1 // Copyright 2003-2009 The RE2 Authors. All Rights Reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 #ifndef RE2_RE2_H 6 #define RE2_RE2_H 7 8 // C++ interface to the re2 regular-expression library. 9 // RE2 supports Perl-style regular expressions (with extensions like 10 // \d, \w, \s, ...). 11 // 12 // ----------------------------------------------------------------------- 13 // REGEXP SYNTAX: 14 // 15 // This module uses the re2 library and hence supports 16 // its syntax for regular expressions, which is similar to Perl's with 17 // some of the more complicated things thrown away. In particular, 18 // backreferences and generalized assertions are not available, nor is \Z. 19 // 20 // See http://code.google.com/p/re2/wiki/Syntax for the syntax 21 // supported by RE2, and a comparison with PCRE and PERL regexps. 22 // 23 // For those not familiar with Perl's regular expressions, 24 // here are some examples of the most commonly used extensions: 25 // 26 // "hello (\\w+) world" -- \w matches a "word" character 27 // "version (\\d+)" -- \d matches a digit 28 // "hello\\s+world" -- \s matches any whitespace character 29 // "\\b(\\w+)\\b" -- \b matches non-empty string at word boundary 30 // "(?i)hello" -- (?i) turns on case-insensitive matching 31 // "/\\*(.*?)\\*/" -- .*? matches . minimum no. of times possible 32 // 33 // ----------------------------------------------------------------------- 34 // MATCHING INTERFACE: 35 // 36 // The "FullMatch" operation checks that supplied text matches a 37 // supplied pattern exactly. 38 // 39 // Example: successful match 40 // CHECK(RE2::FullMatch("hello", "h.*o")); 41 // 42 // Example: unsuccessful match (requires full match): 43 // CHECK(!RE2::FullMatch("hello", "e")); 44 // 45 // ----------------------------------------------------------------------- 46 // UTF-8 AND THE MATCHING INTERFACE: 47 // 48 // By default, the pattern and input text are interpreted as UTF-8. 49 // The RE2::Latin1 option causes them to be interpreted as Latin-1. 50 // 51 // Example: 52 // CHECK(RE2::FullMatch(utf8_string, RE2(utf8_pattern))); 53 // CHECK(RE2::FullMatch(latin1_string, RE2(latin1_pattern, RE2::Latin1))); 54 // 55 // ----------------------------------------------------------------------- 56 // MATCHING WITH SUB-STRING EXTRACTION: 57 // 58 // You can supply extra pointer arguments to extract matched subpieces. 59 // 60 // Example: extracts "ruby" into "s" and 1234 into "i" 61 // int i; 62 // string s; 63 // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s, &i)); 64 // 65 // Example: fails because string cannot be stored in integer 66 // CHECK(!RE2::FullMatch("ruby", "(.*)", &i)); 67 // 68 // Example: fails because there aren't enough sub-patterns: 69 // CHECK(!RE2::FullMatch("ruby:1234", "\\w+:\\d+", &s)); 70 // 71 // Example: does not try to extract any extra sub-patterns 72 // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s)); 73 // 74 // Example: does not try to extract into NULL 75 // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", NULL, &i)); 76 // 77 // Example: integer overflow causes failure 78 // CHECK(!RE2::FullMatch("ruby:1234567891234", "\\w+:(\\d+)", &i)); 79 // 80 // NOTE(rsc): Asking for substrings slows successful matches quite a bit. 81 // This may get a little faster in the future, but right now is slower 82 // than PCRE. On the other hand, failed matches run *very* fast (faster 83 // than PCRE), as do matches without substring extraction. 84 // 85 // ----------------------------------------------------------------------- 86 // PARTIAL MATCHES 87 // 88 // You can use the "PartialMatch" operation when you want the pattern 89 // to match any substring of the text. 90 // 91 // Example: simple search for a string: 92 // CHECK(RE2::PartialMatch("hello", "ell")); 93 // 94 // Example: find first number in a string 95 // int number; 96 // CHECK(RE2::PartialMatch("x*100 + 20", "(\\d+)", &number)); 97 // CHECK_EQ(number, 100); 98 // 99 // ----------------------------------------------------------------------- 100 // PRE-COMPILED REGULAR EXPRESSIONS 101 // 102 // RE2 makes it easy to use any string as a regular expression, without 103 // requiring a separate compilation step. 104 // 105 // If speed is of the essence, you can create a pre-compiled "RE2" 106 // object from the pattern and use it multiple times. If you do so, 107 // you can typically parse text faster than with sscanf. 108 // 109 // Example: precompile pattern for faster matching: 110 // RE2 pattern("h.*o"); 111 // while (ReadLine(&str)) { 112 // if (RE2::FullMatch(str, pattern)) ...; 113 // } 114 // 115 // ----------------------------------------------------------------------- 116 // SCANNING TEXT INCREMENTALLY 117 // 118 // The "Consume" operation may be useful if you want to repeatedly 119 // match regular expressions at the front of a string and skip over 120 // them as they match. This requires use of the "StringPiece" type, 121 // which represents a sub-range of a real string. 122 // 123 // Example: read lines of the form "var = value" from a string. 124 // string contents = ...; // Fill string somehow 125 // StringPiece input(contents); // Wrap a StringPiece around it 126 // 127 // string var; 128 // int value; 129 // while (RE2::Consume(&input, "(\\w+) = (\\d+)\n", &var, &value)) { 130 // ...; 131 // } 132 // 133 // Each successful call to "Consume" will set "var/value", and also 134 // advance "input" so it points past the matched text. Note that if the 135 // regular expression matches an empty string, input will advance 136 // by 0 bytes. If the regular expression being used might match 137 // an empty string, the loop body must check for this case and either 138 // advance the string or break out of the loop. 139 // 140 // The "FindAndConsume" operation is similar to "Consume" but does not 141 // anchor your match at the beginning of the string. For example, you 142 // could extract all words from a string by repeatedly calling 143 // RE2::FindAndConsume(&input, "(\\w+)", &word) 144 // 145 // ----------------------------------------------------------------------- 146 // USING VARIABLE NUMBER OF ARGUMENTS 147 // 148 // The above operations require you to know the number of arguments 149 // when you write the code. This is not always possible or easy (for 150 // example, the regular expression may be calculated at run time). 151 // You can use the "N" version of the operations when the number of 152 // match arguments are determined at run time. 153 // 154 // Example: 155 // const RE2::Arg* args[10]; 156 // int n; 157 // // ... populate args with pointers to RE2::Arg values ... 158 // // ... set n to the number of RE2::Arg objects ... 159 // bool match = RE2::FullMatchN(input, pattern, args, n); 160 // 161 // The last statement is equivalent to 162 // 163 // bool match = RE2::FullMatch(input, pattern, 164 // *args[0], *args[1], ..., *args[n - 1]); 165 // 166 // ----------------------------------------------------------------------- 167 // PARSING HEX/OCTAL/C-RADIX NUMBERS 168 // 169 // By default, if you pass a pointer to a numeric value, the 170 // corresponding text is interpreted as a base-10 number. You can 171 // instead wrap the pointer with a call to one of the operators Hex(), 172 // Octal(), or CRadix() to interpret the text in another base. The 173 // CRadix operator interprets C-style "0" (base-8) and "0x" (base-16) 174 // prefixes, but defaults to base-10. 175 // 176 // Example: 177 // int a, b, c, d; 178 // CHECK(RE2::FullMatch("100 40 0100 0x40", "(.*) (.*) (.*) (.*)", 179 // RE2::Octal(&a), RE2::Hex(&b), RE2::CRadix(&c), RE2::CRadix(&d)); 180 // will leave 64 in a, b, c, and d. 181 182 183 #include <stdint.h> 184 #include <map> 185 #include <string> 186 #include "re2/stringpiece.h" 187 #include "re2/variadic_function.h" 188 189 namespace re2 { 190 using std::string; 191 using std::map; 192 class Mutex; 193 class Prog; 194 class Regexp; 195 196 // Interface for regular expression matching. Also corresponds to a 197 // pre-compiled regular expression. An "RE2" object is safe for 198 // concurrent use by multiple threads. 199 class RE2 { 200 public: 201 // We convert user-passed pointers into special Arg objects 202 class Arg; 203 class Options; 204 205 // Defined in set.h. 206 class Set; 207 208 enum ErrorCode { 209 NoError = 0, 210 211 // Unexpected error 212 ErrorInternal, 213 214 // Parse errors 215 ErrorBadEscape, // bad escape sequence 216 ErrorBadCharClass, // bad character class 217 ErrorBadCharRange, // bad character class range 218 ErrorMissingBracket, // missing closing ] 219 ErrorMissingParen, // missing closing ) 220 ErrorTrailingBackslash, // trailing \ at end of regexp 221 ErrorRepeatArgument, // repeat argument missing, e.g. "*" 222 ErrorRepeatSize, // bad repetition argument 223 ErrorRepeatOp, // bad repetition operator 224 ErrorBadPerlOp, // bad perl operator 225 ErrorBadUTF8, // invalid UTF-8 in regexp 226 ErrorBadNamedCapture, // bad named capture group 227 ErrorPatternTooLarge, // pattern too large (compile failed) 228 }; 229 230 // Predefined common options. 231 // If you need more complicated things, instantiate 232 // an Option class, change the settings, and pass it to the 233 // RE2 constructor. 234 static const Options DefaultOptions; 235 static const Options Latin1; // treat input as Latin-1 (default UTF-8) 236 static const Options POSIX; // POSIX syntax, leftmost-longest match 237 static const Options Quiet; // do not log about regexp parse errors 238 239 // Need to have the const char* and const string& forms for implicit 240 // conversions when passing string literals to FullMatch and PartialMatch. 241 // Otherwise the StringPiece form would be sufficient. 242 #ifndef SWIG 243 RE2(const char* pattern); 244 RE2(const string& pattern); 245 #endif 246 RE2(const StringPiece& pattern); 247 RE2(const StringPiece& pattern, const Options& option); 248 ~RE2(); 249 250 // Returns whether RE2 was created properly. 251 bool ok() const { return error_code() == NoError; } 252 253 // The string specification for this RE2. E.g. 254 // RE2 re("ab*c?d+"); 255 // re.pattern(); // "ab*c?d+" 256 const string& pattern() const { return pattern_; } 257 258 // If RE2 could not be created properly, returns an error string. 259 // Else returns the empty string. 260 const string& error() const { return *error_; } 261 262 // If RE2 could not be created properly, returns an error code. 263 // Else returns RE2::NoError (== 0). 264 ErrorCode error_code() const { return error_code_; } 265 266 // If RE2 could not be created properly, returns the offending 267 // portion of the regexp. 268 const string& error_arg() const { return error_arg_; } 269 270 // Returns the program size, a very approximate measure of a regexp's "cost". 271 // Larger numbers are more expensive than smaller numbers. 272 int ProgramSize() const; 273 274 // Returns the underlying Regexp; not for general use. 275 // Returns entire_regexp_ so that callers don't need 276 // to know about prefix_ and prefix_foldcase_. 277 re2::Regexp* Regexp() const { return entire_regexp_; } 278 279 /***** The useful part: the matching interface *****/ 280 281 // Matches "text" against "pattern". If pointer arguments are 282 // supplied, copies matched sub-patterns into them. 283 // 284 // You can pass in a "const char*" or a "string" for "text". 285 // You can pass in a "const char*" or a "string" or a "RE2" for "pattern". 286 // 287 // The provided pointer arguments can be pointers to any scalar numeric 288 // type, or one of: 289 // string (matched piece is copied to string) 290 // StringPiece (StringPiece is mutated to point to matched piece) 291 // T (where "bool T::ParseFrom(const char*, int)" exists) 292 // (void*)NULL (the corresponding matched sub-pattern is not copied) 293 // 294 // Returns true iff all of the following conditions are satisfied: 295 // a. "text" matches "pattern" exactly 296 // b. The number of matched sub-patterns is >= number of supplied pointers 297 // c. The "i"th argument has a suitable type for holding the 298 // string captured as the "i"th sub-pattern. If you pass in 299 // NULL for the "i"th argument, or pass fewer arguments than 300 // number of sub-patterns, "i"th captured sub-pattern is 301 // ignored. 302 // 303 // CAVEAT: An optional sub-pattern that does not exist in the 304 // matched string is assigned the empty string. Therefore, the 305 // following will return false (because the empty string is not a 306 // valid number): 307 // int number; 308 // RE2::FullMatch("abc", "[a-z]+(\\d+)?", &number); 309 static bool FullMatchN(const StringPiece& text, const RE2& re, 310 const Arg* const args[], int argc); 311 static const VariadicFunction2< 312 bool, const StringPiece&, const RE2&, Arg, RE2::FullMatchN> FullMatch; 313 314 // Exactly like FullMatch(), except that "pattern" is allowed to match 315 // a substring of "text". 316 static bool PartialMatchN(const StringPiece& text, const RE2& re, // 3..16 args 317 const Arg* const args[], int argc); 318 static const VariadicFunction2< 319 bool, const StringPiece&, const RE2&, Arg, RE2::PartialMatchN> PartialMatch; 320 321 // Like FullMatch() and PartialMatch(), except that pattern has to 322 // match a prefix of "text", and "input" is advanced past the matched 323 // text. Note: "input" is modified iff this routine returns true. 324 static bool ConsumeN(StringPiece* input, const RE2& pattern, // 3..16 args 325 const Arg* const args[], int argc); 326 static const VariadicFunction2< 327 bool, StringPiece*, const RE2&, Arg, RE2::ConsumeN> Consume; 328 329 // Like Consume(..), but does not anchor the match at the beginning of the 330 // string. That is, "pattern" need not start its match at the beginning of 331 // "input". For example, "FindAndConsume(s, "(\\w+)", &word)" finds the next 332 // word in "s" and stores it in "word". 333 static bool FindAndConsumeN(StringPiece* input, const RE2& pattern, 334 const Arg* const args[], int argc); 335 static const VariadicFunction2< 336 bool, StringPiece*, const RE2&, Arg, RE2::FindAndConsumeN> FindAndConsume; 337 338 // Replace the first match of "pattern" in "str" with "rewrite". 339 // Within "rewrite", backslash-escaped digits (\1 to \9) can be 340 // used to insert text matching corresponding parenthesized group 341 // from the pattern. \0 in "rewrite" refers to the entire matching 342 // text. E.g., 343 // 344 // string s = "yabba dabba doo"; 345 // CHECK(RE2::Replace(&s, "b+", "d")); 346 // 347 // will leave "s" containing "yada dabba doo" 348 // 349 // Returns true if the pattern matches and a replacement occurs, 350 // false otherwise. 351 static bool Replace(string *str, 352 const RE2& pattern, 353 const StringPiece& rewrite); 354 355 // Like Replace(), except replaces successive non-overlapping occurrences 356 // of the pattern in the string with the rewrite. E.g. 357 // 358 // string s = "yabba dabba doo"; 359 // CHECK(RE2::GlobalReplace(&s, "b+", "d")); 360 // 361 // will leave "s" containing "yada dada doo" 362 // Replacements are not subject to re-matching. 363 // 364 // Because GlobalReplace only replaces non-overlapping matches, 365 // replacing "ana" within "banana" makes only one replacement, not two. 366 // 367 // Returns the number of replacements made. 368 static int GlobalReplace(string *str, 369 const RE2& pattern, 370 const StringPiece& rewrite); 371 372 // Like Replace, except that if the pattern matches, "rewrite" 373 // is copied into "out" with substitutions. The non-matching 374 // portions of "text" are ignored. 375 // 376 // Returns true iff a match occurred and the extraction happened 377 // successfully; if no match occurs, the string is left unaffected. 378 static bool Extract(const StringPiece &text, 379 const RE2& pattern, 380 const StringPiece &rewrite, 381 string *out); 382 383 // Escapes all potentially meaningful regexp characters in 384 // 'unquoted'. The returned string, used as a regular expression, 385 // will exactly match the original string. For example, 386 // 1.5-2.0? 387 // may become: 388 // 1\.5\-2\.0\? 389 static string QuoteMeta(const StringPiece& unquoted); 390 391 // Computes range for any strings matching regexp. The min and max can in 392 // some cases be arbitrarily precise, so the caller gets to specify the 393 // maximum desired length of string returned. 394 // 395 // Assuming PossibleMatchRange(&min, &max, N) returns successfully, any 396 // string s that is an anchored match for this regexp satisfies 397 // min <= s && s <= max. 398 // 399 // Note that PossibleMatchRange() will only consider the first copy of an 400 // infinitely repeated element (i.e., any regexp element followed by a '*' or 401 // '+' operator). Regexps with "{N}" constructions are not affected, as those 402 // do not compile down to infinite repetitions. 403 // 404 // Returns true on success, false on error. 405 bool PossibleMatchRange(string* min, string* max, int maxlen) const; 406 407 // Generic matching interface 408 409 // Type of match. 410 enum Anchor { 411 UNANCHORED, // No anchoring 412 ANCHOR_START, // Anchor at start only 413 ANCHOR_BOTH, // Anchor at start and end 414 }; 415 416 // Return the number of capturing subpatterns, or -1 if the 417 // regexp wasn't valid on construction. The overall match ($0) 418 // does not count: if the regexp is "(a)(b)", returns 2. 419 int NumberOfCapturingGroups() const; 420 421 422 // Return a map from names to capturing indices. 423 // The map records the index of the leftmost group 424 // with the given name. 425 // Only valid until the re is deleted. 426 const map<string, int>& NamedCapturingGroups() const; 427 428 // Return a map from capturing indices to names. 429 // The map has no entries for unnamed groups. 430 // Only valid until the re is deleted. 431 const map<int, string>& CapturingGroupNames() const; 432 433 // General matching routine. 434 // Match against text starting at offset startpos 435 // and stopping the search at offset endpos. 436 // Returns true if match found, false if not. 437 // On a successful match, fills in match[] (up to nmatch entries) 438 // with information about submatches. 439 // I.e. matching RE2("(foo)|(bar)baz") on "barbazbla" will return true, 440 // setting match[0] = "barbaz", match[1] = NULL, match[2] = "bar", 441 // match[3] = NULL, ..., up to match[nmatch-1] = NULL. 442 // 443 // Don't ask for more match information than you will use: 444 // runs much faster with nmatch == 1 than nmatch > 1, and 445 // runs even faster if nmatch == 0. 446 // Doesn't make sense to use nmatch > 1 + NumberOfCapturingGroups(), 447 // but will be handled correctly. 448 // 449 // Passing text == StringPiece(NULL, 0) will be handled like any other 450 // empty string, but note that on return, it will not be possible to tell 451 // whether submatch i matched the empty string or did not match: 452 // either way, match[i] == NULL. 453 bool Match(const StringPiece& text, 454 int startpos, 455 int endpos, 456 Anchor anchor, 457 StringPiece *match, 458 int nmatch) const; 459 460 // Check that the given rewrite string is suitable for use with this 461 // regular expression. It checks that: 462 // * The regular expression has enough parenthesized subexpressions 463 // to satisfy all of the \N tokens in rewrite 464 // * The rewrite string doesn't have any syntax errors. E.g., 465 // '\' followed by anything other than a digit or '\'. 466 // A true return value guarantees that Replace() and Extract() won't 467 // fail because of a bad rewrite string. 468 bool CheckRewriteString(const StringPiece& rewrite, string* error) const; 469 470 // Constructor options 471 class Options { 472 public: 473 // The options are (defaults in parentheses): 474 // 475 // utf8 (true) text and pattern are UTF-8; otherwise Latin-1 476 // posix_syntax (false) restrict regexps to POSIX egrep syntax 477 // longest_match (false) search for longest match, not first match 478 // log_errors (true) log syntax and execution errors to ERROR 479 // max_mem (see below) approx. max memory footprint of RE2 480 // literal (false) interpret string as literal, not regexp 481 // never_nl (false) never match \n, even if it is in regexp 482 // case_sensitive (true) match is case-sensitive (regexp can override 483 // with (?i) unless in posix_syntax mode) 484 // 485 // The following options are only consulted when posix_syntax == true. 486 // (When posix_syntax == false these features are always enabled and 487 // cannot be turned off.) 488 // perl_classes (false) allow Perl's \d \s \w \D \S \W 489 // word_boundary (false) allow Perl's \b \B (word boundary and not) 490 // one_line (false) ^ and $ only match beginning and end of text 491 // 492 // The max_mem option controls how much memory can be used 493 // to hold the compiled form of the regexp (the Prog) and 494 // its cached DFA graphs. Code Search placed limits on the number 495 // of Prog instructions and DFA states: 10,000 for both. 496 // In RE2, those limits would translate to about 240 KB per Prog 497 // and perhaps 2.5 MB per DFA (DFA state sizes vary by regexp; RE2 does a 498 // better job of keeping them small than Code Search did). 499 // Each RE2 has two Progs (one forward, one reverse), and each Prog 500 // can have two DFAs (one first match, one longest match). 501 // That makes 4 DFAs: 502 // 503 // forward, first-match - used for UNANCHORED or ANCHOR_LEFT searches 504 // if opt.longest_match() == false 505 // forward, longest-match - used for all ANCHOR_BOTH searches, 506 // and the other two kinds if 507 // opt.longest_match() == true 508 // reverse, first-match - never used 509 // reverse, longest-match - used as second phase for unanchored searches 510 // 511 // The RE2 memory budget is statically divided between the two 512 // Progs and then the DFAs: two thirds to the forward Prog 513 // and one third to the reverse Prog. The forward Prog gives half 514 // of what it has left over to each of its DFAs. The reverse Prog 515 // gives it all to its longest-match DFA. 516 // 517 // Once a DFA fills its budget, it flushes its cache and starts over. 518 // If this happens too often, RE2 falls back on the NFA implementation. 519 520 // For now, make the default budget something close to Code Search. 521 static const int kDefaultMaxMem = 8<<20; 522 523 enum Encoding { 524 EncodingUTF8 = 1, 525 EncodingLatin1 526 }; 527 528 Options() : 529 encoding_(EncodingUTF8), 530 posix_syntax_(false), 531 longest_match_(false), 532 log_errors_(true), 533 max_mem_(kDefaultMaxMem), 534 literal_(false), 535 never_nl_(false), 536 case_sensitive_(true), 537 perl_classes_(false), 538 word_boundary_(false), 539 one_line_(false) { 540 } 541 542 Encoding encoding() const { return encoding_; } 543 void set_encoding(Encoding encoding) { encoding_ = encoding; } 544 545 // Legacy interface to encoding. 546 // TODO(rsc): Remove once clients have been converted. 547 bool utf8() const { return encoding_ == EncodingUTF8; } 548 void set_utf8(bool b) { 549 if (b) { 550 encoding_ = EncodingUTF8; 551 } else { 552 encoding_ = EncodingLatin1; 553 } 554 } 555 556 bool posix_syntax() const { return posix_syntax_; } 557 void set_posix_syntax(bool b) { posix_syntax_ = b; } 558 559 bool longest_match() const { return longest_match_; } 560 void set_longest_match(bool b) { longest_match_ = b; } 561 562 bool log_errors() const { return log_errors_; } 563 void set_log_errors(bool b) { log_errors_ = b; } 564 565 int max_mem() const { return max_mem_; } 566 void set_max_mem(int m) { max_mem_ = m; } 567 568 bool literal() const { return literal_; } 569 void set_literal(bool b) { literal_ = b; } 570 571 bool never_nl() const { return never_nl_; } 572 void set_never_nl(bool b) { never_nl_ = b; } 573 574 bool case_sensitive() const { return case_sensitive_; } 575 void set_case_sensitive(bool b) { case_sensitive_ = b; } 576 577 bool perl_classes() const { return perl_classes_; } 578 void set_perl_classes(bool b) { perl_classes_ = b; } 579 580 bool word_boundary() const { return word_boundary_; } 581 void set_word_boundary(bool b) { word_boundary_ = b; } 582 583 bool one_line() const { return one_line_; } 584 void set_one_line(bool b) { one_line_ = b; } 585 586 void Copy(const Options& src) { 587 encoding_ = src.encoding_; 588 posix_syntax_ = src.posix_syntax_; 589 longest_match_ = src.longest_match_; 590 log_errors_ = src.log_errors_; 591 max_mem_ = src.max_mem_; 592 literal_ = src.literal_; 593 never_nl_ = src.never_nl_; 594 case_sensitive_ = src.case_sensitive_; 595 perl_classes_ = src.perl_classes_; 596 word_boundary_ = src.word_boundary_; 597 one_line_ = src.one_line_; 598 } 599 600 int ParseFlags() const; 601 602 private: 603 // Private constructor for defining constants like RE2::Latin1. 604 friend class RE2; 605 Options(Encoding encoding, 606 bool posix_syntax, 607 bool longest_match, 608 bool log_errors) : 609 encoding_(encoding), 610 posix_syntax_(posix_syntax), 611 longest_match_(longest_match), 612 log_errors_(log_errors), 613 max_mem_(kDefaultMaxMem), 614 literal_(false), 615 never_nl_(false), 616 case_sensitive_(true), 617 perl_classes_(false), 618 word_boundary_(false), 619 one_line_(false) { 620 } 621 622 Encoding encoding_; 623 bool posix_syntax_; 624 bool longest_match_; 625 bool log_errors_; 626 int64_t max_mem_; 627 bool literal_; 628 bool never_nl_; 629 bool case_sensitive_; 630 bool perl_classes_; 631 bool word_boundary_; 632 bool one_line_; 633 634 //DISALLOW_EVIL_CONSTRUCTORS(Options); 635 Options(const Options&); 636 void operator=(const Options&); 637 }; 638 639 // Returns the options set in the constructor. 640 const Options& options() const { return options_; }; 641 642 // Argument converters; see below. 643 static inline Arg CRadix(short* x); 644 static inline Arg CRadix(unsigned short* x); 645 static inline Arg CRadix(int* x); 646 static inline Arg CRadix(unsigned int* x); 647 static inline Arg CRadix(long* x); 648 static inline Arg CRadix(unsigned long* x); 649 static inline Arg CRadix(long long* x); 650 static inline Arg CRadix(unsigned long long* x); 651 652 static inline Arg Hex(short* x); 653 static inline Arg Hex(unsigned short* x); 654 static inline Arg Hex(int* x); 655 static inline Arg Hex(unsigned int* x); 656 static inline Arg Hex(long* x); 657 static inline Arg Hex(unsigned long* x); 658 static inline Arg Hex(long long* x); 659 static inline Arg Hex(unsigned long long* x); 660 661 static inline Arg Octal(short* x); 662 static inline Arg Octal(unsigned short* x); 663 static inline Arg Octal(int* x); 664 static inline Arg Octal(unsigned int* x); 665 static inline Arg Octal(long* x); 666 static inline Arg Octal(unsigned long* x); 667 static inline Arg Octal(long long* x); 668 static inline Arg Octal(unsigned long long* x); 669 670 private: 671 void Init(const StringPiece& pattern, const Options& options); 672 673 bool Rewrite(string *out, 674 const StringPiece &rewrite, 675 const StringPiece* vec, 676 int veclen) const; 677 678 bool DoMatch(const StringPiece& text, 679 Anchor anchor, 680 int* consumed, 681 const Arg* const args[], 682 int n) const; 683 684 re2::Prog* ReverseProg() const; 685 686 mutable Mutex* mutex_; 687 string pattern_; // string regular expression 688 Options options_; // option flags 689 string prefix_; // required prefix (before regexp_) 690 bool prefix_foldcase_; // prefix is ASCII case-insensitive 691 re2::Regexp* entire_regexp_; // parsed regular expression 692 re2::Regexp* suffix_regexp_; // parsed regular expression, prefix removed 693 re2::Prog* prog_; // compiled program for regexp 694 mutable re2::Prog* rprog_; // reverse program for regexp 695 bool is_one_pass_; // can use prog_->SearchOnePass? 696 mutable const string* error_; // Error indicator 697 // (or points to empty string) 698 mutable ErrorCode error_code_; // Error code 699 mutable string error_arg_; // Fragment of regexp showing error 700 mutable int num_captures_; // Number of capturing groups 701 702 // Map from capture names to indices 703 mutable const map<string, int>* named_groups_; 704 705 // Map from capture indices to names 706 mutable const map<int, string>* group_names_; 707 708 //DISALLOW_EVIL_CONSTRUCTORS(RE2); 709 RE2(const RE2&); 710 void operator=(const RE2&); 711 }; 712 713 /***** Implementation details *****/ 714 715 // Hex/Octal/Binary? 716 717 // Special class for parsing into objects that define a ParseFrom() method 718 template <class T> 719 class _RE2_MatchObject { 720 public: 721 static inline bool Parse(const char* str, int n, void* dest) { 722 if (dest == NULL) return true; 723 T* object = reinterpret_cast<T*>(dest); 724 return object->ParseFrom(str, n); 725 } 726 }; 727 728 class RE2::Arg { 729 public: 730 // Empty constructor so we can declare arrays of RE2::Arg 731 Arg(); 732 733 // Constructor specially designed for NULL arguments 734 Arg(void*); 735 736 typedef bool (*Parser)(const char* str, int n, void* dest); 737 738 // Type-specific parsers 739 #define MAKE_PARSER(type,name) \ 740 Arg(type* p) : arg_(p), parser_(name) { } \ 741 Arg(type* p, Parser parser) : arg_(p), parser_(parser) { } \ 742 743 744 MAKE_PARSER(char, parse_char); 745 MAKE_PARSER(signed char, parse_char); 746 MAKE_PARSER(unsigned char, parse_uchar); 747 MAKE_PARSER(short, parse_short); 748 MAKE_PARSER(unsigned short, parse_ushort); 749 MAKE_PARSER(int, parse_int); 750 MAKE_PARSER(unsigned int, parse_uint); 751 MAKE_PARSER(long, parse_long); 752 MAKE_PARSER(unsigned long, parse_ulong); 753 MAKE_PARSER(long long, parse_longlong); 754 MAKE_PARSER(unsigned long long, parse_ulonglong); 755 MAKE_PARSER(float, parse_float); 756 MAKE_PARSER(double, parse_double); 757 MAKE_PARSER(string, parse_string); 758 MAKE_PARSER(StringPiece, parse_stringpiece); 759 760 #undef MAKE_PARSER 761 762 // Generic constructor 763 template <class T> Arg(T*, Parser parser); 764 // Generic constructor template 765 template <class T> Arg(T* p) 766 : arg_(p), parser_(_RE2_MatchObject<T>::Parse) { 767 } 768 769 // Parse the data 770 bool Parse(const char* str, int n) const; 771 772 private: 773 void* arg_; 774 Parser parser_; 775 776 static bool parse_null (const char* str, int n, void* dest); 777 static bool parse_char (const char* str, int n, void* dest); 778 static bool parse_uchar (const char* str, int n, void* dest); 779 static bool parse_float (const char* str, int n, void* dest); 780 static bool parse_double (const char* str, int n, void* dest); 781 static bool parse_string (const char* str, int n, void* dest); 782 static bool parse_stringpiece (const char* str, int n, void* dest); 783 784 #define DECLARE_INTEGER_PARSER(name) \ 785 private: \ 786 static bool parse_ ## name(const char* str, int n, void* dest); \ 787 static bool parse_ ## name ## _radix( \ 788 const char* str, int n, void* dest, int radix); \ 789 public: \ 790 static bool parse_ ## name ## _hex(const char* str, int n, void* dest); \ 791 static bool parse_ ## name ## _octal(const char* str, int n, void* dest); \ 792 static bool parse_ ## name ## _cradix(const char* str, int n, void* dest) 793 794 DECLARE_INTEGER_PARSER(short); 795 DECLARE_INTEGER_PARSER(ushort); 796 DECLARE_INTEGER_PARSER(int); 797 DECLARE_INTEGER_PARSER(uint); 798 DECLARE_INTEGER_PARSER(long); 799 DECLARE_INTEGER_PARSER(ulong); 800 DECLARE_INTEGER_PARSER(longlong); 801 DECLARE_INTEGER_PARSER(ulonglong); 802 803 #undef DECLARE_INTEGER_PARSER 804 }; 805 806 inline RE2::Arg::Arg() : arg_(NULL), parser_(parse_null) { } 807 inline RE2::Arg::Arg(void* p) : arg_(p), parser_(parse_null) { } 808 809 inline bool RE2::Arg::Parse(const char* str, int n) const { 810 return (*parser_)(str, n, arg_); 811 } 812 813 // This part of the parser, appropriate only for ints, deals with bases 814 #define MAKE_INTEGER_PARSER(type, name) \ 815 inline RE2::Arg RE2::Hex(type* ptr) { \ 816 return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _hex); } \ 817 inline RE2::Arg RE2::Octal(type* ptr) { \ 818 return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _octal); } \ 819 inline RE2::Arg RE2::CRadix(type* ptr) { \ 820 return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _cradix); } 821 822 MAKE_INTEGER_PARSER(short, short); 823 MAKE_INTEGER_PARSER(unsigned short, ushort); 824 MAKE_INTEGER_PARSER(int, int); 825 MAKE_INTEGER_PARSER(unsigned int, uint); 826 MAKE_INTEGER_PARSER(long, long); 827 MAKE_INTEGER_PARSER(unsigned long, ulong); 828 MAKE_INTEGER_PARSER(long long, longlong); 829 MAKE_INTEGER_PARSER(unsigned long long, ulonglong); 830 831 #undef MAKE_INTEGER_PARSER 832 833 } // namespace re2 834 835 using re2::RE2; 836 837 #endif /* RE2_RE2_H */ 838