs = false;
    439       bool HasInsideLoopPreds = false;
    440       SmallVector<BlockT *, 2> OutsideLoopPreds;
    441 
    442       typedef GraphTraits<BlockT*> BlockTraits;
    443       for (typename BlockTraits::ChildIteratorType SI =
    444            BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
    445            SI != SE; ++SI)
    446         if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
    447           HasInsideLoopSuccs = true;
    448           break;
    449         }
    450       typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    451       for (typename InvBlockTraits::ChildIteratorType PI =
    452            InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
    453            PI != PE; ++PI) {
    454         BlockT *N = *PI;
    455         if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
    456           HasInsideLoopPreds = true;
    457         else
    458           OutsideLoopPreds.push_back(N);
    459       }
    460 
    461       if (BB == getHeader()) {
    462         assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
    463       } else if (!OutsideLoopPreds.empty()) {
    464         // A non-header loop shouldn't be reachable from outside the loop,
    465         // though it is permitted if the predecessor is not itself actually
    466         // reachable.
    467         BlockT *EntryBB = BB->getParent()->begin();
    468         for (df_iterator<BlockT *> NI = df_begin(EntryBB),
    469              NE = df_end(EntryBB); NI != NE; ++NI)
    470           for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
    471             assert(*NI != OutsideLoopPreds[i] &&
    472                    "Loop has multiple entry points!");
    473       }
    474       assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
    475       assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
    476       assert(BB != getHeader()->getParent()->begin() &&
    477              "Loop contains function entry block!");
    478 
    479       NumVisited++;
    480     }
    481 
    482     assert(NumVisited == getNumBlocks() && "Unreachable block in loop");
    483 
    484     // Check the subloops.
    485     for (iterator I = begin(), E = end(); I != E; ++I)
    486       // Each block in each subloop should be contained within this loop.
    487       for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
    488            BI != BE; ++BI) {
    489         assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
    490                "Loop does not contain all the blocks of a subloop!");
    491       }
    492 
    493     // Check the parent loop pointer.
    494     if (ParentLoop) {
    495       assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
    496                ParentLoop->end() &&
    497              "Loop is not a subloop of its parent!");
    498     }
    499 #endif
    500   }
    501 
    502   /// verifyLoop - Verify loop structure of this loop and all nested loops.
    503   void verifyLoopNest(DenseSet<const LoopT*> *Loops) const {
    504     Loops->insert(static_cast<const LoopT *>(this));
    505     // Verify this loop.
    506     verifyLoop();
    507     // Verify the subloops.
    508     for (iterator I = begin(), E = end(); I != E; ++I)
    509       (*I)->verifyLoopNest(Loops);
    510   }
    511 
    512   void print(raw_ostream &OS, unsigned Depth = 0) const {
    513     OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
    514        << " containing: ";
    515 
    516     for (unsigned i = 0; i < getBlocks().size(); ++i) {
    517       if (i) OS << ",";
    518       BlockT *BB = getBlocks()[i];
    519       WriteAsOperand(OS, BB, false);
    520       if (BB == getHeader())    OS << "<header>";
    521       if (BB == getLoopLatch()) OS << "<latch>";
    522       if (isLoopExiting(BB))    OS << "<exiting>";
    523     }
    524     OS << "\n";
    525 
    526     for (iterator I = begin(), E = end(); I != E; ++I)
    527       (*I)->print(OS, Depth+2);
    528   }
    529 
    530 protected:
    531   friend class LoopInfoBase<BlockT, LoopT>;
    532   explicit LoopBase(BlockT *BB) : ParentLoop(0) {
    533     Blocks.push_back(BB);
    534   }
    535 };
    536 
    537 template<class BlockT, class LoopT>
    538 raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
    539   Loop.print(OS);
    540   return OS;
    541 }
    542 
    543 class Loop : public LoopBase<BasicBlock, Loop> {
    544 public:
    545   Loop() {}
    546 
    547   /// isLoopInvariant - Return true if the specified value is loop invariant
    548   ///
    549   bool isLoopInvariant(Value *V) const;
    550 
    551   /// hasLoopInvariantOperands - Return true if all the operands of the
    552   /// specified instruction are loop invariant.
    553   bool hasLoopInvariantOperands(Instruction *I) const;
    554 
    555   /// makeLoopInvariant - If the given value is an instruction inside of the
    556   /// loop and it can be hoisted, do so to make it trivially loop-invariant.
    557   /// Return true if the value after any hoisting is loop invariant. This
    558   /// function can be used as a slightly more aggressive replacement for
    559   /// isLoopInvariant.
    560   ///
    561   /// If InsertPt is specified, it is the point to hoist instructions to.
    562   /// If null, the terminator of the loop preheader is used.
    563   ///
    564   bool makeLoopInvariant(Value *V, bool &Changed,
    565                          Instruction *InsertPt = 0) const;
    566 
    567   /// makeLoopInvariant - If the given instruction is inside of the
    568   /// loop and it can be hoisted, do so to make it trivially loop-invariant.
    569   /// Return true if the instruction after any hoisting is loop invariant. This
    570   /// function can be used as a slightly more aggressive replacement for
    571   /// isLoopInvariant.
    572   ///
    573   /// If InsertPt is specified, it is the point to hoist instructions to.
    574   /// If null, the terminator of the loop preheader is used.
    575   ///
    576   bool makeLoopInvariant(Instruction *I, bool &Changed,
    577                          Instruction *InsertPt = 0) const;
    578 
    579   /// getCanonicalInductionVariable - Check to see if the loop has a canonical
    580   /// induction variable: an integer recurrence that starts at 0 and increments
    581   /// by one each time through the loop.  If so, return the phi node that
    582   /// corresponds to it.
    583   ///
    584   /// The IndVarSimplify pass transforms loops to have a canonical induction
    585   /// variable.
    586   ///
    587   PHINode *getCanonicalInductionVariable() const;
    588 
    589   /// isLCSSAForm - Return true if the Loop is in LCSSA form
    590   bool isLCSSAForm(DominatorTree &DT) const;
    591 
    592   /// isLoopSimplifyForm - Return true if the Loop is in the form that
    593   /// the LoopSimplify form transforms loops to, which is sometimes called
    594   /// normal form.
    595   bool isLoopSimplifyForm() const;
    596 
    597   /// isSafeToClone - Return true if the loop body is safe to clone in practice.
    598   bool isSafeToClone() const;
    599 
    600   /// hasDedicatedExits - Return true if no exit block for the loop
    601   /// has a predecessor that is outside the loop.
    602   bool hasDedicatedExits() const;
    603 
    604   /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
    605   /// These are the blocks _outside of the current loop_ which are branched to.
    606   /// This assumes that loop exits are in canonical form.
    607   ///
    608   void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
    609 
    610   /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
    611   /// block, return that block. Otherwise return null.
    612   BasicBlock *getUniqueExitBlock() const;
    613 
    614   void dump() const;
    615 
    616 private:
    617   friend class LoopInfoBase<BasicBlock, Loop>;
    618   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
    619 };
    620 
    621 //===----------------------------------------------------------------------===//
    622 /// LoopInfo - This class builds and contains all of the top level loop
    623 /// structures in the specified function.
    624 ///
    625 
    626 template<class BlockT, class LoopT>
    627 class LoopInfoBase {
    628   // BBMap - Mapping of basic blocks to the inner most loop they occur in
    629   DenseMap<BlockT *, LoopT *> BBMap;
    630   std::vector<LoopT *> TopLevelLoops;
    631   friend class LoopBase<BlockT, LoopT>;
    632   friend class LoopInfo;
    633 
    634   void operator=(const LoopInfoBase &); // do not implement
    635   LoopInfoBase(const LoopInfo &);       // do not implement
    636 public:
    637   LoopInfoBase() { }
    638   ~LoopInfoBase() { releaseMemory(); }
    639 
    640   void releaseMemory() {
    641     for (typename std::vector<LoopT *>::iterator I =
    642          TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
    643       delete *I;   // Delete all of the loops...
    644 
    645     BBMap.clear();                           // Reset internal state of analysis
    646     TopLevelLoops.clear();
    647   }
    648 
    649   /// iterator/begin/end - The interface to the top-level loops in the current
    650   /// function.
    651   ///
    652   typedef typename std::vector<LoopT *>::const_iterator iterator;
    653   iterator begin() const { return TopLevelLoops.begin(); }
    654   iterator end() const { return TopLevelLoops.end(); }
    655   bool empty() const { return TopLevelLoops.empty(); }
    656 
    657   /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
    658   /// block is in no loop (for example the entry node), null is returned.
    659   ///
    660   LoopT *getLoopFor(const BlockT *BB) const {
    661     return BBMap.lookup(const_cast<BlockT*>(BB));
    662   }
    663 
    664   /// operator[] - same as getLoopFor...
    665   ///
    666   const LoopT *operator[](const BlockT *BB) const {
    667     return getLoopFor(BB);
    668   }
    669 
    670   /// getLoopDepth - Return the loop nesting level of the specified block.  A
    671   /// depth of 0 means the block is not inside any loop.
    672   ///
    673   unsigned getLoopDepth(const BlockT *BB) const {
    674     const LoopT *L = getLoopFor(BB);
    675     return L ? L->getLoopDepth() : 0;
    676   }
    677 
    678   // isLoopHeader - True if the block is a loop header node
    679   bool isLoopHeader(BlockT *BB) const {
    680     const LoopT *L = getLoopFor(BB);
    681     return L && L->getHeader() == BB;
    682   }
    683 
    684   /// removeLoop - This removes the specified top-level loop from this loop info
    685   /// object.  The loop is not deleted, as it will presumably be inserted into
    686   /// another loop.
    687   LoopT *removeLoop(iterator I) {
    688     assert(I != end() && "Cannot remove end iterator!");
    689     LoopT *L = *I;
    690     assert(L->getParentLoop() == 0 && "Not a top-level loop!");
    691     TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
    692     return L;
    693   }
    694 
    695   /// changeLoopFor - Change the top-level loop that contains BB to the
    696   /// specified loop.  This should be used by transformations that restructure
    697   /// the loop hierarchy tree.
    698   void changeLoopFor(BlockT *BB, LoopT *L) {
    699     if (!L) {
    700       BBMap.erase(BB);
    701       return;
    702     }
    703     BBMap[BB] = L;
    704   }
    705 
    706   /// changeTopLevelLoop - Replace the specified loop in the top-level loops
    707   /// list with the indicated loop.
    708   void changeTopLevelLoop(LoopT *OldLoop,
    709                           LoopT *NewLoop) {
    710     typename std::vector<LoopT *>::iterator I =
    711                  std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
    712     assert(I != TopLevelLoops.end() && "Old loop not at top level!");
    713     *I = NewLoop;
    714     assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
    715            "Loops already embedded into a subloop!");
    716   }
    717 
    718   /// addTopLevelLoop - This adds the specified loop to the collection of
    719   /// top-level loops.
    720   void addTopLevelLoop(LoopT *New) {
    721     assert(New->getParentLoop() == 0 && "Loop already in subloop!");
    722     TopLevelLoops.push_back(New);
    723   }
    724 
    725   /// removeBlock - This method completely removes BB from all data structures,
    726   /// including all of the Loop objects it is nested in and our mapping from
    727   /// BasicBlocks to loops.
    728   void removeBlock(BlockT *BB) {
    729     typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
    730     if (I != BBMap.end()) {
    731       for (LoopT *L = I->second; L; L = L->getParentLoop())
    732         L->removeBlockFromLoop(BB);
    733 
    734       BBMap.erase(I);
    735     }
    736   }
    737 
    738   // Internals
    739 
    740   static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
    741                                       const LoopT *ParentLoop) {
    742     if (SubLoop == 0) return true;
    743     if (SubLoop == ParentLoop) return false;
    744     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
    745   }
    746 
    747   void Calculate(DominatorTreeBase<BlockT> &DT) {
    748     BlockT *RootNode = DT.getRootNode()->getBlock();
    749 
    750     for (df_iterator<BlockT*> NI = df_begin(RootNode),
    751            NE = df_end(RootNode); NI != NE; ++NI)
    752       if (LoopT *L = ConsiderForLoop(*NI, DT))
    753         TopLevelLoops.push_back(L);
    754   }
    755 
    756   LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
    757     if (BBMap.count(BB)) return 0; // Haven't processed this node?
    758 
    759     std::vector<BlockT *> TodoStack;
    760 
    761     // Scan the predecessors of BB, checking to see if BB dominates any of
    762     // them.  This identifies backedges which target this node...
    763     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    764     for (typename InvBlockTraits::ChildIteratorType I =
    765          InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
    766          I != E; ++I) {
    767       typename InvBlockTraits::NodeType *N = *I;
    768       // If BB dominates its predecessor...
    769       if (DT.dominates(BB, N) && DT.isReachableFromEntry(N))
    770           TodoStack.push_back(N);
    771     }
    772 
    773     if (TodoStack.empty()) return 0;  // No backedges to this block...
    774 
    775     // Create a new loop to represent this basic block...
    776     LoopT *L = new LoopT(BB);
    777     BBMap[BB] = L;
    778 
    779     while (!TodoStack.empty()) {  // Process all the nodes in the loop
    780       BlockT *X = TodoStack.back();
    781       TodoStack.pop_back();
    782 
    783       if (!L->contains(X) &&         // As of yet unprocessed??
    784           DT.isReachableFromEntry(X)) {
    785         // Check to see if this block already belongs to a loop.  If this occurs
    786         // then we have a case where a loop that is supposed to be a child of
    787         // the current loop was processed before the current loop.  When this
    788         // occurs, this child loop gets added to a part of the current loop,
    789         // making it a sibling to the current loop.  We have to reparent this
    790         // loop.
    791         if (LoopT *SubLoop =
    792             const_cast<LoopT *>(getLoopFor(X)))
    793           if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
    794             // Remove the subloop from its current parent...
    795             assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
    796             LoopT *SLP = SubLoop->ParentLoop;  // SubLoopParent
    797             typename std::vector<LoopT *>::iterator I =
    798               std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
    799             assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
    800             SLP->SubLoops.erase(I);   // Remove from parent...
    801 
    802             // Add the subloop to THIS loop...
    803             SubLoop->ParentLoop = L;
    804             L->SubLoops.push_back(SubLoop);
    805           }
    806 
    807         // Normal case, add the block to our loop...
    808         L->Blocks.push_back(X);
    809 
    810         typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    811 
    812         // Add all of the predecessors of X to the end of the work stack...
    813         TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
    814                          InvBlockTraits::child_end(X));
    815       }
    816     }
    817 
    818     // If there are any loops nested within this loop, create them now!
    819     for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
    820          E = L->Blocks.end(); I != E; ++I)
    821       if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
    822         L->SubLoops.push_back(NewLoop);
    823         NewLoop->ParentLoop = L;
    824       }
    825 
    826     // Add the basic blocks that comprise this loop to the BBMap so that this
    827     // loop can be found for them.
    828     //
    829     for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
    830            E = L->Blocks.end(); I != E; ++I)
    831       BBMap.insert(std::make_pair(*I, L));
    832 
    833     // Now that we have a list of all of the child loops of this loop, check to
    834     // see if any of them should actually be nested inside of each other.  We
    835     // can accidentally pull loops our of their parents, so we must make sure to
    836     // organize the loop nests correctly now.
    837     {
    838       std::map<BlockT *, LoopT *> ContainingLoops;
    839       for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
    840         LoopT *Child = L->SubLoops[i];
    841         assert(Child->getParentLoop() == L && "Not proper child loop?");
    842 
    843         if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
    844           // If there is already a loop which contains this loop, move this loop
    845           // into the containing loop.
    846           MoveSiblingLoopInto(Child, ContainingLoop);
    847           --i;  // The loop got removed from the SubLoops list.
    848         } else {
    849           // This is currently considered to be a top-level loop.  Check to see
    850           // if any of the contained blocks are loop headers for subloops we
    851           // have already processed.
    852           for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
    853             LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
    854             if (BlockLoop == 0) {   // Child block not processed yet...
    855               BlockLoop = Child;
    856             } else if (BlockLoop != Child) {
    857               LoopT *SubLoop = BlockLoop;
    858               // Reparent all of the blocks which used to belong to BlockLoops
    859               for (unsigned j = 0, f = SubLoop->Blocks.size(); j != f; ++j)
    860                 ContainingLoops[SubLoop->Blocks[j]] = Child;
    861 
    862               // There is already a loop which contains this block, that means
    863               // that we should reparent the loop which the block is currently
    864               // considered to belong to to be a child of this loop.
    865               MoveSiblingLoopInto(SubLoop, Child);
    866               --i;  // We just shrunk the SubLoops list.
    867             }
    868           }
    869         }
    870       }
    871     }
    872 
    873     return L;
    874   }
    875 
    876   /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
    877   /// of the NewParent Loop, instead of being a sibling of it.
    878   void MoveSiblingLoopInto(LoopT *NewChild,
    879                            LoopT *NewParent) {
    880     LoopT *OldParent = NewChild->getParentLoop();
    881     assert(OldParent && OldParent == NewParent->getParentLoop() &&
    882            NewChild != NewParent && "Not sibling loops!");
    883 
    884     // Remove NewChild from being a child of OldParent
    885     typename std::vector<LoopT *>::iterator I =
    886       std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
    887                 NewChild);
    888     assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
    889     OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
    890     NewChild->ParentLoop = 0;
    891 
    892     InsertLoopInto(NewChild, NewParent);
    893   }
    894 
    895   /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
    896   /// the parent loop contains a loop which should contain L, the loop gets
    897   /// inserted into L instead.
    898   void InsertLoopInto(LoopT *L, LoopT *Parent) {
    899     BlockT *LHeader = L->getHeader();
    900     assert(Parent->contains(LHeader) &&
    901            "This loop should not be inserted here!");
    902 
    903     // Check to see if it belongs in a child loop...
    904     for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
    905          i != e; ++i)
    906       if (Parent->SubLoops[i]->contains(LHeader)) {
    907         InsertLoopInto(L, Parent->SubLoops[i]);
    908         return;
    909       }
    910 
    911     // If not, insert it here!
    912     Parent->SubLoops.push_back(L);
    913     L->ParentLoop = Parent;
    914   }
    915 
    916   // Debugging
    917 
    918   void print(raw_ostream &OS) const {
    919     for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
    920       TopLevelLoops[i]->print(OS);
    921   #if 0
    922     for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
    923            E = BBMap.end(); I != E; ++I)
    924       OS << "BB '" << I->first->getName() << "' level = "
    925          << I->second->getLoopDepth() << "\n";
    926   #endif
    927   }
    928 };
    929 
    930 class LoopInfo : public FunctionPass {
    931   LoopInfoBase<BasicBlock, Loop> LI;
    932   friend class LoopBase<BasicBlock, Loop>;
    933 
    934   void operator=(const LoopInfo &); // do not implement
    935   LoopInfo(const LoopInfo &);       // do not implement
    936 public:
    937   static char ID; // Pass identification, replacement for typeid
    938 
    939   LoopInfo() : FunctionPass(ID) {
    940     initializeLoopInfoPass(*PassRegistry::getPassRegistry());
    941   }
    942 
    943   LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
    944 
    945   /// iterator/begin/end - The interface to the top-level loops in the current
    946   /// function.
    947   ///
    948   typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
    949   inline iterator begin() const { return LI.begin(); }
    950   inline iterator end() const { return LI.end(); }
    951   bool empty() const { return LI.empty(); }
    952 
    953   /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
    954   /// block is in no loop (for example the entry node), null is returned.
    955   ///
    956   inline Loop *getLoopFor(const BasicBlock *BB) const {
    957     return LI.getLoopFor(BB);
    958   }
    959 
    960   /// operator[] - same as getLoopFor...
    961   ///
    962   inline const Loop *operator[](const BasicBlock *BB) const {
    963     return LI.getLoopFor(BB);
    964   }
    965 
    966   /// getLoopDepth - Return the loop nesting level of the specified block.  A
    967   /// depth of 0 means the block is not inside any loop.
    968   ///
    969   inline unsigned getLoopDepth(const BasicBlock *BB) const {
    970     return LI.getLoopDepth(BB);
    971   }
    972 
    973   // isLoopHeader - True if the block is a loop header node
    974   inline bool isLoopHeader(BasicBlock *BB) const {
    975     return LI.isLoopHeader(BB);
    976   }
    977 
    978   /// runOnFunction - Calculate the natural loop information.
    979   ///
    980   virtual bool runOnFunction(Function &F);
    981 
    982   virtual void verifyAnalysis() const;
    983 
    984   virtual void releaseMemory() { LI.releaseMemory(); }
    985 
    986   virtual void print(raw_ostream &O, const Module* M = 0) const;
    987 
    988   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    989 
    990   /// removeLoop - This removes the specified top-level loop from this loop info
    991   /// object.  The loop is not deleted, as it will presumably be inserted into
    992   /// another loop.
    993   inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
    994 
    995   /// changeLoopFor - Change the top-level loop that contains BB to the
    996   /// specified loop.  This should be used by transformations that restructure
    997   /// the loop hierarchy tree.
    998   inline void changeLoopFor(BasicBlock *BB, Loop *L) {
    999     LI.changeLoopFor(BB, L);
   1000   }
   1001 
   1002   /// changeTopLevelLoop - Replace the specified loop in the top-level loops
   1003   /// list with the indicated loop.
   1004   inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
   1005     LI.changeTopLevelLoop(OldLoop, NewLoop);
   1006   }
   1007 
   1008   /// addTopLevelLoop - This adds the specified loop to the collection of
   1009   /// top-level loops.
   1010   inline void addTopLevelLoop(Loop *New) {
   1011     LI.addTopLevelLoop(New);
   1012   }
   1013 
   1014   /// removeBlock - This method completely removes BB from all data structures,
   1015   /// including all of the Loop objects it is nested in and our mapping from
   1016   /// BasicBlocks to loops.
   1017   void removeBlock(BasicBlock *BB) {
   1018     LI.removeBlock(BB);
   1019   }
   1020 
   1021   /// updateUnloop - Update LoopInfo after removing the last backedge from a
   1022   /// loop--now the "unloop". This updates the loop forest and parent loops for
   1023   /// each block so that Unloop is no longer referenced, but the caller must
   1024   /// actually delete the Unloop object.
   1025   void updateUnloop(Loop *Unloop);
   1026 
   1027   /// replacementPreservesLCSSAForm - Returns true if replacing From with To
   1028   /// everywhere is guaranteed to preserve LCSSA form.
   1029   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
   1030     // Preserving LCSSA form is only problematic if the replacing value is an
   1031     // instruction.
   1032     Instruction *I = dyn_cast<Instruction>(To);
   1033     if (!I) return true;
   1034     // If both instructions are defined in the same basic block then replacement
   1035     // cannot break LCSSA form.
   1036     if (I->getParent() == From->getParent())
   1037       return true;
   1038     // If the instruction is not defined in a loop then it can safely replace
   1039     // anything.
   1040     Loop *ToLoop = getLoopFor(I->getParent());
   1041     if (!ToLoop) return true;
   1042     // If the replacing instruction is defined in the same loop as the original
   1043     // instruction, or in a loop that contains it as an inner loop, then using
   1044     // it as a replacement will not break LCSSA form.
   1045     return ToLoop->contains(getLoopFor(From->getParent()));
   1046   }
   1047 };
   1048 
   1049 
   1050 // Allow clients to walk the list of nested loops...
   1051 template <> struct GraphTraits<const Loop*> {
   1052   typedef const Loop NodeType;
   1053   typedef LoopInfo::iterator ChildIteratorType;
   1054 
   1055   static NodeType *getEntryNode(const Loop *L) { return L; }
   1056   static inline ChildIteratorType child_begin(NodeType *N) {
   1057     return N->begin();
   1058   }
   1059   static inline ChildIteratorType child_end(NodeType *N) {
   1060     return N->end();
   1061   }
   1062 };
   1063 
   1064 template <> struct GraphTraits<Loop*> {
   1065   typedef Loop NodeType;
   1066   typedef LoopInfo::iterator ChildIteratorType;
   1067 
   1068   static NodeType *getEntryNode(Loop *L) { return L; }
   1069   static inline ChildIteratorType child_begin(NodeType *N) {
   1070     return N->begin();
   1071   }
   1072   static inline ChildIteratorType child_end(NodeType *N) {
   1073     return N->end();
   1074   }
   1075 };
   1076 
   1077 template<class BlockT, class LoopT>
   1078 void
   1079 LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
   1080                                              LoopInfoBase<BlockT, LoopT> &LIB) {
   1081   assert((Blocks.empty() || LIB[getHeader()] == this) &&
   1082          "Incorrect LI specified for this loop!");
   1083   assert(NewBB && "Cannot add a null basic block to the loop!");
   1084   assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
   1085 
   1086   LoopT *L = static_cast<LoopT *>(this);
   1087 
   1088   // Add the loop mapping to the LoopInfo object...
   1089   LIB.BBMap[NewBB] = L;
   1090 
   1091   // Add the basic block to this loop and all parent loops...
   1092   while (L) {
   1093     L->Blocks.push_back(NewBB);
   1094     L = L->getParentLoop();
   1095   }
   1096 }
   1097 
   1098 } // End llvm namespace
   1099 
   1100 #endif
   1101