Home | History | Annotate | Download | only in re2
      1 // Copyright 2003-2009 The RE2 Authors.  All Rights Reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 #ifndef RE2_RE2_H
      6 #define RE2_RE2_H
      7 
      8 // C++ interface to the re2 regular-expression library.
      9 // RE2 supports Perl-style regular expressions (with extensions like
     10 // \d, \w, \s, ...).
     11 //
     12 // -----------------------------------------------------------------------
     13 // REGEXP SYNTAX:
     14 //
     15 // This module uses the re2 library and hence supports
     16 // its syntax for regular expressions, which is similar to Perl's with
     17 // some of the more complicated things thrown away.  In particular,
     18 // backreferences and generalized assertions are not available, nor is \Z.
     19 //
     20 // See http://code.google.com/p/re2/wiki/Syntax for the syntax
     21 // supported by RE2, and a comparison with PCRE and PERL regexps.
     22 //
     23 // For those not familiar with Perl's regular expressions,
     24 // here are some examples of the most commonly used extensions:
     25 //
     26 //   "hello (\\w+) world"  -- \w matches a "word" character
     27 //   "version (\\d+)"      -- \d matches a digit
     28 //   "hello\\s+world"      -- \s matches any whitespace character
     29 //   "\\b(\\w+)\\b"        -- \b matches non-empty string at word boundary
     30 //   "(?i)hello"           -- (?i) turns on case-insensitive matching
     31 //   "/\\*(.*?)\\*/"       -- .*? matches . minimum no. of times possible
     32 //
     33 // -----------------------------------------------------------------------
     34 // MATCHING INTERFACE:
     35 //
     36 // The "FullMatch" operation checks that supplied text matches a
     37 // supplied pattern exactly.
     38 //
     39 // Example: successful match
     40 //    CHECK(RE2::FullMatch("hello", "h.*o"));
     41 //
     42 // Example: unsuccessful match (requires full match):
     43 //    CHECK(!RE2::FullMatch("hello", "e"));
     44 //
     45 // -----------------------------------------------------------------------
     46 // UTF-8 AND THE MATCHING INTERFACE:
     47 //
     48 // By default, the pattern and input text are interpreted as UTF-8.
     49 // The RE2::Latin1 option causes them to be interpreted as Latin-1.
     50 //
     51 // Example:
     52 //    CHECK(RE2::FullMatch(utf8_string, RE2(utf8_pattern)));
     53 //    CHECK(RE2::FullMatch(latin1_string, RE2(latin1_pattern, RE2::Latin1)));
     54 //
     55 // -----------------------------------------------------------------------
     56 // MATCHING WITH SUB-STRING EXTRACTION:
     57 //
     58 // You can supply extra pointer arguments to extract matched subpieces.
     59 //
     60 // Example: extracts "ruby" into "s" and 1234 into "i"
     61 //    int i;
     62 //    string s;
     63 //    CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s, &i));
     64 //
     65 // Example: fails because string cannot be stored in integer
     66 //    CHECK(!RE2::FullMatch("ruby", "(.*)", &i));
     67 //
     68 // Example: fails because there aren't enough sub-patterns:
     69 //    CHECK(!RE2::FullMatch("ruby:1234", "\\w+:\\d+", &s));
     70 //
     71 // Example: does not try to extract any extra sub-patterns
     72 //    CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s));
     73 //
     74 // Example: does not try to extract into NULL
     75 //    CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", NULL, &i));
     76 //
     77 // Example: integer overflow causes failure
     78 //    CHECK(!RE2::FullMatch("ruby:1234567891234", "\\w+:(\\d+)", &i));
     79 //
     80 // NOTE(rsc): Asking for substrings slows successful matches quite a bit.
     81 // This may get a little faster in the future, but right now is slower
     82 // than PCRE.  On the other hand, failed matches run *very* fast (faster
     83 // than PCRE), as do matches without substring extraction.
     84 //
     85 // -----------------------------------------------------------------------
     86 // PARTIAL MATCHES
     87 //
     88 // You can use the "PartialMatch" operation when you want the pattern
     89 // to match any substring of the text.
     90 //
     91 // Example: simple search for a string:
     92 //      CHECK(RE2::PartialMatch("hello", "ell"));
     93 //
     94 // Example: find first number in a string
     95 //      int number;
     96 //      CHECK(RE2::PartialMatch("x*100 + 20", "(\\d+)", &number));
     97 //      CHECK_EQ(number, 100);
     98 //
     99 // -----------------------------------------------------------------------
    100 // PRE-COMPILED REGULAR EXPRESSIONS
    101 //
    102 // RE2 makes it easy to use any string as a regular expression, without
    103 // requiring a separate compilation step.
    104 //
    105 // If speed is of the essence, you can create a pre-compiled "RE2"
    106 // object from the pattern and use it multiple times.  If you do so,
    107 // you can typically parse text faster than with sscanf.
    108 //
    109 // Example: precompile pattern for faster matching:
    110 //    RE2 pattern("h.*o");
    111 //    while (ReadLine(&str)) {
    112 //      if (RE2::FullMatch(str, pattern)) ...;
    113 //    }
    114 //
    115 // -----------------------------------------------------------------------
    116 // SCANNING TEXT INCREMENTALLY
    117 //
    118 // The "Consume" operation may be useful if you want to repeatedly
    119 // match regular expressions at the front of a string and skip over
    120 // them as they match.  This requires use of the "StringPiece" type,
    121 // which represents a sub-range of a real string.
    122 //
    123 // Example: read lines of the form "var = value" from a string.
    124 //      string contents = ...;          // Fill string somehow
    125 //      StringPiece input(contents);    // Wrap a StringPiece around it
    126 //
    127 //      string var;
    128 //      int value;
    129 //      while (RE2::Consume(&input, "(\\w+) = (\\d+)\n", &var, &value)) {
    130 //        ...;
    131 //      }
    132 //
    133 // Each successful call to "Consume" will set "var/value", and also
    134 // advance "input" so it points past the matched text.  Note that if the
    135 // regular expression matches an empty string, input will advance
    136 // by 0 bytes.  If the regular expression being used might match
    137 // an empty string, the loop body must check for this case and either
    138 // advance the string or break out of the loop.
    139 //
    140 // The "FindAndConsume" operation is similar to "Consume" but does not
    141 // anchor your match at the beginning of the string.  For example, you
    142 // could extract all words from a string by repeatedly calling
    143 //     RE2::FindAndConsume(&input, "(\\w+)", &word)
    144 //
    145 // -----------------------------------------------------------------------
    146 // USING VARIABLE NUMBER OF ARGUMENTS
    147 //
    148 // The above operations require you to know the number of arguments
    149 // when you write the code.  This is not always possible or easy (for
    150 // example, the regular expression may be calculated at run time).
    151 // You can use the "N" version of the operations when the number of
    152 // match arguments are determined at run time.
    153 //
    154 // Example:
    155 //   const RE2::Arg* args[10];
    156 //   int n;
    157 //   // ... populate args with pointers to RE2::Arg values ...
    158 //   // ... set n to the number of RE2::Arg objects ...
    159 //   bool match = RE2::FullMatchN(input, pattern, args, n);
    160 //
    161 // The last statement is equivalent to
    162 //
    163 //   bool match = RE2::FullMatch(input, pattern,
    164 //                               *args[0], *args[1], ..., *args[n - 1]);
    165 //
    166 // -----------------------------------------------------------------------
    167 // PARSING HEX/OCTAL/C-RADIX NUMBERS
    168 //
    169 // By default, if you pass a pointer to a numeric value, the
    170 // corresponding text is interpreted as a base-10 number.  You can
    171 // instead wrap the pointer with a call to one of the operators Hex(),
    172 // Octal(), or CRadix() to interpret the text in another base.  The
    173 // CRadix operator interprets C-style "0" (base-8) and "0x" (base-16)
    174 // prefixes, but defaults to base-10.
    175 //
    176 // Example:
    177 //   int a, b, c, d;
    178 //   CHECK(RE2::FullMatch("100 40 0100 0x40", "(.*) (.*) (.*) (.*)",
    179 //         RE2::Octal(&a), RE2::Hex(&b), RE2::CRadix(&c), RE2::CRadix(&d));
    180 // will leave 64 in a, b, c, and d.
    181 
    182 
    183 #include <stdint.h>
    184 #include <map>
    185 #include <string>
    186 #include "re2/stringpiece.h"
    187 #include "re2/variadic_function.h"
    188 
    189 namespace re2 {
    190 using std::string;
    191 using std::map;
    192 class Mutex;
    193 class Prog;
    194 class Regexp;
    195 
    196 // Interface for regular expression matching.  Also corresponds to a
    197 // pre-compiled regular expression.  An "RE2" object is safe for
    198 // concurrent use by multiple threads.
    199 class RE2 {
    200  public:
    201   // We convert user-passed pointers into special Arg objects
    202   class Arg;
    203   class Options;
    204 
    205   // Defined in set.h.
    206   class Set;
    207 
    208   enum ErrorCode {
    209     NoError = 0,
    210 
    211     // Unexpected error
    212     ErrorInternal,
    213 
    214     // Parse errors
    215     ErrorBadEscape,          // bad escape sequence
    216     ErrorBadCharClass,       // bad character class
    217     ErrorBadCharRange,       // bad character class range
    218     ErrorMissingBracket,     // missing closing ]
    219     ErrorMissingParen,       // missing closing )
    220     ErrorTrailingBackslash,  // trailing \ at end of regexp
    221     ErrorRepeatArgument,     // repeat argument missing, e.g. "*"
    222     ErrorRepeatSize,         // bad repetition argument
    223     ErrorRepeatOp,           // bad repetition operator
    224     ErrorBadPerlOp,          // bad perl operator
    225     ErrorBadUTF8,            // invalid UTF-8 in regexp
    226     ErrorBadNamedCapture,    // bad named capture group
    227     ErrorPatternTooLarge,    // pattern too large (compile failed)
    228   };
    229 
    230   // Predefined common options.
    231   // If you need more complicated things, instantiate
    232   // an Option class, change the settings, and pass it to the
    233   // RE2 constructor.
    234   static const Options DefaultOptions;
    235   static const Options Latin1; // treat input as Latin-1 (default UTF-8)
    236   static const Options POSIX;  // POSIX syntax, leftmost-longest match
    237   static const Options Quiet;  // do not log about regexp parse errors
    238 
    239   // Need to have the const char* and const string& forms for implicit
    240   // conversions when passing string literals to FullMatch and PartialMatch.
    241   // Otherwise the StringPiece form would be sufficient.
    242 #ifndef SWIG
    243   RE2(const char* pattern);
    244   RE2(const string& pattern);
    245 #endif
    246   RE2(const StringPiece& pattern);
    247   RE2(const StringPiece& pattern, const Options& option);
    248   ~RE2();
    249 
    250   // Returns whether RE2 was created properly.
    251   bool ok() const { return error_code() == NoError; }
    252 
    253   // The string specification for this RE2.  E.g.
    254   //   RE2 re("ab*c?d+");
    255   //   re.pattern();    // "ab*c?d+"
    256   const string& pattern() const { return pattern_; }
    257 
    258   // If RE2 could not be created properly, returns an error string.
    259   // Else returns the empty string.
    260   const string& error() const { return *error_; }
    261 
    262   // If RE2 could not be created properly, returns an error code.
    263   // Else returns RE2::NoError (== 0).
    264   ErrorCode error_code() const { return error_code_; }
    265 
    266   // If RE2 could not be created properly, returns the offending
    267   // portion of the regexp.
    268   const string& error_arg() const { return error_arg_; }
    269 
    270   // Returns the program size, a very approximate measure of a regexp's "cost".
    271   // Larger numbers are more expensive than smaller numbers.
    272   int ProgramSize() const;
    273 
    274   // Returns the underlying Regexp; not for general use.
    275   // Returns entire_regexp_ so that callers don't need
    276   // to know about prefix_ and prefix_foldcase_.
    277   re2::Regexp* Regexp() const { return entire_regexp_; }
    278 
    279   /***** The useful part: the matching interface *****/
    280 
    281   // Matches "text" against "pattern".  If pointer arguments are
    282   // supplied, copies matched sub-patterns into them.
    283   //
    284   // You can pass in a "const char*" or a "string" for "text".
    285   // You can pass in a "const char*" or a "string" or a "RE2" for "pattern".
    286   //
    287   // The provided pointer arguments can be pointers to any scalar numeric
    288   // type, or one of:
    289   //    string          (matched piece is copied to string)
    290   //    StringPiece     (StringPiece is mutated to point to matched piece)
    291   //    T               (where "bool T::ParseFrom(const char*, int)" exists)
    292   //    (void*)NULL     (the corresponding matched sub-pattern is not copied)
    293   //
    294   // Returns true iff all of the following conditions are satisfied:
    295   //   a. "text" matches "pattern" exactly
    296   //   b. The number of matched sub-patterns is >= number of supplied pointers
    297   //   c. The "i"th argument has a suitable type for holding the
    298   //      string captured as the "i"th sub-pattern.  If you pass in
    299   //      NULL for the "i"th argument, or pass fewer arguments than
    300   //      number of sub-patterns, "i"th captured sub-pattern is
    301   //      ignored.
    302   //
    303   // CAVEAT: An optional sub-pattern that does not exist in the
    304   // matched string is assigned the empty string.  Therefore, the
    305   // following will return false (because the empty string is not a
    306   // valid number):
    307   //    int number;
    308   //    RE2::FullMatch("abc", "[a-z]+(\\d+)?", &number);
    309   static bool FullMatchN(const StringPiece& text, const RE2& re,
    310                          const Arg* const args[], int argc);
    311   static const VariadicFunction2<
    312       bool, const StringPiece&, const RE2&, Arg, RE2::FullMatchN> FullMatch;
    313 
    314   // Exactly like FullMatch(), except that "pattern" is allowed to match
    315   // a substring of "text".
    316   static bool PartialMatchN(const StringPiece& text, const RE2& re, // 3..16 args
    317                             const Arg* const args[], int argc);
    318   static const VariadicFunction2<
    319       bool, const StringPiece&, const RE2&, Arg, RE2::PartialMatchN> PartialMatch;
    320 
    321   // Like FullMatch() and PartialMatch(), except that pattern has to
    322   // match a prefix of "text", and "input" is advanced past the matched
    323   // text.  Note: "input" is modified iff this routine returns true.
    324   static bool ConsumeN(StringPiece* input, const RE2& pattern, // 3..16 args
    325                        const Arg* const args[], int argc);
    326   static const VariadicFunction2<
    327       bool, StringPiece*, const RE2&, Arg, RE2::ConsumeN> Consume;
    328 
    329   // Like Consume(..), but does not anchor the match at the beginning of the
    330   // string.  That is, "pattern" need not start its match at the beginning of
    331   // "input".  For example, "FindAndConsume(s, "(\\w+)", &word)" finds the next
    332   // word in "s" and stores it in "word".
    333   static bool FindAndConsumeN(StringPiece* input, const RE2& pattern,
    334                              const Arg* const args[], int argc);
    335   static const VariadicFunction2<
    336       bool, StringPiece*, const RE2&, Arg, RE2::FindAndConsumeN> FindAndConsume;
    337 
    338   // Replace the first match of "pattern" in "str" with "rewrite".
    339   // Within "rewrite", backslash-escaped digits (\1 to \9) can be
    340   // used to insert text matching corresponding parenthesized group
    341   // from the pattern.  \0 in "rewrite" refers to the entire matching
    342   // text.  E.g.,
    343   //
    344   //   string s = "yabba dabba doo";
    345   //   CHECK(RE2::Replace(&s, "b+", "d"));
    346   //
    347   // will leave "s" containing "yada dabba doo"
    348   //
    349   // Returns true if the pattern matches and a replacement occurs,
    350   // false otherwise.
    351   static bool Replace(string *str,
    352                       const RE2& pattern,
    353                       const StringPiece& rewrite);
    354 
    355   // Like Replace(), except replaces successive non-overlapping occurrences
    356   // of the pattern in the string with the rewrite. E.g.
    357   //
    358   //   string s = "yabba dabba doo";
    359   //   CHECK(RE2::GlobalReplace(&s, "b+", "d"));
    360   //
    361   // will leave "s" containing "yada dada doo"
    362   // Replacements are not subject to re-matching.
    363   //
    364   // Because GlobalReplace only replaces non-overlapping matches,
    365   // replacing "ana" within "banana" makes only one replacement, not two.
    366   //
    367   // Returns the number of replacements made.
    368   static int GlobalReplace(string *str,
    369                            const RE2& pattern,
    370                            const StringPiece& rewrite);
    371 
    372   // Like Replace, except that if the pattern matches, "rewrite"
    373   // is copied into "out" with substitutions.  The non-matching
    374   // portions of "text" are ignored.
    375   //
    376   // Returns true iff a match occurred and the extraction happened
    377   // successfully;  if no match occurs, the string is left unaffected.
    378   static bool Extract(const StringPiece &text,
    379                       const RE2& pattern,
    380                       const StringPiece &rewrite,
    381                       string *out);
    382 
    383   // Escapes all potentially meaningful regexp characters in
    384   // 'unquoted'.  The returned string, used as a regular expression,
    385   // will exactly match the original string.  For example,
    386   //           1.5-2.0?
    387   // may become:
    388   //           1\.5\-2\.0\?
    389   static string QuoteMeta(const StringPiece& unquoted);
    390 
    391   // Computes range for any strings matching regexp. The min and max can in
    392   // some cases be arbitrarily precise, so the caller gets to specify the
    393   // maximum desired length of string returned.
    394   //
    395   // Assuming PossibleMatchRange(&min, &max, N) returns successfully, any
    396   // string s that is an anchored match for this regexp satisfies
    397   //   min <= s && s <= max.
    398   //
    399   // Note that PossibleMatchRange() will only consider the first copy of an
    400   // infinitely repeated element (i.e., any regexp element followed by a '*' or
    401   // '+' operator). Regexps with "{N}" constructions are not affected, as those
    402   // do not compile down to infinite repetitions.
    403   //
    404   // Returns true on success, false on error.
    405   bool PossibleMatchRange(string* min, string* max, int maxlen) const;
    406 
    407   // Generic matching interface
    408 
    409   // Type of match.
    410   enum Anchor {
    411     UNANCHORED,         // No anchoring
    412     ANCHOR_START,       // Anchor at start only
    413     ANCHOR_BOTH,        // Anchor at start and end
    414   };
    415 
    416   // Return the number of capturing subpatterns, or -1 if the
    417   // regexp wasn't valid on construction.  The overall match ($0)
    418   // does not count: if the regexp is "(a)(b)", returns 2.
    419   int NumberOfCapturingGroups() const;
    420 
    421 
    422   // Return a map from names to capturing indices.
    423   // The map records the index of the leftmost group
    424   // with the given name.
    425   // Only valid until the re is deleted.
    426   const map<string, int>& NamedCapturingGroups() const;
    427 
    428   // Return a map from capturing indices to names.
    429   // The map has no entries for unnamed groups.
    430   // Only valid until the re is deleted.
    431   const map<int, string>& CapturingGroupNames() const;
    432 
    433   // General matching routine.
    434   // Match against text starting at offset startpos
    435   // and stopping the search at offset endpos.
    436   // Returns true if match found, false if not.
    437   // On a successful match, fills in match[] (up to nmatch entries)
    438   // with information about submatches.
    439   // I.e. matching RE2("(foo)|(bar)baz") on "barbazbla" will return true,
    440   // setting match[0] = "barbaz", match[1] = NULL, match[2] = "bar",
    441   // match[3] = NULL, ..., up to match[nmatch-1] = NULL.
    442   //
    443   // Don't ask for more match information than you will use:
    444   // runs much faster with nmatch == 1 than nmatch > 1, and
    445   // runs even faster if nmatch == 0.
    446   // Doesn't make sense to use nmatch > 1 + NumberOfCapturingGroups(),
    447   // but will be handled correctly.
    448   //
    449   // Passing text == StringPiece(NULL, 0) will be handled like any other
    450   // empty string, but note that on return, it will not be possible to tell
    451   // whether submatch i matched the empty string or did not match:
    452   // either way, match[i] == NULL.
    453   bool Match(const StringPiece& text,
    454              int startpos,
    455              int endpos,
    456              Anchor anchor,
    457              StringPiece *match,
    458              int nmatch) const;
    459 
    460   // Check that the given rewrite string is suitable for use with this
    461   // regular expression.  It checks that:
    462   //   * The regular expression has enough parenthesized subexpressions
    463   //     to satisfy all of the \N tokens in rewrite
    464   //   * The rewrite string doesn't have any syntax errors.  E.g.,
    465   //     '\' followed by anything other than a digit or '\'.
    466   // A true return value guarantees that Replace() and Extract() won't
    467   // fail because of a bad rewrite string.
    468   bool CheckRewriteString(const StringPiece& rewrite, string* error) const;
    469 
    470   // Constructor options
    471   class Options {
    472    public:
    473     // The options are (defaults in parentheses):
    474     //
    475     //   utf8             (true)  text and pattern are UTF-8; otherwise Latin-1
    476     //   posix_syntax     (false) restrict regexps to POSIX egrep syntax
    477     //   longest_match    (false) search for longest match, not first match
    478     //   log_errors       (true)  log syntax and execution errors to ERROR
    479     //   max_mem          (see below)  approx. max memory footprint of RE2
    480     //   literal          (false) interpret string as literal, not regexp
    481     //   never_nl         (false) never match \n, even if it is in regexp
    482     //   case_sensitive   (true)  match is case-sensitive (regexp can override
    483     //                              with (?i) unless in posix_syntax mode)
    484     //
    485     // The following options are only consulted when posix_syntax == true.
    486     // (When posix_syntax == false these features are always enabled and
    487     // cannot be turned off.)
    488     //   perl_classes     (false) allow Perl's \d \s \w \D \S \W
    489     //   word_boundary    (false) allow Perl's \b \B (word boundary and not)
    490     //   one_line         (false) ^ and $ only match beginning and end of text
    491     //
    492     // The max_mem option controls how much memory can be used
    493     // to hold the compiled form of the regexp (the Prog) and
    494     // its cached DFA graphs.  Code Search placed limits on the number
    495     // of Prog instructions and DFA states: 10,000 for both.
    496     // In RE2, those limits would translate to about 240 KB per Prog
    497     // and perhaps 2.5 MB per DFA (DFA state sizes vary by regexp; RE2 does a
    498     // better job of keeping them small than Code Search did).
    499     // Each RE2 has two Progs (one forward, one reverse), and each Prog
    500     // can have two DFAs (one first match, one longest match).
    501     // That makes 4 DFAs:
    502     //
    503     //   forward, first-match    - used for UNANCHORED or ANCHOR_LEFT searches
    504     //                               if opt.longest_match() == false
    505     //   forward, longest-match  - used for all ANCHOR_BOTH searches,
    506     //                               and the other two kinds if
    507     //                               opt.longest_match() == true
    508     //   reverse, first-match    - never used
    509     //   reverse, longest-match  - used as second phase for unanchored searches
    510     //
    511     // The RE2 memory budget is statically divided between the two
    512     // Progs and then the DFAs: two thirds to the forward Prog
    513     // and one third to the reverse Prog.  The forward Prog gives half
    514     // of what it has left over to each of its DFAs.  The reverse Prog
    515     // gives it all to its longest-match DFA.
    516     //
    517     // Once a DFA fills its budget, it flushes its cache and starts over.
    518     // If this happens too often, RE2 falls back on the NFA implementation.
    519 
    520     // For now, make the default budget something close to Code Search.
    521     static const int kDefaultMaxMem = 8<<20;
    522 
    523     enum Encoding {
    524       EncodingUTF8 = 1,
    525       EncodingLatin1
    526     };
    527 
    528     Options() :
    529       encoding_(EncodingUTF8),
    530       posix_syntax_(false),
    531       longest_match_(false),
    532       log_errors_(true),
    533       max_mem_(kDefaultMaxMem),
    534       literal_(false),
    535       never_nl_(false),
    536       case_sensitive_(true),
    537       perl_classes_(false),
    538       word_boundary_(false),
    539       one_line_(false) {
    540     }
    541 
    542     Encoding encoding() const { return encoding_; }
    543     void set_encoding(Encoding encoding) { encoding_ = encoding; }
    544 
    545     // Legacy interface to encoding.
    546     // TODO(rsc): Remove once clients have been converted.
    547     bool utf8() const { return encoding_ == EncodingUTF8; }
    548     void set_utf8(bool b) {
    549       if (b) {
    550         encoding_ = EncodingUTF8;
    551       } else {
    552         encoding_ = EncodingLatin1;
    553       }
    554     }
    555 
    556     bool posix_syntax() const { return posix_syntax_; }
    557     void set_posix_syntax(bool b) { posix_syntax_ = b; }
    558 
    559     bool longest_match() const { return longest_match_; }
    560     void set_longest_match(bool b) { longest_match_ = b; }
    561 
    562     bool log_errors() const { return log_errors_; }
    563     void set_log_errors(bool b) { log_errors_ = b; }
    564 
    565     int max_mem() const { return max_mem_; }
    566     void set_max_mem(int m) { max_mem_ = m; }
    567 
    568     bool literal() const { return literal_; }
    569     void set_literal(bool b) { literal_ = b; }
    570 
    571     bool never_nl() const { return never_nl_; }
    572     void set_never_nl(bool b) { never_nl_ = b; }
    573 
    574     bool case_sensitive() const { return case_sensitive_; }
    575     void set_case_sensitive(bool b) { case_sensitive_ = b; }
    576 
    577     bool perl_classes() const { return perl_classes_; }
    578     void set_perl_classes(bool b) { perl_classes_ = b; }
    579 
    580     bool word_boundary() const { return word_boundary_; }
    581     void set_word_boundary(bool b) { word_boundary_ = b; }
    582 
    583     bool one_line() const { return one_line_; }
    584     void set_one_line(bool b) { one_line_ = b; }
    585 
    586     void Copy(const Options& src) {
    587       encoding_ = src.encoding_;
    588       posix_syntax_ = src.posix_syntax_;
    589       longest_match_ = src.longest_match_;
    590       log_errors_ = src.log_errors_;
    591       max_mem_ = src.max_mem_;
    592       literal_ = src.literal_;
    593       never_nl_ = src.never_nl_;
    594       case_sensitive_ = src.case_sensitive_;
    595       perl_classes_ = src.perl_classes_;
    596       word_boundary_ = src.word_boundary_;
    597       one_line_ = src.one_line_;
    598     }
    599 
    600     int ParseFlags() const;
    601 
    602    private:
    603     // Private constructor for defining constants like RE2::Latin1.
    604     friend class RE2;
    605     Options(Encoding encoding,
    606             bool posix_syntax,
    607             bool longest_match,
    608             bool log_errors) :
    609       encoding_(encoding),
    610       posix_syntax_(posix_syntax),
    611       longest_match_(longest_match),
    612       log_errors_(log_errors),
    613       max_mem_(kDefaultMaxMem),
    614       literal_(false),
    615       never_nl_(false),
    616       case_sensitive_(true),
    617       perl_classes_(false),
    618       word_boundary_(false),
    619       one_line_(false) {
    620     }
    621 
    622     Encoding encoding_;
    623     bool posix_syntax_;
    624     bool longest_match_;
    625     bool log_errors_;
    626     int64_t max_mem_;
    627     bool literal_;
    628     bool never_nl_;
    629     bool case_sensitive_;
    630     bool perl_classes_;
    631     bool word_boundary_;
    632     bool one_line_;
    633 
    634     //DISALLOW_EVIL_CONSTRUCTORS(Options);
    635     Options(const Options&);
    636     void operator=(const Options&);
    637   };
    638 
    639   // Returns the options set in the constructor.
    640   const Options& options() const { return options_; };
    641 
    642   // Argument converters; see below.
    643   static inline Arg CRadix(short* x);
    644   static inline Arg CRadix(unsigned short* x);
    645   static inline Arg CRadix(int* x);
    646   static inline Arg CRadix(unsigned int* x);
    647   static inline Arg CRadix(long* x);
    648   static inline Arg CRadix(unsigned long* x);
    649   static inline Arg CRadix(long long* x);
    650   static inline Arg CRadix(unsigned long long* x);
    651 
    652   static inline Arg Hex(short* x);
    653   static inline Arg Hex(unsigned short* x);
    654   static inline Arg Hex(int* x);
    655   static inline Arg Hex(unsigned int* x);
    656   static inline Arg Hex(long* x);
    657   static inline Arg Hex(unsigned long* x);
    658   static inline Arg Hex(long long* x);
    659   static inline Arg Hex(unsigned long long* x);
    660 
    661   static inline Arg Octal(short* x);
    662   static inline Arg Octal(unsigned short* x);
    663   static inline Arg Octal(int* x);
    664   static inline Arg Octal(unsigned int* x);
    665   static inline Arg Octal(long* x);
    666   static inline Arg Octal(unsigned long* x);
    667   static inline Arg Octal(long long* x);
    668   static inline Arg Octal(unsigned long long* x);
    669 
    670  private:
    671   void Init(const StringPiece& pattern, const Options& options);
    672 
    673   bool Rewrite(string *out,
    674                const StringPiece &rewrite,
    675                const StringPiece* vec,
    676                int veclen) const;
    677 
    678   bool DoMatch(const StringPiece& text,
    679                    Anchor anchor,
    680                    int* consumed,
    681                    const Arg* const args[],
    682                    int n) const;
    683 
    684   re2::Prog* ReverseProg() const;
    685 
    686   mutable Mutex*           mutex_;
    687   string                   pattern_;       // string regular expression
    688   Options                  options_;       // option flags
    689   string        prefix_;           // required prefix (before regexp_)
    690   bool          prefix_foldcase_;  // prefix is ASCII case-insensitive
    691   re2::Regexp*  entire_regexp_;    // parsed regular expression
    692   re2::Regexp*  suffix_regexp_;    // parsed regular expression, prefix removed
    693   re2::Prog*    prog_;             // compiled program for regexp
    694   mutable re2::Prog* rprog_;       // reverse program for regexp
    695   bool                     is_one_pass_;   // can use prog_->SearchOnePass?
    696   mutable const string*    error_;         // Error indicator
    697                                            // (or points to empty string)
    698   mutable ErrorCode        error_code_;    // Error code
    699   mutable string           error_arg_;     // Fragment of regexp showing error
    700   mutable int              num_captures_;  // Number of capturing groups
    701 
    702   // Map from capture names to indices
    703   mutable const map<string, int>* named_groups_;
    704 
    705   // Map from capture indices to names
    706   mutable const map<int, string>* group_names_;
    707 
    708   //DISALLOW_EVIL_CONSTRUCTORS(RE2);
    709   RE2(const RE2&);
    710   void operator=(const RE2&);
    711 };
    712 
    713 /***** Implementation details *****/
    714 
    715 // Hex/Octal/Binary?
    716 
    717 // Special class for parsing into objects that define a ParseFrom() method
    718 template <class T>
    719 class _RE2_MatchObject {
    720  public:
    721   static inline bool Parse(const char* str, int n, void* dest) {
    722     if (dest == NULL) return true;
    723     T* object = reinterpret_cast<T*>(dest);
    724     return object->ParseFrom(str, n);
    725   }
    726 };
    727 
    728 class RE2::Arg {
    729  public:
    730   // Empty constructor so we can declare arrays of RE2::Arg
    731   Arg();
    732 
    733   // Constructor specially designed for NULL arguments
    734   Arg(void*);
    735 
    736   typedef bool (*Parser)(const char* str, int n, void* dest);
    737 
    738 // Type-specific parsers
    739 #define MAKE_PARSER(type,name) \
    740   Arg(type* p) : arg_(p), parser_(name) { } \
    741   Arg(type* p, Parser parser) : arg_(p), parser_(parser) { } \
    742 
    743 
    744   MAKE_PARSER(char,               parse_char);
    745   MAKE_PARSER(signed char,        parse_char);
    746   MAKE_PARSER(unsigned char,      parse_uchar);
    747   MAKE_PARSER(short,              parse_short);
    748   MAKE_PARSER(unsigned short,     parse_ushort);
    749   MAKE_PARSER(int,                parse_int);
    750   MAKE_PARSER(unsigned int,       parse_uint);
    751   MAKE_PARSER(long,               parse_long);
    752   MAKE_PARSER(unsigned long,      parse_ulong);
    753   MAKE_PARSER(long long,          parse_longlong);
    754   MAKE_PARSER(unsigned long long, parse_ulonglong);
    755   MAKE_PARSER(float,              parse_float);
    756   MAKE_PARSER(double,             parse_double);
    757   MAKE_PARSER(string,             parse_string);
    758   MAKE_PARSER(StringPiece,        parse_stringpiece);
    759 
    760 #undef MAKE_PARSER
    761 
    762   // Generic constructor
    763   template <class T> Arg(T*, Parser parser);
    764   // Generic constructor template
    765   template <class T> Arg(T* p)
    766     : arg_(p), parser_(_RE2_MatchObject<T>::Parse) {
    767   }
    768 
    769   // Parse the data
    770   bool Parse(const char* str, int n) const;
    771 
    772  private:
    773   void*         arg_;
    774   Parser        parser_;
    775 
    776   static bool parse_null          (const char* str, int n, void* dest);
    777   static bool parse_char          (const char* str, int n, void* dest);
    778   static bool parse_uchar         (const char* str, int n, void* dest);
    779   static bool parse_float         (const char* str, int n, void* dest);
    780   static bool parse_double        (const char* str, int n, void* dest);
    781   static bool parse_string        (const char* str, int n, void* dest);
    782   static bool parse_stringpiece   (const char* str, int n, void* dest);
    783 
    784 #define DECLARE_INTEGER_PARSER(name)                                        \
    785  private:                                                                   \
    786   static bool parse_ ## name(const char* str, int n, void* dest);           \
    787   static bool parse_ ## name ## _radix(                                     \
    788     const char* str, int n, void* dest, int radix);                         \
    789  public:                                                                    \
    790   static bool parse_ ## name ## _hex(const char* str, int n, void* dest);   \
    791   static bool parse_ ## name ## _octal(const char* str, int n, void* dest); \
    792   static bool parse_ ## name ## _cradix(const char* str, int n, void* dest)
    793 
    794   DECLARE_INTEGER_PARSER(short);
    795   DECLARE_INTEGER_PARSER(ushort);
    796   DECLARE_INTEGER_PARSER(int);
    797   DECLARE_INTEGER_PARSER(uint);
    798   DECLARE_INTEGER_PARSER(long);
    799   DECLARE_INTEGER_PARSER(ulong);
    800   DECLARE_INTEGER_PARSER(longlong);
    801   DECLARE_INTEGER_PARSER(ulonglong);
    802 
    803 #undef DECLARE_INTEGER_PARSER
    804 };
    805 
    806 inline RE2::Arg::Arg() : arg_(NULL), parser_(parse_null) { }
    807 inline RE2::Arg::Arg(void* p) : arg_(p), parser_(parse_null) { }
    808 
    809 inline bool RE2::Arg::Parse(const char* str, int n) const {
    810   return (*parser_)(str, n, arg_);
    811 }
    812 
    813 // This part of the parser, appropriate only for ints, deals with bases
    814 #define MAKE_INTEGER_PARSER(type, name) \
    815   inline RE2::Arg RE2::Hex(type* ptr) { \
    816     return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _hex); } \
    817   inline RE2::Arg RE2::Octal(type* ptr) { \
    818     return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _octal); } \
    819   inline RE2::Arg RE2::CRadix(type* ptr) { \
    820     return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _cradix); }
    821 
    822 MAKE_INTEGER_PARSER(short,              short);
    823 MAKE_INTEGER_PARSER(unsigned short,     ushort);
    824 MAKE_INTEGER_PARSER(int,                int);
    825 MAKE_INTEGER_PARSER(unsigned int,       uint);
    826 MAKE_INTEGER_PARSER(long,               long);
    827 MAKE_INTEGER_PARSER(unsigned long,      ulong);
    828 MAKE_INTEGER_PARSER(long long,          longlong);
    829 MAKE_INTEGER_PARSER(unsigned long long, ulonglong);
    830 
    831 #undef MAKE_INTEGER_PARSER
    832 
    833 }  // namespace re2
    834 
    835 using re2::RE2;
    836 
    837 #endif /* RE2_RE2_H */
    838