Home | History | Annotate | Download | only in Linker
      1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LLVM module linker.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Linker.h"
     15 #include "llvm/Constants.h"
     16 #include "llvm/DerivedTypes.h"
     17 #include "llvm/Instructions.h"
     18 #include "llvm/Module.h"
     19 #include "llvm/ADT/DenseSet.h"
     20 #include "llvm/ADT/Optional.h"
     21 #include "llvm/ADT/SetVector.h"
     22 #include "llvm/ADT/SmallPtrSet.h"
     23 #include "llvm/Support/Debug.h"
     24 #include "llvm/Support/Path.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 #include "llvm/Transforms/Utils/Cloning.h"
     27 #include "llvm/Transforms/Utils/ValueMapper.h"
     28 #include <cctype>
     29 using namespace llvm;
     30 
     31 //===----------------------------------------------------------------------===//
     32 // TypeMap implementation.
     33 //===----------------------------------------------------------------------===//
     34 
     35 namespace {
     36 class TypeMapTy : public ValueMapTypeRemapper {
     37   /// MappedTypes - This is a mapping from a source type to a destination type
     38   /// to use.
     39   DenseMap<Type*, Type*> MappedTypes;
     40 
     41   /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
     42   /// we speculatively add types to MappedTypes, but keep track of them here in
     43   /// case we need to roll back.
     44   SmallVector<Type*, 16> SpeculativeTypes;
     45 
     46   /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
     47   /// source module that are mapped to an opaque struct in the destination
     48   /// module.
     49   SmallVector<StructType*, 16> SrcDefinitionsToResolve;
     50 
     51   /// DstResolvedOpaqueTypes - This is the set of opaque types in the
     52   /// destination modules who are getting a body from the source module.
     53   SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
     54 
     55 public:
     56   /// addTypeMapping - Indicate that the specified type in the destination
     57   /// module is conceptually equivalent to the specified type in the source
     58   /// module.
     59   void addTypeMapping(Type *DstTy, Type *SrcTy);
     60 
     61   /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
     62   /// module from a type definition in the source module.
     63   void linkDefinedTypeBodies();
     64 
     65   /// get - Return the mapped type to use for the specified input type from the
     66   /// source module.
     67   Type *get(Type *SrcTy);
     68 
     69   FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
     70 
     71   /// dump - Dump out the type map for debugging purposes.
     72   void dump() const {
     73     for (DenseMap<Type*, Type*>::const_iterator
     74            I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) {
     75       dbgs() << "TypeMap: ";
     76       I->first->dump();
     77       dbgs() << " => ";
     78       I->second->dump();
     79       dbgs() << '\n';
     80     }
     81   }
     82 
     83 private:
     84   Type *getImpl(Type *T);
     85   /// remapType - Implement the ValueMapTypeRemapper interface.
     86   Type *remapType(Type *SrcTy) {
     87     return get(SrcTy);
     88   }
     89 
     90   bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
     91 };
     92 }
     93 
     94 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
     95   Type *&Entry = MappedTypes[SrcTy];
     96   if (Entry) return;
     97 
     98   if (DstTy == SrcTy) {
     99     Entry = DstTy;
    100     return;
    101   }
    102 
    103   // Check to see if these types are recursively isomorphic and establish a
    104   // mapping between them if so.
    105   if (!areTypesIsomorphic(DstTy, SrcTy)) {
    106     // Oops, they aren't isomorphic.  Just discard this request by rolling out
    107     // any speculative mappings we've established.
    108     for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
    109       MappedTypes.erase(SpeculativeTypes[i]);
    110   }
    111   SpeculativeTypes.clear();
    112 }
    113 
    114 /// areTypesIsomorphic - Recursively walk this pair of types, returning true
    115 /// if they are isomorphic, false if they are not.
    116 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
    117   // Two types with differing kinds are clearly not isomorphic.
    118   if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
    119 
    120   // If we have an entry in the MappedTypes table, then we have our answer.
    121   Type *&Entry = MappedTypes[SrcTy];
    122   if (Entry)
    123     return Entry == DstTy;
    124 
    125   // Two identical types are clearly isomorphic.  Remember this
    126   // non-speculatively.
    127   if (DstTy == SrcTy) {
    128     Entry = DstTy;
    129     return true;
    130   }
    131 
    132   // Okay, we have two types with identical kinds that we haven't seen before.
    133 
    134   // If this is an opaque struct type, special case it.
    135   if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
    136     // Mapping an opaque type to any struct, just keep the dest struct.
    137     if (SSTy->isOpaque()) {
    138       Entry = DstTy;
    139       SpeculativeTypes.push_back(SrcTy);
    140       return true;
    141     }
    142 
    143     // Mapping a non-opaque source type to an opaque dest.  If this is the first
    144     // type that we're mapping onto this destination type then we succeed.  Keep
    145     // the dest, but fill it in later.  This doesn't need to be speculative.  If
    146     // this is the second (different) type that we're trying to map onto the
    147     // same opaque type then we fail.
    148     if (cast<StructType>(DstTy)->isOpaque()) {
    149       // We can only map one source type onto the opaque destination type.
    150       if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
    151         return false;
    152       SrcDefinitionsToResolve.push_back(SSTy);
    153       Entry = DstTy;
    154       return true;
    155     }
    156   }
    157 
    158   // If the number of subtypes disagree between the two types, then we fail.
    159   if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
    160     return false;
    161 
    162   // Fail if any of the extra properties (e.g. array size) of the type disagree.
    163   if (isa<IntegerType>(DstTy))
    164     return false;  // bitwidth disagrees.
    165   if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
    166     if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
    167       return false;
    168 
    169   } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
    170     if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
    171       return false;
    172   } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
    173     StructType *SSTy = cast<StructType>(SrcTy);
    174     if (DSTy->isLiteral() != SSTy->isLiteral() ||
    175         DSTy->isPacked() != SSTy->isPacked())
    176       return false;
    177   } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
    178     if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
    179       return false;
    180   } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
    181     if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
    182       return false;
    183   }
    184 
    185   // Otherwise, we speculate that these two types will line up and recursively
    186   // check the subelements.
    187   Entry = DstTy;
    188   SpeculativeTypes.push_back(SrcTy);
    189 
    190   for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
    191     if (!areTypesIsomorphic(DstTy->getContainedType(i),
    192                             SrcTy->getContainedType(i)))
    193       return false;
    194 
    195   // If everything seems to have lined up, then everything is great.
    196   return true;
    197 }
    198 
    199 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
    200 /// module from a type definition in the source module.
    201 void TypeMapTy::linkDefinedTypeBodies() {
    202   SmallVector<Type*, 16> Elements;
    203   SmallString<16> TmpName;
    204 
    205   // Note that processing entries in this loop (calling 'get') can add new
    206   // entries to the SrcDefinitionsToResolve vector.
    207   while (!SrcDefinitionsToResolve.empty()) {
    208     StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
    209     StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
    210 
    211     // TypeMap is a many-to-one mapping, if there were multiple types that
    212     // provide a body for DstSTy then previous iterations of this loop may have
    213     // already handled it.  Just ignore this case.
    214     if (!DstSTy->isOpaque()) continue;
    215     assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
    216 
    217     // Map the body of the source type over to a new body for the dest type.
    218     Elements.resize(SrcSTy->getNumElements());
    219     for (unsigned i = 0, e = Elements.size(); i != e; ++i)
    220       Elements[i] = getImpl(SrcSTy->getElementType(i));
    221 
    222     DstSTy->setBody(Elements, SrcSTy->isPacked());
    223 
    224     // If DstSTy has no name or has a longer name than STy, then viciously steal
    225     // STy's name.
    226     if (!SrcSTy->hasName()) continue;
    227     StringRef SrcName = SrcSTy->getName();
    228 
    229     if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
    230       TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
    231       SrcSTy->setName("");
    232       DstSTy->setName(TmpName.str());
    233       TmpName.clear();
    234     }
    235   }
    236 
    237   DstResolvedOpaqueTypes.clear();
    238 }
    239 
    240 /// get - Return the mapped type to use for the specified input type from the
    241 /// source module.
    242 Type *TypeMapTy::get(Type *Ty) {
    243   Type *Result = getImpl(Ty);
    244 
    245   // If this caused a reference to any struct type, resolve it before returning.
    246   if (!SrcDefinitionsToResolve.empty())
    247     linkDefinedTypeBodies();
    248   return Result;
    249 }
    250 
    251 /// getImpl - This is the recursive version of get().
    252 Type *TypeMapTy::getImpl(Type *Ty) {
    253   // If we already have an entry for this type, return it.
    254   Type **Entry = &MappedTypes[Ty];
    255   if (*Entry) return *Entry;
    256 
    257   // If this is not a named struct type, then just map all of the elements and
    258   // then rebuild the type from inside out.
    259   if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
    260     // If there are no element types to map, then the type is itself.  This is
    261     // true for the anonymous {} struct, things like 'float', integers, etc.
    262     if (Ty->getNumContainedTypes() == 0)
    263       return *Entry = Ty;
    264 
    265     // Remap all of the elements, keeping track of whether any of them change.
    266     bool AnyChange = false;
    267     SmallVector<Type*, 4> ElementTypes;
    268     ElementTypes.resize(Ty->getNumContainedTypes());
    269     for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
    270       ElementTypes[i] = getImpl(Ty->getContainedType(i));
    271       AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
    272     }
    273 
    274     // If we found our type while recursively processing stuff, just use it.
    275     Entry = &MappedTypes[Ty];
    276     if (*Entry) return *Entry;
    277 
    278     // If all of the element types mapped directly over, then the type is usable
    279     // as-is.
    280     if (!AnyChange)
    281       return *Entry = Ty;
    282 
    283     // Otherwise, rebuild a modified type.
    284     switch (Ty->getTypeID()) {
    285     default: llvm_unreachable("unknown derived type to remap");
    286     case Type::ArrayTyID:
    287       return *Entry = ArrayType::get(ElementTypes[0],
    288                                      cast<ArrayType>(Ty)->getNumElements());
    289     case Type::VectorTyID:
    290       return *Entry = VectorType::get(ElementTypes[0],
    291                                       cast<VectorType>(Ty)->getNumElements());
    292     case Type::PointerTyID:
    293       return *Entry = PointerType::get(ElementTypes[0],
    294                                       cast<PointerType>(Ty)->getAddressSpace());
    295     case Type::FunctionTyID:
    296       return *Entry = FunctionType::get(ElementTypes[0],
    297                                         makeArrayRef(ElementTypes).slice(1),
    298                                         cast<FunctionType>(Ty)->isVarArg());
    299     case Type::StructTyID:
    300       // Note that this is only reached for anonymous structs.
    301       return *Entry = StructType::get(Ty->getContext(), ElementTypes,
    302                                       cast<StructType>(Ty)->isPacked());
    303     }
    304   }
    305 
    306   // Otherwise, this is an unmapped named struct.  If the struct can be directly
    307   // mapped over, just use it as-is.  This happens in a case when the linked-in
    308   // module has something like:
    309   //   %T = type {%T*, i32}
    310   //   @GV = global %T* null
    311   // where T does not exist at all in the destination module.
    312   //
    313   // The other case we watch for is when the type is not in the destination
    314   // module, but that it has to be rebuilt because it refers to something that
    315   // is already mapped.  For example, if the destination module has:
    316   //  %A = type { i32 }
    317   // and the source module has something like
    318   //  %A' = type { i32 }
    319   //  %B = type { %A'* }
    320   //  @GV = global %B* null
    321   // then we want to create a new type: "%B = type { %A*}" and have it take the
    322   // pristine "%B" name from the source module.
    323   //
    324   // To determine which case this is, we have to recursively walk the type graph
    325   // speculating that we'll be able to reuse it unmodified.  Only if this is
    326   // safe would we map the entire thing over.  Because this is an optimization,
    327   // and is not required for the prettiness of the linked module, we just skip
    328   // it and always rebuild a type here.
    329   StructType *STy = cast<StructType>(Ty);
    330 
    331   // If the type is opaque, we can just use it directly.
    332   if (STy->isOpaque())
    333     return *Entry = STy;
    334 
    335   // Otherwise we create a new type and resolve its body later.  This will be
    336   // resolved by the top level of get().
    337   SrcDefinitionsToResolve.push_back(STy);
    338   StructType *DTy = StructType::create(STy->getContext());
    339   DstResolvedOpaqueTypes.insert(DTy);
    340   return *Entry = DTy;
    341 }
    342 
    343 //===----------------------------------------------------------------------===//
    344 // ModuleLinker implementation.
    345 //===----------------------------------------------------------------------===//
    346 
    347 namespace {
    348   /// ModuleLinker - This is an implementation class for the LinkModules
    349   /// function, which is the entrypoint for this file.
    350   class ModuleLinker {
    351     Module *DstM, *SrcM;
    352 
    353     TypeMapTy TypeMap;
    354 
    355     /// ValueMap - Mapping of values from what they used to be in Src, to what
    356     /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
    357     /// some overhead due to the use of Value handles which the Linker doesn't
    358     /// actually need, but this allows us to reuse the ValueMapper code.
    359     ValueToValueMapTy ValueMap;
    360 
    361     struct AppendingVarInfo {
    362       GlobalVariable *NewGV;  // New aggregate global in dest module.
    363       Constant *DstInit;      // Old initializer from dest module.
    364       Constant *SrcInit;      // Old initializer from src module.
    365     };
    366 
    367     std::vector<AppendingVarInfo> AppendingVars;
    368 
    369     unsigned Mode; // Mode to treat source module.
    370 
    371     // Set of items not to link in from source.
    372     SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
    373 
    374     // Vector of functions to lazily link in.
    375     std::vector<Function*> LazilyLinkFunctions;
    376 
    377   public:
    378     std::string ErrorMsg;
    379 
    380     ModuleLinker(Module *dstM, Module *srcM, unsigned mode)
    381       : DstM(dstM), SrcM(srcM), Mode(mode) { }
    382 
    383     bool run();
    384 
    385   private:
    386     /// emitError - Helper method for setting a message and returning an error
    387     /// code.
    388     bool emitError(const Twine &Message) {
    389       ErrorMsg = Message.str();
    390       return true;
    391     }
    392 
    393     /// getLinkageResult - This analyzes the two global values and determines
    394     /// what the result will look like in the destination module.
    395     bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
    396                           GlobalValue::LinkageTypes &LT,
    397                           GlobalValue::VisibilityTypes &Vis,
    398                           bool &LinkFromSrc);
    399 
    400     /// getLinkedToGlobal - Given a global in the source module, return the
    401     /// global in the destination module that is being linked to, if any.
    402     GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
    403       // If the source has no name it can't link.  If it has local linkage,
    404       // there is no name match-up going on.
    405       if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
    406         return 0;
    407 
    408       // Otherwise see if we have a match in the destination module's symtab.
    409       GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
    410       if (DGV == 0) return 0;
    411 
    412       // If we found a global with the same name in the dest module, but it has
    413       // internal linkage, we are really not doing any linkage here.
    414       if (DGV->hasLocalLinkage())
    415         return 0;
    416 
    417       // Otherwise, we do in fact link to the destination global.
    418       return DGV;
    419     }
    420 
    421     void computeTypeMapping();
    422     bool categorizeModuleFlagNodes(const NamedMDNode *ModFlags,
    423                                    DenseMap<MDString*, MDNode*> &ErrorNode,
    424                                    DenseMap<MDString*, MDNode*> &WarningNode,
    425                                    DenseMap<MDString*, MDNode*> &OverrideNode,
    426                                    DenseMap<MDString*,
    427                                    SmallSetVector<MDNode*, 8> > &RequireNodes,
    428                                    SmallSetVector<MDString*, 16> &SeenIDs);
    429 
    430     bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
    431     bool linkGlobalProto(GlobalVariable *SrcGV);
    432     bool linkFunctionProto(Function *SrcF);
    433     bool linkAliasProto(GlobalAlias *SrcA);
    434     bool linkModuleFlagsMetadata();
    435 
    436     void linkAppendingVarInit(const AppendingVarInfo &AVI);
    437     void linkGlobalInits();
    438     void linkFunctionBody(Function *Dst, Function *Src);
    439     void linkAliasBodies();
    440     void linkNamedMDNodes();
    441   };
    442 }
    443 
    444 /// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
    445 /// in the symbol table.  This is good for all clients except for us.  Go
    446 /// through the trouble to force this back.
    447 static void forceRenaming(GlobalValue *GV, StringRef Name) {
    448   // If the global doesn't force its name or if it already has the right name,
    449   // there is nothing for us to do.
    450   if (GV->hasLocalLinkage() || GV->getName() == Name)
    451     return;
    452 
    453   Module *M = GV->getParent();
    454 
    455   // If there is a conflict, rename the conflict.
    456   if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
    457     GV->takeName(ConflictGV);
    458     ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
    459     assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
    460   } else {
    461     GV->setName(Name);              // Force the name back
    462   }
    463 }
    464 
    465 /// copyGVAttributes - copy additional attributes (those not needed to construct
    466 /// a GlobalValue) from the SrcGV to the DestGV.
    467 static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
    468   // Use the maximum alignment, rather than just copying the alignment of SrcGV.
    469   unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
    470   DestGV->copyAttributesFrom(SrcGV);
    471   DestGV->setAlignment(Alignment);
    472 
    473   forceRenaming(DestGV, SrcGV->getName());
    474 }
    475 
    476 static bool isLessConstraining(GlobalValue::VisibilityTypes a,
    477                                GlobalValue::VisibilityTypes b) {
    478   if (a == GlobalValue::HiddenVisibility)
    479     return false;
    480   if (b == GlobalValue::HiddenVisibility)
    481     return true;
    482   if (a == GlobalValue::ProtectedVisibility)
    483     return false;
    484   if (b == GlobalValue::ProtectedVisibility)
    485     return true;
    486   return false;
    487 }
    488 
    489 /// getLinkageResult - This analyzes the two global values and determines what
    490 /// the result will look like in the destination module.  In particular, it
    491 /// computes the resultant linkage type and visibility, computes whether the
    492 /// global in the source should be copied over to the destination (replacing
    493 /// the existing one), and computes whether this linkage is an error or not.
    494 bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
    495                                     GlobalValue::LinkageTypes &LT,
    496                                     GlobalValue::VisibilityTypes &Vis,
    497                                     bool &LinkFromSrc) {
    498   assert(Dest && "Must have two globals being queried");
    499   assert(!Src->hasLocalLinkage() &&
    500          "If Src has internal linkage, Dest shouldn't be set!");
    501 
    502   bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
    503   bool DestIsDeclaration = Dest->isDeclaration();
    504 
    505   if (SrcIsDeclaration) {
    506     // If Src is external or if both Src & Dest are external..  Just link the
    507     // external globals, we aren't adding anything.
    508     if (Src->hasDLLImportLinkage()) {
    509       // If one of GVs has DLLImport linkage, result should be dllimport'ed.
    510       if (DestIsDeclaration) {
    511         LinkFromSrc = true;
    512         LT = Src->getLinkage();
    513       }
    514     } else if (Dest->hasExternalWeakLinkage()) {
    515       // If the Dest is weak, use the source linkage.
    516       LinkFromSrc = true;
    517       LT = Src->getLinkage();
    518     } else {
    519       LinkFromSrc = false;
    520       LT = Dest->getLinkage();
    521     }
    522   } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
    523     // If Dest is external but Src is not:
    524     LinkFromSrc = true;
    525     LT = Src->getLinkage();
    526   } else if (Src->isWeakForLinker()) {
    527     // At this point we know that Dest has LinkOnce, External*, Weak, Common,
    528     // or DLL* linkage.
    529     if (Dest->hasExternalWeakLinkage() ||
    530         Dest->hasAvailableExternallyLinkage() ||
    531         (Dest->hasLinkOnceLinkage() &&
    532          (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
    533       LinkFromSrc = true;
    534       LT = Src->getLinkage();
    535     } else {
    536       LinkFromSrc = false;
    537       LT = Dest->getLinkage();
    538     }
    539   } else if (Dest->isWeakForLinker()) {
    540     // At this point we know that Src has External* or DLL* linkage.
    541     if (Src->hasExternalWeakLinkage()) {
    542       LinkFromSrc = false;
    543       LT = Dest->getLinkage();
    544     } else {
    545       LinkFromSrc = true;
    546       LT = GlobalValue::ExternalLinkage;
    547     }
    548   } else {
    549     assert((Dest->hasExternalLinkage()  || Dest->hasDLLImportLinkage() ||
    550             Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
    551            (Src->hasExternalLinkage()   || Src->hasDLLImportLinkage() ||
    552             Src->hasDLLExportLinkage()  || Src->hasExternalWeakLinkage()) &&
    553            "Unexpected linkage type!");
    554     return emitError("Linking globals named '" + Src->getName() +
    555                  "': symbol multiply defined!");
    556   }
    557 
    558   // Compute the visibility. We follow the rules in the System V Application
    559   // Binary Interface.
    560   Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
    561     Dest->getVisibility() : Src->getVisibility();
    562   return false;
    563 }
    564 
    565 /// computeTypeMapping - Loop over all of the linked values to compute type
    566 /// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
    567 /// we have two struct types 'Foo' but one got renamed when the module was
    568 /// loaded into the same LLVMContext.
    569 void ModuleLinker::computeTypeMapping() {
    570   // Incorporate globals.
    571   for (Module::global_iterator I = SrcM->global_begin(),
    572        E = SrcM->global_end(); I != E; ++I) {
    573     GlobalValue *DGV = getLinkedToGlobal(I);
    574     if (DGV == 0) continue;
    575 
    576     if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
    577       TypeMap.addTypeMapping(DGV->getType(), I->getType());
    578       continue;
    579     }
    580 
    581     // Unify the element type of appending arrays.
    582     ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
    583     ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
    584     TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
    585   }
    586 
    587   // Incorporate functions.
    588   for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
    589     if (GlobalValue *DGV = getLinkedToGlobal(I))
    590       TypeMap.addTypeMapping(DGV->getType(), I->getType());
    591   }
    592 
    593   // Incorporate types by name, scanning all the types in the source module.
    594   // At this point, the destination module may have a type "%foo = { i32 }" for
    595   // example.  When the source module got loaded into the same LLVMContext, if
    596   // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
    597   std::vector<StructType*> SrcStructTypes;
    598   SrcM->findUsedStructTypes(SrcStructTypes);
    599   SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
    600                                                  SrcStructTypes.end());
    601 
    602   std::vector<StructType*> DstStructTypes;
    603   DstM->findUsedStructTypes(DstStructTypes);
    604   SmallPtrSet<StructType*, 32> DstStructTypesSet(DstStructTypes.begin(),
    605                                                  DstStructTypes.end());
    606 
    607   for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
    608     StructType *ST = SrcStructTypes[i];
    609     if (!ST->hasName()) continue;
    610 
    611     // Check to see if there is a dot in the name followed by a digit.
    612     size_t DotPos = ST->getName().rfind('.');
    613     if (DotPos == 0 || DotPos == StringRef::npos ||
    614         ST->getName().back() == '.' || !isdigit(ST->getName()[DotPos+1]))
    615       continue;
    616 
    617     // Check to see if the destination module has a struct with the prefix name.
    618     if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
    619       // Don't use it if this actually came from the source module. They're in
    620       // the same LLVMContext after all. Also don't use it unless the type is
    621       // actually used in the destination module. This can happen in situations
    622       // like this:
    623       //
    624       //      Module A                         Module B
    625       //      --------                         --------
    626       //   %Z = type { %A }                %B = type { %C.1 }
    627       //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
    628       //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
    629       //   %C = type { i8* }               %B.3 = type { %C.1 }
    630       //
    631       // When we link Module B with Module A, the '%B' in Module B is
    632       // used. However, that would then use '%C.1'. But when we process '%C.1',
    633       // we prefer to take the '%C' version. So we are then left with both
    634       // '%C.1' and '%C' being used for the same types. This leads to some
    635       // variables using one type and some using the other.
    636       if (!SrcStructTypesSet.count(DST) && DstStructTypesSet.count(DST))
    637         TypeMap.addTypeMapping(DST, ST);
    638   }
    639 
    640   // Don't bother incorporating aliases, they aren't generally typed well.
    641 
    642   // Now that we have discovered all of the type equivalences, get a body for
    643   // any 'opaque' types in the dest module that are now resolved.
    644   TypeMap.linkDefinedTypeBodies();
    645 }
    646 
    647 /// linkAppendingVarProto - If there were any appending global variables, link
    648 /// them together now.  Return true on error.
    649 bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
    650                                          GlobalVariable *SrcGV) {
    651 
    652   if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
    653     return emitError("Linking globals named '" + SrcGV->getName() +
    654            "': can only link appending global with another appending global!");
    655 
    656   ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
    657   ArrayType *SrcTy =
    658     cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
    659   Type *EltTy = DstTy->getElementType();
    660 
    661   // Check to see that they two arrays agree on type.
    662   if (EltTy != SrcTy->getElementType())
    663     return emitError("Appending variables with different element types!");
    664   if (DstGV->isConstant() != SrcGV->isConstant())
    665     return emitError("Appending variables linked with different const'ness!");
    666 
    667   if (DstGV->getAlignment() != SrcGV->getAlignment())
    668     return emitError(
    669              "Appending variables with different alignment need to be linked!");
    670 
    671   if (DstGV->getVisibility() != SrcGV->getVisibility())
    672     return emitError(
    673             "Appending variables with different visibility need to be linked!");
    674 
    675   if (DstGV->getSection() != SrcGV->getSection())
    676     return emitError(
    677           "Appending variables with different section name need to be linked!");
    678 
    679   uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
    680   ArrayType *NewType = ArrayType::get(EltTy, NewSize);
    681 
    682   // Create the new global variable.
    683   GlobalVariable *NG =
    684     new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
    685                        DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
    686                        DstGV->isThreadLocal(),
    687                        DstGV->getType()->getAddressSpace());
    688 
    689   // Propagate alignment, visibility and section info.
    690   copyGVAttributes(NG, DstGV);
    691 
    692   AppendingVarInfo AVI;
    693   AVI.NewGV = NG;
    694   AVI.DstInit = DstGV->getInitializer();
    695   AVI.SrcInit = SrcGV->getInitializer();
    696   AppendingVars.push_back(AVI);
    697 
    698   // Replace any uses of the two global variables with uses of the new
    699   // global.
    700   ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
    701 
    702   DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
    703   DstGV->eraseFromParent();
    704 
    705   // Track the source variable so we don't try to link it.
    706   DoNotLinkFromSource.insert(SrcGV);
    707 
    708   return false;
    709 }
    710 
    711 /// linkGlobalProto - Loop through the global variables in the src module and
    712 /// merge them into the dest module.
    713 bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
    714   GlobalValue *DGV = getLinkedToGlobal(SGV);
    715   llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
    716 
    717   if (DGV) {
    718     // Concatenation of appending linkage variables is magic and handled later.
    719     if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
    720       return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
    721 
    722     // Determine whether linkage of these two globals follows the source
    723     // module's definition or the destination module's definition.
    724     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
    725     GlobalValue::VisibilityTypes NV;
    726     bool LinkFromSrc = false;
    727     if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
    728       return true;
    729     NewVisibility = NV;
    730 
    731     // If we're not linking from the source, then keep the definition that we
    732     // have.
    733     if (!LinkFromSrc) {
    734       // Special case for const propagation.
    735       if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
    736         if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
    737           DGVar->setConstant(true);
    738 
    739       // Set calculated linkage and visibility.
    740       DGV->setLinkage(NewLinkage);
    741       DGV->setVisibility(*NewVisibility);
    742 
    743       // Make sure to remember this mapping.
    744       ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
    745 
    746       // Track the source global so that we don't attempt to copy it over when
    747       // processing global initializers.
    748       DoNotLinkFromSource.insert(SGV);
    749 
    750       return false;
    751     }
    752   }
    753 
    754   // No linking to be performed or linking from the source: simply create an
    755   // identical version of the symbol over in the dest module... the
    756   // initializer will be filled in later by LinkGlobalInits.
    757   GlobalVariable *NewDGV =
    758     new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
    759                        SGV->isConstant(), SGV->getLinkage(), /*init*/0,
    760                        SGV->getName(), /*insertbefore*/0,
    761                        SGV->isThreadLocal(),
    762                        SGV->getType()->getAddressSpace());
    763   // Propagate alignment, visibility and section info.
    764   copyGVAttributes(NewDGV, SGV);
    765   if (NewVisibility)
    766     NewDGV->setVisibility(*NewVisibility);
    767 
    768   if (DGV) {
    769     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
    770     DGV->eraseFromParent();
    771   }
    772 
    773   // Make sure to remember this mapping.
    774   ValueMap[SGV] = NewDGV;
    775   return false;
    776 }
    777 
    778 /// linkFunctionProto - Link the function in the source module into the
    779 /// destination module if needed, setting up mapping information.
    780 bool ModuleLinker::linkFunctionProto(Function *SF) {
    781   GlobalValue *DGV = getLinkedToGlobal(SF);
    782   llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
    783 
    784   if (DGV) {
    785     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
    786     bool LinkFromSrc = false;
    787     GlobalValue::VisibilityTypes NV;
    788     if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
    789       return true;
    790     NewVisibility = NV;
    791 
    792     if (!LinkFromSrc) {
    793       // Set calculated linkage
    794       DGV->setLinkage(NewLinkage);
    795       DGV->setVisibility(*NewVisibility);
    796 
    797       // Make sure to remember this mapping.
    798       ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
    799 
    800       // Track the function from the source module so we don't attempt to remap
    801       // it.
    802       DoNotLinkFromSource.insert(SF);
    803 
    804       return false;
    805     }
    806   }
    807 
    808   // If there is no linkage to be performed or we are linking from the source,
    809   // bring SF over.
    810   Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
    811                                      SF->getLinkage(), SF->getName(), DstM);
    812   copyGVAttributes(NewDF, SF);
    813   if (NewVisibility)
    814     NewDF->setVisibility(*NewVisibility);
    815 
    816   if (DGV) {
    817     // Any uses of DF need to change to NewDF, with cast.
    818     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
    819     DGV->eraseFromParent();
    820   } else {
    821     // Internal, LO_ODR, or LO linkage - stick in set to ignore and lazily link.
    822     if (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
    823         SF->hasAvailableExternallyLinkage()) {
    824       DoNotLinkFromSource.insert(SF);
    825       LazilyLinkFunctions.push_back(SF);
    826     }
    827   }
    828 
    829   ValueMap[SF] = NewDF;
    830   return false;
    831 }
    832 
    833 /// LinkAliasProto - Set up prototypes for any aliases that come over from the
    834 /// source module.
    835 bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
    836   GlobalValue *DGV = getLinkedToGlobal(SGA);
    837   llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
    838 
    839   if (DGV) {
    840     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
    841     GlobalValue::VisibilityTypes NV;
    842     bool LinkFromSrc = false;
    843     if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
    844       return true;
    845     NewVisibility = NV;
    846 
    847     if (!LinkFromSrc) {
    848       // Set calculated linkage.
    849       DGV->setLinkage(NewLinkage);
    850       DGV->setVisibility(*NewVisibility);
    851 
    852       // Make sure to remember this mapping.
    853       ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
    854 
    855       // Track the alias from the source module so we don't attempt to remap it.
    856       DoNotLinkFromSource.insert(SGA);
    857 
    858       return false;
    859     }
    860   }
    861 
    862   // If there is no linkage to be performed or we're linking from the source,
    863   // bring over SGA.
    864   GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
    865                                        SGA->getLinkage(), SGA->getName(),
    866                                        /*aliasee*/0, DstM);
    867   copyGVAttributes(NewDA, SGA);
    868   if (NewVisibility)
    869     NewDA->setVisibility(*NewVisibility);
    870 
    871   if (DGV) {
    872     // Any uses of DGV need to change to NewDA, with cast.
    873     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
    874     DGV->eraseFromParent();
    875   }
    876 
    877   ValueMap[SGA] = NewDA;
    878   return false;
    879 }
    880 
    881 static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
    882   unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
    883 
    884   for (unsigned i = 0; i != NumElements; ++i)
    885     Dest.push_back(C->getAggregateElement(i));
    886 }
    887 
    888 void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
    889   // Merge the initializer.
    890   SmallVector<Constant*, 16> Elements;
    891   getArrayElements(AVI.DstInit, Elements);
    892 
    893   Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
    894   getArrayElements(SrcInit, Elements);
    895 
    896   ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
    897   AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
    898 }
    899 
    900 /// linkGlobalInits - Update the initializers in the Dest module now that all
    901 /// globals that may be referenced are in Dest.
    902 void ModuleLinker::linkGlobalInits() {
    903   // Loop over all of the globals in the src module, mapping them over as we go
    904   for (Module::const_global_iterator I = SrcM->global_begin(),
    905        E = SrcM->global_end(); I != E; ++I) {
    906 
    907     // Only process initialized GV's or ones not already in dest.
    908     if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
    909 
    910     // Grab destination global variable.
    911     GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
    912     // Figure out what the initializer looks like in the dest module.
    913     DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
    914                                  RF_None, &TypeMap));
    915   }
    916 }
    917 
    918 /// linkFunctionBody - Copy the source function over into the dest function and
    919 /// fix up references to values.  At this point we know that Dest is an external
    920 /// function, and that Src is not.
    921 void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
    922   assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
    923 
    924   // Go through and convert function arguments over, remembering the mapping.
    925   Function::arg_iterator DI = Dst->arg_begin();
    926   for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
    927        I != E; ++I, ++DI) {
    928     DI->setName(I->getName());  // Copy the name over.
    929 
    930     // Add a mapping to our mapping.
    931     ValueMap[I] = DI;
    932   }
    933 
    934   if (Mode == Linker::DestroySource) {
    935     // Splice the body of the source function into the dest function.
    936     Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
    937 
    938     // At this point, all of the instructions and values of the function are now
    939     // copied over.  The only problem is that they are still referencing values in
    940     // the Source function as operands.  Loop through all of the operands of the
    941     // functions and patch them up to point to the local versions.
    942     for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
    943       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    944         RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
    945 
    946   } else {
    947     // Clone the body of the function into the dest function.
    948     SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
    949     CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL, &TypeMap);
    950   }
    951 
    952   // There is no need to map the arguments anymore.
    953   for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
    954        I != E; ++I)
    955     ValueMap.erase(I);
    956 
    957 }
    958 
    959 /// linkAliasBodies - Insert all of the aliases in Src into the Dest module.
    960 void ModuleLinker::linkAliasBodies() {
    961   for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
    962        I != E; ++I) {
    963     if (DoNotLinkFromSource.count(I))
    964       continue;
    965     if (Constant *Aliasee = I->getAliasee()) {
    966       GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
    967       DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
    968     }
    969   }
    970 }
    971 
    972 /// linkNamedMDNodes - Insert all of the named MDNodes in Src into the Dest
    973 /// module.
    974 void ModuleLinker::linkNamedMDNodes() {
    975   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
    976   for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
    977        E = SrcM->named_metadata_end(); I != E; ++I) {
    978     // Don't link module flags here. Do them separately.
    979     if (&*I == SrcModFlags) continue;
    980     NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
    981     // Add Src elements into Dest node.
    982     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    983       DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
    984                                    RF_None, &TypeMap));
    985   }
    986 }
    987 
    988 /// categorizeModuleFlagNodes - Categorize the module flags according to their
    989 /// type: Error, Warning, Override, and Require.
    990 bool ModuleLinker::
    991 categorizeModuleFlagNodes(const NamedMDNode *ModFlags,
    992                           DenseMap<MDString*, MDNode*> &ErrorNode,
    993                           DenseMap<MDString*, MDNode*> &WarningNode,
    994                           DenseMap<MDString*, MDNode*> &OverrideNode,
    995                           DenseMap<MDString*,
    996                             SmallSetVector<MDNode*, 8> > &RequireNodes,
    997                           SmallSetVector<MDString*, 16> &SeenIDs) {
    998   bool HasErr = false;
    999 
   1000   for (unsigned I = 0, E = ModFlags->getNumOperands(); I != E; ++I) {
   1001     MDNode *Op = ModFlags->getOperand(I);
   1002     assert(Op->getNumOperands() == 3 && "Invalid module flag metadata!");
   1003     assert(isa<ConstantInt>(Op->getOperand(0)) &&
   1004            "Module flag's first operand must be an integer!");
   1005     assert(isa<MDString>(Op->getOperand(1)) &&
   1006            "Module flag's second operand must be an MDString!");
   1007 
   1008     ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
   1009     MDString *ID = cast<MDString>(Op->getOperand(1));
   1010     Value *Val = Op->getOperand(2);
   1011     switch (Behavior->getZExtValue()) {
   1012     default:
   1013       assert(false && "Invalid behavior in module flag metadata!");
   1014       break;
   1015     case Module::Error: {
   1016       MDNode *&ErrNode = ErrorNode[ID];
   1017       if (!ErrNode) ErrNode = Op;
   1018       if (ErrNode->getOperand(2) != Val)
   1019         HasErr = emitError("linking module flags '" + ID->getString() +
   1020                            "': IDs have conflicting values");
   1021       break;
   1022     }
   1023     case Module::Warning: {
   1024       MDNode *&WarnNode = WarningNode[ID];
   1025       if (!WarnNode) WarnNode = Op;
   1026       if (WarnNode->getOperand(2) != Val)
   1027         errs() << "WARNING: linking module flags '" << ID->getString()
   1028                << "': IDs have conflicting values";
   1029       break;
   1030     }
   1031     case Module::Require:  RequireNodes[ID].insert(Op);     break;
   1032     case Module::Override: {
   1033       MDNode *&OvrNode = OverrideNode[ID];
   1034       if (!OvrNode) OvrNode = Op;
   1035       if (OvrNode->getOperand(2) != Val)
   1036         HasErr = emitError("linking module flags '" + ID->getString() +
   1037                            "': IDs have conflicting override values");
   1038       break;
   1039     }
   1040     }
   1041 
   1042     SeenIDs.insert(ID);
   1043   }
   1044 
   1045   return HasErr;
   1046 }
   1047 
   1048 /// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
   1049 /// module.
   1050 bool ModuleLinker::linkModuleFlagsMetadata() {
   1051   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
   1052   if (!SrcModFlags) return false;
   1053 
   1054   NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
   1055 
   1056   // If the destination module doesn't have module flags yet, then just copy
   1057   // over the source module's flags.
   1058   if (DstModFlags->getNumOperands() == 0) {
   1059     for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
   1060       DstModFlags->addOperand(SrcModFlags->getOperand(I));
   1061 
   1062     return false;
   1063   }
   1064 
   1065   bool HasErr = false;
   1066 
   1067   // Otherwise, we have to merge them based on their behaviors. First,
   1068   // categorize all of the nodes in the modules' module flags. If an error or
   1069   // warning occurs, then emit the appropriate message(s).
   1070   DenseMap<MDString*, MDNode*> ErrorNode;
   1071   DenseMap<MDString*, MDNode*> WarningNode;
   1072   DenseMap<MDString*, MDNode*> OverrideNode;
   1073   DenseMap<MDString*, SmallSetVector<MDNode*, 8> > RequireNodes;
   1074   SmallSetVector<MDString*, 16> SeenIDs;
   1075 
   1076   HasErr |= categorizeModuleFlagNodes(SrcModFlags, ErrorNode, WarningNode,
   1077                                       OverrideNode, RequireNodes, SeenIDs);
   1078   HasErr |= categorizeModuleFlagNodes(DstModFlags, ErrorNode, WarningNode,
   1079                                       OverrideNode, RequireNodes, SeenIDs);
   1080 
   1081   // Check that there isn't both an error and warning node for a flag.
   1082   for (SmallSetVector<MDString*, 16>::iterator
   1083          I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
   1084     MDString *ID = *I;
   1085     if (ErrorNode[ID] && WarningNode[ID])
   1086       HasErr = emitError("linking module flags '" + ID->getString() +
   1087                          "': IDs have conflicting behaviors");
   1088   }
   1089 
   1090   // Early exit if we had an error.
   1091   if (HasErr) return true;
   1092 
   1093   // Get the destination's module flags ready for new operands.
   1094   DstModFlags->dropAllReferences();
   1095 
   1096   // Add all of the module flags to the destination module.
   1097   DenseMap<MDString*, SmallVector<MDNode*, 4> > AddedNodes;
   1098   for (SmallSetVector<MDString*, 16>::iterator
   1099          I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
   1100     MDString *ID = *I;
   1101     if (OverrideNode[ID]) {
   1102       DstModFlags->addOperand(OverrideNode[ID]);
   1103       AddedNodes[ID].push_back(OverrideNode[ID]);
   1104     } else if (ErrorNode[ID]) {
   1105       DstModFlags->addOperand(ErrorNode[ID]);
   1106       AddedNodes[ID].push_back(ErrorNode[ID]);
   1107     } else if (WarningNode[ID]) {
   1108       DstModFlags->addOperand(WarningNode[ID]);
   1109       AddedNodes[ID].push_back(WarningNode[ID]);
   1110     }
   1111 
   1112     for (SmallSetVector<MDNode*, 8>::iterator
   1113            II = RequireNodes[ID].begin(), IE = RequireNodes[ID].end();
   1114          II != IE; ++II)
   1115       DstModFlags->addOperand(*II);
   1116   }
   1117 
   1118   // Now check that all of the requirements have been satisfied.
   1119   for (SmallSetVector<MDString*, 16>::iterator
   1120          I = SeenIDs.begin(), E = SeenIDs.end(); I != E; ++I) {
   1121     MDString *ID = *I;
   1122     SmallSetVector<MDNode*, 8> &Set = RequireNodes[ID];
   1123 
   1124     for (SmallSetVector<MDNode*, 8>::iterator
   1125            II = Set.begin(), IE = Set.end(); II != IE; ++II) {
   1126       MDNode *Node = *II;
   1127       assert(isa<MDNode>(Node->getOperand(2)) &&
   1128              "Module flag's third operand must be an MDNode!");
   1129       MDNode *Val = cast<MDNode>(Node->getOperand(2));
   1130 
   1131       MDString *ReqID = cast<MDString>(Val->getOperand(0));
   1132       Value *ReqVal = Val->getOperand(1);
   1133 
   1134       bool HasValue = false;
   1135       for (SmallVectorImpl<MDNode*>::iterator
   1136              RI = AddedNodes[ReqID].begin(), RE = AddedNodes[ReqID].end();
   1137            RI != RE; ++RI) {
   1138         MDNode *ReqNode = *RI;
   1139         if (ReqNode->getOperand(2) == ReqVal) {
   1140           HasValue = true;
   1141           break;
   1142         }
   1143       }
   1144 
   1145       if (!HasValue)
   1146         HasErr = emitError("linking module flags '" + ReqID->getString() +
   1147                            "': does not have the required value");
   1148     }
   1149   }
   1150 
   1151   return HasErr;
   1152 }
   1153 
   1154 bool ModuleLinker::run() {
   1155   assert(DstM && "Null destination module");
   1156   assert(SrcM && "Null source module");
   1157 
   1158   // Inherit the target data from the source module if the destination module
   1159   // doesn't have one already.
   1160   if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
   1161     DstM->setDataLayout(SrcM->getDataLayout());
   1162 
   1163   // Copy the target triple from the source to dest if the dest's is empty.
   1164   if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
   1165     DstM->setTargetTriple(SrcM->getTargetTriple());
   1166 
   1167   if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
   1168       SrcM->getDataLayout() != DstM->getDataLayout())
   1169     errs() << "WARNING: Linking two modules of different data layouts!\n";
   1170   if (!SrcM->getTargetTriple().empty() &&
   1171       DstM->getTargetTriple() != SrcM->getTargetTriple()) {
   1172     errs() << "WARNING: Linking two modules of different target triples: ";
   1173     if (!SrcM->getModuleIdentifier().empty())
   1174       errs() << SrcM->getModuleIdentifier() << ": ";
   1175     errs() << "'" << SrcM->getTargetTriple() << "' and '"
   1176            << DstM->getTargetTriple() << "'\n";
   1177   }
   1178 
   1179   // Append the module inline asm string.
   1180   if (!SrcM->getModuleInlineAsm().empty()) {
   1181     if (DstM->getModuleInlineAsm().empty())
   1182       DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
   1183     else
   1184       DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
   1185                                SrcM->getModuleInlineAsm());
   1186   }
   1187 
   1188   // Update the destination module's dependent libraries list with the libraries
   1189   // from the source module. There's no opportunity for duplicates here as the
   1190   // Module ensures that duplicate insertions are discarded.
   1191   for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end();
   1192        SI != SE; ++SI)
   1193     DstM->addLibrary(*SI);
   1194 
   1195   // If the source library's module id is in the dependent library list of the
   1196   // destination library, remove it since that module is now linked in.
   1197   StringRef ModuleId = SrcM->getModuleIdentifier();
   1198   if (!ModuleId.empty())
   1199     DstM->removeLibrary(sys::path::stem(ModuleId));
   1200 
   1201   // Loop over all of the linked values to compute type mappings.
   1202   computeTypeMapping();
   1203 
   1204   // Insert all of the globals in src into the DstM module... without linking
   1205   // initializers (which could refer to functions not yet mapped over).
   1206   for (Module::global_iterator I = SrcM->global_begin(),
   1207        E = SrcM->global_end(); I != E; ++I)
   1208     if (linkGlobalProto(I))
   1209       return true;
   1210 
   1211   // Link the functions together between the two modules, without doing function
   1212   // bodies... this just adds external function prototypes to the DstM
   1213   // function...  We do this so that when we begin processing function bodies,
   1214   // all of the global values that may be referenced are available in our
   1215   // ValueMap.
   1216   for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
   1217     if (linkFunctionProto(I))
   1218       return true;
   1219 
   1220   // If there were any aliases, link them now.
   1221   for (Module::alias_iterator I = SrcM->alias_begin(),
   1222        E = SrcM->alias_end(); I != E; ++I)
   1223     if (linkAliasProto(I))
   1224       return true;
   1225 
   1226   for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
   1227     linkAppendingVarInit(AppendingVars[i]);
   1228 
   1229   // Update the initializers in the DstM module now that all globals that may
   1230   // be referenced are in DstM.
   1231   linkGlobalInits();
   1232 
   1233   // Link in the function bodies that are defined in the source module into
   1234   // DstM.
   1235   for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
   1236     // Skip if not linking from source.
   1237     if (DoNotLinkFromSource.count(SF)) continue;
   1238 
   1239     // Skip if no body (function is external) or materialize.
   1240     if (SF->isDeclaration()) {
   1241       if (!SF->isMaterializable())
   1242         continue;
   1243       if (SF->Materialize(&ErrorMsg))
   1244         return true;
   1245     }
   1246 
   1247     linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
   1248     SF->Dematerialize();
   1249   }
   1250 
   1251   // Resolve all uses of aliases with aliasees.
   1252   linkAliasBodies();
   1253 
   1254   // Remap all of the named MDNodes in Src into the DstM module. We do this
   1255   // after linking GlobalValues so that MDNodes that reference GlobalValues
   1256   // are properly remapped.
   1257   linkNamedMDNodes();
   1258 
   1259   // Merge the module flags into the DstM module.
   1260   if (linkModuleFlagsMetadata())
   1261     return true;
   1262 
   1263   // Process vector of lazily linked in functions.
   1264   bool LinkedInAnyFunctions;
   1265   do {
   1266     LinkedInAnyFunctions = false;
   1267 
   1268     for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
   1269         E = LazilyLinkFunctions.end(); I != E; ++I) {
   1270       if (!*I)
   1271         continue;
   1272 
   1273       Function *SF = *I;
   1274       Function *DF = cast<Function>(ValueMap[SF]);
   1275 
   1276       if (!DF->use_empty()) {
   1277 
   1278         // Materialize if necessary.
   1279         if (SF->isDeclaration()) {
   1280           if (!SF->isMaterializable())
   1281             continue;
   1282           if (SF->Materialize(&ErrorMsg))
   1283             return true;
   1284         }
   1285 
   1286         // Link in function body.
   1287         linkFunctionBody(DF, SF);
   1288         SF->Dematerialize();
   1289 
   1290         // "Remove" from vector by setting the element to 0.
   1291         *I = 0;
   1292 
   1293         // Set flag to indicate we may have more functions to lazily link in
   1294         // since we linked in a function.
   1295         LinkedInAnyFunctions = true;
   1296       }
   1297     }
   1298   } while (LinkedInAnyFunctions);
   1299 
   1300   // Remove any prototypes of functions that were not actually linked in.
   1301   for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
   1302       E = LazilyLinkFunctions.end(); I != E; ++I) {
   1303     if (!*I)
   1304       continue;
   1305 
   1306     Function *SF = *I;
   1307     Function *DF = cast<Function>(ValueMap[SF]);
   1308     if (DF->use_empty())
   1309       DF->eraseFromParent();
   1310   }
   1311 
   1312   // Now that all of the types from the source are used, resolve any structs
   1313   // copied over to the dest that didn't exist there.
   1314   TypeMap.linkDefinedTypeBodies();
   1315 
   1316   return false;
   1317 }
   1318 
   1319 //===----------------------------------------------------------------------===//
   1320 // LinkModules entrypoint.
   1321 //===----------------------------------------------------------------------===//
   1322 
   1323 /// LinkModules - This function links two modules together, with the resulting
   1324 /// left module modified to be the composite of the two input modules.  If an
   1325 /// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
   1326 /// the problem.  Upon failure, the Dest module could be in a modified state,
   1327 /// and shouldn't be relied on to be consistent.
   1328 bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
   1329                          std::string *ErrorMsg) {
   1330   ModuleLinker TheLinker(Dest, Src, Mode);
   1331   if (TheLinker.run()) {
   1332     if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg;
   1333     return true;
   1334   }
   1335 
   1336   return false;
   1337 }
   1338