Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/MachineBasicBlock.h ------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Collect the sequence of machine instructions for a basic block.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
     15 #define LLVM_CODEGEN_MACHINEBASICBLOCK_H
     16 
     17 #include "llvm/CodeGen/MachineInstr.h"
     18 #include "llvm/ADT/GraphTraits.h"
     19 #include "llvm/Support/DataTypes.h"
     20 #include <functional>
     21 
     22 namespace llvm {
     23 
     24 class Pass;
     25 class BasicBlock;
     26 class MachineFunction;
     27 class MCSymbol;
     28 class SlotIndexes;
     29 class StringRef;
     30 class raw_ostream;
     31 class MachineBranchProbabilityInfo;
     32 
     33 template <>
     34 struct ilist_traits<MachineInstr> : public ilist_default_traits<MachineInstr> {
     35 private:
     36   mutable ilist_half_node<MachineInstr> Sentinel;
     37 
     38   // this is only set by the MachineBasicBlock owning the LiveList
     39   friend class MachineBasicBlock;
     40   MachineBasicBlock* Parent;
     41 
     42 public:
     43   MachineInstr *createSentinel() const {
     44     return static_cast<MachineInstr*>(&Sentinel);
     45   }
     46   void destroySentinel(MachineInstr *) const {}
     47 
     48   MachineInstr *provideInitialHead() const { return createSentinel(); }
     49   MachineInstr *ensureHead(MachineInstr*) const { return createSentinel(); }
     50   static void noteHead(MachineInstr*, MachineInstr*) {}
     51 
     52   void addNodeToList(MachineInstr* N);
     53   void removeNodeFromList(MachineInstr* N);
     54   void transferNodesFromList(ilist_traits &SrcTraits,
     55                              ilist_iterator<MachineInstr> first,
     56                              ilist_iterator<MachineInstr> last);
     57   void deleteNode(MachineInstr *N);
     58 private:
     59   void createNode(const MachineInstr &);
     60 };
     61 
     62 class MachineBasicBlock : public ilist_node<MachineBasicBlock> {
     63   typedef ilist<MachineInstr> Instructions;
     64   Instructions Insts;
     65   const BasicBlock *BB;
     66   int Number;
     67   MachineFunction *xParent;
     68 
     69   /// Predecessors/Successors - Keep track of the predecessor / successor
     70   /// basicblocks.
     71   std::vector<MachineBasicBlock *> Predecessors;
     72   std::vector<MachineBasicBlock *> Successors;
     73 
     74 
     75   /// Weights - Keep track of the weights to the successors. This vector
     76   /// has the same order as Successors, or it is empty if we don't use it
     77   /// (disable optimization).
     78   std::vector<uint32_t> Weights;
     79   typedef std::vector<uint32_t>::iterator weight_iterator;
     80   typedef std::vector<uint32_t>::const_iterator const_weight_iterator;
     81 
     82   /// LiveIns - Keep track of the physical registers that are livein of
     83   /// the basicblock.
     84   std::vector<unsigned> LiveIns;
     85 
     86   /// Alignment - Alignment of the basic block. Zero if the basic block does
     87   /// not need to be aligned.
     88   /// The alignment is specified as log2(bytes).
     89   unsigned Alignment;
     90 
     91   /// IsLandingPad - Indicate that this basic block is entered via an
     92   /// exception handler.
     93   bool IsLandingPad;
     94 
     95   /// AddressTaken - Indicate that this basic block is potentially the
     96   /// target of an indirect branch.
     97   bool AddressTaken;
     98 
     99   // Intrusive list support
    100   MachineBasicBlock() {}
    101 
    102   explicit MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb);
    103 
    104   ~MachineBasicBlock();
    105 
    106   // MachineBasicBlocks are allocated and owned by MachineFunction.
    107   friend class MachineFunction;
    108 
    109 public:
    110   /// getBasicBlock - Return the LLVM basic block that this instance
    111   /// corresponded to originally. Note that this may be NULL if this instance
    112   /// does not correspond directly to an LLVM basic block.
    113   ///
    114   const BasicBlock *getBasicBlock() const { return BB; }
    115 
    116   /// getName - Return the name of the corresponding LLVM basic block, or
    117   /// "(null)".
    118   StringRef getName() const;
    119 
    120   /// getFullName - Return a formatted string to identify this block and its
    121   /// parent function.
    122   std::string getFullName() const;
    123 
    124   /// hasAddressTaken - Test whether this block is potentially the target
    125   /// of an indirect branch.
    126   bool hasAddressTaken() const { return AddressTaken; }
    127 
    128   /// setHasAddressTaken - Set this block to reflect that it potentially
    129   /// is the target of an indirect branch.
    130   void setHasAddressTaken() { AddressTaken = true; }
    131 
    132   /// getParent - Return the MachineFunction containing this basic block.
    133   ///
    134   const MachineFunction *getParent() const { return xParent; }
    135   MachineFunction *getParent() { return xParent; }
    136 
    137 
    138   /// bundle_iterator - MachineBasicBlock iterator that automatically skips over
    139   /// MIs that are inside bundles (i.e. walk top level MIs only).
    140   template<typename Ty, typename IterTy>
    141   class bundle_iterator
    142     : public std::iterator<std::bidirectional_iterator_tag, Ty, ptrdiff_t> {
    143     IterTy MII;
    144 
    145   public:
    146     bundle_iterator(IterTy mii) : MII(mii) {
    147       assert(!MII->isInsideBundle() &&
    148              "It's not legal to initialize bundle_iterator with a bundled MI");
    149     }
    150 
    151     bundle_iterator(Ty &mi) : MII(mi) {
    152       assert(!mi.isInsideBundle() &&
    153              "It's not legal to initialize bundle_iterator with a bundled MI");
    154     }
    155     bundle_iterator(Ty *mi) : MII(mi) {
    156       assert((!mi || !mi->isInsideBundle()) &&
    157              "It's not legal to initialize bundle_iterator with a bundled MI");
    158     }
    159     bundle_iterator(const bundle_iterator &I) : MII(I.MII) {}
    160     bundle_iterator() : MII(0) {}
    161 
    162     Ty &operator*() const { return *MII; }
    163     Ty *operator->() const { return &operator*(); }
    164 
    165     operator Ty*() const { return MII; }
    166 
    167     bool operator==(const bundle_iterator &x) const {
    168       return MII == x.MII;
    169     }
    170     bool operator!=(const bundle_iterator &x) const {
    171       return !operator==(x);
    172     }
    173 
    174     // Increment and decrement operators...
    175     bundle_iterator &operator--() {      // predecrement - Back up
    176       do {
    177         --MII;
    178       } while (MII->isInsideBundle());
    179       return *this;
    180     }
    181     bundle_iterator &operator++() {      // preincrement - Advance
    182       do {
    183         ++MII;
    184       } while (MII->isInsideBundle());
    185       return *this;
    186     }
    187     bundle_iterator operator--(int) {    // postdecrement operators...
    188       bundle_iterator tmp = *this;
    189       do {
    190         --MII;
    191       } while (MII->isInsideBundle());
    192       return tmp;
    193     }
    194     bundle_iterator operator++(int) {    // postincrement operators...
    195       bundle_iterator tmp = *this;
    196       do {
    197         ++MII;
    198       } while (MII->isInsideBundle());
    199       return tmp;
    200     }
    201 
    202     IterTy getInstrIterator() const {
    203       return MII;
    204     }
    205   };
    206 
    207   typedef Instructions::iterator                                 instr_iterator;
    208   typedef Instructions::const_iterator                     const_instr_iterator;
    209   typedef std::reverse_iterator<instr_iterator>          reverse_instr_iterator;
    210   typedef
    211   std::reverse_iterator<const_instr_iterator>      const_reverse_instr_iterator;
    212 
    213   typedef
    214   bundle_iterator<MachineInstr,instr_iterator>                         iterator;
    215   typedef
    216   bundle_iterator<const MachineInstr,const_instr_iterator>       const_iterator;
    217   typedef std::reverse_iterator<const_iterator>          const_reverse_iterator;
    218   typedef std::reverse_iterator<iterator>                      reverse_iterator;
    219 
    220 
    221   unsigned size() const { return (unsigned)Insts.size(); }
    222   bool empty() const { return Insts.empty(); }
    223 
    224   MachineInstr& front() { return Insts.front(); }
    225   MachineInstr& back()  { return Insts.back(); }
    226   const MachineInstr& front() const { return Insts.front(); }
    227   const MachineInstr& back()  const { return Insts.back(); }
    228 
    229   instr_iterator                instr_begin()       { return Insts.begin();  }
    230   const_instr_iterator          instr_begin() const { return Insts.begin();  }
    231   instr_iterator                  instr_end()       { return Insts.end();    }
    232   const_instr_iterator            instr_end() const { return Insts.end();    }
    233   reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
    234   const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
    235   reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
    236   const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
    237 
    238   iterator                begin()       { return Insts.begin();  }
    239   const_iterator          begin() const { return Insts.begin();  }
    240   iterator                  end()       {
    241     instr_iterator II = instr_end();
    242     if (II != instr_begin()) {
    243       while (II->isInsideBundle())
    244         --II;
    245     }
    246     return II;
    247   }
    248   const_iterator            end() const {
    249     const_instr_iterator II = instr_end();
    250     if (II != instr_begin()) {
    251       while (II->isInsideBundle())
    252         --II;
    253     }
    254     return II;
    255   }
    256   reverse_iterator       rbegin()       {
    257     reverse_instr_iterator II = instr_rbegin();
    258     if (II != instr_rend()) {
    259       while (II->isInsideBundle())
    260         ++II;
    261     }
    262     return II;
    263   }
    264   const_reverse_iterator rbegin() const {
    265     const_reverse_instr_iterator II = instr_rbegin();
    266     if (II != instr_rend()) {
    267       while (II->isInsideBundle())
    268         ++II;
    269     }
    270     return II;
    271   }
    272   reverse_iterator       rend  ()       { return Insts.rend();   }
    273   const_reverse_iterator rend  () const { return Insts.rend();   }
    274 
    275 
    276   // Machine-CFG iterators
    277   typedef std::vector<MachineBasicBlock *>::iterator       pred_iterator;
    278   typedef std::vector<MachineBasicBlock *>::const_iterator const_pred_iterator;
    279   typedef std::vector<MachineBasicBlock *>::iterator       succ_iterator;
    280   typedef std::vector<MachineBasicBlock *>::const_iterator const_succ_iterator;
    281   typedef std::vector<MachineBasicBlock *>::reverse_iterator
    282                                                          pred_reverse_iterator;
    283   typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
    284                                                    const_pred_reverse_iterator;
    285   typedef std::vector<MachineBasicBlock *>::reverse_iterator
    286                                                          succ_reverse_iterator;
    287   typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
    288                                                    const_succ_reverse_iterator;
    289 
    290   pred_iterator        pred_begin()       { return Predecessors.begin(); }
    291   const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
    292   pred_iterator        pred_end()         { return Predecessors.end();   }
    293   const_pred_iterator  pred_end()   const { return Predecessors.end();   }
    294   pred_reverse_iterator        pred_rbegin()
    295                                           { return Predecessors.rbegin();}
    296   const_pred_reverse_iterator  pred_rbegin() const
    297                                           { return Predecessors.rbegin();}
    298   pred_reverse_iterator        pred_rend()
    299                                           { return Predecessors.rend();  }
    300   const_pred_reverse_iterator  pred_rend()   const
    301                                           { return Predecessors.rend();  }
    302   unsigned             pred_size()  const {
    303     return (unsigned)Predecessors.size();
    304   }
    305   bool                 pred_empty() const { return Predecessors.empty(); }
    306   succ_iterator        succ_begin()       { return Successors.begin();   }
    307   const_succ_iterator  succ_begin() const { return Successors.begin();   }
    308   succ_iterator        succ_end()         { return Successors.end();     }
    309   const_succ_iterator  succ_end()   const { return Successors.end();     }
    310   succ_reverse_iterator        succ_rbegin()
    311                                           { return Successors.rbegin();  }
    312   const_succ_reverse_iterator  succ_rbegin() const
    313                                           { return Successors.rbegin();  }
    314   succ_reverse_iterator        succ_rend()
    315                                           { return Successors.rend();    }
    316   const_succ_reverse_iterator  succ_rend()   const
    317                                           { return Successors.rend();    }
    318   unsigned             succ_size()  const {
    319     return (unsigned)Successors.size();
    320   }
    321   bool                 succ_empty() const { return Successors.empty();   }
    322 
    323   // LiveIn management methods.
    324 
    325   /// addLiveIn - Add the specified register as a live in.  Note that it
    326   /// is an error to add the same register to the same set more than once.
    327   void addLiveIn(unsigned Reg)  { LiveIns.push_back(Reg); }
    328 
    329   /// removeLiveIn - Remove the specified register from the live in set.
    330   ///
    331   void removeLiveIn(unsigned Reg);
    332 
    333   /// isLiveIn - Return true if the specified register is in the live in set.
    334   ///
    335   bool isLiveIn(unsigned Reg) const;
    336 
    337   // Iteration support for live in sets.  These sets are kept in sorted
    338   // order by their register number.
    339   typedef std::vector<unsigned>::const_iterator livein_iterator;
    340   livein_iterator livein_begin() const { return LiveIns.begin(); }
    341   livein_iterator livein_end()   const { return LiveIns.end(); }
    342   bool            livein_empty() const { return LiveIns.empty(); }
    343 
    344   /// getAlignment - Return alignment of the basic block.
    345   /// The alignment is specified as log2(bytes).
    346   ///
    347   unsigned getAlignment() const { return Alignment; }
    348 
    349   /// setAlignment - Set alignment of the basic block.
    350   /// The alignment is specified as log2(bytes).
    351   ///
    352   void setAlignment(unsigned Align) { Alignment = Align; }
    353 
    354   /// isLandingPad - Returns true if the block is a landing pad. That is
    355   /// this basic block is entered via an exception handler.
    356   bool isLandingPad() const { return IsLandingPad; }
    357 
    358   /// setIsLandingPad - Indicates the block is a landing pad.  That is
    359   /// this basic block is entered via an exception handler.
    360   void setIsLandingPad(bool V = true) { IsLandingPad = V; }
    361 
    362   /// getLandingPadSuccessor - If this block has a successor that is a landing
    363   /// pad, return it. Otherwise return NULL.
    364   const MachineBasicBlock *getLandingPadSuccessor() const;
    365 
    366   // Code Layout methods.
    367 
    368   /// moveBefore/moveAfter - move 'this' block before or after the specified
    369   /// block.  This only moves the block, it does not modify the CFG or adjust
    370   /// potential fall-throughs at the end of the block.
    371   void moveBefore(MachineBasicBlock *NewAfter);
    372   void moveAfter(MachineBasicBlock *NewBefore);
    373 
    374   /// updateTerminator - Update the terminator instructions in block to account
    375   /// for changes to the layout. If the block previously used a fallthrough,
    376   /// it may now need a branch, and if it previously used branching it may now
    377   /// be able to use a fallthrough.
    378   void updateTerminator();
    379 
    380   // Machine-CFG mutators
    381 
    382   /// addSuccessor - Add succ as a successor of this MachineBasicBlock.
    383   /// The Predecessors list of succ is automatically updated. WEIGHT
    384   /// parameter is stored in Weights list and it may be used by
    385   /// MachineBranchProbabilityInfo analysis to calculate branch probability.
    386   ///
    387   void addSuccessor(MachineBasicBlock *succ, uint32_t weight = 0);
    388 
    389   /// removeSuccessor - Remove successor from the successors list of this
    390   /// MachineBasicBlock. The Predecessors list of succ is automatically updated.
    391   ///
    392   void removeSuccessor(MachineBasicBlock *succ);
    393 
    394   /// removeSuccessor - Remove specified successor from the successors list of
    395   /// this MachineBasicBlock. The Predecessors list of succ is automatically
    396   /// updated.  Return the iterator to the element after the one removed.
    397   ///
    398   succ_iterator removeSuccessor(succ_iterator I);
    399 
    400   /// replaceSuccessor - Replace successor OLD with NEW and update weight info.
    401   ///
    402   void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
    403 
    404 
    405   /// transferSuccessors - Transfers all the successors from MBB to this
    406   /// machine basic block (i.e., copies all the successors fromMBB and
    407   /// remove all the successors from fromMBB).
    408   void transferSuccessors(MachineBasicBlock *fromMBB);
    409 
    410   /// transferSuccessorsAndUpdatePHIs - Transfers all the successors, as
    411   /// in transferSuccessors, and update PHI operands in the successor blocks
    412   /// which refer to fromMBB to refer to this.
    413   void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB);
    414 
    415   /// isSuccessor - Return true if the specified MBB is a successor of this
    416   /// block.
    417   bool isSuccessor(const MachineBasicBlock *MBB) const;
    418 
    419   /// isLayoutSuccessor - Return true if the specified MBB will be emitted
    420   /// immediately after this block, such that if this block exits by
    421   /// falling through, control will transfer to the specified MBB. Note
    422   /// that MBB need not be a successor at all, for example if this block
    423   /// ends with an unconditional branch to some other block.
    424   bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
    425 
    426   /// canFallThrough - Return true if the block can implicitly transfer
    427   /// control to the block after it by falling off the end of it.  This should
    428   /// return false if it can reach the block after it, but it uses an explicit
    429   /// branch to do so (e.g., a table jump).  True is a conservative answer.
    430   bool canFallThrough();
    431 
    432   /// Returns a pointer to the first instructon in this block that is not a
    433   /// PHINode instruction. When adding instruction to the beginning of the
    434   /// basic block, they should be added before the returned value, not before
    435   /// the first instruction, which might be PHI.
    436   /// Returns end() is there's no non-PHI instruction.
    437   iterator getFirstNonPHI();
    438 
    439   /// SkipPHIsAndLabels - Return the first instruction in MBB after I that is
    440   /// not a PHI or a label. This is the correct point to insert copies at the
    441   /// beginning of a basic block.
    442   iterator SkipPHIsAndLabels(iterator I);
    443 
    444   /// getFirstTerminator - returns an iterator to the first terminator
    445   /// instruction of this basic block. If a terminator does not exist,
    446   /// it returns end()
    447   iterator getFirstTerminator();
    448   const_iterator getFirstTerminator() const;
    449 
    450   /// getFirstInstrTerminator - Same getFirstTerminator but it ignores bundles
    451   /// and return an instr_iterator instead.
    452   instr_iterator getFirstInstrTerminator();
    453 
    454   /// getLastNonDebugInstr - returns an iterator to the last non-debug
    455   /// instruction in the basic block, or end()
    456   iterator getLastNonDebugInstr();
    457   const_iterator getLastNonDebugInstr() const;
    458 
    459   /// SplitCriticalEdge - Split the critical edge from this block to the
    460   /// given successor block, and return the newly created block, or null
    461   /// if splitting is not possible.
    462   ///
    463   /// This function updates LiveVariables, MachineDominatorTree, and
    464   /// MachineLoopInfo, as applicable.
    465   MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P);
    466 
    467   void pop_front() { Insts.pop_front(); }
    468   void pop_back() { Insts.pop_back(); }
    469   void push_back(MachineInstr *MI) { Insts.push_back(MI); }
    470 
    471   template<typename IT>
    472   void insert(instr_iterator I, IT S, IT E) {
    473     Insts.insert(I, S, E);
    474   }
    475   instr_iterator insert(instr_iterator I, MachineInstr *M) {
    476     return Insts.insert(I, M);
    477   }
    478   instr_iterator insertAfter(instr_iterator I, MachineInstr *M) {
    479     return Insts.insertAfter(I, M);
    480   }
    481 
    482   template<typename IT>
    483   void insert(iterator I, IT S, IT E) {
    484     Insts.insert(I.getInstrIterator(), S, E);
    485   }
    486   iterator insert(iterator I, MachineInstr *M) {
    487     return Insts.insert(I.getInstrIterator(), M);
    488   }
    489   iterator insertAfter(iterator I, MachineInstr *M) {
    490     return Insts.insertAfter(I.getInstrIterator(), M);
    491   }
    492 
    493   /// erase - Remove the specified element or range from the instruction list.
    494   /// These functions delete any instructions removed.
    495   ///
    496   instr_iterator erase(instr_iterator I) {
    497     return Insts.erase(I);
    498   }
    499   instr_iterator erase(instr_iterator I, instr_iterator E) {
    500     return Insts.erase(I, E);
    501   }
    502   instr_iterator erase_instr(MachineInstr *I) {
    503     instr_iterator MII(I);
    504     return erase(MII);
    505   }
    506 
    507   iterator erase(iterator I);
    508   iterator erase(iterator I, iterator E) {
    509     return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
    510   }
    511   iterator erase(MachineInstr *I) {
    512     iterator MII(I);
    513     return erase(MII);
    514   }
    515 
    516   /// remove - Remove the instruction from the instruction list. This function
    517   /// does not delete the instruction. WARNING: Note, if the specified
    518   /// instruction is a bundle this function will remove all the bundled
    519   /// instructions as well. It is up to the caller to keep a list of the
    520   /// bundled instructions and re-insert them if desired. This function is
    521   /// *not recommended* for manipulating instructions with bundles. Use
    522   /// splice instead.
    523   MachineInstr *remove(MachineInstr *I);
    524   void clear() {
    525     Insts.clear();
    526   }
    527 
    528   /// splice - Take an instruction from MBB 'Other' at the position From,
    529   /// and insert it into this MBB right before 'where'.
    530   void splice(instr_iterator where, MachineBasicBlock *Other,
    531               instr_iterator From) {
    532     Insts.splice(where, Other->Insts, From);
    533   }
    534   void splice(iterator where, MachineBasicBlock *Other, iterator From);
    535 
    536   /// splice - Take a block of instructions from MBB 'Other' in the range [From,
    537   /// To), and insert them into this MBB right before 'where'.
    538   void splice(instr_iterator where, MachineBasicBlock *Other, instr_iterator From,
    539               instr_iterator To) {
    540     Insts.splice(where, Other->Insts, From, To);
    541   }
    542   void splice(iterator where, MachineBasicBlock *Other, iterator From,
    543               iterator To) {
    544     Insts.splice(where.getInstrIterator(), Other->Insts,
    545                  From.getInstrIterator(), To.getInstrIterator());
    546   }
    547 
    548   /// removeFromParent - This method unlinks 'this' from the containing
    549   /// function, and returns it, but does not delete it.
    550   MachineBasicBlock *removeFromParent();
    551 
    552   /// eraseFromParent - This method unlinks 'this' from the containing
    553   /// function and deletes it.
    554   void eraseFromParent();
    555 
    556   /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
    557   /// 'Old', change the code and CFG so that it branches to 'New' instead.
    558   void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
    559 
    560   /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in
    561   /// the CFG to be inserted.  If we have proven that MBB can only branch to
    562   /// DestA and DestB, remove any other MBB successors from the CFG. DestA and
    563   /// DestB can be null. Besides DestA and DestB, retain other edges leading
    564   /// to LandingPads (currently there can be only one; we don't check or require
    565   /// that here). Note it is possible that DestA and/or DestB are LandingPads.
    566   bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
    567                             MachineBasicBlock *DestB,
    568                             bool isCond);
    569 
    570   /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
    571   /// any DBG_VALUE instructions.  Return UnknownLoc if there is none.
    572   DebugLoc findDebugLoc(instr_iterator MBBI);
    573   DebugLoc findDebugLoc(iterator MBBI) {
    574     return findDebugLoc(MBBI.getInstrIterator());
    575   }
    576 
    577   // Debugging methods.
    578   void dump() const;
    579   void print(raw_ostream &OS, SlotIndexes* = 0) const;
    580 
    581   /// getNumber - MachineBasicBlocks are uniquely numbered at the function
    582   /// level, unless they're not in a MachineFunction yet, in which case this
    583   /// will return -1.
    584   ///
    585   int getNumber() const { return Number; }
    586   void setNumber(int N) { Number = N; }
    587 
    588   /// getSymbol - Return the MCSymbol for this basic block.
    589   ///
    590   MCSymbol *getSymbol() const;
    591 
    592 
    593 private:
    594   /// getWeightIterator - Return weight iterator corresponding to the I
    595   /// successor iterator.
    596   weight_iterator getWeightIterator(succ_iterator I);
    597   const_weight_iterator getWeightIterator(const_succ_iterator I) const;
    598 
    599   friend class MachineBranchProbabilityInfo;
    600 
    601   /// getSuccWeight - Return weight of the edge from this block to MBB. This
    602   /// method should NOT be called directly, but by using getEdgeWeight method
    603   /// from MachineBranchProbabilityInfo class.
    604   uint32_t getSuccWeight(const MachineBasicBlock *succ) const;
    605 
    606 
    607   // Methods used to maintain doubly linked list of blocks...
    608   friend struct ilist_traits<MachineBasicBlock>;
    609 
    610   // Machine-CFG mutators
    611 
    612   /// addPredecessor - Remove pred as a predecessor of this MachineBasicBlock.
    613   /// Don't do this unless you know what you're doing, because it doesn't
    614   /// update pred's successors list. Use pred->addSuccessor instead.
    615   ///
    616   void addPredecessor(MachineBasicBlock *pred);
    617 
    618   /// removePredecessor - Remove pred as a predecessor of this
    619   /// MachineBasicBlock. Don't do this unless you know what you're
    620   /// doing, because it doesn't update pred's successors list. Use
    621   /// pred->removeSuccessor instead.
    622   ///
    623   void removePredecessor(MachineBasicBlock *pred);
    624 };
    625 
    626 raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
    627 
    628 void WriteAsOperand(raw_ostream &, const MachineBasicBlock*, bool t);
    629 
    630 // This is useful when building IndexedMaps keyed on basic block pointers.
    631 struct MBB2NumberFunctor :
    632   public std::unary_function<const MachineBasicBlock*, unsigned> {
    633   unsigned operator()(const MachineBasicBlock *MBB) const {
    634     return MBB->getNumber();
    635   }
    636 };
    637 
    638 //===--------------------------------------------------------------------===//
    639 // GraphTraits specializations for machine basic block graphs (machine-CFGs)
    640 //===--------------------------------------------------------------------===//
    641 
    642 // Provide specializations of GraphTraits to be able to treat a
    643 // MachineFunction as a graph of MachineBasicBlocks...
    644 //
    645 
    646 template <> struct GraphTraits<MachineBasicBlock *> {
    647   typedef MachineBasicBlock NodeType;
    648   typedef MachineBasicBlock::succ_iterator ChildIteratorType;
    649 
    650   static NodeType *getEntryNode(MachineBasicBlock *BB) { return BB; }
    651   static inline ChildIteratorType child_begin(NodeType *N) {
    652     return N->succ_begin();
    653   }
    654   static inline ChildIteratorType child_end(NodeType *N) {
    655     return N->succ_end();
    656   }
    657 };
    658 
    659 template <> struct GraphTraits<const MachineBasicBlock *> {
    660   typedef const MachineBasicBlock NodeType;
    661   typedef MachineBasicBlock::const_succ_iterator ChildIteratorType;
    662 
    663   static NodeType *getEntryNode(const MachineBasicBlock *BB) { return BB; }
    664   static inline ChildIteratorType child_begin(NodeType *N) {
    665     return N->succ_begin();
    666   }
    667   static inline ChildIteratorType child_end(NodeType *N) {
    668     return N->succ_end();
    669   }
    670 };
    671 
    672 // Provide specializations of GraphTraits to be able to treat a
    673 // MachineFunction as a graph of MachineBasicBlocks... and to walk it
    674 // in inverse order.  Inverse order for a function is considered
    675 // to be when traversing the predecessor edges of a MBB
    676 // instead of the successor edges.
    677 //
    678 template <> struct GraphTraits<Inverse<MachineBasicBlock*> > {
    679   typedef MachineBasicBlock NodeType;
    680   typedef MachineBasicBlock::pred_iterator ChildIteratorType;
    681   static NodeType *getEntryNode(Inverse<MachineBasicBlock *> G) {
    682     return G.Graph;
    683   }
    684   static inline ChildIteratorType child_begin(NodeType *N) {
    685     return N->pred_begin();
    686   }
    687   static inline ChildIteratorType child_end(NodeType *N) {
    688     return N->pred_end();
    689   }
    690 };
    691 
    692 template <> struct GraphTraits<Inverse<const MachineBasicBlock*> > {
    693   typedef const MachineBasicBlock NodeType;
    694   typedef MachineBasicBlock::const_pred_iterator ChildIteratorType;
    695   static NodeType *getEntryNode(Inverse<const MachineBasicBlock*> G) {
    696     return G.Graph;
    697   }
    698   static inline ChildIteratorType child_begin(NodeType *N) {
    699     return N->pred_begin();
    700   }
    701   static inline ChildIteratorType child_end(NodeType *N) {
    702     return N->pred_end();
    703   }
    704 };
    705 
    706 } // End llvm namespace
    707 
    708 #endif
    709