1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/ExecutionEngine/GenericValue.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MutexGuard.h" 27 #include "llvm/Support/ValueHandle.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Support/DynamicLibrary.h" 30 #include "llvm/Support/Host.h" 31 #include "llvm/Support/TargetRegistry.h" 32 #include "llvm/Target/TargetData.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cmath> 35 #include <cstring> 36 using namespace llvm; 37 38 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 39 STATISTIC(NumGlobals , "Number of global vars initialized"); 40 41 ExecutionEngine *(*ExecutionEngine::JITCtor)( 42 Module *M, 43 std::string *ErrorStr, 44 JITMemoryManager *JMM, 45 bool GVsWithCode, 46 TargetMachine *TM) = 0; 47 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 48 Module *M, 49 std::string *ErrorStr, 50 JITMemoryManager *JMM, 51 bool GVsWithCode, 52 TargetMachine *TM) = 0; 53 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 54 std::string *ErrorStr) = 0; 55 56 ExecutionEngine::ExecutionEngine(Module *M) 57 : EEState(*this), 58 LazyFunctionCreator(0), 59 ExceptionTableRegister(0), 60 ExceptionTableDeregister(0) { 61 CompilingLazily = false; 62 GVCompilationDisabled = false; 63 SymbolSearchingDisabled = false; 64 Modules.push_back(M); 65 assert(M && "Module is null?"); 66 } 67 68 ExecutionEngine::~ExecutionEngine() { 69 clearAllGlobalMappings(); 70 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 71 delete Modules[i]; 72 } 73 74 void ExecutionEngine::DeregisterAllTables() { 75 if (ExceptionTableDeregister) { 76 DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin(); 77 DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end(); 78 for (; it != ite; ++it) 79 ExceptionTableDeregister(it->second); 80 AllExceptionTables.clear(); 81 } 82 } 83 84 namespace { 85 /// \brief Helper class which uses a value handler to automatically deletes the 86 /// memory block when the GlobalVariable is destroyed. 87 class GVMemoryBlock : public CallbackVH { 88 GVMemoryBlock(const GlobalVariable *GV) 89 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 90 91 public: 92 /// \brief Returns the address the GlobalVariable should be written into. The 93 /// GVMemoryBlock object prefixes that. 94 static char *Create(const GlobalVariable *GV, const TargetData& TD) { 95 Type *ElTy = GV->getType()->getElementType(); 96 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 97 void *RawMemory = ::operator new( 98 TargetData::RoundUpAlignment(sizeof(GVMemoryBlock), 99 TD.getPreferredAlignment(GV)) 100 + GVSize); 101 new(RawMemory) GVMemoryBlock(GV); 102 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 103 } 104 105 virtual void deleted() { 106 // We allocated with operator new and with some extra memory hanging off the 107 // end, so don't just delete this. I'm not sure if this is actually 108 // required. 109 this->~GVMemoryBlock(); 110 ::operator delete(this); 111 } 112 }; 113 } // anonymous namespace 114 115 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 116 return GVMemoryBlock::Create(GV, *getTargetData()); 117 } 118 119 bool ExecutionEngine::removeModule(Module *M) { 120 for(SmallVector<Module *, 1>::iterator I = Modules.begin(), 121 E = Modules.end(); I != E; ++I) { 122 Module *Found = *I; 123 if (Found == M) { 124 Modules.erase(I); 125 clearGlobalMappingsFromModule(M); 126 return true; 127 } 128 } 129 return false; 130 } 131 132 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 133 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 134 if (Function *F = Modules[i]->getFunction(FnName)) 135 return F; 136 } 137 return 0; 138 } 139 140 141 void *ExecutionEngineState::RemoveMapping(const MutexGuard &, 142 const GlobalValue *ToUnmap) { 143 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 144 void *OldVal; 145 146 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 147 // GlobalAddressMap. 148 if (I == GlobalAddressMap.end()) 149 OldVal = 0; 150 else { 151 OldVal = I->second; 152 GlobalAddressMap.erase(I); 153 } 154 155 GlobalAddressReverseMap.erase(OldVal); 156 return OldVal; 157 } 158 159 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 160 MutexGuard locked(lock); 161 162 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 163 << "\' to [" << Addr << "]\n";); 164 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 165 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 166 CurVal = Addr; 167 168 // If we are using the reverse mapping, add it too. 169 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 170 AssertingVH<const GlobalValue> &V = 171 EEState.getGlobalAddressReverseMap(locked)[Addr]; 172 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 173 V = GV; 174 } 175 } 176 177 void ExecutionEngine::clearAllGlobalMappings() { 178 MutexGuard locked(lock); 179 180 EEState.getGlobalAddressMap(locked).clear(); 181 EEState.getGlobalAddressReverseMap(locked).clear(); 182 } 183 184 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 185 MutexGuard locked(lock); 186 187 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 188 EEState.RemoveMapping(locked, FI); 189 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 190 GI != GE; ++GI) 191 EEState.RemoveMapping(locked, GI); 192 } 193 194 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 195 MutexGuard locked(lock); 196 197 ExecutionEngineState::GlobalAddressMapTy &Map = 198 EEState.getGlobalAddressMap(locked); 199 200 // Deleting from the mapping? 201 if (Addr == 0) 202 return EEState.RemoveMapping(locked, GV); 203 204 void *&CurVal = Map[GV]; 205 void *OldVal = CurVal; 206 207 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 208 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 209 CurVal = Addr; 210 211 // If we are using the reverse mapping, add it too. 212 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 213 AssertingVH<const GlobalValue> &V = 214 EEState.getGlobalAddressReverseMap(locked)[Addr]; 215 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 216 V = GV; 217 } 218 return OldVal; 219 } 220 221 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 222 MutexGuard locked(lock); 223 224 ExecutionEngineState::GlobalAddressMapTy::iterator I = 225 EEState.getGlobalAddressMap(locked).find(GV); 226 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; 227 } 228 229 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 230 MutexGuard locked(lock); 231 232 // If we haven't computed the reverse mapping yet, do so first. 233 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 234 for (ExecutionEngineState::GlobalAddressMapTy::iterator 235 I = EEState.getGlobalAddressMap(locked).begin(), 236 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 237 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair( 238 I->second, I->first)); 239 } 240 241 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 242 EEState.getGlobalAddressReverseMap(locked).find(Addr); 243 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 244 } 245 246 namespace { 247 class ArgvArray { 248 char *Array; 249 std::vector<char*> Values; 250 public: 251 ArgvArray() : Array(NULL) {} 252 ~ArgvArray() { clear(); } 253 void clear() { 254 delete[] Array; 255 Array = NULL; 256 for (size_t I = 0, E = Values.size(); I != E; ++I) { 257 delete[] Values[I]; 258 } 259 Values.clear(); 260 } 261 /// Turn a vector of strings into a nice argv style array of pointers to null 262 /// terminated strings. 263 void *reset(LLVMContext &C, ExecutionEngine *EE, 264 const std::vector<std::string> &InputArgv); 265 }; 266 } // anonymous namespace 267 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 268 const std::vector<std::string> &InputArgv) { 269 clear(); // Free the old contents. 270 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 271 Array = new char[(InputArgv.size()+1)*PtrSize]; 272 273 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); 274 Type *SBytePtr = Type::getInt8PtrTy(C); 275 276 for (unsigned i = 0; i != InputArgv.size(); ++i) { 277 unsigned Size = InputArgv[i].size()+1; 278 char *Dest = new char[Size]; 279 Values.push_back(Dest); 280 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 281 282 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 283 Dest[Size-1] = 0; 284 285 // Endian safe: Array[i] = (PointerTy)Dest; 286 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), 287 SBytePtr); 288 } 289 290 // Null terminate it 291 EE->StoreValueToMemory(PTOGV(0), 292 (GenericValue*)(Array+InputArgv.size()*PtrSize), 293 SBytePtr); 294 return Array; 295 } 296 297 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 298 bool isDtors) { 299 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 300 GlobalVariable *GV = module->getNamedGlobal(Name); 301 302 // If this global has internal linkage, or if it has a use, then it must be 303 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 304 // this is the case, don't execute any of the global ctors, __main will do 305 // it. 306 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 307 308 // Should be an array of '{ i32, void ()* }' structs. The first value is 309 // the init priority, which we ignore. 310 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 311 if (InitList == 0) 312 return; 313 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 314 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 315 if (CS == 0) continue; 316 317 Constant *FP = CS->getOperand(1); 318 if (FP->isNullValue()) 319 continue; // Found a sentinal value, ignore. 320 321 // Strip off constant expression casts. 322 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 323 if (CE->isCast()) 324 FP = CE->getOperand(0); 325 326 // Execute the ctor/dtor function! 327 if (Function *F = dyn_cast<Function>(FP)) 328 runFunction(F, std::vector<GenericValue>()); 329 330 // FIXME: It is marginally lame that we just do nothing here if we see an 331 // entry we don't recognize. It might not be unreasonable for the verifier 332 // to not even allow this and just assert here. 333 } 334 } 335 336 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 337 // Execute global ctors/dtors for each module in the program. 338 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 339 runStaticConstructorsDestructors(Modules[i], isDtors); 340 } 341 342 #ifndef NDEBUG 343 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 344 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 345 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 346 for (unsigned i = 0; i < PtrSize; ++i) 347 if (*(i + (uint8_t*)Loc)) 348 return false; 349 return true; 350 } 351 #endif 352 353 int ExecutionEngine::runFunctionAsMain(Function *Fn, 354 const std::vector<std::string> &argv, 355 const char * const * envp) { 356 std::vector<GenericValue> GVArgs; 357 GenericValue GVArgc; 358 GVArgc.IntVal = APInt(32, argv.size()); 359 360 // Check main() type 361 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 362 FunctionType *FTy = Fn->getFunctionType(); 363 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 364 365 // Check the argument types. 366 if (NumArgs > 3) 367 report_fatal_error("Invalid number of arguments of main() supplied"); 368 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 369 report_fatal_error("Invalid type for third argument of main() supplied"); 370 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 371 report_fatal_error("Invalid type for second argument of main() supplied"); 372 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 373 report_fatal_error("Invalid type for first argument of main() supplied"); 374 if (!FTy->getReturnType()->isIntegerTy() && 375 !FTy->getReturnType()->isVoidTy()) 376 report_fatal_error("Invalid return type of main() supplied"); 377 378 ArgvArray CArgv; 379 ArgvArray CEnv; 380 if (NumArgs) { 381 GVArgs.push_back(GVArgc); // Arg #0 = argc. 382 if (NumArgs > 1) { 383 // Arg #1 = argv. 384 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 385 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 386 "argv[0] was null after CreateArgv"); 387 if (NumArgs > 2) { 388 std::vector<std::string> EnvVars; 389 for (unsigned i = 0; envp[i]; ++i) 390 EnvVars.push_back(envp[i]); 391 // Arg #2 = envp. 392 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 393 } 394 } 395 } 396 397 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 398 } 399 400 ExecutionEngine *ExecutionEngine::create(Module *M, 401 bool ForceInterpreter, 402 std::string *ErrorStr, 403 CodeGenOpt::Level OptLevel, 404 bool GVsWithCode) { 405 EngineBuilder EB = EngineBuilder(M) 406 .setEngineKind(ForceInterpreter 407 ? EngineKind::Interpreter 408 : EngineKind::JIT) 409 .setErrorStr(ErrorStr) 410 .setOptLevel(OptLevel) 411 .setAllocateGVsWithCode(GVsWithCode); 412 413 return EB.create(); 414 } 415 416 /// createJIT - This is the factory method for creating a JIT for the current 417 /// machine, it does not fall back to the interpreter. This takes ownership 418 /// of the module. 419 ExecutionEngine *ExecutionEngine::createJIT(Module *M, 420 std::string *ErrorStr, 421 JITMemoryManager *JMM, 422 CodeGenOpt::Level OL, 423 bool GVsWithCode, 424 Reloc::Model RM, 425 CodeModel::Model CMM) { 426 if (ExecutionEngine::JITCtor == 0) { 427 if (ErrorStr) 428 *ErrorStr = "JIT has not been linked in."; 429 return 0; 430 } 431 432 // Use the defaults for extra parameters. Users can use EngineBuilder to 433 // set them. 434 EngineBuilder EB(M); 435 EB.setEngineKind(EngineKind::JIT); 436 EB.setErrorStr(ErrorStr); 437 EB.setRelocationModel(RM); 438 EB.setCodeModel(CMM); 439 EB.setAllocateGVsWithCode(GVsWithCode); 440 EB.setOptLevel(OL); 441 EB.setJITMemoryManager(JMM); 442 443 // TODO: permit custom TargetOptions here 444 TargetMachine *TM = EB.selectTarget(); 445 if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0; 446 447 return ExecutionEngine::JITCtor(M, ErrorStr, JMM, GVsWithCode, TM); 448 } 449 450 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 451 OwningPtr<TargetMachine> TheTM(TM); // Take ownership. 452 453 // Make sure we can resolve symbols in the program as well. The zero arg 454 // to the function tells DynamicLibrary to load the program, not a library. 455 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 456 return 0; 457 458 // If the user specified a memory manager but didn't specify which engine to 459 // create, we assume they only want the JIT, and we fail if they only want 460 // the interpreter. 461 if (JMM) { 462 if (WhichEngine & EngineKind::JIT) 463 WhichEngine = EngineKind::JIT; 464 else { 465 if (ErrorStr) 466 *ErrorStr = "Cannot create an interpreter with a memory manager."; 467 return 0; 468 } 469 } 470 471 // Unless the interpreter was explicitly selected or the JIT is not linked, 472 // try making a JIT. 473 if ((WhichEngine & EngineKind::JIT) && TheTM) { 474 Triple TT(M->getTargetTriple()); 475 if (!TM->getTarget().hasJIT()) { 476 errs() << "WARNING: This target JIT is not designed for the host" 477 << " you are running. If bad things happen, please choose" 478 << " a different -march switch.\n"; 479 } 480 481 if (UseMCJIT && ExecutionEngine::MCJITCtor) { 482 ExecutionEngine *EE = 483 ExecutionEngine::MCJITCtor(M, ErrorStr, JMM, 484 AllocateGVsWithCode, TheTM.take()); 485 if (EE) return EE; 486 } else if (ExecutionEngine::JITCtor) { 487 ExecutionEngine *EE = 488 ExecutionEngine::JITCtor(M, ErrorStr, JMM, 489 AllocateGVsWithCode, TheTM.take()); 490 if (EE) return EE; 491 } 492 } 493 494 // If we can't make a JIT and we didn't request one specifically, try making 495 // an interpreter instead. 496 if (WhichEngine & EngineKind::Interpreter) { 497 if (ExecutionEngine::InterpCtor) 498 return ExecutionEngine::InterpCtor(M, ErrorStr); 499 if (ErrorStr) 500 *ErrorStr = "Interpreter has not been linked in."; 501 return 0; 502 } 503 504 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { 505 if (ErrorStr) 506 *ErrorStr = "JIT has not been linked in."; 507 } 508 509 return 0; 510 } 511 512 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 513 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 514 return getPointerToFunction(F); 515 516 MutexGuard locked(lock); 517 if (void *P = EEState.getGlobalAddressMap(locked)[GV]) 518 return P; 519 520 // Global variable might have been added since interpreter started. 521 if (GlobalVariable *GVar = 522 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 523 EmitGlobalVariable(GVar); 524 else 525 llvm_unreachable("Global hasn't had an address allocated yet!"); 526 527 return EEState.getGlobalAddressMap(locked)[GV]; 528 } 529 530 /// \brief Converts a Constant* into a GenericValue, including handling of 531 /// ConstantExpr values. 532 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 533 // If its undefined, return the garbage. 534 if (isa<UndefValue>(C)) { 535 GenericValue Result; 536 switch (C->getType()->getTypeID()) { 537 case Type::IntegerTyID: 538 case Type::X86_FP80TyID: 539 case Type::FP128TyID: 540 case Type::PPC_FP128TyID: 541 // Although the value is undefined, we still have to construct an APInt 542 // with the correct bit width. 543 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 544 break; 545 default: 546 break; 547 } 548 return Result; 549 } 550 551 // Otherwise, if the value is a ConstantExpr... 552 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 553 Constant *Op0 = CE->getOperand(0); 554 switch (CE->getOpcode()) { 555 case Instruction::GetElementPtr: { 556 // Compute the index 557 GenericValue Result = getConstantValue(Op0); 558 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 559 uint64_t Offset = TD->getIndexedOffset(Op0->getType(), Indices); 560 561 char* tmp = (char*) Result.PointerVal; 562 Result = PTOGV(tmp + Offset); 563 return Result; 564 } 565 case Instruction::Trunc: { 566 GenericValue GV = getConstantValue(Op0); 567 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 568 GV.IntVal = GV.IntVal.trunc(BitWidth); 569 return GV; 570 } 571 case Instruction::ZExt: { 572 GenericValue GV = getConstantValue(Op0); 573 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 574 GV.IntVal = GV.IntVal.zext(BitWidth); 575 return GV; 576 } 577 case Instruction::SExt: { 578 GenericValue GV = getConstantValue(Op0); 579 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 580 GV.IntVal = GV.IntVal.sext(BitWidth); 581 return GV; 582 } 583 case Instruction::FPTrunc: { 584 // FIXME long double 585 GenericValue GV = getConstantValue(Op0); 586 GV.FloatVal = float(GV.DoubleVal); 587 return GV; 588 } 589 case Instruction::FPExt:{ 590 // FIXME long double 591 GenericValue GV = getConstantValue(Op0); 592 GV.DoubleVal = double(GV.FloatVal); 593 return GV; 594 } 595 case Instruction::UIToFP: { 596 GenericValue GV = getConstantValue(Op0); 597 if (CE->getType()->isFloatTy()) 598 GV.FloatVal = float(GV.IntVal.roundToDouble()); 599 else if (CE->getType()->isDoubleTy()) 600 GV.DoubleVal = GV.IntVal.roundToDouble(); 601 else if (CE->getType()->isX86_FP80Ty()) { 602 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 603 (void)apf.convertFromAPInt(GV.IntVal, 604 false, 605 APFloat::rmNearestTiesToEven); 606 GV.IntVal = apf.bitcastToAPInt(); 607 } 608 return GV; 609 } 610 case Instruction::SIToFP: { 611 GenericValue GV = getConstantValue(Op0); 612 if (CE->getType()->isFloatTy()) 613 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 614 else if (CE->getType()->isDoubleTy()) 615 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 616 else if (CE->getType()->isX86_FP80Ty()) { 617 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 618 (void)apf.convertFromAPInt(GV.IntVal, 619 true, 620 APFloat::rmNearestTiesToEven); 621 GV.IntVal = apf.bitcastToAPInt(); 622 } 623 return GV; 624 } 625 case Instruction::FPToUI: // double->APInt conversion handles sign 626 case Instruction::FPToSI: { 627 GenericValue GV = getConstantValue(Op0); 628 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 629 if (Op0->getType()->isFloatTy()) 630 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 631 else if (Op0->getType()->isDoubleTy()) 632 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 633 else if (Op0->getType()->isX86_FP80Ty()) { 634 APFloat apf = APFloat(GV.IntVal); 635 uint64_t v; 636 bool ignored; 637 (void)apf.convertToInteger(&v, BitWidth, 638 CE->getOpcode()==Instruction::FPToSI, 639 APFloat::rmTowardZero, &ignored); 640 GV.IntVal = v; // endian? 641 } 642 return GV; 643 } 644 case Instruction::PtrToInt: { 645 GenericValue GV = getConstantValue(Op0); 646 uint32_t PtrWidth = TD->getPointerSizeInBits(); 647 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 648 return GV; 649 } 650 case Instruction::IntToPtr: { 651 GenericValue GV = getConstantValue(Op0); 652 uint32_t PtrWidth = TD->getPointerSizeInBits(); 653 if (PtrWidth != GV.IntVal.getBitWidth()) 654 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 655 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 656 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 657 return GV; 658 } 659 case Instruction::BitCast: { 660 GenericValue GV = getConstantValue(Op0); 661 Type* DestTy = CE->getType(); 662 switch (Op0->getType()->getTypeID()) { 663 default: llvm_unreachable("Invalid bitcast operand"); 664 case Type::IntegerTyID: 665 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 666 if (DestTy->isFloatTy()) 667 GV.FloatVal = GV.IntVal.bitsToFloat(); 668 else if (DestTy->isDoubleTy()) 669 GV.DoubleVal = GV.IntVal.bitsToDouble(); 670 break; 671 case Type::FloatTyID: 672 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 673 GV.IntVal = APInt::floatToBits(GV.FloatVal); 674 break; 675 case Type::DoubleTyID: 676 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 677 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 678 break; 679 case Type::PointerTyID: 680 assert(DestTy->isPointerTy() && "Invalid bitcast"); 681 break; // getConstantValue(Op0) above already converted it 682 } 683 return GV; 684 } 685 case Instruction::Add: 686 case Instruction::FAdd: 687 case Instruction::Sub: 688 case Instruction::FSub: 689 case Instruction::Mul: 690 case Instruction::FMul: 691 case Instruction::UDiv: 692 case Instruction::SDiv: 693 case Instruction::URem: 694 case Instruction::SRem: 695 case Instruction::And: 696 case Instruction::Or: 697 case Instruction::Xor: { 698 GenericValue LHS = getConstantValue(Op0); 699 GenericValue RHS = getConstantValue(CE->getOperand(1)); 700 GenericValue GV; 701 switch (CE->getOperand(0)->getType()->getTypeID()) { 702 default: llvm_unreachable("Bad add type!"); 703 case Type::IntegerTyID: 704 switch (CE->getOpcode()) { 705 default: llvm_unreachable("Invalid integer opcode"); 706 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 707 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 708 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 709 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 710 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 711 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 712 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 713 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 714 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 715 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 716 } 717 break; 718 case Type::FloatTyID: 719 switch (CE->getOpcode()) { 720 default: llvm_unreachable("Invalid float opcode"); 721 case Instruction::FAdd: 722 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 723 case Instruction::FSub: 724 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 725 case Instruction::FMul: 726 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 727 case Instruction::FDiv: 728 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 729 case Instruction::FRem: 730 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 731 } 732 break; 733 case Type::DoubleTyID: 734 switch (CE->getOpcode()) { 735 default: llvm_unreachable("Invalid double opcode"); 736 case Instruction::FAdd: 737 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 738 case Instruction::FSub: 739 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 740 case Instruction::FMul: 741 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 742 case Instruction::FDiv: 743 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 744 case Instruction::FRem: 745 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 746 } 747 break; 748 case Type::X86_FP80TyID: 749 case Type::PPC_FP128TyID: 750 case Type::FP128TyID: { 751 APFloat apfLHS = APFloat(LHS.IntVal); 752 switch (CE->getOpcode()) { 753 default: llvm_unreachable("Invalid long double opcode"); 754 case Instruction::FAdd: 755 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 756 GV.IntVal = apfLHS.bitcastToAPInt(); 757 break; 758 case Instruction::FSub: 759 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 760 GV.IntVal = apfLHS.bitcastToAPInt(); 761 break; 762 case Instruction::FMul: 763 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 764 GV.IntVal = apfLHS.bitcastToAPInt(); 765 break; 766 case Instruction::FDiv: 767 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 768 GV.IntVal = apfLHS.bitcastToAPInt(); 769 break; 770 case Instruction::FRem: 771 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 772 GV.IntVal = apfLHS.bitcastToAPInt(); 773 break; 774 } 775 } 776 break; 777 } 778 return GV; 779 } 780 default: 781 break; 782 } 783 784 SmallString<256> Msg; 785 raw_svector_ostream OS(Msg); 786 OS << "ConstantExpr not handled: " << *CE; 787 report_fatal_error(OS.str()); 788 } 789 790 // Otherwise, we have a simple constant. 791 GenericValue Result; 792 switch (C->getType()->getTypeID()) { 793 case Type::FloatTyID: 794 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 795 break; 796 case Type::DoubleTyID: 797 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 798 break; 799 case Type::X86_FP80TyID: 800 case Type::FP128TyID: 801 case Type::PPC_FP128TyID: 802 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 803 break; 804 case Type::IntegerTyID: 805 Result.IntVal = cast<ConstantInt>(C)->getValue(); 806 break; 807 case Type::PointerTyID: 808 if (isa<ConstantPointerNull>(C)) 809 Result.PointerVal = 0; 810 else if (const Function *F = dyn_cast<Function>(C)) 811 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 812 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 813 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 814 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 815 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 816 BA->getBasicBlock()))); 817 else 818 llvm_unreachable("Unknown constant pointer type!"); 819 break; 820 default: 821 SmallString<256> Msg; 822 raw_svector_ostream OS(Msg); 823 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 824 report_fatal_error(OS.str()); 825 } 826 827 return Result; 828 } 829 830 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 831 /// with the integer held in IntVal. 832 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 833 unsigned StoreBytes) { 834 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 835 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 836 837 if (sys::isLittleEndianHost()) { 838 // Little-endian host - the source is ordered from LSB to MSB. Order the 839 // destination from LSB to MSB: Do a straight copy. 840 memcpy(Dst, Src, StoreBytes); 841 } else { 842 // Big-endian host - the source is an array of 64 bit words ordered from 843 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 844 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 845 while (StoreBytes > sizeof(uint64_t)) { 846 StoreBytes -= sizeof(uint64_t); 847 // May not be aligned so use memcpy. 848 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 849 Src += sizeof(uint64_t); 850 } 851 852 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 853 } 854 } 855 856 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 857 GenericValue *Ptr, Type *Ty) { 858 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 859 860 switch (Ty->getTypeID()) { 861 case Type::IntegerTyID: 862 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 863 break; 864 case Type::FloatTyID: 865 *((float*)Ptr) = Val.FloatVal; 866 break; 867 case Type::DoubleTyID: 868 *((double*)Ptr) = Val.DoubleVal; 869 break; 870 case Type::X86_FP80TyID: 871 memcpy(Ptr, Val.IntVal.getRawData(), 10); 872 break; 873 case Type::PointerTyID: 874 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 875 if (StoreBytes != sizeof(PointerTy)) 876 memset(&(Ptr->PointerVal), 0, StoreBytes); 877 878 *((PointerTy*)Ptr) = Val.PointerVal; 879 break; 880 default: 881 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 882 } 883 884 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 885 // Host and target are different endian - reverse the stored bytes. 886 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 887 } 888 889 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 890 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 891 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 892 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 893 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 894 895 if (sys::isLittleEndianHost()) 896 // Little-endian host - the destination must be ordered from LSB to MSB. 897 // The source is ordered from LSB to MSB: Do a straight copy. 898 memcpy(Dst, Src, LoadBytes); 899 else { 900 // Big-endian - the destination is an array of 64 bit words ordered from 901 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 902 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 903 // a word. 904 while (LoadBytes > sizeof(uint64_t)) { 905 LoadBytes -= sizeof(uint64_t); 906 // May not be aligned so use memcpy. 907 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 908 Dst += sizeof(uint64_t); 909 } 910 911 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 912 } 913 } 914 915 /// FIXME: document 916 /// 917 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 918 GenericValue *Ptr, 919 Type *Ty) { 920 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 921 922 switch (Ty->getTypeID()) { 923 case Type::IntegerTyID: 924 // An APInt with all words initially zero. 925 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 926 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 927 break; 928 case Type::FloatTyID: 929 Result.FloatVal = *((float*)Ptr); 930 break; 931 case Type::DoubleTyID: 932 Result.DoubleVal = *((double*)Ptr); 933 break; 934 case Type::PointerTyID: 935 Result.PointerVal = *((PointerTy*)Ptr); 936 break; 937 case Type::X86_FP80TyID: { 938 // This is endian dependent, but it will only work on x86 anyway. 939 // FIXME: Will not trap if loading a signaling NaN. 940 uint64_t y[2]; 941 memcpy(y, Ptr, 10); 942 Result.IntVal = APInt(80, y); 943 break; 944 } 945 default: 946 SmallString<256> Msg; 947 raw_svector_ostream OS(Msg); 948 OS << "Cannot load value of type " << *Ty << "!"; 949 report_fatal_error(OS.str()); 950 } 951 } 952 953 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 954 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 955 DEBUG(Init->dump()); 956 if (isa<UndefValue>(Init)) 957 return; 958 959 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 960 unsigned ElementSize = 961 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 962 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 963 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 964 return; 965 } 966 967 if (isa<ConstantAggregateZero>(Init)) { 968 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 969 return; 970 } 971 972 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 973 unsigned ElementSize = 974 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 975 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 976 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 977 return; 978 } 979 980 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 981 const StructLayout *SL = 982 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 983 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 984 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 985 return; 986 } 987 988 if (const ConstantDataSequential *CDS = 989 dyn_cast<ConstantDataSequential>(Init)) { 990 // CDS is already laid out in host memory order. 991 StringRef Data = CDS->getRawDataValues(); 992 memcpy(Addr, Data.data(), Data.size()); 993 return; 994 } 995 996 if (Init->getType()->isFirstClassType()) { 997 GenericValue Val = getConstantValue(Init); 998 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 999 return; 1000 } 1001 1002 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1003 llvm_unreachable("Unknown constant type to initialize memory with!"); 1004 } 1005 1006 /// EmitGlobals - Emit all of the global variables to memory, storing their 1007 /// addresses into GlobalAddress. This must make sure to copy the contents of 1008 /// their initializers into the memory. 1009 void ExecutionEngine::emitGlobals() { 1010 // Loop over all of the global variables in the program, allocating the memory 1011 // to hold them. If there is more than one module, do a prepass over globals 1012 // to figure out how the different modules should link together. 1013 std::map<std::pair<std::string, Type*>, 1014 const GlobalValue*> LinkedGlobalsMap; 1015 1016 if (Modules.size() != 1) { 1017 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1018 Module &M = *Modules[m]; 1019 for (Module::const_global_iterator I = M.global_begin(), 1020 E = M.global_end(); I != E; ++I) { 1021 const GlobalValue *GV = I; 1022 if (GV->hasLocalLinkage() || GV->isDeclaration() || 1023 GV->hasAppendingLinkage() || !GV->hasName()) 1024 continue;// Ignore external globals and globals with internal linkage. 1025 1026 const GlobalValue *&GVEntry = 1027 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1028 1029 // If this is the first time we've seen this global, it is the canonical 1030 // version. 1031 if (!GVEntry) { 1032 GVEntry = GV; 1033 continue; 1034 } 1035 1036 // If the existing global is strong, never replace it. 1037 if (GVEntry->hasExternalLinkage() || 1038 GVEntry->hasDLLImportLinkage() || 1039 GVEntry->hasDLLExportLinkage()) 1040 continue; 1041 1042 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1043 // symbol. FIXME is this right for common? 1044 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1045 GVEntry = GV; 1046 } 1047 } 1048 } 1049 1050 std::vector<const GlobalValue*> NonCanonicalGlobals; 1051 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1052 Module &M = *Modules[m]; 1053 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1054 I != E; ++I) { 1055 // In the multi-module case, see what this global maps to. 1056 if (!LinkedGlobalsMap.empty()) { 1057 if (const GlobalValue *GVEntry = 1058 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 1059 // If something else is the canonical global, ignore this one. 1060 if (GVEntry != &*I) { 1061 NonCanonicalGlobals.push_back(I); 1062 continue; 1063 } 1064 } 1065 } 1066 1067 if (!I->isDeclaration()) { 1068 addGlobalMapping(I, getMemoryForGV(I)); 1069 } else { 1070 // External variable reference. Try to use the dynamic loader to 1071 // get a pointer to it. 1072 if (void *SymAddr = 1073 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1074 addGlobalMapping(I, SymAddr); 1075 else { 1076 report_fatal_error("Could not resolve external global address: " 1077 +I->getName()); 1078 } 1079 } 1080 } 1081 1082 // If there are multiple modules, map the non-canonical globals to their 1083 // canonical location. 1084 if (!NonCanonicalGlobals.empty()) { 1085 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1086 const GlobalValue *GV = NonCanonicalGlobals[i]; 1087 const GlobalValue *CGV = 1088 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1089 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1090 assert(Ptr && "Canonical global wasn't codegen'd!"); 1091 addGlobalMapping(GV, Ptr); 1092 } 1093 } 1094 1095 // Now that all of the globals are set up in memory, loop through them all 1096 // and initialize their contents. 1097 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1098 I != E; ++I) { 1099 if (!I->isDeclaration()) { 1100 if (!LinkedGlobalsMap.empty()) { 1101 if (const GlobalValue *GVEntry = 1102 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1103 if (GVEntry != &*I) // Not the canonical variable. 1104 continue; 1105 } 1106 EmitGlobalVariable(I); 1107 } 1108 } 1109 } 1110 } 1111 1112 // EmitGlobalVariable - This method emits the specified global variable to the 1113 // address specified in GlobalAddresses, or allocates new memory if it's not 1114 // already in the map. 1115 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1116 void *GA = getPointerToGlobalIfAvailable(GV); 1117 1118 if (GA == 0) { 1119 // If it's not already specified, allocate memory for the global. 1120 GA = getMemoryForGV(GV); 1121 addGlobalMapping(GV, GA); 1122 } 1123 1124 // Don't initialize if it's thread local, let the client do it. 1125 if (!GV->isThreadLocal()) 1126 InitializeMemory(GV->getInitializer(), GA); 1127 1128 Type *ElTy = GV->getType()->getElementType(); 1129 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1130 NumInitBytes += (unsigned)GVSize; 1131 ++NumGlobals; 1132 } 1133 1134 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1135 : EE(EE), GlobalAddressMap(this) { 1136 } 1137 1138 sys::Mutex * 1139 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1140 return &EES->EE.lock; 1141 } 1142 1143 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1144 const GlobalValue *Old) { 1145 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1146 EES->GlobalAddressReverseMap.erase(OldVal); 1147 } 1148 1149 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1150 const GlobalValue *, 1151 const GlobalValue *) { 1152 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1153 " RAUW on a value it has a global mapping for."); 1154 } 1155