1 2 /*--------------------------------------------------------------------*/ 3 /*--- LibHB: a library for implementing and checking ---*/ 4 /*--- the happens-before relationship in concurrent programs. ---*/ 5 /*--- libhb_main.c ---*/ 6 /*--------------------------------------------------------------------*/ 7 8 /* 9 This file is part of LibHB, a library for implementing and checking 10 the happens-before relationship in concurrent programs. 11 12 Copyright (C) 2008-2011 OpenWorks Ltd 13 info (at) open-works.co.uk 14 15 This program is free software; you can redistribute it and/or 16 modify it under the terms of the GNU General Public License as 17 published by the Free Software Foundation; either version 2 of the 18 License, or (at your option) any later version. 19 20 This program is distributed in the hope that it will be useful, but 21 WITHOUT ANY WARRANTY; without even the implied warranty of 22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 General Public License for more details. 24 25 You should have received a copy of the GNU General Public License 26 along with this program; if not, write to the Free Software 27 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 28 02111-1307, USA. 29 30 The GNU General Public License is contained in the file COPYING. 31 */ 32 33 #include "pub_tool_basics.h" 34 #include "pub_tool_libcassert.h" 35 #include "pub_tool_libcbase.h" 36 #include "pub_tool_libcprint.h" 37 #include "pub_tool_mallocfree.h" 38 #include "pub_tool_wordfm.h" 39 #include "pub_tool_sparsewa.h" 40 #include "pub_tool_xarray.h" 41 #include "pub_tool_oset.h" 42 #include "pub_tool_threadstate.h" 43 #include "pub_tool_aspacemgr.h" 44 #include "pub_tool_execontext.h" 45 #include "pub_tool_errormgr.h" 46 #include "pub_tool_options.h" // VG_(clo_stats) 47 #include "hg_basics.h" 48 #include "hg_wordset.h" 49 #include "hg_lock_n_thread.h" 50 #include "hg_errors.h" 51 52 #include "libhb.h" 53 54 55 ///////////////////////////////////////////////////////////////// 56 ///////////////////////////////////////////////////////////////// 57 // // 58 // Debugging #defines // 59 // // 60 ///////////////////////////////////////////////////////////////// 61 ///////////////////////////////////////////////////////////////// 62 63 /* Check the sanity of shadow values in the core memory state 64 machine. Change #if 0 to #if 1 to enable this. */ 65 #if 0 66 # define CHECK_MSM 1 67 #else 68 # define CHECK_MSM 0 69 #endif 70 71 72 /* Check sanity (reference counts, etc) in the conflicting access 73 machinery. Change #if 0 to #if 1 to enable this. */ 74 #if 0 75 # define CHECK_CEM 1 76 #else 77 # define CHECK_CEM 0 78 #endif 79 80 81 /* Check sanity in the compressed shadow memory machinery, 82 particularly in its caching innards. Unfortunately there's no 83 almost-zero-cost way to make them selectable at run time. Hence 84 set the #if 0 to #if 1 and rebuild if you want them. */ 85 #if 0 86 # define CHECK_ZSM 1 /* do sanity-check CacheLine stuff */ 87 # define inline __attribute__((noinline)) 88 /* probably want to ditch -fomit-frame-pointer too */ 89 #else 90 # define CHECK_ZSM 0 /* don't sanity-check CacheLine stuff */ 91 #endif 92 93 94 ///////////////////////////////////////////////////////////////// 95 ///////////////////////////////////////////////////////////////// 96 // // 97 // data decls: VtsID // 98 // // 99 ///////////////////////////////////////////////////////////////// 100 ///////////////////////////////////////////////////////////////// 101 102 /* VtsIDs: Unique small-integer IDs for VTSs. VtsIDs can't exceed 30 103 bits, since they have to be packed into the lowest 30 bits of an 104 SVal. */ 105 typedef UInt VtsID; 106 #define VtsID_INVALID 0xFFFFFFFF 107 108 109 110 ///////////////////////////////////////////////////////////////// 111 ///////////////////////////////////////////////////////////////// 112 // // 113 // data decls: SVal // 114 // // 115 ///////////////////////////////////////////////////////////////// 116 ///////////////////////////////////////////////////////////////// 117 118 typedef ULong SVal; 119 120 /* This value has special significance to the implementation, and callers 121 may not store it in the shadow memory. */ 122 #define SVal_INVALID (3ULL << 62) 123 124 /* This is the default value for shadow memory. Initially the shadow 125 memory contains no accessible areas and so all reads produce this 126 value. TODO: make this caller-defineable. */ 127 #define SVal_NOACCESS (2ULL << 62) 128 129 130 131 ///////////////////////////////////////////////////////////////// 132 ///////////////////////////////////////////////////////////////// 133 // // 134 // data decls: ScalarTS // 135 // // 136 ///////////////////////////////////////////////////////////////// 137 ///////////////////////////////////////////////////////////////// 138 139 /* Scalar Timestamp. We have to store a lot of these, so there is 140 some effort to make them as small as possible. Logically they are 141 a pair, (Thr*, ULong), but that takes 16 bytes on a 64-bit target. 142 We pack it into 64 bits by representing the Thr* using a ThrID, a 143 small integer (18 bits), and a 46 bit integer for the timestamp 144 number. The 46/18 split is arbitary, but has the effect that 145 Helgrind can only handle programs that create 2^18 or fewer threads 146 over their entire lifetime, and have no more than 2^46 timestamp 147 ticks (synchronisation operations on the same thread). 148 149 This doesn't seem like much of a limitation. 2^46 ticks is 150 7.06e+13, and if each tick (optimistically) takes the machine 1000 151 cycles to process, then the minimum time to process that many ticks 152 at a clock rate of 5 GHz is 162.9 days. And that's doing nothing 153 but VTS ticks, which isn't realistic. 154 155 NB1: SCALARTS_N_THRBITS must be 29 or lower. The obvious limit is 156 32 since a ThrID is a UInt. 29 comes from the fact that 157 'Thr_n_RCEC', which records information about old accesses, packs 158 not only a ThrID but also 2+1 other bits (access size and 159 writeness) in a UInt, hence limiting size to 32-(2+1) == 29. 160 161 NB2: thrid values are issued upwards from 1024, and values less 162 than that aren't valid. This isn't per se necessary (any order 163 will do, so long as they are unique), but it does help ensure they 164 are less likely to get confused with the various other kinds of 165 small-integer thread ids drifting around (eg, TId). See also NB5. 166 167 NB3: this probably also relies on the fact that Thr's are never 168 deallocated -- they exist forever. Hence the 1-1 mapping from 169 Thr's to thrid values (set up in Thr__new) persists forever. 170 171 NB4: temp_max_sized_VTS is allocated at startup and never freed. 172 It is a maximum sized VTS, so has (1 << SCALARTS_N_TYMBITS) 173 ScalarTSs. So we can't make SCALARTS_N_THRBITS too large without 174 making the memory use for this go sky-high. With 175 SCALARTS_N_THRBITS at 18, it occupies 2MB of memory, which seems 176 like an OK tradeoff. If more than 256k threads need to be 177 supported, we could change SCALARTS_N_THRBITS to 20, which would 178 facilitate supporting 1 million threads at the cost of 8MB storage 179 for temp_max_sized_VTS. 180 181 NB5: the conflicting-map mechanism (Thr_n_RCEC, specifically) uses 182 ThrID == 0 to denote an empty Thr_n_RCEC record. So ThrID == 0 183 must never be a valid ThrID. Given NB2 that's OK. 184 */ 185 #define SCALARTS_N_THRBITS 18 /* valid range: 11 to 29 inclusive */ 186 187 #define SCALARTS_N_TYMBITS (64 - SCALARTS_N_THRBITS) 188 typedef 189 struct { 190 ThrID thrid : SCALARTS_N_THRBITS; 191 ULong tym : SCALARTS_N_TYMBITS; 192 } 193 ScalarTS; 194 195 #define ThrID_MAX_VALID ((1 << SCALARTS_N_THRBITS) - 1) 196 197 198 199 ///////////////////////////////////////////////////////////////// 200 ///////////////////////////////////////////////////////////////// 201 // // 202 // data decls: Filter // 203 // // 204 ///////////////////////////////////////////////////////////////// 205 ///////////////////////////////////////////////////////////////// 206 207 // baseline: 5, 9 208 #define FI_LINE_SZB_LOG2 5 209 #define FI_NUM_LINES_LOG2 10 210 211 #define FI_LINE_SZB (1 << FI_LINE_SZB_LOG2) 212 #define FI_NUM_LINES (1 << FI_NUM_LINES_LOG2) 213 214 #define FI_TAG_MASK (~(Addr)(FI_LINE_SZB - 1)) 215 #define FI_GET_TAG(_a) ((_a) & FI_TAG_MASK) 216 217 #define FI_GET_LINENO(_a) ( ((_a) >> FI_LINE_SZB_LOG2) \ 218 & (Addr)(FI_NUM_LINES-1) ) 219 220 221 /* In the lines, each 8 bytes are treated individually, and are mapped 222 to a UShort. Regardless of endianness of the underlying machine, 223 bits 1 and 0 pertain to the lowest address and bits 15 and 14 to 224 the highest address. 225 226 Of each bit pair, the higher numbered bit is set if a R has been 227 seen, so the actual layout is: 228 229 15 14 ... 01 00 230 231 R W for addr+7 ... R W for addr+0 232 233 So a mask for the R-bits is 0xAAAA and for the W bits is 0x5555. 234 */ 235 236 /* tags are separated from lines. tags are Addrs and are 237 the base address of the line. */ 238 typedef 239 struct { 240 UShort u16s[FI_LINE_SZB / 8]; /* each UShort covers 8 bytes */ 241 } 242 FiLine; 243 244 typedef 245 struct { 246 Addr tags[FI_NUM_LINES]; 247 FiLine lines[FI_NUM_LINES]; 248 } 249 Filter; 250 251 252 253 ///////////////////////////////////////////////////////////////// 254 ///////////////////////////////////////////////////////////////// 255 // // 256 // data decls: Thr, ULong_n_EC // 257 // // 258 ///////////////////////////////////////////////////////////////// 259 ///////////////////////////////////////////////////////////////// 260 261 // Records stacks for H1 history mechanism (DRD-style) 262 typedef 263 struct { ULong ull; ExeContext* ec; } 264 ULong_n_EC; 265 266 267 /* How many of the above records to collect for each thread? Older 268 ones are dumped when we run out of space. 62.5k requires 1MB per 269 thread, since each ULong_n_EC record is 16 bytes long. When more 270 than N_KWs_N_STACKs_PER_THREAD are present, the older half are 271 deleted to make space. Hence in the worst case we will be able to 272 produce a stack at least for the last N_KWs_N_STACKs_PER_THREAD / 2 273 Kw transitions (segments in this thread). For the current setting 274 that gives a guaranteed stack for at least the last 31.25k 275 segments. */ 276 #define N_KWs_N_STACKs_PER_THREAD 62500 277 278 279 struct _Thr { 280 /* Current VTSs for this thread. They change as we go along. viR 281 is the VTS to be used for reads, viW for writes. Usually they 282 are the same, but can differ when we deal with reader-writer 283 locks. It is always the case that 284 VtsID__cmpLEQ(viW,viR) == True 285 that is, viW must be the same, or lagging behind, viR. */ 286 VtsID viR; 287 VtsID viW; 288 289 /* Is initially False, and is set to True after the thread really 290 has done a low-level exit. When True, we expect to never see 291 any more memory references done by this thread. */ 292 Bool llexit_done; 293 294 /* Is initially False, and is set to True after the thread has been 295 joined with (reaped by some other thread). After this point, we 296 do not expect to see any uses of .viR or .viW, so it is safe to 297 set them to VtsID_INVALID. */ 298 Bool joinedwith_done; 299 300 /* A small integer giving a unique identity to this Thr. See 301 comments on the definition of ScalarTS for details. */ 302 ThrID thrid : SCALARTS_N_THRBITS; 303 304 /* A filter that removes references for which we believe that 305 msmcread/msmcwrite will not change the state, nor report a 306 race. */ 307 Filter* filter; 308 309 /* A pointer back to the top level Thread structure. There is a 310 1-1 mapping between Thread and Thr structures -- each Thr points 311 at its corresponding Thread, and vice versa. Really, Thr and 312 Thread should be merged into a single structure. */ 313 Thread* hgthread; 314 315 /* The ULongs (scalar Kws) in this accumulate in strictly 316 increasing order, without duplicates. This is important because 317 we need to be able to find a given scalar Kw in this array 318 later, by binary search. */ 319 XArray* /* ULong_n_EC */ local_Kws_n_stacks; 320 }; 321 322 323 324 ///////////////////////////////////////////////////////////////// 325 ///////////////////////////////////////////////////////////////// 326 // // 327 // data decls: SO // 328 // // 329 ///////////////////////////////////////////////////////////////// 330 ///////////////////////////////////////////////////////////////// 331 332 // (UInt) `echo "Synchronisation object" | md5sum` 333 #define SO_MAGIC 0x56b3c5b0U 334 335 struct _SO { 336 struct _SO* admin_prev; 337 struct _SO* admin_next; 338 VtsID viR; /* r-clock of sender */ 339 VtsID viW; /* w-clock of sender */ 340 UInt magic; 341 }; 342 343 344 345 ///////////////////////////////////////////////////////////////// 346 ///////////////////////////////////////////////////////////////// 347 // // 348 // Forward declarations // 349 // // 350 ///////////////////////////////////////////////////////////////// 351 ///////////////////////////////////////////////////////////////// 352 353 /* fwds for 354 Globals needed by other parts of the library. These are set 355 once at startup and then never changed. */ 356 static void (*main_get_stacktrace)( Thr*, Addr*, UWord ) = NULL; 357 static ExeContext* (*main_get_EC)( Thr* ) = NULL; 358 359 /* misc fn and data fwdses */ 360 static void VtsID__rcinc ( VtsID ii ); 361 static void VtsID__rcdec ( VtsID ii ); 362 363 static inline Bool SVal__isC ( SVal s ); 364 static inline VtsID SVal__unC_Rmin ( SVal s ); 365 static inline VtsID SVal__unC_Wmin ( SVal s ); 366 static inline SVal SVal__mkC ( VtsID rmini, VtsID wmini ); 367 368 /* A double linked list of all the SO's. */ 369 SO* admin_SO; 370 371 372 373 ///////////////////////////////////////////////////////////////// 374 ///////////////////////////////////////////////////////////////// 375 // // 376 // SECTION BEGIN compressed shadow memory // 377 // // 378 ///////////////////////////////////////////////////////////////// 379 ///////////////////////////////////////////////////////////////// 380 381 #ifndef __HB_ZSM_H 382 #define __HB_ZSM_H 383 384 /* Initialise the library. Once initialised, it will (or may) call 385 rcinc and rcdec in response to all the calls below, in order to 386 allow the user to do reference counting on the SVals stored herein. 387 It is important to understand, however, that due to internal 388 caching, the reference counts are in general inaccurate, and can be 389 both above or below the true reference count for an item. In 390 particular, the library may indicate that the reference count for 391 an item is zero, when in fact it is not. 392 393 To make the reference counting exact and therefore non-pointless, 394 call zsm_flush_cache. Immediately after it returns, the reference 395 counts for all items, as deduced by the caller by observing calls 396 to rcinc and rcdec, will be correct, and so any items with a zero 397 reference count may be freed (or at least considered to be 398 unreferenced by this library). 399 */ 400 static void zsm_init ( void(*rcinc)(SVal), void(*rcdec)(SVal) ); 401 402 static void zsm_sset_range ( Addr, SizeT, SVal ); 403 static void zsm_scopy_range ( Addr, Addr, SizeT ); 404 static void zsm_flush_cache ( void ); 405 406 #endif /* ! __HB_ZSM_H */ 407 408 409 /* Round a up to the next multiple of N. N must be a power of 2 */ 410 #define ROUNDUP(a, N) ((a + N - 1) & ~(N-1)) 411 /* Round a down to the next multiple of N. N must be a power of 2 */ 412 #define ROUNDDN(a, N) ((a) & ~(N-1)) 413 414 415 416 /* ------ User-supplied RC functions ------ */ 417 static void(*rcinc)(SVal) = NULL; 418 static void(*rcdec)(SVal) = NULL; 419 420 421 /* ------ CacheLine ------ */ 422 423 #define N_LINE_BITS 6 /* must be >= 3 */ 424 #define N_LINE_ARANGE (1 << N_LINE_BITS) 425 #define N_LINE_TREES (N_LINE_ARANGE >> 3) 426 427 typedef 428 struct { 429 UShort descrs[N_LINE_TREES]; 430 SVal svals[N_LINE_ARANGE]; // == N_LINE_TREES * 8 431 } 432 CacheLine; 433 434 #define TREE_DESCR_16_0 (1<<0) 435 #define TREE_DESCR_32_0 (1<<1) 436 #define TREE_DESCR_16_1 (1<<2) 437 #define TREE_DESCR_64 (1<<3) 438 #define TREE_DESCR_16_2 (1<<4) 439 #define TREE_DESCR_32_1 (1<<5) 440 #define TREE_DESCR_16_3 (1<<6) 441 #define TREE_DESCR_8_0 (1<<7) 442 #define TREE_DESCR_8_1 (1<<8) 443 #define TREE_DESCR_8_2 (1<<9) 444 #define TREE_DESCR_8_3 (1<<10) 445 #define TREE_DESCR_8_4 (1<<11) 446 #define TREE_DESCR_8_5 (1<<12) 447 #define TREE_DESCR_8_6 (1<<13) 448 #define TREE_DESCR_8_7 (1<<14) 449 #define TREE_DESCR_DTY (1<<15) 450 451 typedef 452 struct { 453 SVal dict[4]; /* can represent up to 4 diff values in the line */ 454 UChar ix2s[N_LINE_ARANGE/4]; /* array of N_LINE_ARANGE 2-bit 455 dict indexes */ 456 /* if dict[0] == SVal_INVALID then dict[1] is the index of the 457 LineF to use, and dict[2..] are also SVal_INVALID. */ 458 } 459 LineZ; /* compressed rep for a cache line */ 460 461 typedef 462 struct { 463 Bool inUse; 464 SVal w64s[N_LINE_ARANGE]; 465 } 466 LineF; /* full rep for a cache line */ 467 468 /* Shadow memory. 469 Primary map is a WordFM Addr SecMap*. 470 SecMaps cover some page-size-ish section of address space and hold 471 a compressed representation. 472 CacheLine-sized chunks of SecMaps are copied into a Cache, being 473 decompressed when moved into the cache and recompressed on the 474 way out. Because of this, the cache must operate as a writeback 475 cache, not a writethrough one. 476 477 Each SecMap must hold a power-of-2 number of CacheLines. Hence 478 N_SECMAP_BITS must >= N_LINE_BITS. 479 */ 480 #define N_SECMAP_BITS 13 481 #define N_SECMAP_ARANGE (1 << N_SECMAP_BITS) 482 483 // # CacheLines held by a SecMap 484 #define N_SECMAP_ZLINES (N_SECMAP_ARANGE / N_LINE_ARANGE) 485 486 /* The data in the SecMap is held in the array of LineZs. Each LineZ 487 either carries the required data directly, in a compressed 488 representation, or it holds (in .dict[0]) an index to the LineF in 489 .linesF that holds the full representation. 490 491 Currently-unused LineF's have their .inUse bit set to zero. 492 Since each in-use LineF is referred to be exactly one LineZ, 493 the number of .linesZ[] that refer to .linesF should equal 494 the number of .linesF[] that have .inUse == True. 495 496 RC obligations: the RCs presented to the user include exactly 497 the values in: 498 * direct Z reps, that is, ones for which .dict[0] != SVal_INVALID 499 * F reps that are in use (.inUse == True) 500 501 Hence the following actions at the following transitions are required: 502 503 F rep: .inUse==True -> .inUse==False -- rcdec_LineF 504 F rep: .inUse==False -> .inUse==True -- rcinc_LineF 505 Z rep: .dict[0] from other to SVal_INVALID -- rcdec_LineZ 506 Z rep: .dict[0] from SVal_INVALID to other -- rcinc_LineZ 507 */ 508 typedef 509 struct { 510 UInt magic; 511 LineZ linesZ[N_SECMAP_ZLINES]; 512 LineF* linesF; 513 UInt linesF_size; 514 } 515 SecMap; 516 517 #define SecMap_MAGIC 0x571e58cbU 518 519 static inline Bool is_sane_SecMap ( SecMap* sm ) { 520 return sm != NULL && sm->magic == SecMap_MAGIC; 521 } 522 523 /* ------ Cache ------ */ 524 525 #define N_WAY_BITS 16 526 #define N_WAY_NENT (1 << N_WAY_BITS) 527 528 /* Each tag is the address of the associated CacheLine, rounded down 529 to a CacheLine address boundary. A CacheLine size must be a power 530 of 2 and must be 8 or more. Hence an easy way to initialise the 531 cache so it is empty is to set all the tag values to any value % 8 532 != 0, eg 1. This means all queries in the cache initially miss. 533 It does however require us to detect and not writeback, any line 534 with a bogus tag. */ 535 typedef 536 struct { 537 CacheLine lyns0[N_WAY_NENT]; 538 Addr tags0[N_WAY_NENT]; 539 } 540 Cache; 541 542 static inline Bool is_valid_scache_tag ( Addr tag ) { 543 /* a valid tag should be naturally aligned to the start of 544 a CacheLine. */ 545 return 0 == (tag & (N_LINE_ARANGE - 1)); 546 } 547 548 549 /* --------- Primary data structures --------- */ 550 551 /* Shadow memory primary map */ 552 static WordFM* map_shmem = NULL; /* WordFM Addr SecMap* */ 553 static Cache cache_shmem; 554 555 556 static UWord stats__secmaps_search = 0; // # SM finds 557 static UWord stats__secmaps_search_slow = 0; // # SM lookupFMs 558 static UWord stats__secmaps_allocd = 0; // # SecMaps issued 559 static UWord stats__secmap_ga_space_covered = 0; // # ga bytes covered 560 static UWord stats__secmap_linesZ_allocd = 0; // # LineZ's issued 561 static UWord stats__secmap_linesZ_bytes = 0; // .. using this much storage 562 static UWord stats__secmap_linesF_allocd = 0; // # LineF's issued 563 static UWord stats__secmap_linesF_bytes = 0; // .. using this much storage 564 static UWord stats__secmap_iterator_steppings = 0; // # calls to stepSMIter 565 static UWord stats__cache_Z_fetches = 0; // # Z lines fetched 566 static UWord stats__cache_Z_wbacks = 0; // # Z lines written back 567 static UWord stats__cache_F_fetches = 0; // # F lines fetched 568 static UWord stats__cache_F_wbacks = 0; // # F lines written back 569 static UWord stats__cache_invals = 0; // # cache invals 570 static UWord stats__cache_flushes = 0; // # cache flushes 571 static UWord stats__cache_totrefs = 0; // # total accesses 572 static UWord stats__cache_totmisses = 0; // # misses 573 static ULong stats__cache_make_New_arange = 0; // total arange made New 574 static ULong stats__cache_make_New_inZrep = 0; // arange New'd on Z reps 575 static UWord stats__cline_normalises = 0; // # calls to cacheline_normalise 576 static UWord stats__cline_cread64s = 0; // # calls to s_m_read64 577 static UWord stats__cline_cread32s = 0; // # calls to s_m_read32 578 static UWord stats__cline_cread16s = 0; // # calls to s_m_read16 579 static UWord stats__cline_cread08s = 0; // # calls to s_m_read8 580 static UWord stats__cline_cwrite64s = 0; // # calls to s_m_write64 581 static UWord stats__cline_cwrite32s = 0; // # calls to s_m_write32 582 static UWord stats__cline_cwrite16s = 0; // # calls to s_m_write16 583 static UWord stats__cline_cwrite08s = 0; // # calls to s_m_write8 584 static UWord stats__cline_sread08s = 0; // # calls to s_m_set8 585 static UWord stats__cline_swrite08s = 0; // # calls to s_m_get8 586 static UWord stats__cline_swrite16s = 0; // # calls to s_m_get8 587 static UWord stats__cline_swrite32s = 0; // # calls to s_m_get8 588 static UWord stats__cline_swrite64s = 0; // # calls to s_m_get8 589 static UWord stats__cline_scopy08s = 0; // # calls to s_m_copy8 590 static UWord stats__cline_64to32splits = 0; // # 64-bit accesses split 591 static UWord stats__cline_32to16splits = 0; // # 32-bit accesses split 592 static UWord stats__cline_16to8splits = 0; // # 16-bit accesses split 593 static UWord stats__cline_64to32pulldown = 0; // # calls to pulldown_to_32 594 static UWord stats__cline_32to16pulldown = 0; // # calls to pulldown_to_16 595 static UWord stats__cline_16to8pulldown = 0; // # calls to pulldown_to_8 596 static UWord stats__vts__tick = 0; // # calls to VTS__tick 597 static UWord stats__vts__join = 0; // # calls to VTS__join 598 static UWord stats__vts__cmpLEQ = 0; // # calls to VTS__cmpLEQ 599 static UWord stats__vts__cmp_structural = 0; // # calls to VTS__cmp_structural 600 601 // # calls to VTS__cmp_structural w/ slow case 602 static UWord stats__vts__cmp_structural_slow = 0; 603 604 // # calls to VTS__indexAt_SLOW 605 static UWord stats__vts__indexat_slow = 0; 606 607 // # calls to vts_set__find__or__clone_and_add 608 static UWord stats__vts_set__focaa = 0; 609 610 // # calls to vts_set__find__or__clone_and_add that lead to an 611 // allocation 612 static UWord stats__vts_set__focaa_a = 0; 613 614 615 static inline Addr shmem__round_to_SecMap_base ( Addr a ) { 616 return a & ~(N_SECMAP_ARANGE - 1); 617 } 618 static inline UWord shmem__get_SecMap_offset ( Addr a ) { 619 return a & (N_SECMAP_ARANGE - 1); 620 } 621 622 623 /*----------------------------------------------------------------*/ 624 /*--- map_shmem :: WordFM Addr SecMap ---*/ 625 /*--- shadow memory (low level handlers) (shmem__* fns) ---*/ 626 /*----------------------------------------------------------------*/ 627 628 /*--------------- SecMap allocation --------------- */ 629 630 static HChar* shmem__bigchunk_next = NULL; 631 static HChar* shmem__bigchunk_end1 = NULL; 632 633 static void* shmem__bigchunk_alloc ( SizeT n ) 634 { 635 const SizeT sHMEM__BIGCHUNK_SIZE = 4096 * 256 * 4; 636 tl_assert(n > 0); 637 n = VG_ROUNDUP(n, 16); 638 tl_assert(shmem__bigchunk_next <= shmem__bigchunk_end1); 639 tl_assert(shmem__bigchunk_end1 - shmem__bigchunk_next 640 <= (SSizeT)sHMEM__BIGCHUNK_SIZE); 641 if (shmem__bigchunk_next + n > shmem__bigchunk_end1) { 642 if (0) 643 VG_(printf)("XXXXX bigchunk: abandoning %d bytes\n", 644 (Int)(shmem__bigchunk_end1 - shmem__bigchunk_next)); 645 shmem__bigchunk_next = VG_(am_shadow_alloc)( sHMEM__BIGCHUNK_SIZE ); 646 if (shmem__bigchunk_next == NULL) 647 VG_(out_of_memory_NORETURN)( 648 "helgrind:shmem__bigchunk_alloc", sHMEM__BIGCHUNK_SIZE ); 649 shmem__bigchunk_end1 = shmem__bigchunk_next + sHMEM__BIGCHUNK_SIZE; 650 } 651 tl_assert(shmem__bigchunk_next); 652 tl_assert( 0 == (((Addr)shmem__bigchunk_next) & (16-1)) ); 653 tl_assert(shmem__bigchunk_next + n <= shmem__bigchunk_end1); 654 shmem__bigchunk_next += n; 655 return shmem__bigchunk_next - n; 656 } 657 658 static SecMap* shmem__alloc_SecMap ( void ) 659 { 660 Word i, j; 661 SecMap* sm = shmem__bigchunk_alloc( sizeof(SecMap) ); 662 if (0) VG_(printf)("alloc_SecMap %p\n",sm); 663 tl_assert(sm); 664 sm->magic = SecMap_MAGIC; 665 for (i = 0; i < N_SECMAP_ZLINES; i++) { 666 sm->linesZ[i].dict[0] = SVal_NOACCESS; 667 sm->linesZ[i].dict[1] = SVal_INVALID; 668 sm->linesZ[i].dict[2] = SVal_INVALID; 669 sm->linesZ[i].dict[3] = SVal_INVALID; 670 for (j = 0; j < N_LINE_ARANGE/4; j++) 671 sm->linesZ[i].ix2s[j] = 0; /* all reference dict[0] */ 672 } 673 sm->linesF = NULL; 674 sm->linesF_size = 0; 675 stats__secmaps_allocd++; 676 stats__secmap_ga_space_covered += N_SECMAP_ARANGE; 677 stats__secmap_linesZ_allocd += N_SECMAP_ZLINES; 678 stats__secmap_linesZ_bytes += N_SECMAP_ZLINES * sizeof(LineZ); 679 return sm; 680 } 681 682 typedef struct { Addr gaKey; SecMap* sm; } SMCacheEnt; 683 static SMCacheEnt smCache[3] = { {1,NULL}, {1,NULL}, {1,NULL} }; 684 685 static SecMap* shmem__find_SecMap ( Addr ga ) 686 { 687 SecMap* sm = NULL; 688 Addr gaKey = shmem__round_to_SecMap_base(ga); 689 // Cache 690 stats__secmaps_search++; 691 if (LIKELY(gaKey == smCache[0].gaKey)) 692 return smCache[0].sm; 693 if (LIKELY(gaKey == smCache[1].gaKey)) { 694 SMCacheEnt tmp = smCache[0]; 695 smCache[0] = smCache[1]; 696 smCache[1] = tmp; 697 return smCache[0].sm; 698 } 699 if (gaKey == smCache[2].gaKey) { 700 SMCacheEnt tmp = smCache[1]; 701 smCache[1] = smCache[2]; 702 smCache[2] = tmp; 703 return smCache[1].sm; 704 } 705 // end Cache 706 stats__secmaps_search_slow++; 707 if (VG_(lookupFM)( map_shmem, 708 NULL/*keyP*/, (UWord*)&sm, (UWord)gaKey )) { 709 tl_assert(sm != NULL); 710 smCache[2] = smCache[1]; 711 smCache[1] = smCache[0]; 712 smCache[0].gaKey = gaKey; 713 smCache[0].sm = sm; 714 } else { 715 tl_assert(sm == NULL); 716 } 717 return sm; 718 } 719 720 static SecMap* shmem__find_or_alloc_SecMap ( Addr ga ) 721 { 722 SecMap* sm = shmem__find_SecMap ( ga ); 723 if (LIKELY(sm)) { 724 return sm; 725 } else { 726 /* create a new one */ 727 Addr gaKey = shmem__round_to_SecMap_base(ga); 728 sm = shmem__alloc_SecMap(); 729 tl_assert(sm); 730 VG_(addToFM)( map_shmem, (UWord)gaKey, (UWord)sm ); 731 return sm; 732 } 733 } 734 735 736 /* ------------ LineF and LineZ related ------------ */ 737 738 static void rcinc_LineF ( LineF* lineF ) { 739 UWord i; 740 tl_assert(lineF->inUse); 741 for (i = 0; i < N_LINE_ARANGE; i++) 742 rcinc(lineF->w64s[i]); 743 } 744 745 static void rcdec_LineF ( LineF* lineF ) { 746 UWord i; 747 tl_assert(lineF->inUse); 748 for (i = 0; i < N_LINE_ARANGE; i++) 749 rcdec(lineF->w64s[i]); 750 } 751 752 static void rcinc_LineZ ( LineZ* lineZ ) { 753 tl_assert(lineZ->dict[0] != SVal_INVALID); 754 rcinc(lineZ->dict[0]); 755 if (lineZ->dict[1] != SVal_INVALID) rcinc(lineZ->dict[1]); 756 if (lineZ->dict[2] != SVal_INVALID) rcinc(lineZ->dict[2]); 757 if (lineZ->dict[3] != SVal_INVALID) rcinc(lineZ->dict[3]); 758 } 759 760 static void rcdec_LineZ ( LineZ* lineZ ) { 761 tl_assert(lineZ->dict[0] != SVal_INVALID); 762 rcdec(lineZ->dict[0]); 763 if (lineZ->dict[1] != SVal_INVALID) rcdec(lineZ->dict[1]); 764 if (lineZ->dict[2] != SVal_INVALID) rcdec(lineZ->dict[2]); 765 if (lineZ->dict[3] != SVal_INVALID) rcdec(lineZ->dict[3]); 766 } 767 768 inline 769 static void write_twobit_array ( UChar* arr, UWord ix, UWord b2 ) { 770 Word bix, shft, mask, prep; 771 tl_assert(ix >= 0); 772 bix = ix >> 2; 773 shft = 2 * (ix & 3); /* 0, 2, 4 or 6 */ 774 mask = 3 << shft; 775 prep = b2 << shft; 776 arr[bix] = (arr[bix] & ~mask) | prep; 777 } 778 779 inline 780 static UWord read_twobit_array ( UChar* arr, UWord ix ) { 781 Word bix, shft; 782 tl_assert(ix >= 0); 783 bix = ix >> 2; 784 shft = 2 * (ix & 3); /* 0, 2, 4 or 6 */ 785 return (arr[bix] >> shft) & 3; 786 } 787 788 /* Given address 'tag', find either the Z or F line containing relevant 789 data, so it can be read into the cache. 790 */ 791 static void find_ZF_for_reading ( /*OUT*/LineZ** zp, 792 /*OUT*/LineF** fp, Addr tag ) { 793 LineZ* lineZ; 794 LineF* lineF; 795 UWord zix; 796 SecMap* sm = shmem__find_or_alloc_SecMap(tag); 797 UWord smoff = shmem__get_SecMap_offset(tag); 798 /* since smoff is derived from a valid tag, it should be 799 cacheline-aligned. */ 800 tl_assert(0 == (smoff & (N_LINE_ARANGE - 1))); 801 zix = smoff >> N_LINE_BITS; 802 tl_assert(zix < N_SECMAP_ZLINES); 803 lineZ = &sm->linesZ[zix]; 804 lineF = NULL; 805 if (lineZ->dict[0] == SVal_INVALID) { 806 UInt fix = (UInt)lineZ->dict[1]; 807 tl_assert(sm->linesF); 808 tl_assert(sm->linesF_size > 0); 809 tl_assert(fix >= 0 && fix < sm->linesF_size); 810 lineF = &sm->linesF[fix]; 811 tl_assert(lineF->inUse); 812 lineZ = NULL; 813 } 814 *zp = lineZ; 815 *fp = lineF; 816 } 817 818 /* Given address 'tag', return the relevant SecMap and the index of 819 the LineZ within it, in the expectation that the line is to be 820 overwritten. Regardless of whether 'tag' is currently associated 821 with a Z or F representation, to rcdec on the current 822 representation, in recognition of the fact that the contents are 823 just about to be overwritten. */ 824 static __attribute__((noinline)) 825 void find_Z_for_writing ( /*OUT*/SecMap** smp, 826 /*OUT*/Word* zixp, 827 Addr tag ) { 828 LineZ* lineZ; 829 LineF* lineF; 830 UWord zix; 831 SecMap* sm = shmem__find_or_alloc_SecMap(tag); 832 UWord smoff = shmem__get_SecMap_offset(tag); 833 /* since smoff is derived from a valid tag, it should be 834 cacheline-aligned. */ 835 tl_assert(0 == (smoff & (N_LINE_ARANGE - 1))); 836 zix = smoff >> N_LINE_BITS; 837 tl_assert(zix < N_SECMAP_ZLINES); 838 lineZ = &sm->linesZ[zix]; 839 lineF = NULL; 840 /* re RCs, we are freeing up this LineZ/LineF so that new data can 841 be parked in it. Hence have to rcdec it accordingly. */ 842 /* If lineZ has an associated lineF, free it up. */ 843 if (lineZ->dict[0] == SVal_INVALID) { 844 UInt fix = (UInt)lineZ->dict[1]; 845 tl_assert(sm->linesF); 846 tl_assert(sm->linesF_size > 0); 847 tl_assert(fix >= 0 && fix < sm->linesF_size); 848 lineF = &sm->linesF[fix]; 849 tl_assert(lineF->inUse); 850 rcdec_LineF(lineF); 851 lineF->inUse = False; 852 } else { 853 rcdec_LineZ(lineZ); 854 } 855 *smp = sm; 856 *zixp = zix; 857 } 858 859 static __attribute__((noinline)) 860 void alloc_F_for_writing ( /*MOD*/SecMap* sm, /*OUT*/Word* fixp ) { 861 UInt i, new_size; 862 LineF* nyu; 863 864 if (sm->linesF) { 865 tl_assert(sm->linesF_size > 0); 866 } else { 867 tl_assert(sm->linesF_size == 0); 868 } 869 870 if (sm->linesF) { 871 for (i = 0; i < sm->linesF_size; i++) { 872 if (!sm->linesF[i].inUse) { 873 *fixp = (Word)i; 874 return; 875 } 876 } 877 } 878 879 /* No free F line found. Expand existing array and try again. */ 880 new_size = sm->linesF_size==0 ? 1 : 2 * sm->linesF_size; 881 nyu = HG_(zalloc)( "libhb.aFfw.1 (LineF storage)", 882 new_size * sizeof(LineF) ); 883 tl_assert(nyu); 884 885 stats__secmap_linesF_allocd += (new_size - sm->linesF_size); 886 stats__secmap_linesF_bytes += (new_size - sm->linesF_size) 887 * sizeof(LineF); 888 889 if (0) 890 VG_(printf)("SM %p: expand F array from %d to %d\n", 891 sm, (Int)sm->linesF_size, new_size); 892 893 for (i = 0; i < new_size; i++) 894 nyu[i].inUse = False; 895 896 if (sm->linesF) { 897 for (i = 0; i < sm->linesF_size; i++) { 898 tl_assert(sm->linesF[i].inUse); 899 nyu[i] = sm->linesF[i]; 900 } 901 VG_(memset)(sm->linesF, 0, sm->linesF_size * sizeof(LineF) ); 902 HG_(free)(sm->linesF); 903 } 904 905 sm->linesF = nyu; 906 sm->linesF_size = new_size; 907 908 for (i = 0; i < sm->linesF_size; i++) { 909 if (!sm->linesF[i].inUse) { 910 *fixp = (Word)i; 911 return; 912 } 913 } 914 915 /*NOTREACHED*/ 916 tl_assert(0); 917 } 918 919 920 /* ------------ CacheLine and implicit-tree related ------------ */ 921 922 __attribute__((unused)) 923 static void pp_CacheLine ( CacheLine* cl ) { 924 Word i; 925 if (!cl) { 926 VG_(printf)("%s","pp_CacheLine(NULL)\n"); 927 return; 928 } 929 for (i = 0; i < N_LINE_TREES; i++) 930 VG_(printf)(" descr: %04lx\n", (UWord)cl->descrs[i]); 931 for (i = 0; i < N_LINE_ARANGE; i++) 932 VG_(printf)(" sval: %08lx\n", (UWord)cl->svals[i]); 933 } 934 935 static UChar descr_to_validbits ( UShort descr ) 936 { 937 /* a.k.a Party Time for gcc's constant folder */ 938 # define DESCR(b8_7, b8_6, b8_5, b8_4, b8_3, b8_2, b8_1, b8_0, \ 939 b16_3, b32_1, b16_2, b64, b16_1, b32_0, b16_0) \ 940 ( (UShort) ( ( (b8_7) << 14) | ( (b8_6) << 13) | \ 941 ( (b8_5) << 12) | ( (b8_4) << 11) | \ 942 ( (b8_3) << 10) | ( (b8_2) << 9) | \ 943 ( (b8_1) << 8) | ( (b8_0) << 7) | \ 944 ( (b16_3) << 6) | ( (b32_1) << 5) | \ 945 ( (b16_2) << 4) | ( (b64) << 3) | \ 946 ( (b16_1) << 2) | ( (b32_0) << 1) | \ 947 ( (b16_0) << 0) ) ) 948 949 # define BYTE(bit7, bit6, bit5, bit4, bit3, bit2, bit1, bit0) \ 950 ( (UChar) ( ( (bit7) << 7) | ( (bit6) << 6) | \ 951 ( (bit5) << 5) | ( (bit4) << 4) | \ 952 ( (bit3) << 3) | ( (bit2) << 2) | \ 953 ( (bit1) << 1) | ( (bit0) << 0) ) ) 954 955 /* these should all get folded out at compile time */ 956 tl_assert(DESCR(1,0,0,0,0,0,0,0, 0,0,0, 0, 0,0,0) == TREE_DESCR_8_7); 957 tl_assert(DESCR(0,0,0,0,0,0,0,1, 0,0,0, 0, 0,0,0) == TREE_DESCR_8_0); 958 tl_assert(DESCR(0,0,0,0,0,0,0,0, 1,0,0, 0, 0,0,0) == TREE_DESCR_16_3); 959 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,1,0, 0, 0,0,0) == TREE_DESCR_32_1); 960 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,1, 0, 0,0,0) == TREE_DESCR_16_2); 961 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,0, 1, 0,0,0) == TREE_DESCR_64); 962 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,0, 0, 1,0,0) == TREE_DESCR_16_1); 963 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,0, 0, 0,1,0) == TREE_DESCR_32_0); 964 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,0, 0, 0,0,1) == TREE_DESCR_16_0); 965 966 switch (descr) { 967 /* 968 +--------------------------------- TREE_DESCR_8_7 969 | +------------------- TREE_DESCR_8_0 970 | | +---------------- TREE_DESCR_16_3 971 | | | +-------------- TREE_DESCR_32_1 972 | | | | +------------ TREE_DESCR_16_2 973 | | | | | +--------- TREE_DESCR_64 974 | | | | | | +------ TREE_DESCR_16_1 975 | | | | | | | +---- TREE_DESCR_32_0 976 | | | | | | | | +-- TREE_DESCR_16_0 977 | | | | | | | | | 978 | | | | | | | | | GRANULARITY, 7 -> 0 */ 979 case DESCR(1,1,1,1,1,1,1,1, 0,0,0, 0, 0,0,0): /* 8 8 8 8 8 8 8 8 */ 980 return BYTE(1,1,1,1,1,1,1,1); 981 case DESCR(1,1,0,0,1,1,1,1, 0,0,1, 0, 0,0,0): /* 8 8 16 8 8 8 8 */ 982 return BYTE(1,1,0,1,1,1,1,1); 983 case DESCR(0,0,1,1,1,1,1,1, 1,0,0, 0, 0,0,0): /* 16 8 8 8 8 8 8 */ 984 return BYTE(0,1,1,1,1,1,1,1); 985 case DESCR(0,0,0,0,1,1,1,1, 1,0,1, 0, 0,0,0): /* 16 16 8 8 8 8 */ 986 return BYTE(0,1,0,1,1,1,1,1); 987 988 case DESCR(1,1,1,1,1,1,0,0, 0,0,0, 0, 0,0,1): /* 8 8 8 8 8 8 16 */ 989 return BYTE(1,1,1,1,1,1,0,1); 990 case DESCR(1,1,0,0,1,1,0,0, 0,0,1, 0, 0,0,1): /* 8 8 16 8 8 16 */ 991 return BYTE(1,1,0,1,1,1,0,1); 992 case DESCR(0,0,1,1,1,1,0,0, 1,0,0, 0, 0,0,1): /* 16 8 8 8 8 16 */ 993 return BYTE(0,1,1,1,1,1,0,1); 994 case DESCR(0,0,0,0,1,1,0,0, 1,0,1, 0, 0,0,1): /* 16 16 8 8 16 */ 995 return BYTE(0,1,0,1,1,1,0,1); 996 997 case DESCR(1,1,1,1,0,0,1,1, 0,0,0, 0, 1,0,0): /* 8 8 8 8 16 8 8 */ 998 return BYTE(1,1,1,1,0,1,1,1); 999 case DESCR(1,1,0,0,0,0,1,1, 0,0,1, 0, 1,0,0): /* 8 8 16 16 8 8 */ 1000 return BYTE(1,1,0,1,0,1,1,1); 1001 case DESCR(0,0,1,1,0,0,1,1, 1,0,0, 0, 1,0,0): /* 16 8 8 16 8 8 */ 1002 return BYTE(0,1,1,1,0,1,1,1); 1003 case DESCR(0,0,0,0,0,0,1,1, 1,0,1, 0, 1,0,0): /* 16 16 16 8 8 */ 1004 return BYTE(0,1,0,1,0,1,1,1); 1005 1006 case DESCR(1,1,1,1,0,0,0,0, 0,0,0, 0, 1,0,1): /* 8 8 8 8 16 16 */ 1007 return BYTE(1,1,1,1,0,1,0,1); 1008 case DESCR(1,1,0,0,0,0,0,0, 0,0,1, 0, 1,0,1): /* 8 8 16 16 16 */ 1009 return BYTE(1,1,0,1,0,1,0,1); 1010 case DESCR(0,0,1,1,0,0,0,0, 1,0,0, 0, 1,0,1): /* 16 8 8 16 16 */ 1011 return BYTE(0,1,1,1,0,1,0,1); 1012 case DESCR(0,0,0,0,0,0,0,0, 1,0,1, 0, 1,0,1): /* 16 16 16 16 */ 1013 return BYTE(0,1,0,1,0,1,0,1); 1014 1015 case DESCR(0,0,0,0,1,1,1,1, 0,1,0, 0, 0,0,0): /* 32 8 8 8 8 */ 1016 return BYTE(0,0,0,1,1,1,1,1); 1017 case DESCR(0,0,0,0,1,1,0,0, 0,1,0, 0, 0,0,1): /* 32 8 8 16 */ 1018 return BYTE(0,0,0,1,1,1,0,1); 1019 case DESCR(0,0,0,0,0,0,1,1, 0,1,0, 0, 1,0,0): /* 32 16 8 8 */ 1020 return BYTE(0,0,0,1,0,1,1,1); 1021 case DESCR(0,0,0,0,0,0,0,0, 0,1,0, 0, 1,0,1): /* 32 16 16 */ 1022 return BYTE(0,0,0,1,0,1,0,1); 1023 1024 case DESCR(1,1,1,1,0,0,0,0, 0,0,0, 0, 0,1,0): /* 8 8 8 8 32 */ 1025 return BYTE(1,1,1,1,0,0,0,1); 1026 case DESCR(1,1,0,0,0,0,0,0, 0,0,1, 0, 0,1,0): /* 8 8 16 32 */ 1027 return BYTE(1,1,0,1,0,0,0,1); 1028 case DESCR(0,0,1,1,0,0,0,0, 1,0,0, 0, 0,1,0): /* 16 8 8 32 */ 1029 return BYTE(0,1,1,1,0,0,0,1); 1030 case DESCR(0,0,0,0,0,0,0,0, 1,0,1, 0, 0,1,0): /* 16 16 32 */ 1031 return BYTE(0,1,0,1,0,0,0,1); 1032 1033 case DESCR(0,0,0,0,0,0,0,0, 0,1,0, 0, 0,1,0): /* 32 32 */ 1034 return BYTE(0,0,0,1,0,0,0,1); 1035 1036 case DESCR(0,0,0,0,0,0,0,0, 0,0,0, 1, 0,0,0): /* 64 */ 1037 return BYTE(0,0,0,0,0,0,0,1); 1038 1039 default: return BYTE(0,0,0,0,0,0,0,0); 1040 /* INVALID - any valid descr produces at least one 1041 valid bit in tree[0..7]*/ 1042 } 1043 /* NOTREACHED*/ 1044 tl_assert(0); 1045 1046 # undef DESCR 1047 # undef BYTE 1048 } 1049 1050 __attribute__((unused)) 1051 static Bool is_sane_Descr ( UShort descr ) { 1052 return descr_to_validbits(descr) != 0; 1053 } 1054 1055 static void sprintf_Descr ( /*OUT*/HChar* dst, UShort descr ) { 1056 VG_(sprintf)(dst, 1057 "%d%d%d%d%d%d%d%d %d%d%d %d %d%d%d", 1058 (Int)((descr & TREE_DESCR_8_7) ? 1 : 0), 1059 (Int)((descr & TREE_DESCR_8_6) ? 1 : 0), 1060 (Int)((descr & TREE_DESCR_8_5) ? 1 : 0), 1061 (Int)((descr & TREE_DESCR_8_4) ? 1 : 0), 1062 (Int)((descr & TREE_DESCR_8_3) ? 1 : 0), 1063 (Int)((descr & TREE_DESCR_8_2) ? 1 : 0), 1064 (Int)((descr & TREE_DESCR_8_1) ? 1 : 0), 1065 (Int)((descr & TREE_DESCR_8_0) ? 1 : 0), 1066 (Int)((descr & TREE_DESCR_16_3) ? 1 : 0), 1067 (Int)((descr & TREE_DESCR_32_1) ? 1 : 0), 1068 (Int)((descr & TREE_DESCR_16_2) ? 1 : 0), 1069 (Int)((descr & TREE_DESCR_64) ? 1 : 0), 1070 (Int)((descr & TREE_DESCR_16_1) ? 1 : 0), 1071 (Int)((descr & TREE_DESCR_32_0) ? 1 : 0), 1072 (Int)((descr & TREE_DESCR_16_0) ? 1 : 0) 1073 ); 1074 } 1075 static void sprintf_Byte ( /*OUT*/HChar* dst, UChar byte ) { 1076 VG_(sprintf)(dst, "%d%d%d%d%d%d%d%d", 1077 (Int)((byte & 128) ? 1 : 0), 1078 (Int)((byte & 64) ? 1 : 0), 1079 (Int)((byte & 32) ? 1 : 0), 1080 (Int)((byte & 16) ? 1 : 0), 1081 (Int)((byte & 8) ? 1 : 0), 1082 (Int)((byte & 4) ? 1 : 0), 1083 (Int)((byte & 2) ? 1 : 0), 1084 (Int)((byte & 1) ? 1 : 0) 1085 ); 1086 } 1087 1088 static Bool is_sane_Descr_and_Tree ( UShort descr, SVal* tree ) { 1089 Word i; 1090 UChar validbits = descr_to_validbits(descr); 1091 HChar buf[128], buf2[128]; 1092 if (validbits == 0) 1093 goto bad; 1094 for (i = 0; i < 8; i++) { 1095 if (validbits & (1<<i)) { 1096 if (tree[i] == SVal_INVALID) 1097 goto bad; 1098 } else { 1099 if (tree[i] != SVal_INVALID) 1100 goto bad; 1101 } 1102 } 1103 return True; 1104 bad: 1105 sprintf_Descr( buf, descr ); 1106 sprintf_Byte( buf2, validbits ); 1107 VG_(printf)("%s","is_sane_Descr_and_Tree: bad tree {\n"); 1108 VG_(printf)(" validbits 0x%02lx %s\n", (UWord)validbits, buf2); 1109 VG_(printf)(" descr 0x%04lx %s\n", (UWord)descr, buf); 1110 for (i = 0; i < 8; i++) 1111 VG_(printf)(" [%ld] 0x%016llx\n", i, tree[i]); 1112 VG_(printf)("%s","}\n"); 1113 return 0; 1114 } 1115 1116 static Bool is_sane_CacheLine ( CacheLine* cl ) 1117 { 1118 Word tno, cloff; 1119 1120 if (!cl) goto bad; 1121 1122 for (tno = 0, cloff = 0; tno < N_LINE_TREES; tno++, cloff += 8) { 1123 UShort descr = cl->descrs[tno]; 1124 SVal* tree = &cl->svals[cloff]; 1125 if (!is_sane_Descr_and_Tree(descr, tree)) 1126 goto bad; 1127 } 1128 tl_assert(cloff == N_LINE_ARANGE); 1129 return True; 1130 bad: 1131 pp_CacheLine(cl); 1132 return False; 1133 } 1134 1135 static UShort normalise_tree ( /*MOD*/SVal* tree ) 1136 { 1137 UShort descr; 1138 /* pre: incoming tree[0..7] does not have any invalid shvals, in 1139 particular no zeroes. */ 1140 if (UNLIKELY(tree[7] == SVal_INVALID || tree[6] == SVal_INVALID 1141 || tree[5] == SVal_INVALID || tree[4] == SVal_INVALID 1142 || tree[3] == SVal_INVALID || tree[2] == SVal_INVALID 1143 || tree[1] == SVal_INVALID || tree[0] == SVal_INVALID)) 1144 tl_assert(0); 1145 1146 descr = TREE_DESCR_8_7 | TREE_DESCR_8_6 | TREE_DESCR_8_5 1147 | TREE_DESCR_8_4 | TREE_DESCR_8_3 | TREE_DESCR_8_2 1148 | TREE_DESCR_8_1 | TREE_DESCR_8_0; 1149 /* build 16-bit layer */ 1150 if (tree[1] == tree[0]) { 1151 tree[1] = SVal_INVALID; 1152 descr &= ~(TREE_DESCR_8_1 | TREE_DESCR_8_0); 1153 descr |= TREE_DESCR_16_0; 1154 } 1155 if (tree[3] == tree[2]) { 1156 tree[3] = SVal_INVALID; 1157 descr &= ~(TREE_DESCR_8_3 | TREE_DESCR_8_2); 1158 descr |= TREE_DESCR_16_1; 1159 } 1160 if (tree[5] == tree[4]) { 1161 tree[5] = SVal_INVALID; 1162 descr &= ~(TREE_DESCR_8_5 | TREE_DESCR_8_4); 1163 descr |= TREE_DESCR_16_2; 1164 } 1165 if (tree[7] == tree[6]) { 1166 tree[7] = SVal_INVALID; 1167 descr &= ~(TREE_DESCR_8_7 | TREE_DESCR_8_6); 1168 descr |= TREE_DESCR_16_3; 1169 } 1170 /* build 32-bit layer */ 1171 if (tree[2] == tree[0] 1172 && (descr & TREE_DESCR_16_1) && (descr & TREE_DESCR_16_0)) { 1173 tree[2] = SVal_INVALID; /* [3,1] must already be SVal_INVALID */ 1174 descr &= ~(TREE_DESCR_16_1 | TREE_DESCR_16_0); 1175 descr |= TREE_DESCR_32_0; 1176 } 1177 if (tree[6] == tree[4] 1178 && (descr & TREE_DESCR_16_3) && (descr & TREE_DESCR_16_2)) { 1179 tree[6] = SVal_INVALID; /* [7,5] must already be SVal_INVALID */ 1180 descr &= ~(TREE_DESCR_16_3 | TREE_DESCR_16_2); 1181 descr |= TREE_DESCR_32_1; 1182 } 1183 /* build 64-bit layer */ 1184 if (tree[4] == tree[0] 1185 && (descr & TREE_DESCR_32_1) && (descr & TREE_DESCR_32_0)) { 1186 tree[4] = SVal_INVALID; /* [7,6,5,3,2,1] must already be SVal_INVALID */ 1187 descr &= ~(TREE_DESCR_32_1 | TREE_DESCR_32_0); 1188 descr |= TREE_DESCR_64; 1189 } 1190 return descr; 1191 } 1192 1193 /* This takes a cacheline where all the data is at the leaves 1194 (w8[..]) and builds a correctly normalised tree. */ 1195 static void normalise_CacheLine ( /*MOD*/CacheLine* cl ) 1196 { 1197 Word tno, cloff; 1198 for (tno = 0, cloff = 0; tno < N_LINE_TREES; tno++, cloff += 8) { 1199 SVal* tree = &cl->svals[cloff]; 1200 cl->descrs[tno] = normalise_tree( tree ); 1201 } 1202 tl_assert(cloff == N_LINE_ARANGE); 1203 if (CHECK_ZSM) 1204 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */ 1205 stats__cline_normalises++; 1206 } 1207 1208 1209 typedef struct { UChar count; SVal sval; } CountedSVal; 1210 1211 static 1212 void sequentialise_CacheLine ( /*OUT*/CountedSVal* dst, 1213 /*OUT*/Word* dstUsedP, 1214 Word nDst, CacheLine* src ) 1215 { 1216 Word tno, cloff, dstUsed; 1217 1218 tl_assert(nDst == N_LINE_ARANGE); 1219 dstUsed = 0; 1220 1221 for (tno = 0, cloff = 0; tno < N_LINE_TREES; tno++, cloff += 8) { 1222 UShort descr = src->descrs[tno]; 1223 SVal* tree = &src->svals[cloff]; 1224 1225 /* sequentialise the tree described by (descr,tree). */ 1226 # define PUT(_n,_v) \ 1227 do { dst[dstUsed ].count = (_n); \ 1228 dst[dstUsed++].sval = (_v); \ 1229 } while (0) 1230 1231 /* byte 0 */ 1232 if (descr & TREE_DESCR_64) PUT(8, tree[0]); else 1233 if (descr & TREE_DESCR_32_0) PUT(4, tree[0]); else 1234 if (descr & TREE_DESCR_16_0) PUT(2, tree[0]); else 1235 if (descr & TREE_DESCR_8_0) PUT(1, tree[0]); 1236 /* byte 1 */ 1237 if (descr & TREE_DESCR_8_1) PUT(1, tree[1]); 1238 /* byte 2 */ 1239 if (descr & TREE_DESCR_16_1) PUT(2, tree[2]); else 1240 if (descr & TREE_DESCR_8_2) PUT(1, tree[2]); 1241 /* byte 3 */ 1242 if (descr & TREE_DESCR_8_3) PUT(1, tree[3]); 1243 /* byte 4 */ 1244 if (descr & TREE_DESCR_32_1) PUT(4, tree[4]); else 1245 if (descr & TREE_DESCR_16_2) PUT(2, tree[4]); else 1246 if (descr & TREE_DESCR_8_4) PUT(1, tree[4]); 1247 /* byte 5 */ 1248 if (descr & TREE_DESCR_8_5) PUT(1, tree[5]); 1249 /* byte 6 */ 1250 if (descr & TREE_DESCR_16_3) PUT(2, tree[6]); else 1251 if (descr & TREE_DESCR_8_6) PUT(1, tree[6]); 1252 /* byte 7 */ 1253 if (descr & TREE_DESCR_8_7) PUT(1, tree[7]); 1254 1255 # undef PUT 1256 /* END sequentialise the tree described by (descr,tree). */ 1257 1258 } 1259 tl_assert(cloff == N_LINE_ARANGE); 1260 tl_assert(dstUsed <= nDst); 1261 1262 *dstUsedP = dstUsed; 1263 } 1264 1265 /* Write the cacheline 'wix' to backing store. Where it ends up 1266 is determined by its tag field. */ 1267 static __attribute__((noinline)) void cacheline_wback ( UWord wix ) 1268 { 1269 Word i, j, k, m; 1270 Addr tag; 1271 SecMap* sm; 1272 CacheLine* cl; 1273 LineZ* lineZ; 1274 LineF* lineF; 1275 Word zix, fix, csvalsUsed; 1276 CountedSVal csvals[N_LINE_ARANGE]; 1277 SVal sv; 1278 1279 if (0) 1280 VG_(printf)("scache wback line %d\n", (Int)wix); 1281 1282 tl_assert(wix >= 0 && wix < N_WAY_NENT); 1283 1284 tag = cache_shmem.tags0[wix]; 1285 cl = &cache_shmem.lyns0[wix]; 1286 1287 /* The cache line may have been invalidated; if so, ignore it. */ 1288 if (!is_valid_scache_tag(tag)) 1289 return; 1290 1291 /* Where are we going to put it? */ 1292 sm = NULL; 1293 lineZ = NULL; 1294 lineF = NULL; 1295 zix = fix = -1; 1296 1297 /* find the Z line to write in and rcdec it or the associated F 1298 line. */ 1299 find_Z_for_writing( &sm, &zix, tag ); 1300 1301 tl_assert(sm); 1302 tl_assert(zix >= 0 && zix < N_SECMAP_ZLINES); 1303 lineZ = &sm->linesZ[zix]; 1304 1305 /* Generate the data to be stored */ 1306 if (CHECK_ZSM) 1307 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */ 1308 1309 csvalsUsed = -1; 1310 sequentialise_CacheLine( csvals, &csvalsUsed, 1311 N_LINE_ARANGE, cl ); 1312 tl_assert(csvalsUsed >= 1 && csvalsUsed <= N_LINE_ARANGE); 1313 if (0) VG_(printf)("%lu ", csvalsUsed); 1314 1315 lineZ->dict[0] = lineZ->dict[1] 1316 = lineZ->dict[2] = lineZ->dict[3] = SVal_INVALID; 1317 1318 /* i indexes actual shadow values, k is cursor in csvals */ 1319 i = 0; 1320 for (k = 0; k < csvalsUsed; k++) { 1321 1322 sv = csvals[k].sval; 1323 if (CHECK_ZSM) 1324 tl_assert(csvals[k].count >= 1 && csvals[k].count <= 8); 1325 /* do we already have it? */ 1326 if (sv == lineZ->dict[0]) { j = 0; goto dict_ok; } 1327 if (sv == lineZ->dict[1]) { j = 1; goto dict_ok; } 1328 if (sv == lineZ->dict[2]) { j = 2; goto dict_ok; } 1329 if (sv == lineZ->dict[3]) { j = 3; goto dict_ok; } 1330 /* no. look for a free slot. */ 1331 if (CHECK_ZSM) 1332 tl_assert(sv != SVal_INVALID); 1333 if (lineZ->dict[0] 1334 == SVal_INVALID) { lineZ->dict[0] = sv; j = 0; goto dict_ok; } 1335 if (lineZ->dict[1] 1336 == SVal_INVALID) { lineZ->dict[1] = sv; j = 1; goto dict_ok; } 1337 if (lineZ->dict[2] 1338 == SVal_INVALID) { lineZ->dict[2] = sv; j = 2; goto dict_ok; } 1339 if (lineZ->dict[3] 1340 == SVal_INVALID) { lineZ->dict[3] = sv; j = 3; goto dict_ok; } 1341 break; /* we'll have to use the f rep */ 1342 dict_ok: 1343 m = csvals[k].count; 1344 if (m == 8) { 1345 write_twobit_array( lineZ->ix2s, i+0, j ); 1346 write_twobit_array( lineZ->ix2s, i+1, j ); 1347 write_twobit_array( lineZ->ix2s, i+2, j ); 1348 write_twobit_array( lineZ->ix2s, i+3, j ); 1349 write_twobit_array( lineZ->ix2s, i+4, j ); 1350 write_twobit_array( lineZ->ix2s, i+5, j ); 1351 write_twobit_array( lineZ->ix2s, i+6, j ); 1352 write_twobit_array( lineZ->ix2s, i+7, j ); 1353 i += 8; 1354 } 1355 else if (m == 4) { 1356 write_twobit_array( lineZ->ix2s, i+0, j ); 1357 write_twobit_array( lineZ->ix2s, i+1, j ); 1358 write_twobit_array( lineZ->ix2s, i+2, j ); 1359 write_twobit_array( lineZ->ix2s, i+3, j ); 1360 i += 4; 1361 } 1362 else if (m == 1) { 1363 write_twobit_array( lineZ->ix2s, i+0, j ); 1364 i += 1; 1365 } 1366 else if (m == 2) { 1367 write_twobit_array( lineZ->ix2s, i+0, j ); 1368 write_twobit_array( lineZ->ix2s, i+1, j ); 1369 i += 2; 1370 } 1371 else { 1372 tl_assert(0); /* 8 4 2 or 1 are the only legitimate values for m */ 1373 } 1374 1375 } 1376 1377 if (LIKELY(i == N_LINE_ARANGE)) { 1378 /* Construction of the compressed representation was 1379 successful. */ 1380 rcinc_LineZ(lineZ); 1381 stats__cache_Z_wbacks++; 1382 } else { 1383 /* Cannot use the compressed(z) representation. Use the full(f) 1384 rep instead. */ 1385 tl_assert(i >= 0 && i < N_LINE_ARANGE); 1386 alloc_F_for_writing( sm, &fix ); 1387 tl_assert(sm->linesF); 1388 tl_assert(sm->linesF_size > 0); 1389 tl_assert(fix >= 0 && fix < (Word)sm->linesF_size); 1390 lineF = &sm->linesF[fix]; 1391 tl_assert(!lineF->inUse); 1392 lineZ->dict[0] = lineZ->dict[2] = lineZ->dict[3] = SVal_INVALID; 1393 lineZ->dict[1] = (SVal)fix; 1394 lineF->inUse = True; 1395 i = 0; 1396 for (k = 0; k < csvalsUsed; k++) { 1397 if (CHECK_ZSM) 1398 tl_assert(csvals[k].count >= 1 && csvals[k].count <= 8); 1399 sv = csvals[k].sval; 1400 if (CHECK_ZSM) 1401 tl_assert(sv != SVal_INVALID); 1402 for (m = csvals[k].count; m > 0; m--) { 1403 lineF->w64s[i] = sv; 1404 i++; 1405 } 1406 } 1407 tl_assert(i == N_LINE_ARANGE); 1408 rcinc_LineF(lineF); 1409 stats__cache_F_wbacks++; 1410 } 1411 } 1412 1413 /* Fetch the cacheline 'wix' from the backing store. The tag 1414 associated with 'wix' is assumed to have already been filled in; 1415 hence that is used to determine where in the backing store to read 1416 from. */ 1417 static __attribute__((noinline)) void cacheline_fetch ( UWord wix ) 1418 { 1419 Word i; 1420 Addr tag; 1421 CacheLine* cl; 1422 LineZ* lineZ; 1423 LineF* lineF; 1424 1425 if (0) 1426 VG_(printf)("scache fetch line %d\n", (Int)wix); 1427 1428 tl_assert(wix >= 0 && wix < N_WAY_NENT); 1429 1430 tag = cache_shmem.tags0[wix]; 1431 cl = &cache_shmem.lyns0[wix]; 1432 1433 /* reject nonsense requests */ 1434 tl_assert(is_valid_scache_tag(tag)); 1435 1436 lineZ = NULL; 1437 lineF = NULL; 1438 find_ZF_for_reading( &lineZ, &lineF, tag ); 1439 tl_assert( (lineZ && !lineF) || (!lineZ && lineF) ); 1440 1441 /* expand the data into the bottom layer of the tree, then get 1442 cacheline_normalise to build the descriptor array. */ 1443 if (lineF) { 1444 tl_assert(lineF->inUse); 1445 for (i = 0; i < N_LINE_ARANGE; i++) { 1446 cl->svals[i] = lineF->w64s[i]; 1447 } 1448 stats__cache_F_fetches++; 1449 } else { 1450 for (i = 0; i < N_LINE_ARANGE; i++) { 1451 SVal sv; 1452 UWord ix = read_twobit_array( lineZ->ix2s, i ); 1453 /* correct, but expensive: tl_assert(ix >= 0 && ix <= 3); */ 1454 sv = lineZ->dict[ix]; 1455 tl_assert(sv != SVal_INVALID); 1456 cl->svals[i] = sv; 1457 } 1458 stats__cache_Z_fetches++; 1459 } 1460 normalise_CacheLine( cl ); 1461 } 1462 1463 static void shmem__invalidate_scache ( void ) { 1464 Word wix; 1465 if (0) VG_(printf)("%s","scache inval\n"); 1466 tl_assert(!is_valid_scache_tag(1)); 1467 for (wix = 0; wix < N_WAY_NENT; wix++) { 1468 cache_shmem.tags0[wix] = 1/*INVALID*/; 1469 } 1470 stats__cache_invals++; 1471 } 1472 1473 static void shmem__flush_and_invalidate_scache ( void ) { 1474 Word wix; 1475 Addr tag; 1476 if (0) VG_(printf)("%s","scache flush and invalidate\n"); 1477 tl_assert(!is_valid_scache_tag(1)); 1478 for (wix = 0; wix < N_WAY_NENT; wix++) { 1479 tag = cache_shmem.tags0[wix]; 1480 if (tag == 1/*INVALID*/) { 1481 /* already invalid; nothing to do */ 1482 } else { 1483 tl_assert(is_valid_scache_tag(tag)); 1484 cacheline_wback( wix ); 1485 } 1486 cache_shmem.tags0[wix] = 1/*INVALID*/; 1487 } 1488 stats__cache_flushes++; 1489 stats__cache_invals++; 1490 } 1491 1492 1493 static inline Bool aligned16 ( Addr a ) { 1494 return 0 == (a & 1); 1495 } 1496 static inline Bool aligned32 ( Addr a ) { 1497 return 0 == (a & 3); 1498 } 1499 static inline Bool aligned64 ( Addr a ) { 1500 return 0 == (a & 7); 1501 } 1502 static inline UWord get_cacheline_offset ( Addr a ) { 1503 return (UWord)(a & (N_LINE_ARANGE - 1)); 1504 } 1505 static inline Addr cacheline_ROUNDUP ( Addr a ) { 1506 return ROUNDUP(a, N_LINE_ARANGE); 1507 } 1508 static inline Addr cacheline_ROUNDDN ( Addr a ) { 1509 return ROUNDDN(a, N_LINE_ARANGE); 1510 } 1511 static inline UWord get_treeno ( Addr a ) { 1512 return get_cacheline_offset(a) >> 3; 1513 } 1514 static inline UWord get_tree_offset ( Addr a ) { 1515 return a & 7; 1516 } 1517 1518 static __attribute__((noinline)) 1519 CacheLine* get_cacheline_MISS ( Addr a ); /* fwds */ 1520 static inline CacheLine* get_cacheline ( Addr a ) 1521 { 1522 /* tag is 'a' with the in-line offset masked out, 1523 eg a[31]..a[4] 0000 */ 1524 Addr tag = a & ~(N_LINE_ARANGE - 1); 1525 UWord wix = (a >> N_LINE_BITS) & (N_WAY_NENT - 1); 1526 stats__cache_totrefs++; 1527 if (LIKELY(tag == cache_shmem.tags0[wix])) { 1528 return &cache_shmem.lyns0[wix]; 1529 } else { 1530 return get_cacheline_MISS( a ); 1531 } 1532 } 1533 1534 static __attribute__((noinline)) 1535 CacheLine* get_cacheline_MISS ( Addr a ) 1536 { 1537 /* tag is 'a' with the in-line offset masked out, 1538 eg a[31]..a[4] 0000 */ 1539 1540 CacheLine* cl; 1541 Addr* tag_old_p; 1542 Addr tag = a & ~(N_LINE_ARANGE - 1); 1543 UWord wix = (a >> N_LINE_BITS) & (N_WAY_NENT - 1); 1544 1545 tl_assert(tag != cache_shmem.tags0[wix]); 1546 1547 /* Dump the old line into the backing store. */ 1548 stats__cache_totmisses++; 1549 1550 cl = &cache_shmem.lyns0[wix]; 1551 tag_old_p = &cache_shmem.tags0[wix]; 1552 1553 if (is_valid_scache_tag( *tag_old_p )) { 1554 /* EXPENSIVE and REDUNDANT: callee does it */ 1555 if (CHECK_ZSM) 1556 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */ 1557 cacheline_wback( wix ); 1558 } 1559 /* and reload the new one */ 1560 *tag_old_p = tag; 1561 cacheline_fetch( wix ); 1562 if (CHECK_ZSM) 1563 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */ 1564 return cl; 1565 } 1566 1567 static UShort pulldown_to_32 ( /*MOD*/SVal* tree, UWord toff, UShort descr ) { 1568 stats__cline_64to32pulldown++; 1569 switch (toff) { 1570 case 0: case 4: 1571 tl_assert(descr & TREE_DESCR_64); 1572 tree[4] = tree[0]; 1573 descr &= ~TREE_DESCR_64; 1574 descr |= (TREE_DESCR_32_1 | TREE_DESCR_32_0); 1575 break; 1576 default: 1577 tl_assert(0); 1578 } 1579 return descr; 1580 } 1581 1582 static UShort pulldown_to_16 ( /*MOD*/SVal* tree, UWord toff, UShort descr ) { 1583 stats__cline_32to16pulldown++; 1584 switch (toff) { 1585 case 0: case 2: 1586 if (!(descr & TREE_DESCR_32_0)) { 1587 descr = pulldown_to_32(tree, 0, descr); 1588 } 1589 tl_assert(descr & TREE_DESCR_32_0); 1590 tree[2] = tree[0]; 1591 descr &= ~TREE_DESCR_32_0; 1592 descr |= (TREE_DESCR_16_1 | TREE_DESCR_16_0); 1593 break; 1594 case 4: case 6: 1595 if (!(descr & TREE_DESCR_32_1)) { 1596 descr = pulldown_to_32(tree, 4, descr); 1597 } 1598 tl_assert(descr & TREE_DESCR_32_1); 1599 tree[6] = tree[4]; 1600 descr &= ~TREE_DESCR_32_1; 1601 descr |= (TREE_DESCR_16_3 | TREE_DESCR_16_2); 1602 break; 1603 default: 1604 tl_assert(0); 1605 } 1606 return descr; 1607 } 1608 1609 static UShort pulldown_to_8 ( /*MOD*/SVal* tree, UWord toff, UShort descr ) { 1610 stats__cline_16to8pulldown++; 1611 switch (toff) { 1612 case 0: case 1: 1613 if (!(descr & TREE_DESCR_16_0)) { 1614 descr = pulldown_to_16(tree, 0, descr); 1615 } 1616 tl_assert(descr & TREE_DESCR_16_0); 1617 tree[1] = tree[0]; 1618 descr &= ~TREE_DESCR_16_0; 1619 descr |= (TREE_DESCR_8_1 | TREE_DESCR_8_0); 1620 break; 1621 case 2: case 3: 1622 if (!(descr & TREE_DESCR_16_1)) { 1623 descr = pulldown_to_16(tree, 2, descr); 1624 } 1625 tl_assert(descr & TREE_DESCR_16_1); 1626 tree[3] = tree[2]; 1627 descr &= ~TREE_DESCR_16_1; 1628 descr |= (TREE_DESCR_8_3 | TREE_DESCR_8_2); 1629 break; 1630 case 4: case 5: 1631 if (!(descr & TREE_DESCR_16_2)) { 1632 descr = pulldown_to_16(tree, 4, descr); 1633 } 1634 tl_assert(descr & TREE_DESCR_16_2); 1635 tree[5] = tree[4]; 1636 descr &= ~TREE_DESCR_16_2; 1637 descr |= (TREE_DESCR_8_5 | TREE_DESCR_8_4); 1638 break; 1639 case 6: case 7: 1640 if (!(descr & TREE_DESCR_16_3)) { 1641 descr = pulldown_to_16(tree, 6, descr); 1642 } 1643 tl_assert(descr & TREE_DESCR_16_3); 1644 tree[7] = tree[6]; 1645 descr &= ~TREE_DESCR_16_3; 1646 descr |= (TREE_DESCR_8_7 | TREE_DESCR_8_6); 1647 break; 1648 default: 1649 tl_assert(0); 1650 } 1651 return descr; 1652 } 1653 1654 1655 static UShort pullup_descr_to_16 ( UShort descr, UWord toff ) { 1656 UShort mask; 1657 switch (toff) { 1658 case 0: 1659 mask = TREE_DESCR_8_1 | TREE_DESCR_8_0; 1660 tl_assert( (descr & mask) == mask ); 1661 descr &= ~mask; 1662 descr |= TREE_DESCR_16_0; 1663 break; 1664 case 2: 1665 mask = TREE_DESCR_8_3 | TREE_DESCR_8_2; 1666 tl_assert( (descr & mask) == mask ); 1667 descr &= ~mask; 1668 descr |= TREE_DESCR_16_1; 1669 break; 1670 case 4: 1671 mask = TREE_DESCR_8_5 | TREE_DESCR_8_4; 1672 tl_assert( (descr & mask) == mask ); 1673 descr &= ~mask; 1674 descr |= TREE_DESCR_16_2; 1675 break; 1676 case 6: 1677 mask = TREE_DESCR_8_7 | TREE_DESCR_8_6; 1678 tl_assert( (descr & mask) == mask ); 1679 descr &= ~mask; 1680 descr |= TREE_DESCR_16_3; 1681 break; 1682 default: 1683 tl_assert(0); 1684 } 1685 return descr; 1686 } 1687 1688 static UShort pullup_descr_to_32 ( UShort descr, UWord toff ) { 1689 UShort mask; 1690 switch (toff) { 1691 case 0: 1692 if (!(descr & TREE_DESCR_16_0)) 1693 descr = pullup_descr_to_16(descr, 0); 1694 if (!(descr & TREE_DESCR_16_1)) 1695 descr = pullup_descr_to_16(descr, 2); 1696 mask = TREE_DESCR_16_1 | TREE_DESCR_16_0; 1697 tl_assert( (descr & mask) == mask ); 1698 descr &= ~mask; 1699 descr |= TREE_DESCR_32_0; 1700 break; 1701 case 4: 1702 if (!(descr & TREE_DESCR_16_2)) 1703 descr = pullup_descr_to_16(descr, 4); 1704 if (!(descr & TREE_DESCR_16_3)) 1705 descr = pullup_descr_to_16(descr, 6); 1706 mask = TREE_DESCR_16_3 | TREE_DESCR_16_2; 1707 tl_assert( (descr & mask) == mask ); 1708 descr &= ~mask; 1709 descr |= TREE_DESCR_32_1; 1710 break; 1711 default: 1712 tl_assert(0); 1713 } 1714 return descr; 1715 } 1716 1717 static Bool valid_value_is_above_me_32 ( UShort descr, UWord toff ) { 1718 switch (toff) { 1719 case 0: case 4: 1720 return 0 != (descr & TREE_DESCR_64); 1721 default: 1722 tl_assert(0); 1723 } 1724 } 1725 1726 static Bool valid_value_is_below_me_16 ( UShort descr, UWord toff ) { 1727 switch (toff) { 1728 case 0: 1729 return 0 != (descr & (TREE_DESCR_8_1 | TREE_DESCR_8_0)); 1730 case 2: 1731 return 0 != (descr & (TREE_DESCR_8_3 | TREE_DESCR_8_2)); 1732 case 4: 1733 return 0 != (descr & (TREE_DESCR_8_5 | TREE_DESCR_8_4)); 1734 case 6: 1735 return 0 != (descr & (TREE_DESCR_8_7 | TREE_DESCR_8_6)); 1736 default: 1737 tl_assert(0); 1738 } 1739 } 1740 1741 /* ------------ Cache management ------------ */ 1742 1743 static void zsm_flush_cache ( void ) 1744 { 1745 shmem__flush_and_invalidate_scache(); 1746 } 1747 1748 1749 static void zsm_init ( void(*p_rcinc)(SVal), void(*p_rcdec)(SVal) ) 1750 { 1751 tl_assert( sizeof(UWord) == sizeof(Addr) ); 1752 1753 rcinc = p_rcinc; 1754 rcdec = p_rcdec; 1755 1756 tl_assert(map_shmem == NULL); 1757 map_shmem = VG_(newFM)( HG_(zalloc), "libhb.zsm_init.1 (map_shmem)", 1758 HG_(free), 1759 NULL/*unboxed UWord cmp*/); 1760 tl_assert(map_shmem != NULL); 1761 shmem__invalidate_scache(); 1762 1763 /* a SecMap must contain an integral number of CacheLines */ 1764 tl_assert(0 == (N_SECMAP_ARANGE % N_LINE_ARANGE)); 1765 /* also ... a CacheLine holds an integral number of trees */ 1766 tl_assert(0 == (N_LINE_ARANGE % 8)); 1767 } 1768 1769 ///////////////////////////////////////////////////////////////// 1770 ///////////////////////////////////////////////////////////////// 1771 // // 1772 // SECTION END compressed shadow memory // 1773 // // 1774 ///////////////////////////////////////////////////////////////// 1775 ///////////////////////////////////////////////////////////////// 1776 1777 1778 1779 ///////////////////////////////////////////////////////////////// 1780 ///////////////////////////////////////////////////////////////// 1781 // // 1782 // SECTION BEGIN vts primitives // 1783 // // 1784 ///////////////////////////////////////////////////////////////// 1785 ///////////////////////////////////////////////////////////////// 1786 1787 1788 /* There's a 1-1 mapping between Thr and ThrIDs -- the latter merely 1789 being compact stand-ins for Thr*'s. Use these functions to map 1790 between them. */ 1791 static ThrID Thr__to_ThrID ( Thr* thr ); /* fwds */ 1792 static Thr* Thr__from_ThrID ( ThrID thrid ); /* fwds */ 1793 1794 __attribute__((noreturn)) 1795 static void scalarts_limitations_fail_NORETURN ( Bool due_to_nThrs ) 1796 { 1797 if (due_to_nThrs) { 1798 HChar* s = 1799 "\n" 1800 "Helgrind: cannot continue, run aborted: too many threads.\n" 1801 "Sorry. Helgrind can only handle programs that create\n" 1802 "%'llu or fewer threads over their entire lifetime.\n" 1803 "\n"; 1804 VG_(umsg)(s, (ULong)(ThrID_MAX_VALID - 1024)); 1805 } else { 1806 HChar* s = 1807 "\n" 1808 "Helgrind: cannot continue, run aborted: too many\n" 1809 "synchronisation events. Sorry. Helgrind can only handle\n" 1810 "programs which perform %'llu or fewer\n" 1811 "inter-thread synchronisation events (locks, unlocks, etc).\n" 1812 "\n"; 1813 VG_(umsg)(s, (1ULL << SCALARTS_N_TYMBITS) - 1); 1814 } 1815 VG_(exit)(1); 1816 /*NOTREACHED*/ 1817 tl_assert(0); /*wtf?!*/ 1818 } 1819 1820 1821 /* The dead thread (ThrID, actually) table. A thread may only be 1822 listed here if we have been notified thereof by libhb_async_exit. 1823 New entries are added at the end. The order isn't important, but 1824 the ThrID values must be unique. This table lists the identity of 1825 all threads that have ever died -- none are ever removed. We keep 1826 this table so as to be able to prune entries from VTSs. We don't 1827 actually need to keep the set of threads that have ever died -- 1828 only the threads that have died since the previous round of 1829 pruning. But it's useful for sanity check purposes to keep the 1830 entire set, so we do. */ 1831 static XArray* /* of ThrID */ verydead_thread_table = NULL; 1832 1833 /* Arbitrary total ordering on ThrIDs. */ 1834 static Int cmp__ThrID ( void* v1, void* v2 ) { 1835 ThrID id1 = *(ThrID*)v1; 1836 ThrID id2 = *(ThrID*)v2; 1837 if (id1 < id2) return -1; 1838 if (id1 > id2) return 1; 1839 return 0; 1840 } 1841 1842 static void verydead_thread_table_init ( void ) 1843 { 1844 tl_assert(!verydead_thread_table); 1845 verydead_thread_table 1846 = VG_(newXA)( HG_(zalloc), 1847 "libhb.verydead_thread_table_init.1", 1848 HG_(free), sizeof(ThrID) ); 1849 tl_assert(verydead_thread_table); 1850 VG_(setCmpFnXA)(verydead_thread_table, cmp__ThrID); 1851 } 1852 1853 1854 /* A VTS contains .ts, its vector clock, and also .id, a field to hold 1855 a backlink for the caller's convenience. Since we have no idea 1856 what to set that to in the library, it always gets set to 1857 VtsID_INVALID. */ 1858 typedef 1859 struct { 1860 VtsID id; 1861 UInt usedTS; 1862 UInt sizeTS; 1863 ScalarTS ts[0]; 1864 } 1865 VTS; 1866 1867 /* Allocate a VTS capable of storing 'sizeTS' entries. */ 1868 static VTS* VTS__new ( HChar* who, UInt sizeTS ); 1869 1870 /* Make a clone of 'vts', sizing the new array to exactly match the 1871 number of ScalarTSs present. */ 1872 static VTS* VTS__clone ( HChar* who, VTS* vts ); 1873 1874 /* Make a clone of 'vts' with the thrids in 'thrids' removed. The new 1875 array is sized exactly to hold the number of required elements. 1876 'thridsToDel' is an array of ThrIDs to be omitted in the clone, and 1877 must be in strictly increasing order. */ 1878 static VTS* VTS__subtract ( HChar* who, VTS* vts, XArray* thridsToDel ); 1879 1880 /* Delete this VTS in its entirety. */ 1881 static void VTS__delete ( VTS* vts ); 1882 1883 /* Create a new singleton VTS in 'out'. Caller must have 1884 pre-allocated 'out' sufficiently big to hold the result in all 1885 possible cases. */ 1886 static void VTS__singleton ( /*OUT*/VTS* out, Thr* thr, ULong tym ); 1887 1888 /* Create in 'out' a VTS which is the same as 'vts' except with 1889 vts[me]++, so to speak. Caller must have pre-allocated 'out' 1890 sufficiently big to hold the result in all possible cases. */ 1891 static void VTS__tick ( /*OUT*/VTS* out, Thr* me, VTS* vts ); 1892 1893 /* Create in 'out' a VTS which is the join (max) of 'a' and 1894 'b'. Caller must have pre-allocated 'out' sufficiently big to hold 1895 the result in all possible cases. */ 1896 static void VTS__join ( /*OUT*/VTS* out, VTS* a, VTS* b ); 1897 1898 /* Compute the partial ordering relation of the two args. Although we 1899 could be completely general and return an enumeration value (EQ, 1900 LT, GT, UN), in fact we only need LEQ, and so we may as well 1901 hardwire that fact. 1902 1903 Returns zero iff LEQ(A,B), or a valid ThrID if not (zero is an 1904 invald ThrID). In the latter case, the returned ThrID indicates 1905 the discovered point for which they are not. There may be more 1906 than one such point, but we only care about seeing one of them, not 1907 all of them. This rather strange convention is used because 1908 sometimes we want to know the actual index at which they first 1909 differ. */ 1910 static UInt VTS__cmpLEQ ( VTS* a, VTS* b ); 1911 1912 /* Compute an arbitrary structural (total) ordering on the two args, 1913 based on their VCs, so they can be looked up in a table, tree, etc. 1914 Returns -1, 0 or 1. */ 1915 static Word VTS__cmp_structural ( VTS* a, VTS* b ); 1916 1917 /* Debugging only. Display the given VTS in the buffer. */ 1918 static void VTS__show ( HChar* buf, Int nBuf, VTS* vts ); 1919 1920 /* Debugging only. Return vts[index], so to speak. */ 1921 static ULong VTS__indexAt_SLOW ( VTS* vts, Thr* idx ); 1922 1923 /* Notify the VTS machinery that a thread has been declared 1924 comprehensively dead: that is, it has done an async exit AND it has 1925 been joined with. This should ensure that its local clocks (.viR 1926 and .viW) will never again change, and so all mentions of this 1927 thread from all VTSs in the system may be removed. */ 1928 static void VTS__declare_thread_very_dead ( Thr* idx ); 1929 1930 /*--------------- to do with Vector Timestamps ---------------*/ 1931 1932 static Bool is_sane_VTS ( VTS* vts ) 1933 { 1934 UWord i, n; 1935 ScalarTS *st1, *st2; 1936 if (!vts) return False; 1937 if (!vts->ts) return False; 1938 if (vts->usedTS > vts->sizeTS) return False; 1939 n = vts->usedTS; 1940 if (n == 1) { 1941 st1 = &vts->ts[0]; 1942 if (st1->tym == 0) 1943 return False; 1944 } 1945 else 1946 if (n >= 2) { 1947 for (i = 0; i < n-1; i++) { 1948 st1 = &vts->ts[i]; 1949 st2 = &vts->ts[i+1]; 1950 if (st1->thrid >= st2->thrid) 1951 return False; 1952 if (st1->tym == 0 || st2->tym == 0) 1953 return False; 1954 } 1955 } 1956 return True; 1957 } 1958 1959 1960 /* Create a new, empty VTS. 1961 */ 1962 static VTS* VTS__new ( HChar* who, UInt sizeTS ) 1963 { 1964 VTS* vts = HG_(zalloc)(who, sizeof(VTS) + (sizeTS+1) * sizeof(ScalarTS)); 1965 tl_assert(vts->usedTS == 0); 1966 vts->sizeTS = sizeTS; 1967 *(ULong*)(&vts->ts[sizeTS]) = 0x0ddC0ffeeBadF00dULL; 1968 return vts; 1969 } 1970 1971 /* Clone this VTS. 1972 */ 1973 static VTS* VTS__clone ( HChar* who, VTS* vts ) 1974 { 1975 tl_assert(vts); 1976 tl_assert( *(ULong*)(&vts->ts[vts->sizeTS]) == 0x0ddC0ffeeBadF00dULL); 1977 UInt nTS = vts->usedTS; 1978 VTS* clone = VTS__new(who, nTS); 1979 clone->id = vts->id; 1980 clone->sizeTS = nTS; 1981 clone->usedTS = nTS; 1982 UInt i; 1983 for (i = 0; i < nTS; i++) { 1984 clone->ts[i] = vts->ts[i]; 1985 } 1986 tl_assert( *(ULong*)(&clone->ts[clone->sizeTS]) == 0x0ddC0ffeeBadF00dULL); 1987 return clone; 1988 } 1989 1990 1991 /* Make a clone of a VTS with specified ThrIDs removed. 'thridsToDel' 1992 must be in strictly increasing order. We could obviously do this 1993 much more efficiently (in linear time) if necessary. 1994 */ 1995 static VTS* VTS__subtract ( HChar* who, VTS* vts, XArray* thridsToDel ) 1996 { 1997 UInt i, j; 1998 tl_assert(vts); 1999 tl_assert(thridsToDel); 2000 tl_assert( *(ULong*)(&vts->ts[vts->sizeTS]) == 0x0ddC0ffeeBadF00dULL); 2001 UInt nTS = vts->usedTS; 2002 /* Figure out how many ScalarTSs will remain in the output. */ 2003 UInt nReq = nTS; 2004 for (i = 0; i < nTS; i++) { 2005 ThrID thrid = vts->ts[i].thrid; 2006 if (VG_(lookupXA)(thridsToDel, &thrid, NULL, NULL)) 2007 nReq--; 2008 } 2009 tl_assert(nReq <= nTS); 2010 /* Copy the ones that will remain. */ 2011 VTS* res = VTS__new(who, nReq); 2012 j = 0; 2013 for (i = 0; i < nTS; i++) { 2014 ThrID thrid = vts->ts[i].thrid; 2015 if (VG_(lookupXA)(thridsToDel, &thrid, NULL, NULL)) 2016 continue; 2017 res->ts[j++] = vts->ts[i]; 2018 } 2019 tl_assert(j == nReq); 2020 tl_assert(j == res->sizeTS); 2021 res->usedTS = j; 2022 tl_assert( *(ULong*)(&res->ts[j]) == 0x0ddC0ffeeBadF00dULL); 2023 return res; 2024 } 2025 2026 2027 /* Delete this VTS in its entirety. 2028 */ 2029 static void VTS__delete ( VTS* vts ) 2030 { 2031 tl_assert(vts); 2032 tl_assert(vts->usedTS <= vts->sizeTS); 2033 tl_assert( *(ULong*)(&vts->ts[vts->sizeTS]) == 0x0ddC0ffeeBadF00dULL); 2034 HG_(free)(vts); 2035 } 2036 2037 2038 /* Create a new singleton VTS. 2039 */ 2040 static void VTS__singleton ( /*OUT*/VTS* out, Thr* thr, ULong tym ) 2041 { 2042 tl_assert(thr); 2043 tl_assert(tym >= 1); 2044 tl_assert(out); 2045 tl_assert(out->usedTS == 0); 2046 tl_assert(out->sizeTS >= 1); 2047 UInt hi = out->usedTS++; 2048 out->ts[hi].thrid = Thr__to_ThrID(thr); 2049 out->ts[hi].tym = tym; 2050 } 2051 2052 2053 /* Return a new VTS in which vts[me]++, so to speak. 'vts' itself is 2054 not modified. 2055 */ 2056 static void VTS__tick ( /*OUT*/VTS* out, Thr* me, VTS* vts ) 2057 { 2058 UInt i, n; 2059 ThrID me_thrid; 2060 Bool found = False; 2061 2062 stats__vts__tick++; 2063 2064 tl_assert(out); 2065 tl_assert(out->usedTS == 0); 2066 if (vts->usedTS >= ThrID_MAX_VALID) 2067 scalarts_limitations_fail_NORETURN( True/*due_to_nThrs*/ ); 2068 tl_assert(out->sizeTS >= 1 + vts->usedTS); 2069 2070 tl_assert(me); 2071 me_thrid = Thr__to_ThrID(me); 2072 tl_assert(is_sane_VTS(vts)); 2073 n = vts->usedTS; 2074 2075 /* Copy all entries which precede 'me'. */ 2076 for (i = 0; i < n; i++) { 2077 ScalarTS* here = &vts->ts[i]; 2078 if (UNLIKELY(here->thrid >= me_thrid)) 2079 break; 2080 UInt hi = out->usedTS++; 2081 out->ts[hi] = *here; 2082 } 2083 2084 /* 'i' now indicates the next entry to copy, if any. 2085 There are 3 possibilities: 2086 (a) there is no next entry (we used them all up already): 2087 add (me_thrid,1) to the output, and quit 2088 (b) there is a next entry, and its thrid > me_thrid: 2089 add (me_thrid,1) to the output, then copy the remaining entries 2090 (c) there is a next entry, and its thrid == me_thrid: 2091 copy it to the output but increment its timestamp value. 2092 Then copy the remaining entries. (c) is the common case. 2093 */ 2094 tl_assert(i >= 0 && i <= n); 2095 if (i == n) { /* case (a) */ 2096 UInt hi = out->usedTS++; 2097 out->ts[hi].thrid = me_thrid; 2098 out->ts[hi].tym = 1; 2099 } else { 2100 /* cases (b) and (c) */ 2101 ScalarTS* here = &vts->ts[i]; 2102 if (me_thrid == here->thrid) { /* case (c) */ 2103 if (UNLIKELY(here->tym >= (1ULL << SCALARTS_N_TYMBITS) - 2ULL)) { 2104 /* We're hosed. We have to stop. */ 2105 scalarts_limitations_fail_NORETURN( False/*!due_to_nThrs*/ ); 2106 } 2107 UInt hi = out->usedTS++; 2108 out->ts[hi].thrid = here->thrid; 2109 out->ts[hi].tym = here->tym + 1; 2110 i++; 2111 found = True; 2112 } else { /* case (b) */ 2113 UInt hi = out->usedTS++; 2114 out->ts[hi].thrid = me_thrid; 2115 out->ts[hi].tym = 1; 2116 } 2117 /* And copy any remaining entries. */ 2118 for (/*keepgoing*/; i < n; i++) { 2119 ScalarTS* here2 = &vts->ts[i]; 2120 UInt hi = out->usedTS++; 2121 out->ts[hi] = *here2; 2122 } 2123 } 2124 2125 tl_assert(is_sane_VTS(out)); 2126 tl_assert(out->usedTS == vts->usedTS + (found ? 0 : 1)); 2127 tl_assert(out->usedTS <= out->sizeTS); 2128 } 2129 2130 2131 /* Return a new VTS constructed as the join (max) of the 2 args. 2132 Neither arg is modified. 2133 */ 2134 static void VTS__join ( /*OUT*/VTS* out, VTS* a, VTS* b ) 2135 { 2136 UInt ia, ib, useda, usedb; 2137 ULong tyma, tymb, tymMax; 2138 ThrID thrid; 2139 UInt ncommon = 0; 2140 2141 stats__vts__join++; 2142 2143 tl_assert(a); 2144 tl_assert(b); 2145 useda = a->usedTS; 2146 usedb = b->usedTS; 2147 2148 tl_assert(out); 2149 tl_assert(out->usedTS == 0); 2150 /* overly conservative test, but doing better involves comparing 2151 the two VTSs, which we don't want to do at this point. */ 2152 if (useda + usedb >= ThrID_MAX_VALID) 2153 scalarts_limitations_fail_NORETURN( True/*due_to_nThrs*/ ); 2154 tl_assert(out->sizeTS >= useda + usedb); 2155 2156 ia = ib = 0; 2157 2158 while (1) { 2159 2160 /* This logic is to enumerate triples (thrid, tyma, tymb) drawn 2161 from a and b in order, where thrid is the next ThrID 2162 occurring in either a or b, and tyma/b are the relevant 2163 scalar timestamps, taking into account implicit zeroes. */ 2164 tl_assert(ia >= 0 && ia <= useda); 2165 tl_assert(ib >= 0 && ib <= usedb); 2166 2167 if (ia == useda && ib == usedb) { 2168 /* both empty - done */ 2169 break; 2170 2171 } else if (ia == useda && ib != usedb) { 2172 /* a empty, use up b */ 2173 ScalarTS* tmpb = &b->ts[ib]; 2174 thrid = tmpb->thrid; 2175 tyma = 0; 2176 tymb = tmpb->tym; 2177 ib++; 2178 2179 } else if (ia != useda && ib == usedb) { 2180 /* b empty, use up a */ 2181 ScalarTS* tmpa = &a->ts[ia]; 2182 thrid = tmpa->thrid; 2183 tyma = tmpa->tym; 2184 tymb = 0; 2185 ia++; 2186 2187 } else { 2188 /* both not empty; extract lowest-ThrID'd triple */ 2189 ScalarTS* tmpa = &a->ts[ia]; 2190 ScalarTS* tmpb = &b->ts[ib]; 2191 if (tmpa->thrid < tmpb->thrid) { 2192 /* a has the lowest unconsidered ThrID */ 2193 thrid = tmpa->thrid; 2194 tyma = tmpa->tym; 2195 tymb = 0; 2196 ia++; 2197 } else if (tmpa->thrid > tmpb->thrid) { 2198 /* b has the lowest unconsidered ThrID */ 2199 thrid = tmpb->thrid; 2200 tyma = 0; 2201 tymb = tmpb->tym; 2202 ib++; 2203 } else { 2204 /* they both next mention the same ThrID */ 2205 tl_assert(tmpa->thrid == tmpb->thrid); 2206 thrid = tmpa->thrid; /* == tmpb->thrid */ 2207 tyma = tmpa->tym; 2208 tymb = tmpb->tym; 2209 ia++; 2210 ib++; 2211 ncommon++; 2212 } 2213 } 2214 2215 /* having laboriously determined (thr, tyma, tymb), do something 2216 useful with it. */ 2217 tymMax = tyma > tymb ? tyma : tymb; 2218 if (tymMax > 0) { 2219 UInt hi = out->usedTS++; 2220 out->ts[hi].thrid = thrid; 2221 out->ts[hi].tym = tymMax; 2222 } 2223 2224 } 2225 2226 tl_assert(is_sane_VTS(out)); 2227 tl_assert(out->usedTS <= out->sizeTS); 2228 tl_assert(out->usedTS == useda + usedb - ncommon); 2229 } 2230 2231 2232 /* Determine if 'a' <= 'b', in the partial ordering. Returns zero if 2233 they are, or the first ThrID for which they are not (no valid ThrID 2234 has the value zero). This rather strange convention is used 2235 because sometimes we want to know the actual index at which they 2236 first differ. */ 2237 static UInt/*ThrID*/ VTS__cmpLEQ ( VTS* a, VTS* b ) 2238 { 2239 Word ia, ib, useda, usedb; 2240 ULong tyma, tymb; 2241 2242 stats__vts__cmpLEQ++; 2243 2244 tl_assert(a); 2245 tl_assert(b); 2246 useda = a->usedTS; 2247 usedb = b->usedTS; 2248 2249 ia = ib = 0; 2250 2251 while (1) { 2252 2253 /* This logic is to enumerate doubles (tyma, tymb) drawn 2254 from a and b in order, and tyma/b are the relevant 2255 scalar timestamps, taking into account implicit zeroes. */ 2256 ThrID thrid; 2257 2258 tl_assert(ia >= 0 && ia <= useda); 2259 tl_assert(ib >= 0 && ib <= usedb); 2260 2261 if (ia == useda && ib == usedb) { 2262 /* both empty - done */ 2263 break; 2264 2265 } else if (ia == useda && ib != usedb) { 2266 /* a empty, use up b */ 2267 ScalarTS* tmpb = &b->ts[ib]; 2268 tyma = 0; 2269 tymb = tmpb->tym; 2270 thrid = tmpb->thrid; 2271 ib++; 2272 2273 } else if (ia != useda && ib == usedb) { 2274 /* b empty, use up a */ 2275 ScalarTS* tmpa = &a->ts[ia]; 2276 tyma = tmpa->tym; 2277 thrid = tmpa->thrid; 2278 tymb = 0; 2279 ia++; 2280 2281 } else { 2282 /* both not empty; extract lowest-ThrID'd triple */ 2283 ScalarTS* tmpa = &a->ts[ia]; 2284 ScalarTS* tmpb = &b->ts[ib]; 2285 if (tmpa->thrid < tmpb->thrid) { 2286 /* a has the lowest unconsidered ThrID */ 2287 tyma = tmpa->tym; 2288 thrid = tmpa->thrid; 2289 tymb = 0; 2290 ia++; 2291 } 2292 else 2293 if (tmpa->thrid > tmpb->thrid) { 2294 /* b has the lowest unconsidered ThrID */ 2295 tyma = 0; 2296 tymb = tmpb->tym; 2297 thrid = tmpb->thrid; 2298 ib++; 2299 } else { 2300 /* they both next mention the same ThrID */ 2301 tl_assert(tmpa->thrid == tmpb->thrid); 2302 tyma = tmpa->tym; 2303 thrid = tmpa->thrid; 2304 tymb = tmpb->tym; 2305 ia++; 2306 ib++; 2307 } 2308 } 2309 2310 /* having laboriously determined (tyma, tymb), do something 2311 useful with it. */ 2312 if (tyma > tymb) { 2313 /* not LEQ at this index. Quit, since the answer is 2314 determined already. */ 2315 tl_assert(thrid >= 1024); 2316 return thrid; 2317 } 2318 } 2319 2320 return 0; /* all points are LEQ => return an invalid ThrID */ 2321 } 2322 2323 2324 /* Compute an arbitrary structural (total) ordering on the two args, 2325 based on their VCs, so they can be looked up in a table, tree, etc. 2326 Returns -1, 0 or 1. (really just 'deriving Ord' :-) This can be 2327 performance critical so there is some effort expended to make it sa 2328 fast as possible. 2329 */ 2330 Word VTS__cmp_structural ( VTS* a, VTS* b ) 2331 { 2332 /* We just need to generate an arbitrary total ordering based on 2333 a->ts and b->ts. Preferably do it in a way which comes across likely 2334 differences relatively quickly. */ 2335 Word i; 2336 Word useda = 0, usedb = 0; 2337 ScalarTS *ctsa = NULL, *ctsb = NULL; 2338 2339 stats__vts__cmp_structural++; 2340 2341 tl_assert(a); 2342 tl_assert(b); 2343 2344 ctsa = &a->ts[0]; useda = a->usedTS; 2345 ctsb = &b->ts[0]; usedb = b->usedTS; 2346 2347 if (LIKELY(useda == usedb)) { 2348 ScalarTS *tmpa = NULL, *tmpb = NULL; 2349 stats__vts__cmp_structural_slow++; 2350 /* Same length vectors. Find the first difference, if any, as 2351 fast as possible. */ 2352 for (i = 0; i < useda; i++) { 2353 tmpa = &ctsa[i]; 2354 tmpb = &ctsb[i]; 2355 if (LIKELY(tmpa->tym == tmpb->tym 2356 && tmpa->thrid == tmpb->thrid)) 2357 continue; 2358 else 2359 break; 2360 } 2361 if (UNLIKELY(i == useda)) { 2362 /* They're identical. */ 2363 return 0; 2364 } else { 2365 tl_assert(i >= 0 && i < useda); 2366 if (tmpa->tym < tmpb->tym) return -1; 2367 if (tmpa->tym > tmpb->tym) return 1; 2368 if (tmpa->thrid < tmpb->thrid) return -1; 2369 if (tmpa->thrid > tmpb->thrid) return 1; 2370 /* we just established them as non-identical, hence: */ 2371 } 2372 /*NOTREACHED*/ 2373 tl_assert(0); 2374 } 2375 2376 if (useda < usedb) return -1; 2377 if (useda > usedb) return 1; 2378 /*NOTREACHED*/ 2379 tl_assert(0); 2380 } 2381 2382 2383 /* Debugging only. Display the given VTS in the buffer. 2384 */ 2385 void VTS__show ( HChar* buf, Int nBuf, VTS* vts ) 2386 { 2387 ScalarTS* st; 2388 HChar unit[64]; 2389 Word i, n; 2390 Int avail = nBuf; 2391 tl_assert(vts && vts->ts); 2392 tl_assert(nBuf > 16); 2393 buf[0] = '['; 2394 buf[1] = 0; 2395 n = vts->usedTS; 2396 for (i = 0; i < n; i++) { 2397 tl_assert(avail >= 40); 2398 st = &vts->ts[i]; 2399 VG_(memset)(unit, 0, sizeof(unit)); 2400 VG_(sprintf)(unit, i < n-1 ? "%u:%llu " : "%u:%llu", 2401 st->thrid, (ULong)st->tym); 2402 if (avail < VG_(strlen)(unit) + 40/*let's say*/) { 2403 VG_(strcat)(buf, " ...]"); 2404 buf[nBuf-1] = 0; 2405 return; 2406 } 2407 VG_(strcat)(buf, unit); 2408 avail -= VG_(strlen)(unit); 2409 } 2410 VG_(strcat)(buf, "]"); 2411 buf[nBuf-1] = 0; 2412 } 2413 2414 2415 /* Debugging only. Return vts[index], so to speak. 2416 */ 2417 ULong VTS__indexAt_SLOW ( VTS* vts, Thr* idx ) 2418 { 2419 UWord i, n; 2420 ThrID idx_thrid = Thr__to_ThrID(idx); 2421 stats__vts__indexat_slow++; 2422 tl_assert(vts && vts->ts); 2423 n = vts->usedTS; 2424 for (i = 0; i < n; i++) { 2425 ScalarTS* st = &vts->ts[i]; 2426 if (st->thrid == idx_thrid) 2427 return st->tym; 2428 } 2429 return 0; 2430 } 2431 2432 2433 /* See comment on prototype above. 2434 */ 2435 static void VTS__declare_thread_very_dead ( Thr* thr ) 2436 { 2437 if (0) VG_(printf)("VTQ: tae %p\n", thr); 2438 2439 tl_assert(thr->llexit_done); 2440 tl_assert(thr->joinedwith_done); 2441 2442 ThrID nyu; 2443 nyu = Thr__to_ThrID(thr); 2444 VG_(addToXA)( verydead_thread_table, &nyu ); 2445 2446 /* We can only get here if we're assured that we'll never again 2447 need to look at this thread's ::viR or ::viW. Set them to 2448 VtsID_INVALID, partly so as to avoid holding on to the VTSs, but 2449 mostly so that we don't wind up pruning them (as that would be 2450 nonsensical: the only interesting ScalarTS entry for a dead 2451 thread is its own index, and the pruning will remove that.). */ 2452 VtsID__rcdec(thr->viR); 2453 VtsID__rcdec(thr->viW); 2454 thr->viR = VtsID_INVALID; 2455 thr->viW = VtsID_INVALID; 2456 } 2457 2458 2459 ///////////////////////////////////////////////////////////////// 2460 ///////////////////////////////////////////////////////////////// 2461 // // 2462 // SECTION END vts primitives // 2463 // // 2464 ///////////////////////////////////////////////////////////////// 2465 ///////////////////////////////////////////////////////////////// 2466 2467 2468 2469 ///////////////////////////////////////////////////////////////// 2470 ///////////////////////////////////////////////////////////////// 2471 // // 2472 // SECTION BEGIN main library // 2473 // // 2474 ///////////////////////////////////////////////////////////////// 2475 ///////////////////////////////////////////////////////////////// 2476 2477 2478 ///////////////////////////////////////////////////////// 2479 // // 2480 // VTS set // 2481 // // 2482 ///////////////////////////////////////////////////////// 2483 2484 static WordFM* /* WordFM VTS* void */ vts_set = NULL; 2485 2486 static void vts_set_init ( void ) 2487 { 2488 tl_assert(!vts_set); 2489 vts_set = VG_(newFM)( HG_(zalloc), "libhb.vts_set_init.1", 2490 HG_(free), 2491 (Word(*)(UWord,UWord))VTS__cmp_structural ); 2492 tl_assert(vts_set); 2493 } 2494 2495 /* Given a VTS, look in vts_set to see if we already have a 2496 structurally identical one. If yes, return the pair (True, pointer 2497 to the existing one). If no, clone this one, add the clone to the 2498 set, and return (False, pointer to the clone). */ 2499 static Bool vts_set__find__or__clone_and_add ( /*OUT*/VTS** res, VTS* cand ) 2500 { 2501 UWord keyW, valW; 2502 stats__vts_set__focaa++; 2503 tl_assert(cand->id == VtsID_INVALID); 2504 /* lookup cand (by value) */ 2505 if (VG_(lookupFM)( vts_set, &keyW, &valW, (UWord)cand )) { 2506 /* found it */ 2507 tl_assert(valW == 0); 2508 /* if this fails, cand (by ref) was already present (!) */ 2509 tl_assert(keyW != (UWord)cand); 2510 *res = (VTS*)keyW; 2511 return True; 2512 } else { 2513 /* not present. Clone, add and return address of clone. */ 2514 stats__vts_set__focaa_a++; 2515 VTS* clone = VTS__clone( "libhb.vts_set_focaa.1", cand ); 2516 tl_assert(clone != cand); 2517 VG_(addToFM)( vts_set, (UWord)clone, 0/*val is unused*/ ); 2518 *res = clone; 2519 return False; 2520 } 2521 } 2522 2523 2524 ///////////////////////////////////////////////////////// 2525 // // 2526 // VTS table // 2527 // // 2528 ///////////////////////////////////////////////////////// 2529 2530 static void VtsID__invalidate_caches ( void ); /* fwds */ 2531 2532 /* A type to hold VTS table entries. Invariants: 2533 If .vts == NULL, then this entry is not in use, so: 2534 - .rc == 0 2535 - this entry is on the freelist (unfortunately, does not imply 2536 any constraints on value for .freelink) 2537 If .vts != NULL, then this entry is in use: 2538 - .vts is findable in vts_set 2539 - .vts->id == this entry number 2540 - no specific value for .rc (even 0 is OK) 2541 - this entry is not on freelist, so .freelink == VtsID_INVALID 2542 */ 2543 typedef 2544 struct { 2545 VTS* vts; /* vts, in vts_set */ 2546 UWord rc; /* reference count - enough for entire aspace */ 2547 VtsID freelink; /* chain for free entries, VtsID_INVALID at end */ 2548 VtsID remap; /* used only during pruning */ 2549 } 2550 VtsTE; 2551 2552 /* The VTS table. */ 2553 static XArray* /* of VtsTE */ vts_tab = NULL; 2554 2555 /* An index into the VTS table, indicating the start of the list of 2556 free (available for use) entries. If the list is empty, this is 2557 VtsID_INVALID. */ 2558 static VtsID vts_tab_freelist = VtsID_INVALID; 2559 2560 /* Do a GC of vts_tab when the freelist becomes empty AND the size of 2561 vts_tab equals or exceeds this size. After GC, the value here is 2562 set appropriately so as to check for the next GC point. */ 2563 static Word vts_next_GC_at = 1000; 2564 2565 static void vts_tab_init ( void ) 2566 { 2567 vts_tab 2568 = VG_(newXA)( HG_(zalloc), "libhb.vts_tab_init.1", 2569 HG_(free), sizeof(VtsTE) ); 2570 vts_tab_freelist 2571 = VtsID_INVALID; 2572 tl_assert(vts_tab); 2573 } 2574 2575 /* Add ii to the free list, checking that it looks out-of-use. */ 2576 static void add_to_free_list ( VtsID ii ) 2577 { 2578 VtsTE* ie = VG_(indexXA)( vts_tab, ii ); 2579 tl_assert(ie->vts == NULL); 2580 tl_assert(ie->rc == 0); 2581 tl_assert(ie->freelink == VtsID_INVALID); 2582 ie->freelink = vts_tab_freelist; 2583 vts_tab_freelist = ii; 2584 } 2585 2586 /* Get an entry from the free list. This will return VtsID_INVALID if 2587 the free list is empty. */ 2588 static VtsID get_from_free_list ( void ) 2589 { 2590 VtsID ii; 2591 VtsTE* ie; 2592 if (vts_tab_freelist == VtsID_INVALID) 2593 return VtsID_INVALID; 2594 ii = vts_tab_freelist; 2595 ie = VG_(indexXA)( vts_tab, ii ); 2596 tl_assert(ie->vts == NULL); 2597 tl_assert(ie->rc == 0); 2598 vts_tab_freelist = ie->freelink; 2599 return ii; 2600 } 2601 2602 /* Produce a new VtsID that can be used, either by getting it from 2603 the freelist, or, if that is empty, by expanding vts_tab. */ 2604 static VtsID get_new_VtsID ( void ) 2605 { 2606 VtsID ii; 2607 VtsTE te; 2608 ii = get_from_free_list(); 2609 if (ii != VtsID_INVALID) 2610 return ii; 2611 te.vts = NULL; 2612 te.rc = 0; 2613 te.freelink = VtsID_INVALID; 2614 te.remap = VtsID_INVALID; 2615 ii = (VtsID)VG_(addToXA)( vts_tab, &te ); 2616 return ii; 2617 } 2618 2619 2620 /* Indirect callback from lib_zsm. */ 2621 static void VtsID__rcinc ( VtsID ii ) 2622 { 2623 VtsTE* ie; 2624 /* VG_(indexXA) does a range check for us */ 2625 ie = VG_(indexXA)( vts_tab, ii ); 2626 tl_assert(ie->vts); /* else it's not in use */ 2627 tl_assert(ie->rc < ~0UL); /* else we can't continue */ 2628 tl_assert(ie->vts->id == ii); 2629 ie->rc++; 2630 } 2631 2632 /* Indirect callback from lib_zsm. */ 2633 static void VtsID__rcdec ( VtsID ii ) 2634 { 2635 VtsTE* ie; 2636 /* VG_(indexXA) does a range check for us */ 2637 ie = VG_(indexXA)( vts_tab, ii ); 2638 tl_assert(ie->vts); /* else it's not in use */ 2639 tl_assert(ie->rc > 0); /* else RC snafu */ 2640 tl_assert(ie->vts->id == ii); 2641 ie->rc--; 2642 } 2643 2644 2645 /* Look up 'cand' in our collection of VTSs. If present, return the 2646 VtsID for the pre-existing version. If not present, clone it, add 2647 the clone to both vts_tab and vts_set, allocate a fresh VtsID for 2648 it, and return that. */ 2649 static VtsID vts_tab__find__or__clone_and_add ( VTS* cand ) 2650 { 2651 VTS* in_tab = NULL; 2652 tl_assert(cand->id == VtsID_INVALID); 2653 Bool already_have = vts_set__find__or__clone_and_add( &in_tab, cand ); 2654 tl_assert(in_tab); 2655 if (already_have) { 2656 /* We already have a copy of 'cand'. Use that. */ 2657 VtsTE* ie; 2658 tl_assert(in_tab->id != VtsID_INVALID); 2659 ie = VG_(indexXA)( vts_tab, in_tab->id ); 2660 tl_assert(ie->vts == in_tab); 2661 return in_tab->id; 2662 } else { 2663 VtsID ii = get_new_VtsID(); 2664 VtsTE* ie = VG_(indexXA)( vts_tab, ii ); 2665 ie->vts = in_tab; 2666 ie->rc = 0; 2667 ie->freelink = VtsID_INVALID; 2668 in_tab->id = ii; 2669 return ii; 2670 } 2671 } 2672 2673 2674 static void show_vts_stats ( HChar* caller ) 2675 { 2676 UWord nSet, nTab, nLive; 2677 ULong totrc; 2678 UWord n, i; 2679 nSet = VG_(sizeFM)( vts_set ); 2680 nTab = VG_(sizeXA)( vts_tab ); 2681 totrc = 0; 2682 nLive = 0; 2683 n = VG_(sizeXA)( vts_tab ); 2684 for (i = 0; i < n; i++) { 2685 VtsTE* ie = VG_(indexXA)( vts_tab, i ); 2686 if (ie->vts) { 2687 nLive++; 2688 totrc += (ULong)ie->rc; 2689 } else { 2690 tl_assert(ie->rc == 0); 2691 } 2692 } 2693 VG_(printf)(" show_vts_stats %s\n", caller); 2694 VG_(printf)(" vts_tab size %4lu\n", nTab); 2695 VG_(printf)(" vts_tab live %4lu\n", nLive); 2696 VG_(printf)(" vts_set size %4lu\n", nSet); 2697 VG_(printf)(" total rc %4llu\n", totrc); 2698 } 2699 2700 2701 /* --- Helpers for VtsID pruning --- */ 2702 2703 static 2704 void remap_VtsID ( /*MOD*/XArray* /* of VtsTE */ old_tab, 2705 /*MOD*/XArray* /* of VtsTE */ new_tab, 2706 VtsID* ii ) 2707 { 2708 VtsTE *old_te, *new_te; 2709 VtsID old_id, new_id; 2710 /* We're relying here on VG_(indexXA)'s range checking to assert on 2711 any stupid values, in particular *ii == VtsID_INVALID. */ 2712 old_id = *ii; 2713 old_te = VG_(indexXA)( old_tab, old_id ); 2714 old_te->rc--; 2715 new_id = old_te->remap; 2716 new_te = VG_(indexXA)( new_tab, new_id ); 2717 new_te->rc++; 2718 *ii = new_id; 2719 } 2720 2721 static 2722 void remap_VtsIDs_in_SVal ( /*MOD*/XArray* /* of VtsTE */ old_tab, 2723 /*MOD*/XArray* /* of VtsTE */ new_tab, 2724 SVal* s ) 2725 { 2726 SVal old_sv, new_sv; 2727 old_sv = *s; 2728 if (SVal__isC(old_sv)) { 2729 VtsID rMin, wMin; 2730 rMin = SVal__unC_Rmin(old_sv); 2731 wMin = SVal__unC_Wmin(old_sv); 2732 remap_VtsID( old_tab, new_tab, &rMin ); 2733 remap_VtsID( old_tab, new_tab, &wMin ); 2734 new_sv = SVal__mkC( rMin, wMin ); 2735 *s = new_sv; 2736 } 2737 } 2738 2739 2740 /* NOT TO BE CALLED FROM WITHIN libzsm. */ 2741 __attribute__((noinline)) 2742 static void vts_tab__do_GC ( Bool show_stats ) 2743 { 2744 UWord i, nTab, nLive, nFreed; 2745 2746 /* ---------- BEGIN VTS GC ---------- */ 2747 /* check this is actually necessary. */ 2748 tl_assert(vts_tab_freelist == VtsID_INVALID); 2749 2750 /* empty the caches for partial order checks and binary joins. We 2751 could do better and prune out the entries to be deleted, but it 2752 ain't worth the hassle. */ 2753 VtsID__invalidate_caches(); 2754 2755 /* First, make the reference counts up to date. */ 2756 zsm_flush_cache(); 2757 2758 nTab = VG_(sizeXA)( vts_tab ); 2759 2760 if (show_stats) { 2761 VG_(printf)("<<GC begins at vts_tab size %lu>>\n", nTab); 2762 show_vts_stats("before GC"); 2763 } 2764 2765 /* Now we can inspect the entire vts_tab. Any entries with zero 2766 .rc fields are now no longer in use and can be put back on the 2767 free list, removed from vts_set, and deleted. */ 2768 nFreed = 0; 2769 for (i = 0; i < nTab; i++) { 2770 Bool present; 2771 UWord oldK = 0, oldV = 12345; 2772 VtsTE* te = VG_(indexXA)( vts_tab, i ); 2773 if (te->vts == NULL) { 2774 tl_assert(te->rc == 0); 2775 continue; /* already on the free list (presumably) */ 2776 } 2777 if (te->rc > 0) 2778 continue; /* in use */ 2779 /* Ok, we got one we can free. */ 2780 tl_assert(te->vts->id == i); 2781 /* first, remove it from vts_set. */ 2782 present = VG_(delFromFM)( vts_set, 2783 &oldK, &oldV, (UWord)te->vts ); 2784 tl_assert(present); /* else it isn't in vts_set ?! */ 2785 tl_assert(oldV == 0); /* no info stored in vts_set val fields */ 2786 tl_assert(oldK == (UWord)te->vts); /* else what did delFromFM find?! */ 2787 /* now free the VTS itself */ 2788 VTS__delete(te->vts); 2789 te->vts = NULL; 2790 /* and finally put this entry on the free list */ 2791 tl_assert(te->freelink == VtsID_INVALID); /* can't already be on it */ 2792 add_to_free_list( i ); 2793 nFreed++; 2794 } 2795 2796 /* Now figure out when the next GC should be. We'll allow the 2797 number of VTSs to double before GCing again. Except of course 2798 that since we can't (or, at least, don't) shrink vts_tab, we 2799 can't set the threshhold value smaller than it. */ 2800 tl_assert(nFreed <= nTab); 2801 nLive = nTab - nFreed; 2802 tl_assert(nLive >= 0 && nLive <= nTab); 2803 vts_next_GC_at = 2 * nLive; 2804 if (vts_next_GC_at < nTab) 2805 vts_next_GC_at = nTab; 2806 2807 if (show_stats) { 2808 show_vts_stats("after GC"); 2809 VG_(printf)("<<GC ends, next gc at %ld>>\n", vts_next_GC_at); 2810 } 2811 2812 if (VG_(clo_stats)) { 2813 static UInt ctr = 1; 2814 tl_assert(nTab > 0); 2815 VG_(message)(Vg_DebugMsg, 2816 "libhb: VTS GC: #%u old size %lu live %lu (%2llu%%)\n", 2817 ctr++, nTab, nLive, (100ULL * (ULong)nLive) / (ULong)nTab); 2818 } 2819 /* ---------- END VTS GC ---------- */ 2820 2821 /* Decide whether to do VTS pruning. We have one of three 2822 settings. */ 2823 static UInt pruning_auto_ctr = 0; /* do not make non-static */ 2824 2825 Bool do_pruning = False; 2826 switch (HG_(clo_vts_pruning)) { 2827 case 0: /* never */ 2828 break; 2829 case 1: /* auto */ 2830 do_pruning = (++pruning_auto_ctr % 5) == 0; 2831 break; 2832 case 2: /* always */ 2833 do_pruning = True; 2834 break; 2835 default: 2836 tl_assert(0); 2837 } 2838 2839 /* The rest of this routine only handles pruning, so we can 2840 quit at this point if it is not to be done. */ 2841 if (!do_pruning) 2842 return; 2843 2844 /* ---------- BEGIN VTS PRUNING ---------- */ 2845 /* We begin by sorting the backing table on its .thr values, so as 2846 to (1) check they are unique [else something has gone wrong, 2847 since it means we must have seen some Thr* exiting more than 2848 once, which can't happen], and (2) so that we can quickly look 2849 up the dead-thread entries as we work through the VTSs. */ 2850 VG_(sortXA)( verydead_thread_table ); 2851 /* Sanity check: check for unique .sts.thr values. */ 2852 UWord nBT = VG_(sizeXA)( verydead_thread_table ); 2853 if (nBT > 0) { 2854 ThrID thrid1, thrid2; 2855 thrid2 = *(ThrID*)VG_(indexXA)( verydead_thread_table, 0 ); 2856 for (i = 1; i < nBT; i++) { 2857 thrid1 = thrid2; 2858 thrid2 = *(ThrID*)VG_(indexXA)( verydead_thread_table, i ); 2859 tl_assert(thrid1 < thrid2); 2860 } 2861 } 2862 /* Ok, so the dead thread table has unique and in-order keys. */ 2863 2864 /* We will run through the old table, and create a new table and 2865 set, at the same time setting the .remap entries in the old 2866 table to point to the new entries. Then, visit every VtsID in 2867 the system, and replace all of them with new ones, using the 2868 .remap entries in the old table. Finally, we can delete the old 2869 table and set. */ 2870 2871 XArray* /* of VtsTE */ new_tab 2872 = VG_(newXA)( HG_(zalloc), "libhb.vts_tab__do_GC.new_tab", 2873 HG_(free), sizeof(VtsTE) ); 2874 2875 /* WordFM VTS* void */ 2876 WordFM* new_set 2877 = VG_(newFM)( HG_(zalloc), "libhb.vts_tab__do_GC.new_set", 2878 HG_(free), 2879 (Word(*)(UWord,UWord))VTS__cmp_structural ); 2880 2881 /* Visit each old VTS. For each one: 2882 2883 * make a pruned version 2884 2885 * search new_set for the pruned version, yielding either 2886 Nothing (not present) or the new VtsID for it. 2887 2888 * if not present, allocate a new VtsID for it, insert (pruned 2889 VTS, new VtsID) in the tree, and set 2890 remap_table[old VtsID] = new VtsID. 2891 2892 * if present, set remap_table[old VtsID] = new VtsID, where 2893 new VtsID was determined by the tree lookup. Then free up 2894 the clone. 2895 */ 2896 2897 UWord nBeforePruning = 0, nAfterPruning = 0; 2898 UWord nSTSsBefore = 0, nSTSsAfter = 0; 2899 VtsID new_VtsID_ctr = 0; 2900 2901 for (i = 0; i < nTab; i++) { 2902 2903 /* For each old VTS .. */ 2904 VtsTE* old_te = VG_(indexXA)( vts_tab, i ); 2905 VTS* old_vts = old_te->vts; 2906 tl_assert(old_te->remap == VtsID_INVALID); 2907 2908 /* Skip it if not in use */ 2909 if (old_te->rc == 0) { 2910 tl_assert(old_vts == NULL); 2911 continue; 2912 } 2913 tl_assert(old_vts != NULL); 2914 tl_assert(old_vts->id == i); 2915 tl_assert(old_vts->ts != NULL); 2916 2917 /* It is in use. Make a pruned version. */ 2918 nBeforePruning++; 2919 nSTSsBefore += old_vts->usedTS; 2920 VTS* new_vts = VTS__subtract("libhb.vts_tab__do_GC.new_vts", 2921 old_vts, verydead_thread_table); 2922 tl_assert(new_vts->sizeTS == new_vts->usedTS); 2923 tl_assert(*(ULong*)(&new_vts->ts[new_vts->usedTS]) 2924 == 0x0ddC0ffeeBadF00dULL); 2925 2926 /* Get rid of the old VTS and the tree entry. It's a bit more 2927 complex to incrementally delete the VTSs now than to nuke 2928 them all after we're done, but the upside is that we don't 2929 wind up temporarily storing potentially two complete copies 2930 of each VTS and hence spiking memory use. */ 2931 UWord oldK = 0, oldV = 12345; 2932 Bool present = VG_(delFromFM)( vts_set, 2933 &oldK, &oldV, (UWord)old_vts ); 2934 tl_assert(present); /* else it isn't in vts_set ?! */ 2935 tl_assert(oldV == 0); /* no info stored in vts_set val fields */ 2936 tl_assert(oldK == (UWord)old_vts); /* else what did delFromFM find?! */ 2937 /* now free the VTS itself */ 2938 VTS__delete(old_vts); 2939 old_te->vts = NULL; 2940 old_vts = NULL; 2941 2942 /* NO MENTIONS of old_vts allowed beyond this point. */ 2943 2944 /* Ok, we have the pruned copy in new_vts. See if a 2945 structurally identical version is already present in new_set. 2946 If so, delete the one we just made and move on; if not, add 2947 it. */ 2948 VTS* identical_version = NULL; 2949 UWord valW = 12345; 2950 if (VG_(lookupFM)(new_set, (UWord*)&identical_version, &valW, 2951 (UWord)new_vts)) { 2952 // already have it 2953 tl_assert(valW == 0); 2954 tl_assert(identical_version != NULL); 2955 tl_assert(identical_version != new_vts); 2956 VTS__delete(new_vts); 2957 new_vts = identical_version; 2958 tl_assert(new_vts->id != VtsID_INVALID); 2959 } else { 2960 tl_assert(valW == 12345); 2961 tl_assert(identical_version == NULL); 2962 new_vts->id = new_VtsID_ctr++; 2963 Bool b = VG_(addToFM)(new_set, (UWord)new_vts, 0); 2964 tl_assert(!b); 2965 VtsTE new_te; 2966 new_te.vts = new_vts; 2967 new_te.rc = 0; 2968 new_te.freelink = VtsID_INVALID; 2969 new_te.remap = VtsID_INVALID; 2970 Word j = VG_(addToXA)( new_tab, &new_te ); 2971 tl_assert(j <= i); 2972 tl_assert(j == new_VtsID_ctr - 1); 2973 // stats 2974 nAfterPruning++; 2975 nSTSsAfter += new_vts->usedTS; 2976 } 2977 old_te->remap = new_vts->id; 2978 2979 } /* for (i = 0; i < nTab; i++) */ 2980 2981 /* At this point, we have: 2982 * the old VTS table, with its .remap entries set, 2983 and with all .vts == NULL. 2984 * the old VTS tree should be empty, since it and the old VTSs 2985 it contained have been incrementally deleted was we worked 2986 through the old table. 2987 * the new VTS table, with all .rc == 0, all .freelink and .remap 2988 == VtsID_INVALID. 2989 * the new VTS tree. 2990 */ 2991 tl_assert( VG_(sizeFM)(vts_set) == 0 ); 2992 2993 /* Now actually apply the mapping. */ 2994 /* Visit all the VtsIDs in the entire system. Where do we expect 2995 to find them? 2996 (a) in shadow memory -- the LineZs and LineFs 2997 (b) in our collection of struct _Thrs. 2998 (c) in our collection of struct _SOs. 2999 Nowhere else, AFAICS. Not in the zsm cache, because that just 3000 got invalidated. 3001 3002 Using the .remap fields in vts_tab, map each old VtsID to a new 3003 VtsID. For each old VtsID, dec its rc; and for each new one, 3004 inc it. This sets up the new refcounts, and it also gives a 3005 cheap sanity check of the old ones: all old refcounts should be 3006 zero after this operation. 3007 */ 3008 3009 /* Do the mappings for (a) above: iterate over the Primary shadow 3010 mem map (WordFM Addr SecMap*). */ 3011 UWord secmapW = 0; 3012 VG_(initIterFM)( map_shmem ); 3013 while (VG_(nextIterFM)( map_shmem, NULL, &secmapW )) { 3014 UWord j; 3015 SecMap* sm = (SecMap*)secmapW; 3016 tl_assert(sm->magic == SecMap_MAGIC); 3017 /* Deal with the LineZs */ 3018 for (i = 0; i < N_SECMAP_ZLINES; i++) { 3019 LineZ* lineZ = &sm->linesZ[i]; 3020 if (lineZ->dict[0] == SVal_INVALID) 3021 continue; /* not in use -- data is in F rep instead */ 3022 for (j = 0; j < 4; j++) 3023 remap_VtsIDs_in_SVal(vts_tab, new_tab, &lineZ->dict[j]); 3024 } 3025 /* Deal with the LineFs */ 3026 for (i = 0; i < sm->linesF_size; i++) { 3027 LineF* lineF = &sm->linesF[i]; 3028 if (!lineF->inUse) 3029 continue; 3030 for (j = 0; j < N_LINE_ARANGE; j++) 3031 remap_VtsIDs_in_SVal(vts_tab, new_tab, &lineF->w64s[j]); 3032 } 3033 } 3034 VG_(doneIterFM)( map_shmem ); 3035 3036 /* Do the mappings for (b) above: visit our collection of struct 3037 _Thrs. */ 3038 Thread* hgthread = get_admin_threads(); 3039 tl_assert(hgthread); 3040 while (hgthread) { 3041 Thr* hbthr = hgthread->hbthr; 3042 tl_assert(hbthr); 3043 /* Threads that are listed in the prunable set have their viR 3044 and viW set to VtsID_INVALID, so we can't mess with them. */ 3045 if (hbthr->llexit_done && hbthr->joinedwith_done) { 3046 tl_assert(hbthr->viR == VtsID_INVALID); 3047 tl_assert(hbthr->viW == VtsID_INVALID); 3048 hgthread = hgthread->admin; 3049 continue; 3050 } 3051 remap_VtsID( vts_tab, new_tab, &hbthr->viR ); 3052 remap_VtsID( vts_tab, new_tab, &hbthr->viW ); 3053 hgthread = hgthread->admin; 3054 } 3055 3056 /* Do the mappings for (c) above: visit the struct _SOs. */ 3057 SO* so = admin_SO; 3058 while (so) { 3059 if (so->viR != VtsID_INVALID) 3060 remap_VtsID( vts_tab, new_tab, &so->viR ); 3061 if (so->viW != VtsID_INVALID) 3062 remap_VtsID( vts_tab, new_tab, &so->viW ); 3063 so = so->admin_next; 3064 } 3065 3066 /* So, we're nearly done (with this incredibly complex operation). 3067 Check the refcounts for the old VtsIDs all fell to zero, as 3068 expected. Any failure is serious. */ 3069 for (i = 0; i < nTab; i++) { 3070 VtsTE* te = VG_(indexXA)( vts_tab, i ); 3071 tl_assert(te->vts == NULL); 3072 /* This is the assert proper. Note we're also asserting 3073 zeroness for old entries which are unmapped (hence have 3074 .remap == VtsID_INVALID). That's OK. */ 3075 tl_assert(te->rc == 0); 3076 } 3077 3078 /* Install the new table and set. */ 3079 VG_(deleteFM)(vts_set, NULL/*kFin*/, NULL/*vFin*/); 3080 vts_set = new_set; 3081 VG_(deleteXA)( vts_tab ); 3082 vts_tab = new_tab; 3083 3084 /* The freelist of vts_tab entries is empty now, because we've 3085 compacted all of the live entries at the low end of the 3086 table. */ 3087 vts_tab_freelist = VtsID_INVALID; 3088 3089 /* Sanity check vts_set and vts_tab. */ 3090 3091 /* Because all the live entries got slid down to the bottom of vts_tab: */ 3092 tl_assert( VG_(sizeXA)( vts_tab ) == VG_(sizeFM)( vts_set )); 3093 3094 /* Assert that the vts_tab and vts_set entries point at each other 3095 in the required way */ 3096 UWord wordK = 0, wordV = 0; 3097 VG_(initIterFM)( vts_set ); 3098 while (VG_(nextIterFM)( vts_set, &wordK, &wordV )) { 3099 tl_assert(wordK != 0); 3100 tl_assert(wordV == 0); 3101 VTS* vts = (VTS*)wordK; 3102 tl_assert(vts->id != VtsID_INVALID); 3103 VtsTE* te = VG_(indexXA)( vts_tab, vts->id ); 3104 tl_assert(te->vts == vts); 3105 } 3106 VG_(doneIterFM)( vts_set ); 3107 3108 /* Also iterate over the table, and check each entry is 3109 plausible. */ 3110 nTab = VG_(sizeXA)( vts_tab ); 3111 for (i = 0; i < nTab; i++) { 3112 VtsTE* te = VG_(indexXA)( vts_tab, i ); 3113 tl_assert(te->vts); 3114 tl_assert(te->vts->id == i); 3115 tl_assert(te->rc > 0); /* 'cos we just GC'd */ 3116 tl_assert(te->freelink == VtsID_INVALID); /* in use */ 3117 tl_assert(te->remap == VtsID_INVALID); /* not relevant */ 3118 } 3119 3120 /* And we're done. Bwahahaha. Ha. Ha. Ha. */ 3121 if (VG_(clo_stats)) { 3122 static UInt ctr = 1; 3123 tl_assert(nTab > 0); 3124 VG_(message)( 3125 Vg_DebugMsg, 3126 "libhb: VTS PR: #%u before %lu (avg sz %lu) " 3127 "after %lu (avg sz %lu)\n", 3128 ctr++, 3129 nBeforePruning, nSTSsBefore / (nBeforePruning ? nBeforePruning : 1), 3130 nAfterPruning, nSTSsAfter / (nAfterPruning ? nAfterPruning : 1) 3131 ); 3132 } 3133 if (0) 3134 VG_(printf)("VTQ: before pruning %lu (avg sz %lu), " 3135 "after pruning %lu (avg sz %lu)\n", 3136 nBeforePruning, nSTSsBefore / nBeforePruning, 3137 nAfterPruning, nSTSsAfter / nAfterPruning); 3138 /* ---------- END VTS PRUNING ---------- */ 3139 } 3140 3141 3142 ///////////////////////////////////////////////////////// 3143 // // 3144 // Vts IDs // 3145 // // 3146 ///////////////////////////////////////////////////////// 3147 3148 ////////////////////////// 3149 /* A temporary, max-sized VTS which is used as a temporary (the first 3150 argument) in VTS__singleton, VTS__tick and VTS__join operations. */ 3151 static VTS* temp_max_sized_VTS = NULL; 3152 3153 ////////////////////////// 3154 static ULong stats__cmpLEQ_queries = 0; 3155 static ULong stats__cmpLEQ_misses = 0; 3156 static ULong stats__join2_queries = 0; 3157 static ULong stats__join2_misses = 0; 3158 3159 static inline UInt ROL32 ( UInt w, Int n ) { 3160 w = (w << n) | (w >> (32-n)); 3161 return w; 3162 } 3163 static inline UInt hash_VtsIDs ( VtsID vi1, VtsID vi2, UInt nTab ) { 3164 UInt hash = ROL32(vi1,19) ^ ROL32(vi2,13); 3165 return hash % nTab; 3166 } 3167 3168 #define N_CMPLEQ_CACHE 1023 3169 static 3170 struct { VtsID vi1; VtsID vi2; Bool leq; } 3171 cmpLEQ_cache[N_CMPLEQ_CACHE]; 3172 3173 #define N_JOIN2_CACHE 1023 3174 static 3175 struct { VtsID vi1; VtsID vi2; VtsID res; } 3176 join2_cache[N_JOIN2_CACHE]; 3177 3178 static void VtsID__invalidate_caches ( void ) { 3179 Int i; 3180 for (i = 0; i < N_CMPLEQ_CACHE; i++) { 3181 cmpLEQ_cache[i].vi1 = VtsID_INVALID; 3182 cmpLEQ_cache[i].vi2 = VtsID_INVALID; 3183 cmpLEQ_cache[i].leq = False; 3184 } 3185 for (i = 0; i < N_JOIN2_CACHE; i++) { 3186 join2_cache[i].vi1 = VtsID_INVALID; 3187 join2_cache[i].vi2 = VtsID_INVALID; 3188 join2_cache[i].res = VtsID_INVALID; 3189 } 3190 } 3191 ////////////////////////// 3192 3193 //static Bool VtsID__is_valid ( VtsID vi ) { 3194 // VtsTE* ve; 3195 // if (vi >= (VtsID)VG_(sizeXA)( vts_tab )) 3196 // return False; 3197 // ve = VG_(indexXA)( vts_tab, vi ); 3198 // if (!ve->vts) 3199 // return False; 3200 // tl_assert(ve->vts->id == vi); 3201 // return True; 3202 //} 3203 3204 static VTS* VtsID__to_VTS ( VtsID vi ) { 3205 VtsTE* te = VG_(indexXA)( vts_tab, vi ); 3206 tl_assert(te->vts); 3207 return te->vts; 3208 } 3209 3210 static void VtsID__pp ( VtsID vi ) { 3211 HChar buf[100]; 3212 VTS* vts = VtsID__to_VTS(vi); 3213 VTS__show( buf, sizeof(buf)-1, vts ); 3214 buf[sizeof(buf)-1] = 0; 3215 VG_(printf)("%s", buf); 3216 } 3217 3218 /* compute partial ordering relation of vi1 and vi2. */ 3219 __attribute__((noinline)) 3220 static Bool VtsID__cmpLEQ_WRK ( VtsID vi1, VtsID vi2 ) { 3221 UInt hash; 3222 Bool leq; 3223 VTS *v1, *v2; 3224 //if (vi1 == vi2) return True; 3225 tl_assert(vi1 != vi2); 3226 ////++ 3227 stats__cmpLEQ_queries++; 3228 hash = hash_VtsIDs(vi1, vi2, N_CMPLEQ_CACHE); 3229 if (cmpLEQ_cache[hash].vi1 == vi1 3230 && cmpLEQ_cache[hash].vi2 == vi2) 3231 return cmpLEQ_cache[hash].leq; 3232 stats__cmpLEQ_misses++; 3233 ////-- 3234 v1 = VtsID__to_VTS(vi1); 3235 v2 = VtsID__to_VTS(vi2); 3236 leq = VTS__cmpLEQ( v1, v2 ) == 0; 3237 ////++ 3238 cmpLEQ_cache[hash].vi1 = vi1; 3239 cmpLEQ_cache[hash].vi2 = vi2; 3240 cmpLEQ_cache[hash].leq = leq; 3241 ////-- 3242 return leq; 3243 } 3244 static inline Bool VtsID__cmpLEQ ( VtsID vi1, VtsID vi2 ) { 3245 return LIKELY(vi1 == vi2) ? True : VtsID__cmpLEQ_WRK(vi1, vi2); 3246 } 3247 3248 /* compute binary join */ 3249 __attribute__((noinline)) 3250 static VtsID VtsID__join2_WRK ( VtsID vi1, VtsID vi2 ) { 3251 UInt hash; 3252 VtsID res; 3253 VTS *vts1, *vts2; 3254 //if (vi1 == vi2) return vi1; 3255 tl_assert(vi1 != vi2); 3256 ////++ 3257 stats__join2_queries++; 3258 hash = hash_VtsIDs(vi1, vi2, N_JOIN2_CACHE); 3259 if (join2_cache[hash].vi1 == vi1 3260 && join2_cache[hash].vi2 == vi2) 3261 return join2_cache[hash].res; 3262 stats__join2_misses++; 3263 ////-- 3264 vts1 = VtsID__to_VTS(vi1); 3265 vts2 = VtsID__to_VTS(vi2); 3266 temp_max_sized_VTS->usedTS = 0; 3267 VTS__join(temp_max_sized_VTS, vts1,vts2); 3268 res = vts_tab__find__or__clone_and_add(temp_max_sized_VTS); 3269 ////++ 3270 join2_cache[hash].vi1 = vi1; 3271 join2_cache[hash].vi2 = vi2; 3272 join2_cache[hash].res = res; 3273 ////-- 3274 return res; 3275 } 3276 static inline VtsID VtsID__join2 ( VtsID vi1, VtsID vi2 ) { 3277 return LIKELY(vi1 == vi2) ? vi1 : VtsID__join2_WRK(vi1, vi2); 3278 } 3279 3280 /* create a singleton VTS, namely [thr:1] */ 3281 static VtsID VtsID__mk_Singleton ( Thr* thr, ULong tym ) { 3282 temp_max_sized_VTS->usedTS = 0; 3283 VTS__singleton(temp_max_sized_VTS, thr,tym); 3284 return vts_tab__find__or__clone_and_add(temp_max_sized_VTS); 3285 } 3286 3287 /* tick operation, creates value 1 if specified index is absent */ 3288 static VtsID VtsID__tick ( VtsID vi, Thr* idx ) { 3289 VTS* vts = VtsID__to_VTS(vi); 3290 temp_max_sized_VTS->usedTS = 0; 3291 VTS__tick(temp_max_sized_VTS, idx,vts); 3292 return vts_tab__find__or__clone_and_add(temp_max_sized_VTS); 3293 } 3294 3295 /* index into a VTS (only for assertions) */ 3296 static ULong VtsID__indexAt ( VtsID vi, Thr* idx ) { 3297 VTS* vts = VtsID__to_VTS(vi); 3298 return VTS__indexAt_SLOW( vts, idx ); 3299 } 3300 3301 /* Assuming that !cmpLEQ(vi1, vi2), find the index of the first (or 3302 any, really) element in vi1 which is pointwise greater-than the 3303 corresponding element in vi2. If no such element exists, return 3304 NULL. This needs to be fairly quick since it is called every time 3305 a race is detected. */ 3306 static Thr* VtsID__findFirst_notLEQ ( VtsID vi1, VtsID vi2 ) 3307 { 3308 VTS *vts1, *vts2; 3309 Thr* diffthr; 3310 ThrID diffthrid; 3311 tl_assert(vi1 != vi2); 3312 vts1 = VtsID__to_VTS(vi1); 3313 vts2 = VtsID__to_VTS(vi2); 3314 tl_assert(vts1 != vts2); 3315 diffthrid = VTS__cmpLEQ(vts1, vts2); 3316 diffthr = Thr__from_ThrID(diffthrid); 3317 tl_assert(diffthr); /* else they are LEQ ! */ 3318 return diffthr; 3319 } 3320 3321 3322 ///////////////////////////////////////////////////////// 3323 // // 3324 // Filters // 3325 // // 3326 ///////////////////////////////////////////////////////// 3327 3328 /* Forget everything we know -- clear the filter and let everything 3329 through. This needs to be as fast as possible, since it is called 3330 every time the running thread changes, and every time a thread's 3331 vector clocks change, which can be quite frequent. The obvious 3332 fast way to do this is simply to stuff in tags which we know are 3333 not going to match anything, since they're not aligned to the start 3334 of a line. */ 3335 static void Filter__clear ( Filter* fi, HChar* who ) 3336 { 3337 UWord i; 3338 if (0) VG_(printf)(" Filter__clear(%p, %s)\n", fi, who); 3339 for (i = 0; i < FI_NUM_LINES; i += 8) { 3340 fi->tags[i+0] = 1; /* impossible value -- cannot match */ 3341 fi->tags[i+1] = 1; 3342 fi->tags[i+2] = 1; 3343 fi->tags[i+3] = 1; 3344 fi->tags[i+4] = 1; 3345 fi->tags[i+5] = 1; 3346 fi->tags[i+6] = 1; 3347 fi->tags[i+7] = 1; 3348 } 3349 tl_assert(i == FI_NUM_LINES); 3350 } 3351 3352 /* Clearing an arbitrary range in the filter. Unfortunately 3353 we have to do this due to core-supplied new/die-mem events. */ 3354 3355 static void Filter__clear_1byte ( Filter* fi, Addr a ) 3356 { 3357 Addr atag = FI_GET_TAG(a); /* tag of 'a' */ 3358 UWord lineno = FI_GET_LINENO(a); /* lineno for 'a' */ 3359 FiLine* line = &fi->lines[lineno]; 3360 UWord loff = (a - atag) / 8; 3361 UShort mask = 0x3 << (2 * (a & 7)); 3362 /* mask is C000, 3000, 0C00, 0300, 00C0, 0030, 000C or 0003 */ 3363 if (LIKELY( fi->tags[lineno] == atag )) { 3364 /* hit. clear the bits. */ 3365 UShort u16 = line->u16s[loff]; 3366 line->u16s[loff] = u16 & ~mask; /* clear them */ 3367 } else { 3368 /* miss. The filter doesn't hold this address, so ignore. */ 3369 } 3370 } 3371 3372 static void Filter__clear_8bytes_aligned ( Filter* fi, Addr a ) 3373 { 3374 Addr atag = FI_GET_TAG(a); /* tag of 'a' */ 3375 UWord lineno = FI_GET_LINENO(a); /* lineno for 'a' */ 3376 FiLine* line = &fi->lines[lineno]; 3377 UWord loff = (a - atag) / 8; 3378 if (LIKELY( fi->tags[lineno] == atag )) { 3379 line->u16s[loff] = 0; 3380 } else { 3381 /* miss. The filter doesn't hold this address, so ignore. */ 3382 } 3383 } 3384 3385 static void Filter__clear_range ( Filter* fi, Addr a, UWord len ) 3386 { 3387 //VG_(printf)("%lu ", len); 3388 /* slowly do part preceding 8-alignment */ 3389 while (UNLIKELY(!VG_IS_8_ALIGNED(a)) && LIKELY(len > 0)) { 3390 Filter__clear_1byte( fi, a ); 3391 a++; 3392 len--; 3393 } 3394 /* vector loop */ 3395 while (len >= 8) { 3396 Filter__clear_8bytes_aligned( fi, a ); 3397 a += 8; 3398 len -= 8; 3399 } 3400 /* slowly do tail */ 3401 while (UNLIKELY(len > 0)) { 3402 Filter__clear_1byte( fi, a ); 3403 a++; 3404 len--; 3405 } 3406 } 3407 3408 3409 /* ------ Read handlers for the filter. ------ */ 3410 3411 static inline Bool Filter__ok_to_skip_crd64 ( Filter* fi, Addr a ) 3412 { 3413 if (UNLIKELY( !VG_IS_8_ALIGNED(a) )) 3414 return False; 3415 { 3416 Addr atag = FI_GET_TAG(a); /* tag of 'a' */ 3417 UWord lineno = FI_GET_LINENO(a); /* lineno for 'a' */ 3418 FiLine* line = &fi->lines[lineno]; 3419 UWord loff = (a - atag) / 8; 3420 UShort mask = 0xAAAA; 3421 if (LIKELY( fi->tags[lineno] == atag )) { 3422 /* hit. check line and update. */ 3423 UShort u16 = line->u16s[loff]; 3424 Bool ok = (u16 & mask) == mask; /* all R bits set? */ 3425 line->u16s[loff] = u16 | mask; /* set them */ 3426 return ok; 3427 } else { 3428 /* miss. nuke existing line and re-use it. */ 3429 UWord i; 3430 fi->tags[lineno] = atag; 3431 for (i = 0; i < FI_LINE_SZB / 8; i++) 3432 line->u16s[i] = 0; 3433 line->u16s[loff] = mask; 3434 return False; 3435 } 3436 } 3437 } 3438 3439 static inline Bool Filter__ok_to_skip_crd32 ( Filter* fi, Addr a ) 3440 { 3441 if (UNLIKELY( !VG_IS_4_ALIGNED(a) )) 3442 return False; 3443 { 3444 Addr atag = FI_GET_TAG(a); /* tag of 'a' */ 3445 UWord lineno = FI_GET_LINENO(a); /* lineno for 'a' */ 3446 FiLine* line = &fi->lines[lineno]; 3447 UWord loff = (a - atag) / 8; 3448 UShort mask = 0xAA << (2 * (a & 4)); /* 0xAA00 or 0x00AA */ 3449 if (LIKELY( fi->tags[lineno] == atag )) { 3450 /* hit. check line and update. */ 3451 UShort u16 = line->u16s[loff]; 3452 Bool ok = (u16 & mask) == mask; /* 4 x R bits set? */ 3453 line->u16s[loff] = u16 | mask; /* set them */ 3454 return ok; 3455 } else { 3456 /* miss. nuke existing line and re-use it. */ 3457 UWord i; 3458 fi->tags[lineno] = atag; 3459 for (i = 0; i < FI_LINE_SZB / 8; i++) 3460 line->u16s[i] = 0; 3461 line->u16s[loff] = mask; 3462 return False; 3463 } 3464 } 3465 } 3466 3467 static inline Bool Filter__ok_to_skip_crd16 ( Filter* fi, Addr a ) 3468 { 3469 if (UNLIKELY( !VG_IS_2_ALIGNED(a) )) 3470 return False; 3471 { 3472 Addr atag = FI_GET_TAG(a); /* tag of 'a' */ 3473 UWord lineno = FI_GET_LINENO(a); /* lineno for 'a' */ 3474 FiLine* line = &fi->lines[lineno]; 3475 UWord loff = (a - atag) / 8; 3476 UShort mask = 0xA << (2 * (a & 6)); 3477 /* mask is A000, 0A00, 00A0 or 000A */ 3478 if (LIKELY( fi->tags[lineno] == atag )) { 3479 /* hit. check line and update. */ 3480 UShort u16 = line->u16s[loff]; 3481 Bool ok = (u16 & mask) == mask; /* 2 x R bits set? */ 3482 line->u16s[loff] = u16 | mask; /* set them */ 3483 return ok; 3484 } else { 3485 /* miss. nuke existing line and re-use it. */ 3486 UWord i; 3487 fi->tags[lineno] = atag; 3488 for (i = 0; i < FI_LINE_SZB / 8; i++) 3489 line->u16s[i] = 0; 3490 line->u16s[loff] = mask; 3491 return False; 3492 } 3493 } 3494 } 3495 3496 static inline Bool Filter__ok_to_skip_crd08 ( Filter* fi, Addr a ) 3497 { 3498 { 3499 Addr atag = FI_GET_TAG(a); /* tag of 'a' */ 3500 UWord lineno = FI_GET_LINENO(a); /* lineno for 'a' */ 3501 FiLine* line = &fi->lines[lineno]; 3502 UWord loff = (a - atag) / 8; 3503 UShort mask = 0x2 << (2 * (a & 7)); 3504 /* mask is 8000, 2000, 0800, 0200, 0080, 0020, 0008 or 0002 */ 3505 if (LIKELY( fi->tags[lineno] == atag )) { 3506 /* hit. check line and update. */ 3507 UShort u16 = line->u16s[loff]; 3508 Bool ok = (u16 & mask) == mask; /* 1 x R bits set? */ 3509 line->u16s[loff] = u16 | mask; /* set them */ 3510 return ok; 3511 } else { 3512 /* miss. nuke existing line and re-use it. */ 3513 UWord i; 3514 fi->tags[lineno] = atag; 3515 for (i = 0; i < FI_LINE_SZB / 8; i++) 3516 line->u16s[i] = 0; 3517 line->u16s[loff] = mask; 3518 return False; 3519 } 3520 } 3521 } 3522 3523 3524 /* ------ Write handlers for the filter. ------ */ 3525 3526 static inline Bool Filter__ok_to_skip_cwr64 ( Filter* fi, Addr a ) 3527 { 3528 if (UNLIKELY( !VG_IS_8_ALIGNED(a) )) 3529 return False; 3530 { 3531 Addr atag = FI_GET_TAG(a); /* tag of 'a' */ 3532 UWord lineno = FI_GET_LINENO(a); /* lineno for 'a' */ 3533 FiLine* line = &fi->lines[lineno]; 3534 UWord loff = (a - atag) / 8; 3535 UShort mask = 0xFFFF; 3536 if (LIKELY( fi->tags[lineno] == atag )) { 3537 /* hit. check line and update. */ 3538 UShort u16 = line->u16s[loff]; 3539 Bool ok = (u16 & mask) == mask; /* all R & W bits set? */ 3540 line->u16s[loff] = u16 | mask; /* set them */ 3541 return ok; 3542 } else { 3543 /* miss. nuke existing line and re-use it. */ 3544 UWord i; 3545 fi->tags[lineno] = atag; 3546 for (i = 0; i < FI_LINE_SZB / 8; i++) 3547 line->u16s[i] = 0; 3548 line->u16s[loff] = mask; 3549 return False; 3550 } 3551 } 3552 } 3553 3554 static inline Bool Filter__ok_to_skip_cwr32 ( Filter* fi, Addr a ) 3555 { 3556 if (UNLIKELY( !VG_IS_4_ALIGNED(a) )) 3557 return False; 3558 { 3559 Addr atag = FI_GET_TAG(a); /* tag of 'a' */ 3560 UWord lineno = FI_GET_LINENO(a); /* lineno for 'a' */ 3561 FiLine* line = &fi->lines[lineno]; 3562 UWord loff = (a - atag) / 8; 3563 UShort mask = 0xFF << (2 * (a & 4)); /* 0xFF00 or 0x00FF */ 3564 if (LIKELY( fi->tags[lineno] == atag )) { 3565 /* hit. check line and update. */ 3566 UShort u16 = line->u16s[loff]; 3567 Bool ok = (u16 & mask) == mask; /* 4 x R & W bits set? */ 3568 line->u16s[loff] = u16 | mask; /* set them */ 3569 return ok; 3570 } else { 3571 /* miss. nuke existing line and re-use it. */ 3572 UWord i; 3573 fi->tags[lineno] = atag; 3574 for (i = 0; i < FI_LINE_SZB / 8; i++) 3575 line->u16s[i] = 0; 3576 line->u16s[loff] = mask; 3577 return False; 3578 } 3579 } 3580 } 3581 3582 static inline Bool Filter__ok_to_skip_cwr16 ( Filter* fi, Addr a ) 3583 { 3584 if (UNLIKELY( !VG_IS_2_ALIGNED(a) )) 3585 return False; 3586 { 3587 Addr atag = FI_GET_TAG(a); /* tag of 'a' */ 3588 UWord lineno = FI_GET_LINENO(a); /* lineno for 'a' */ 3589 FiLine* line = &fi->lines[lineno]; 3590 UWord loff = (a - atag) / 8; 3591 UShort mask = 0xF << (2 * (a & 6)); 3592 /* mask is F000, 0F00, 00F0 or 000F */ 3593 if (LIKELY( fi->tags[lineno] == atag )) { 3594 /* hit. check line and update. */ 3595 UShort u16 = line->u16s[loff]; 3596 Bool ok = (u16 & mask) == mask; /* 2 x R & W bits set? */ 3597 line->u16s[loff] = u16 | mask; /* set them */ 3598 return ok; 3599 } else { 3600 /* miss. nuke existing line and re-use it. */ 3601 UWord i; 3602 fi->tags[lineno] = atag; 3603 for (i = 0; i < FI_LINE_SZB / 8; i++) 3604 line->u16s[i] = 0; 3605 line->u16s[loff] = mask; 3606 return False; 3607 } 3608 } 3609 } 3610 3611 static inline Bool Filter__ok_to_skip_cwr08 ( Filter* fi, Addr a ) 3612 { 3613 { 3614 Addr atag = FI_GET_TAG(a); /* tag of 'a' */ 3615 UWord lineno = FI_GET_LINENO(a); /* lineno for 'a' */ 3616 FiLine* line = &fi->lines[lineno]; 3617 UWord loff = (a - atag) / 8; 3618 UShort mask = 0x3 << (2 * (a & 7)); 3619 /* mask is C000, 3000, 0C00, 0300, 00C0, 0030, 000C or 0003 */ 3620 if (LIKELY( fi->tags[lineno] == atag )) { 3621 /* hit. check line and update. */ 3622 UShort u16 = line->u16s[loff]; 3623 Bool ok = (u16 & mask) == mask; /* 1 x R bits set? */ 3624 line->u16s[loff] = u16 | mask; /* set them */ 3625 return ok; 3626 } else { 3627 /* miss. nuke existing line and re-use it. */ 3628 UWord i; 3629 fi->tags[lineno] = atag; 3630 for (i = 0; i < FI_LINE_SZB / 8; i++) 3631 line->u16s[i] = 0; 3632 line->u16s[loff] = mask; 3633 return False; 3634 } 3635 } 3636 } 3637 3638 3639 ///////////////////////////////////////////////////////// 3640 // // 3641 // Threads // 3642 // // 3643 ///////////////////////////////////////////////////////// 3644 3645 /* Maps ThrID values to their Thr*s (which contain ThrID values that 3646 should point back to the relevant slot in the array. Lowest 3647 numbered slot (0) is for thrid = 1024, (1) is for 1025, etc. */ 3648 static XArray* /* of Thr* */ thrid_to_thr_map = NULL; 3649 3650 /* And a counter to dole out ThrID values. For rationale/background, 3651 see comments on definition of ScalarTS (far) above. */ 3652 static ThrID thrid_counter = 1024; /* runs up to ThrID_MAX_VALID */ 3653 3654 static ThrID Thr__to_ThrID ( Thr* thr ) { 3655 return thr->thrid; 3656 } 3657 static Thr* Thr__from_ThrID ( UInt thrid ) { 3658 Thr* thr = *(Thr**)VG_(indexXA)( thrid_to_thr_map, thrid - 1024 ); 3659 tl_assert(thr->thrid == thrid); 3660 return thr; 3661 } 3662 3663 static Thr* Thr__new ( void ) 3664 { 3665 Thr* thr = HG_(zalloc)( "libhb.Thr__new.1", sizeof(Thr) ); 3666 thr->viR = VtsID_INVALID; 3667 thr->viW = VtsID_INVALID; 3668 thr->llexit_done = False; 3669 thr->joinedwith_done = False; 3670 thr->filter = HG_(zalloc)( "libhb.Thr__new.2", sizeof(Filter) ); 3671 /* We only really need this at history level 1, but unfortunately 3672 this routine is called before the command line processing is 3673 done (sigh), so we can't rely on HG_(clo_history_level) at this 3674 point. Hence always allocate it. Bah. */ 3675 thr->local_Kws_n_stacks 3676 = VG_(newXA)( HG_(zalloc), 3677 "libhb.Thr__new.3 (local_Kws_and_stacks)", 3678 HG_(free), sizeof(ULong_n_EC) ); 3679 3680 /* Add this Thr* <-> ThrID binding to the mapping, and 3681 cross-check */ 3682 if (!thrid_to_thr_map) { 3683 thrid_to_thr_map = VG_(newXA)( HG_(zalloc), "libhb.Thr__new.4", 3684 HG_(free), sizeof(Thr*) ); 3685 tl_assert(thrid_to_thr_map); 3686 } 3687 3688 if (thrid_counter >= ThrID_MAX_VALID) { 3689 /* We're hosed. We have to stop. */ 3690 scalarts_limitations_fail_NORETURN( True/*due_to_nThrs*/ ); 3691 } 3692 3693 thr->thrid = thrid_counter++; 3694 Word ix = VG_(addToXA)( thrid_to_thr_map, &thr ); 3695 tl_assert(ix + 1024 == thr->thrid); 3696 3697 return thr; 3698 } 3699 3700 static void note_local_Kw_n_stack_for ( Thr* thr ) 3701 { 3702 Word nPresent; 3703 ULong_n_EC pair; 3704 tl_assert(thr); 3705 3706 // We only collect this info at history level 1 (approx) 3707 if (HG_(clo_history_level) != 1) 3708 return; 3709 3710 /* This is the scalar Kw for thr. */ 3711 pair.ull = VtsID__indexAt( thr->viW, thr ); 3712 pair.ec = main_get_EC( thr ); 3713 tl_assert(pair.ec); 3714 tl_assert(thr->local_Kws_n_stacks); 3715 3716 /* check that we're not adding duplicates */ 3717 nPresent = VG_(sizeXA)( thr->local_Kws_n_stacks ); 3718 3719 /* Throw away old stacks, if necessary. We can't accumulate stuff 3720 indefinitely. */ 3721 if (nPresent >= N_KWs_N_STACKs_PER_THREAD) { 3722 VG_(dropHeadXA)( thr->local_Kws_n_stacks, nPresent / 2 ); 3723 nPresent = VG_(sizeXA)( thr->local_Kws_n_stacks ); 3724 if (0) 3725 VG_(printf)("LOCAL Kw: thr %p, Kw %llu, ec %p (!!! gc !!!)\n", 3726 thr, pair.ull, pair.ec ); 3727 } 3728 3729 if (nPresent > 0) { 3730 ULong_n_EC* prevPair 3731 = (ULong_n_EC*)VG_(indexXA)( thr->local_Kws_n_stacks, nPresent-1 ); 3732 tl_assert( prevPair->ull <= pair.ull ); 3733 } 3734 3735 if (nPresent == 0) 3736 pair.ec = NULL; 3737 3738 VG_(addToXA)( thr->local_Kws_n_stacks, &pair ); 3739 3740 if (0) 3741 VG_(printf)("LOCAL Kw: thr %p, Kw %llu, ec %p\n", 3742 thr, pair.ull, pair.ec ); 3743 if (0) 3744 VG_(pp_ExeContext)(pair.ec); 3745 } 3746 3747 static Int cmp__ULong_n_EC__by_ULong ( ULong_n_EC* pair1, ULong_n_EC* pair2 ) 3748 { 3749 if (pair1->ull < pair2->ull) return -1; 3750 if (pair1->ull > pair2->ull) return 1; 3751 return 0; 3752 } 3753 3754 3755 ///////////////////////////////////////////////////////// 3756 // // 3757 // Shadow Values // 3758 // // 3759 ///////////////////////////////////////////////////////// 3760 3761 // type SVal, SVal_INVALID and SVal_NOACCESS are defined by 3762 // hb_zsm.h. We have to do everything else here. 3763 3764 /* SVal is 64 bit unsigned int. 3765 3766 <---------30---------> <---------30---------> 3767 00 X-----Rmin-VtsID-----X 00 X-----Wmin-VtsID-----X C(Rmin,Wmin) 3768 10 X--------------------X XX X--------------------X A: SVal_NOACCESS 3769 11 0--------------------0 00 0--------------------0 A: SVal_INVALID 3770 3771 */ 3772 #define SVAL_TAGMASK (3ULL << 62) 3773 3774 static inline Bool SVal__isC ( SVal s ) { 3775 return (0ULL << 62) == (s & SVAL_TAGMASK); 3776 } 3777 static inline SVal SVal__mkC ( VtsID rmini, VtsID wmini ) { 3778 //tl_assert(VtsID__is_valid(rmini)); 3779 //tl_assert(VtsID__is_valid(wmini)); 3780 return (((ULong)rmini) << 32) | ((ULong)wmini); 3781 } 3782 static inline VtsID SVal__unC_Rmin ( SVal s ) { 3783 tl_assert(SVal__isC(s)); 3784 return (VtsID)(s >> 32); 3785 } 3786 static inline VtsID SVal__unC_Wmin ( SVal s ) { 3787 tl_assert(SVal__isC(s)); 3788 return (VtsID)(s & 0xFFFFFFFFULL); 3789 } 3790 3791 static inline Bool SVal__isA ( SVal s ) { 3792 return (2ULL << 62) == (s & SVAL_TAGMASK); 3793 } 3794 static inline SVal SVal__mkA ( void ) { 3795 return 2ULL << 62; 3796 } 3797 3798 /* Direct callback from lib_zsm. */ 3799 static void SVal__rcinc ( SVal s ) { 3800 if (SVal__isC(s)) { 3801 VtsID__rcinc( SVal__unC_Rmin(s) ); 3802 VtsID__rcinc( SVal__unC_Wmin(s) ); 3803 } 3804 } 3805 3806 /* Direct callback from lib_zsm. */ 3807 static void SVal__rcdec ( SVal s ) { 3808 if (SVal__isC(s)) { 3809 VtsID__rcdec( SVal__unC_Rmin(s) ); 3810 VtsID__rcdec( SVal__unC_Wmin(s) ); 3811 } 3812 } 3813 3814 3815 ///////////////////////////////////////////////////////// 3816 // // 3817 // A simple group (memory) allocator // 3818 // // 3819 ///////////////////////////////////////////////////////// 3820 3821 //////////////// BEGIN general group allocator 3822 typedef 3823 struct { 3824 UWord elemSzB; /* element size */ 3825 UWord nPerGroup; /* # elems per group */ 3826 void* (*alloc)(HChar*, SizeT); /* group allocator */ 3827 HChar* cc; /* group allocator's cc */ 3828 void (*free)(void*); /* group allocator's free-er (unused) */ 3829 /* XArray of void* (pointers to groups). The groups themselves. 3830 Each element is a pointer to a block of size (elemSzB * 3831 nPerGroup) bytes. */ 3832 XArray* groups; 3833 /* next free element. Is a pointer to an element in one of the 3834 groups pointed to by .groups. */ 3835 void* nextFree; 3836 } 3837 GroupAlloc; 3838 3839 static void init_GroupAlloc ( /*MOD*/GroupAlloc* ga, 3840 UWord elemSzB, 3841 UWord nPerGroup, 3842 void* (*alloc)(HChar*, SizeT), 3843 HChar* cc, 3844 void (*free)(void*) ) 3845 { 3846 tl_assert(0 == (elemSzB % sizeof(UWord))); 3847 tl_assert(elemSzB >= sizeof(UWord)); 3848 tl_assert(nPerGroup >= 100); /* let's say */ 3849 tl_assert(alloc); 3850 tl_assert(cc); 3851 tl_assert(free); 3852 tl_assert(ga); 3853 VG_(memset)(ga, 0, sizeof(*ga)); 3854 ga->elemSzB = elemSzB; 3855 ga->nPerGroup = nPerGroup; 3856 ga->groups = NULL; 3857 ga->alloc = alloc; 3858 ga->cc = cc; 3859 ga->free = free; 3860 ga->groups = VG_(newXA)( alloc, cc, free, sizeof(void*) ); 3861 ga->nextFree = NULL; 3862 tl_assert(ga->groups); 3863 } 3864 3865 /* The freelist is empty. Allocate a new group and put all the new 3866 elements in it onto the freelist. */ 3867 __attribute__((noinline)) 3868 static void gal_add_new_group ( GroupAlloc* ga ) 3869 { 3870 Word i; 3871 UWord* group; 3872 tl_assert(ga); 3873 tl_assert(ga->nextFree == NULL); 3874 group = ga->alloc( ga->cc, ga->elemSzB * ga->nPerGroup ); 3875 tl_assert(group); 3876 /* extend the freelist through the new group. Place the freelist 3877 pointer in the first word of each element. That's why the 3878 element size must be at least one word. */ 3879 for (i = ga->nPerGroup-1; i >= 0; i--) { 3880 UChar* elemC = ((UChar*)group) + i * ga->elemSzB; 3881 UWord* elem = (UWord*)elemC; 3882 tl_assert(0 == (((UWord)elem) % sizeof(UWord))); 3883 *elem = (UWord)ga->nextFree; 3884 ga->nextFree = elem; 3885 } 3886 /* and add to our collection of groups */ 3887 VG_(addToXA)( ga->groups, &group ); 3888 } 3889 3890 inline static void* gal_Alloc ( GroupAlloc* ga ) 3891 { 3892 UWord* elem; 3893 if (UNLIKELY(ga->nextFree == NULL)) { 3894 gal_add_new_group(ga); 3895 } 3896 elem = ga->nextFree; 3897 ga->nextFree = (void*)*elem; 3898 *elem = 0; /* unnecessary, but just to be on the safe side */ 3899 return elem; 3900 } 3901 3902 inline static void* gal_Alloc_w_size_check ( GroupAlloc* ga, SizeT n ) 3903 { 3904 tl_assert(n == ga->elemSzB); 3905 return gal_Alloc( ga ); 3906 } 3907 3908 inline static void gal_Free ( GroupAlloc* ga, void* p ) 3909 { 3910 UWord* elem = (UWord*)p; 3911 *elem = (UWord)ga->nextFree; 3912 ga->nextFree = elem; 3913 } 3914 //////////////// END general group allocator 3915 3916 3917 ///////////////////////////////////////////////////////// 3918 // // 3919 // Change-event map2 // 3920 // // 3921 ///////////////////////////////////////////////////////// 3922 3923 #define EVENT_MAP_GC_DISCARD_FRACTION 0.5 3924 3925 /* This is in two parts: 3926 3927 1. A hash table of RCECs. This is a set of reference-counted stack 3928 traces. When the reference count of a stack trace becomes zero, 3929 it is removed from the set and freed up. The intent is to have 3930 a set of stack traces which can be referred to from (2), but to 3931 only represent each one once. The set is indexed/searched by 3932 ordering on the stack trace vectors. 3933 3934 2. A SparseWA of OldRefs. These store information about each old 3935 ref that we need to record. It is indexed by address of the 3936 location for which the information is recorded. For LRU 3937 purposes, each OldRef also contains a generation number, 3938 indicating when it was most recently accessed. 3939 3940 The important part of an OldRef is, however, its accs[] array. 3941 This is an array of N_OLDREF_ACCS which binds (thread, R/W, 3942 size) triples to RCECs. This allows us to collect the last 3943 access-traceback by up to N_OLDREF_ACCS different triples for 3944 this location. The accs[] array is a MTF-array. If a binding 3945 falls off the end, that's too bad -- we will lose info about 3946 that triple's access to this location. 3947 3948 When the SparseWA becomes too big, we can throw away the OldRefs 3949 whose generation numbers are below some threshold; hence doing 3950 approximate LRU discarding. For each discarded OldRef we must 3951 of course decrement the reference count on the all RCECs it 3952 refers to, in order that entries from (1) eventually get 3953 discarded too. 3954 3955 A major improvement in reliability of this mechanism would be to 3956 have a dynamically sized OldRef.accs[] array, so no entries ever 3957 fall off the end. In investigations (Dec 08) it appears that a 3958 major cause for the non-availability of conflicting-access traces 3959 in race reports is caused by the fixed size of this array. I 3960 suspect for most OldRefs, only a few entries are used, but for a 3961 minority of cases there is an overflow, leading to info lossage. 3962 Investigations also suggest this is very workload and scheduling 3963 sensitive. Therefore a dynamic sizing would be better. 3964 3965 However, dynamic sizing would defeat the use of a GroupAllocator 3966 for OldRef structures. And that's important for performance. So 3967 it's not straightforward to do. 3968 */ 3969 3970 3971 static UWord stats__ctxt_rcdec1 = 0; 3972 static UWord stats__ctxt_rcdec2 = 0; 3973 static UWord stats__ctxt_rcdec3 = 0; 3974 static UWord stats__ctxt_rcdec_calls = 0; 3975 static UWord stats__ctxt_rcdec_discards = 0; 3976 static UWord stats__ctxt_rcdec1_eq = 0; 3977 3978 static UWord stats__ctxt_tab_curr = 0; 3979 static UWord stats__ctxt_tab_max = 0; 3980 3981 static UWord stats__ctxt_tab_qs = 0; 3982 static UWord stats__ctxt_tab_cmps = 0; 3983 3984 3985 /////////////////////////////////////////////////////// 3986 //// Part (1): A hash table of RCECs 3987 /// 3988 3989 #define N_FRAMES 8 3990 3991 // (UInt) `echo "Reference Counted Execution Context" | md5sum` 3992 #define RCEC_MAGIC 0xab88abb2UL 3993 3994 //#define N_RCEC_TAB 98317 /* prime */ 3995 #define N_RCEC_TAB 196613 /* prime */ 3996 3997 typedef 3998 struct _RCEC { 3999 UWord magic; /* sanity check only */ 4000 struct _RCEC* next; 4001 UWord rc; 4002 UWord rcX; /* used for crosschecking */ 4003 UWord frames_hash; /* hash of all the frames */ 4004 UWord frames[N_FRAMES]; 4005 } 4006 RCEC; 4007 4008 static RCEC** contextTab = NULL; /* hash table of RCEC*s */ 4009 4010 4011 /* Gives an arbitrary total order on RCEC .frames fields */ 4012 static Word RCEC__cmp_by_frames ( RCEC* ec1, RCEC* ec2 ) { 4013 Word i; 4014 tl_assert(ec1 && ec1->magic == RCEC_MAGIC); 4015 tl_assert(ec2 && ec2->magic == RCEC_MAGIC); 4016 if (ec1->frames_hash < ec2->frames_hash) return -1; 4017 if (ec1->frames_hash > ec2->frames_hash) return 1; 4018 for (i = 0; i < N_FRAMES; i++) { 4019 if (ec1->frames[i] < ec2->frames[i]) return -1; 4020 if (ec1->frames[i] > ec2->frames[i]) return 1; 4021 } 4022 return 0; 4023 } 4024 4025 4026 /* Dec the ref of this RCEC. */ 4027 static void ctxt__rcdec ( RCEC* ec ) 4028 { 4029 stats__ctxt_rcdec_calls++; 4030 tl_assert(ec && ec->magic == RCEC_MAGIC); 4031 tl_assert(ec->rc > 0); 4032 ec->rc--; 4033 } 4034 4035 static void ctxt__rcinc ( RCEC* ec ) 4036 { 4037 tl_assert(ec && ec->magic == RCEC_MAGIC); 4038 ec->rc++; 4039 } 4040 4041 4042 //////////// BEGIN RCEC group allocator 4043 static GroupAlloc rcec_group_allocator; 4044 4045 static RCEC* alloc_RCEC ( void ) { 4046 return gal_Alloc ( &rcec_group_allocator ); 4047 } 4048 4049 static void free_RCEC ( RCEC* rcec ) { 4050 tl_assert(rcec->magic == RCEC_MAGIC); 4051 gal_Free( &rcec_group_allocator, rcec ); 4052 } 4053 //////////// END RCEC group allocator 4054 4055 4056 /* Find 'ec' in the RCEC list whose head pointer lives at 'headp' and 4057 move it one step closer the the front of the list, so as to make 4058 subsequent searches for it cheaper. */ 4059 static void move_RCEC_one_step_forward ( RCEC** headp, RCEC* ec ) 4060 { 4061 RCEC *ec0, *ec1, *ec2; 4062 if (ec == *headp) 4063 tl_assert(0); /* already at head of list */ 4064 tl_assert(ec != NULL); 4065 ec0 = *headp; 4066 ec1 = NULL; 4067 ec2 = NULL; 4068 while (True) { 4069 if (ec0 == NULL || ec0 == ec) break; 4070 ec2 = ec1; 4071 ec1 = ec0; 4072 ec0 = ec0->next; 4073 } 4074 tl_assert(ec0 == ec); 4075 if (ec0 != NULL && ec1 != NULL && ec2 != NULL) { 4076 RCEC* tmp; 4077 /* ec0 points to ec, ec1 to its predecessor, and ec2 to ec1's 4078 predecessor. Swap ec0 and ec1, that is, move ec0 one step 4079 closer to the start of the list. */ 4080 tl_assert(ec2->next == ec1); 4081 tl_assert(ec1->next == ec0); 4082 tmp = ec0->next; 4083 ec2->next = ec0; 4084 ec0->next = ec1; 4085 ec1->next = tmp; 4086 } 4087 else 4088 if (ec0 != NULL && ec1 != NULL && ec2 == NULL) { 4089 /* it's second in the list. */ 4090 tl_assert(*headp == ec1); 4091 tl_assert(ec1->next == ec0); 4092 ec1->next = ec0->next; 4093 ec0->next = ec1; 4094 *headp = ec0; 4095 } 4096 } 4097 4098 4099 /* Find the given RCEC in the tree, and return a pointer to it. Or, 4100 if not present, add the given one to the tree (by making a copy of 4101 it, so the caller can immediately deallocate the original) and 4102 return a pointer to the copy. The caller can safely have 'example' 4103 on its stack, since we will always return a pointer to a copy of 4104 it, not to the original. Note that the inserted node will have .rc 4105 of zero and so the caller must immediatly increment it. */ 4106 __attribute__((noinline)) 4107 static RCEC* ctxt__find_or_add ( RCEC* example ) 4108 { 4109 UWord hent; 4110 RCEC* copy; 4111 tl_assert(example && example->magic == RCEC_MAGIC); 4112 tl_assert(example->rc == 0); 4113 4114 /* Search the hash table to see if we already have it. */ 4115 stats__ctxt_tab_qs++; 4116 hent = example->frames_hash % N_RCEC_TAB; 4117 copy = contextTab[hent]; 4118 while (1) { 4119 if (!copy) break; 4120 tl_assert(copy->magic == RCEC_MAGIC); 4121 stats__ctxt_tab_cmps++; 4122 if (0 == RCEC__cmp_by_frames(copy, example)) break; 4123 copy = copy->next; 4124 } 4125 4126 if (copy) { 4127 tl_assert(copy != example); 4128 /* optimisation: if it's not at the head of its list, move 1 4129 step fwds, to make future searches cheaper */ 4130 if (copy != contextTab[hent]) { 4131 move_RCEC_one_step_forward( &contextTab[hent], copy ); 4132 } 4133 } else { 4134 copy = alloc_RCEC(); 4135 tl_assert(copy != example); 4136 *copy = *example; 4137 copy->next = contextTab[hent]; 4138 contextTab[hent] = copy; 4139 stats__ctxt_tab_curr++; 4140 if (stats__ctxt_tab_curr > stats__ctxt_tab_max) 4141 stats__ctxt_tab_max = stats__ctxt_tab_curr; 4142 } 4143 return copy; 4144 } 4145 4146 static inline UWord ROLW ( UWord w, Int n ) 4147 { 4148 Int bpw = 8 * sizeof(UWord); 4149 w = (w << n) | (w >> (bpw-n)); 4150 return w; 4151 } 4152 4153 __attribute__((noinline)) 4154 static RCEC* get_RCEC ( Thr* thr ) 4155 { 4156 UWord hash, i; 4157 RCEC example; 4158 example.magic = RCEC_MAGIC; 4159 example.rc = 0; 4160 example.rcX = 0; 4161 main_get_stacktrace( thr, &example.frames[0], N_FRAMES ); 4162 hash = 0; 4163 for (i = 0; i < N_FRAMES; i++) { 4164 hash ^= example.frames[i]; 4165 hash = ROLW(hash, 19); 4166 } 4167 example.frames_hash = hash; 4168 return ctxt__find_or_add( &example ); 4169 } 4170 4171 /////////////////////////////////////////////////////// 4172 //// Part (2): 4173 /// A SparseWA guest-addr -> OldRef, that refers to (1) 4174 /// 4175 4176 // (UInt) `echo "Old Reference Information" | md5sum` 4177 #define OldRef_MAGIC 0x30b1f075UL 4178 4179 /* Records an access: a thread, a context (size & writeness) and the 4180 number of held locks. The size (1,2,4,8) is encoded as 00 = 1, 01 = 4181 2, 10 = 4, 11 = 8. 4182 */ 4183 typedef 4184 struct { 4185 RCEC* rcec; 4186 WordSetID locksHeldW; 4187 UInt thrid : SCALARTS_N_THRBITS; 4188 UInt szLg2B : 2; 4189 UInt isW : 1; 4190 } 4191 Thr_n_RCEC; 4192 4193 #define N_OLDREF_ACCS 5 4194 4195 typedef 4196 struct { 4197 UWord magic; /* sanity check only */ 4198 UWord gen; /* when most recently accessed */ 4199 /* or free list when not in use */ 4200 /* unused slots in this array have .thrid == 0, which is invalid */ 4201 Thr_n_RCEC accs[N_OLDREF_ACCS]; 4202 } 4203 OldRef; 4204 4205 4206 //////////// BEGIN OldRef group allocator 4207 static GroupAlloc oldref_group_allocator; 4208 4209 static OldRef* alloc_OldRef ( void ) { 4210 return gal_Alloc ( &oldref_group_allocator ); 4211 } 4212 4213 static void free_OldRef ( OldRef* r ) { 4214 tl_assert(r->magic == OldRef_MAGIC); 4215 gal_Free( &oldref_group_allocator, r ); 4216 } 4217 //////////// END OldRef group allocator 4218 4219 4220 static SparseWA* oldrefTree = NULL; /* SparseWA* OldRef* */ 4221 static UWord oldrefGen = 0; /* current LRU generation # */ 4222 static UWord oldrefTreeN = 0; /* # elems in oldrefTree */ 4223 static UWord oldrefGenIncAt = 0; /* inc gen # when size hits this */ 4224 4225 inline static UInt min_UInt ( UInt a, UInt b ) { 4226 return a < b ? a : b; 4227 } 4228 4229 /* Compare the intervals [a1,a1+n1) and [a2,a2+n2). Return -1 if the 4230 first interval is lower, 1 if the first interval is higher, and 0 4231 if there is any overlap. Redundant paranoia with casting is there 4232 following what looked distinctly like a bug in gcc-4.1.2, in which 4233 some of the comparisons were done signedly instead of 4234 unsignedly. */ 4235 /* Copied from exp-ptrcheck/sg_main.c */ 4236 static Word cmp_nonempty_intervals ( Addr a1, SizeT n1, 4237 Addr a2, SizeT n2 ) { 4238 UWord a1w = (UWord)a1; 4239 UWord n1w = (UWord)n1; 4240 UWord a2w = (UWord)a2; 4241 UWord n2w = (UWord)n2; 4242 tl_assert(n1w > 0 && n2w > 0); 4243 if (a1w + n1w <= a2w) return -1L; 4244 if (a2w + n2w <= a1w) return 1L; 4245 return 0; 4246 } 4247 4248 static void event_map_bind ( Addr a, SizeT szB, Bool isW, Thr* thr ) 4249 { 4250 OldRef* ref; 4251 RCEC* rcec; 4252 Word i, j; 4253 UWord keyW, valW; 4254 Bool b; 4255 4256 tl_assert(thr); 4257 ThrID thrid = thr->thrid; 4258 tl_assert(thrid != 0); /* zero is used to denote an empty slot. */ 4259 4260 WordSetID locksHeldW = thr->hgthread->locksetW; 4261 4262 rcec = get_RCEC( thr ); 4263 ctxt__rcinc(rcec); 4264 4265 UInt szLg2B = 0; 4266 switch (szB) { 4267 /* This doesn't look particularly branch-predictor friendly. */ 4268 case 1: szLg2B = 0; break; 4269 case 2: szLg2B = 1; break; 4270 case 4: szLg2B = 2; break; 4271 case 8: szLg2B = 3; break; 4272 default: tl_assert(0); 4273 } 4274 4275 /* Look in the map to see if we already have a record for this 4276 address. */ 4277 b = VG_(lookupSWA)( oldrefTree, &keyW, &valW, a ); 4278 4279 if (b) { 4280 4281 /* We already have a record for this address. We now need to 4282 see if we have a stack trace pertaining to this (thrid, R/W, 4283 size) triple. */ 4284 tl_assert(keyW == a); 4285 ref = (OldRef*)valW; 4286 tl_assert(ref->magic == OldRef_MAGIC); 4287 4288 for (i = 0; i < N_OLDREF_ACCS; i++) { 4289 if (ref->accs[i].thrid != thrid) 4290 continue; 4291 if (ref->accs[i].szLg2B != szLg2B) 4292 continue; 4293 if (ref->accs[i].isW != (UInt)(isW & 1)) 4294 continue; 4295 /* else we have a match, so stop looking. */ 4296 break; 4297 } 4298 4299 if (i < N_OLDREF_ACCS) { 4300 /* thread 'thr' has an entry at index 'i'. Update its RCEC. */ 4301 if (i > 0) { 4302 Thr_n_RCEC tmp = ref->accs[i-1]; 4303 ref->accs[i-1] = ref->accs[i]; 4304 ref->accs[i] = tmp; 4305 i--; 4306 } 4307 if (rcec == ref->accs[i].rcec) stats__ctxt_rcdec1_eq++; 4308 stats__ctxt_rcdec1++; 4309 ctxt__rcdec( ref->accs[i].rcec ); 4310 tl_assert(ref->accs[i].thrid == thrid); 4311 /* Update the RCEC and the W-held lockset. */ 4312 ref->accs[i].rcec = rcec; 4313 ref->accs[i].locksHeldW = locksHeldW; 4314 } else { 4315 /* No entry for this (thread, R/W, size, nWHeld) quad. 4316 Shuffle all of them down one slot, and put the new entry 4317 at the start of the array. */ 4318 if (ref->accs[N_OLDREF_ACCS-1].thrid != 0) { 4319 /* the last slot is in use. We must dec the rc on the 4320 associated rcec. */ 4321 tl_assert(ref->accs[N_OLDREF_ACCS-1].rcec); 4322 stats__ctxt_rcdec2++; 4323 if (0 && 0 == (stats__ctxt_rcdec2 & 0xFFF)) 4324 VG_(printf)("QQQQ %lu overflows\n",stats__ctxt_rcdec2); 4325 ctxt__rcdec( ref->accs[N_OLDREF_ACCS-1].rcec ); 4326 } else { 4327 tl_assert(!ref->accs[N_OLDREF_ACCS-1].rcec); 4328 } 4329 for (j = N_OLDREF_ACCS-1; j >= 1; j--) 4330 ref->accs[j] = ref->accs[j-1]; 4331 ref->accs[0].thrid = thrid; 4332 ref->accs[0].szLg2B = szLg2B; 4333 ref->accs[0].isW = (UInt)(isW & 1); 4334 ref->accs[0].locksHeldW = locksHeldW; 4335 ref->accs[0].rcec = rcec; 4336 /* thrid==0 is used to signify an empty slot, so we can't 4337 add zero thrid (such a ThrID is invalid anyway). */ 4338 /* tl_assert(thrid != 0); */ /* There's a dominating assert above. */ 4339 } 4340 4341 ref->gen = oldrefGen; 4342 4343 } else { 4344 4345 /* We don't have a record for this address. Create a new one. */ 4346 if (oldrefTreeN >= oldrefGenIncAt) { 4347 oldrefGen++; 4348 oldrefGenIncAt = oldrefTreeN + 50000; 4349 if (0) VG_(printf)("oldrefTree: new gen %lu at size %lu\n", 4350 oldrefGen, oldrefTreeN ); 4351 } 4352 4353 ref = alloc_OldRef(); 4354 ref->magic = OldRef_MAGIC; 4355 ref->gen = oldrefGen; 4356 ref->accs[0].thrid = thrid; 4357 ref->accs[0].szLg2B = szLg2B; 4358 ref->accs[0].isW = (UInt)(isW & 1); 4359 ref->accs[0].locksHeldW = locksHeldW; 4360 ref->accs[0].rcec = rcec; 4361 4362 /* thrid==0 is used to signify an empty slot, so we can't 4363 add zero thrid (such a ThrID is invalid anyway). */ 4364 /* tl_assert(thrid != 0); */ /* There's a dominating assert above. */ 4365 4366 /* Clear out the rest of the entries */ 4367 for (j = 1; j < N_OLDREF_ACCS; j++) { 4368 ref->accs[j].rcec = NULL; 4369 ref->accs[j].thrid = 0; 4370 ref->accs[j].szLg2B = 0; 4371 ref->accs[j].isW = 0; 4372 ref->accs[j].locksHeldW = 0; 4373 } 4374 VG_(addToSWA)( oldrefTree, a, (UWord)ref ); 4375 oldrefTreeN++; 4376 4377 } 4378 } 4379 4380 4381 /* Extract info from the conflicting-access machinery. */ 4382 Bool libhb_event_map_lookup ( /*OUT*/ExeContext** resEC, 4383 /*OUT*/Thr** resThr, 4384 /*OUT*/SizeT* resSzB, 4385 /*OUT*/Bool* resIsW, 4386 /*OUT*/WordSetID* locksHeldW, 4387 Thr* thr, Addr a, SizeT szB, Bool isW ) 4388 { 4389 Word i, j; 4390 OldRef* ref; 4391 UWord keyW, valW; 4392 Bool b; 4393 4394 ThrID cand_thrid; 4395 RCEC* cand_rcec; 4396 Bool cand_isW; 4397 SizeT cand_szB; 4398 WordSetID cand_locksHeldW; 4399 Addr cand_a; 4400 4401 Addr toCheck[15]; 4402 Int nToCheck = 0; 4403 4404 tl_assert(thr); 4405 tl_assert(szB == 8 || szB == 4 || szB == 2 || szB == 1); 4406 4407 ThrID thrid = thr->thrid; 4408 4409 toCheck[nToCheck++] = a; 4410 for (i = -7; i < (Word)szB; i++) { 4411 if (i != 0) 4412 toCheck[nToCheck++] = a + i; 4413 } 4414 tl_assert(nToCheck <= 15); 4415 4416 /* Now see if we can find a suitable matching event for 4417 any of the addresses in toCheck[0 .. nToCheck-1]. */ 4418 for (j = 0; j < nToCheck; j++) { 4419 4420 cand_a = toCheck[j]; 4421 // VG_(printf)("test %ld %p\n", j, cand_a); 4422 4423 b = VG_(lookupSWA)( oldrefTree, &keyW, &valW, cand_a ); 4424 if (!b) 4425 continue; 4426 4427 ref = (OldRef*)valW; 4428 tl_assert(keyW == cand_a); 4429 tl_assert(ref->magic == OldRef_MAGIC); 4430 tl_assert(ref->accs[0].thrid != 0); /* first slot must always be used */ 4431 4432 cand_thrid = 0; /* invalid; see comments in event_map_bind */ 4433 cand_rcec = NULL; 4434 cand_isW = False; 4435 cand_szB = 0; 4436 cand_locksHeldW = 0; /* always valid; see initialise_data_structures() */ 4437 4438 for (i = 0; i < N_OLDREF_ACCS; i++) { 4439 Thr_n_RCEC* cand = &ref->accs[i]; 4440 cand_rcec = cand->rcec; 4441 cand_thrid = cand->thrid; 4442 cand_isW = (Bool)cand->isW; 4443 cand_szB = 1 << cand->szLg2B; 4444 cand_locksHeldW = cand->locksHeldW; 4445 4446 if (cand_thrid == 0) 4447 /* This slot isn't in use. Ignore it. */ 4448 continue; 4449 4450 if (cand_thrid == thrid) 4451 /* This is an access by the same thread, but we're only 4452 interested in accesses from other threads. Ignore. */ 4453 continue; 4454 4455 if ((!cand_isW) && (!isW)) 4456 /* We don't want to report a read racing against another 4457 read; that's stupid. So in this case move on. */ 4458 continue; 4459 4460 if (cmp_nonempty_intervals(a, szB, cand_a, cand_szB) != 0) 4461 /* No overlap with the access we're asking about. Ignore. */ 4462 continue; 4463 4464 /* We have a match. Stop searching. */ 4465 break; 4466 } 4467 4468 tl_assert(i >= 0 && i <= N_OLDREF_ACCS); 4469 4470 if (i < N_OLDREF_ACCS) { 4471 Int n, maxNFrames; 4472 /* return with success */ 4473 tl_assert(cand_thrid); 4474 tl_assert(cand_rcec); 4475 tl_assert(cand_rcec->magic == RCEC_MAGIC); 4476 tl_assert(cand_szB >= 1); 4477 /* Count how many non-zero frames we have. */ 4478 maxNFrames = min_UInt(N_FRAMES, VG_(clo_backtrace_size)); 4479 for (n = 0; n < maxNFrames; n++) { 4480 if (0 == cand_rcec->frames[n]) break; 4481 } 4482 *resEC = VG_(make_ExeContext_from_StackTrace) 4483 (cand_rcec->frames, n); 4484 *resThr = Thr__from_ThrID(cand_thrid); 4485 *resSzB = cand_szB; 4486 *resIsW = cand_isW; 4487 *locksHeldW = cand_locksHeldW; 4488 return True; 4489 } 4490 4491 /* consider next address in toCheck[] */ 4492 } /* for (j = 0; j < nToCheck; j++) */ 4493 4494 /* really didn't find anything. */ 4495 return False; 4496 } 4497 4498 static void event_map_init ( void ) 4499 { 4500 Word i; 4501 4502 /* Context (RCEC) group allocator */ 4503 init_GroupAlloc ( &rcec_group_allocator, 4504 sizeof(RCEC), 4505 1000 /* RCECs per group */, 4506 HG_(zalloc), 4507 "libhb.event_map_init.1 (RCEC groups)", 4508 HG_(free) ); 4509 4510 /* Context table */ 4511 tl_assert(!contextTab); 4512 contextTab = HG_(zalloc)( "libhb.event_map_init.2 (context table)", 4513 N_RCEC_TAB * sizeof(RCEC*) ); 4514 tl_assert(contextTab); 4515 for (i = 0; i < N_RCEC_TAB; i++) 4516 contextTab[i] = NULL; 4517 4518 /* Oldref group allocator */ 4519 init_GroupAlloc ( &oldref_group_allocator, 4520 sizeof(OldRef), 4521 1000 /* OldRefs per group */, 4522 HG_(zalloc), 4523 "libhb.event_map_init.3 (OldRef groups)", 4524 HG_(free) ); 4525 4526 /* Oldref tree */ 4527 tl_assert(!oldrefTree); 4528 oldrefTree = VG_(newSWA)( 4529 HG_(zalloc), 4530 "libhb.event_map_init.4 (oldref tree)", 4531 HG_(free) 4532 ); 4533 tl_assert(oldrefTree); 4534 4535 oldrefGen = 0; 4536 oldrefGenIncAt = 0; 4537 oldrefTreeN = 0; 4538 } 4539 4540 static void event_map__check_reference_counts ( Bool before ) 4541 { 4542 RCEC* rcec; 4543 OldRef* oldref; 4544 Word i; 4545 UWord nEnts = 0; 4546 UWord keyW, valW; 4547 4548 /* Set the 'check' reference counts to zero. Also, optionally 4549 check that the real reference counts are non-zero. We allow 4550 these to fall to zero before a GC, but the GC must get rid of 4551 all those that are zero, hence none should be zero after a 4552 GC. */ 4553 for (i = 0; i < N_RCEC_TAB; i++) { 4554 for (rcec = contextTab[i]; rcec; rcec = rcec->next) { 4555 nEnts++; 4556 tl_assert(rcec); 4557 tl_assert(rcec->magic == RCEC_MAGIC); 4558 if (!before) 4559 tl_assert(rcec->rc > 0); 4560 rcec->rcX = 0; 4561 } 4562 } 4563 4564 /* check that the stats are sane */ 4565 tl_assert(nEnts == stats__ctxt_tab_curr); 4566 tl_assert(stats__ctxt_tab_curr <= stats__ctxt_tab_max); 4567 4568 /* visit all the referencing points, inc check ref counts */ 4569 VG_(initIterSWA)( oldrefTree ); 4570 while (VG_(nextIterSWA)( oldrefTree, &keyW, &valW )) { 4571 oldref = (OldRef*)valW; 4572 tl_assert(oldref->magic == OldRef_MAGIC); 4573 for (i = 0; i < N_OLDREF_ACCS; i++) { 4574 ThrID aThrID = oldref->accs[i].thrid; 4575 RCEC* aRef = oldref->accs[i].rcec; 4576 if (aThrID != 0) { 4577 tl_assert(aRef); 4578 tl_assert(aRef->magic == RCEC_MAGIC); 4579 aRef->rcX++; 4580 } else { 4581 tl_assert(!aRef); 4582 } 4583 } 4584 } 4585 4586 /* compare check ref counts with actual */ 4587 for (i = 0; i < N_RCEC_TAB; i++) { 4588 for (rcec = contextTab[i]; rcec; rcec = rcec->next) { 4589 tl_assert(rcec->rc == rcec->rcX); 4590 } 4591 } 4592 } 4593 4594 __attribute__((noinline)) 4595 static void event_map_maybe_GC ( void ) 4596 { 4597 OldRef* oldref; 4598 UWord keyW, valW, retained, maxGen; 4599 XArray* refs2del; 4600 Word i, j, n2del; 4601 4602 UWord* genMap = NULL; 4603 UWord genMap_min = 0; 4604 UWord genMap_size = 0; 4605 4606 if (LIKELY(oldrefTreeN < HG_(clo_conflict_cache_size))) 4607 return; 4608 4609 if (0) 4610 VG_(printf)("libhb: event_map GC at size %lu\n", oldrefTreeN); 4611 4612 /* Check for sane command line params. Limit values must match 4613 those in hg_process_cmd_line_option. */ 4614 tl_assert( HG_(clo_conflict_cache_size) >= 10*1000 ); 4615 tl_assert( HG_(clo_conflict_cache_size) <= 30*1000*1000 ); 4616 4617 /* Check our counting is sane (expensive) */ 4618 if (CHECK_CEM) 4619 tl_assert(oldrefTreeN == VG_(sizeSWA)( oldrefTree )); 4620 4621 /* Check the reference counts (expensive) */ 4622 if (CHECK_CEM) 4623 event_map__check_reference_counts( True/*before*/ ); 4624 4625 /* Compute the distribution of generation values in the ref tree. 4626 There are likely only to be a few different generation numbers 4627 in the whole tree, but we don't know what they are. Hence use a 4628 dynamically resized array of counters. The array is genMap[0 4629 .. genMap_size-1], where genMap[0] is the count for the 4630 generation number genMap_min, genMap[1] is the count for 4631 genMap_min+1, etc. If a new number is seen outside the range 4632 [genMap_min .. genMap_min + genMap_size - 1] then the array is 4633 copied into a larger array, and genMap_min and genMap_size are 4634 adjusted accordingly. */ 4635 4636 /* genMap :: generation-number -> count-of-nodes-with-that-number */ 4637 4638 VG_(initIterSWA)( oldrefTree ); 4639 while ( VG_(nextIterSWA)( oldrefTree, &keyW, &valW )) { 4640 4641 UWord ea, key; 4642 oldref = (OldRef*)valW; 4643 key = oldref->gen; 4644 4645 /* BEGIN find 'ea', which is the index in genMap holding the 4646 count for generation number 'key'. */ 4647 if (UNLIKELY(genMap == NULL)) { 4648 /* deal with the first key to be seen, so that the following 4649 cases don't need to handle the complexity of a NULL count 4650 array. */ 4651 genMap_min = key; 4652 genMap_size = 1; 4653 genMap = HG_(zalloc)( "libhb.emmG.1a", 4654 genMap_size * sizeof(UWord) ); 4655 ea = 0; 4656 if (0) VG_(printf)("(%lu) case 1 [%lu .. %lu]\n", 4657 key, genMap_min, genMap_min+genMap_size- 1 ); 4658 } 4659 else 4660 if (LIKELY(key >= genMap_min && key < genMap_min + genMap_size)) { 4661 /* this is the expected (almost-always-happens) case: 'key' 4662 is already mapped in the array. */ 4663 ea = key - genMap_min; 4664 } 4665 else 4666 if (key < genMap_min) { 4667 /* 'key' appears before the start of the current array. 4668 Extend the current array by allocating a larger one and 4669 copying the current one to the upper end of it. */ 4670 Word more; 4671 UWord* map2; 4672 more = genMap_min - key; 4673 tl_assert(more > 0); 4674 map2 = HG_(zalloc)( "libhb.emmG.1b", 4675 (genMap_size + more) * sizeof(UWord) ); 4676 VG_(memcpy)( &map2[more], genMap, genMap_size * sizeof(UWord) ); 4677 HG_(free)( genMap ); 4678 genMap = map2; 4679 genMap_size += more; 4680 genMap_min -= more; 4681 ea = 0; 4682 tl_assert(genMap_min == key); 4683 if (0) VG_(printf)("(%lu) case 2 [%lu .. %lu]\n", 4684 key, genMap_min, genMap_min+genMap_size- 1 ); 4685 } 4686 else { 4687 /* 'key' appears after the end of the current array. Extend 4688 the current array by allocating a larger one and copying 4689 the current one to the lower end of it. */ 4690 Word more; 4691 UWord* map2; 4692 tl_assert(key >= genMap_min + genMap_size); 4693 more = key - (genMap_min + genMap_size) + 1; 4694 tl_assert(more > 0); 4695 map2 = HG_(zalloc)( "libhb.emmG.1c", 4696 (genMap_size + more) * sizeof(UWord) ); 4697 VG_(memcpy)( &map2[0], genMap, genMap_size * sizeof(UWord) ); 4698 HG_(free)( genMap ); 4699 genMap = map2; 4700 genMap_size += more; 4701 ea = genMap_size - 1;; 4702 tl_assert(genMap_min + genMap_size - 1 == key); 4703 if (0) VG_(printf)("(%lu) case 3 [%lu .. %lu]\n", 4704 key, genMap_min, genMap_min+genMap_size- 1 ); 4705 } 4706 /* END find 'ea' from 'key' */ 4707 4708 tl_assert(ea >= 0 && ea < genMap_size); 4709 /* and the whole point of this elaborate computation of 'ea' is .. */ 4710 genMap[ea]++; 4711 } 4712 4713 tl_assert(genMap); 4714 tl_assert(genMap_size > 0); 4715 4716 /* Sanity check what we just computed */ 4717 { UWord sum = 0; 4718 for (i = 0; i < genMap_size; i++) { 4719 if (0) VG_(printf)(" xxx: gen %ld has %lu\n", 4720 i + genMap_min, genMap[i] ); 4721 sum += genMap[i]; 4722 } 4723 tl_assert(sum == oldrefTreeN); 4724 } 4725 4726 /* Figure out how many generations to throw away */ 4727 retained = oldrefTreeN; 4728 maxGen = 0; 4729 4730 for (i = 0; i < genMap_size; i++) { 4731 keyW = i + genMap_min; 4732 valW = genMap[i]; 4733 tl_assert(keyW > 0); /* can't allow a generation # 0 */ 4734 if (0) VG_(printf)(" XXX: gen %lu has %lu\n", keyW, valW ); 4735 tl_assert(keyW >= maxGen); 4736 tl_assert(retained >= valW); 4737 if (retained - valW 4738 > (UWord)(HG_(clo_conflict_cache_size) 4739 * EVENT_MAP_GC_DISCARD_FRACTION)) { 4740 retained -= valW; 4741 maxGen = keyW; 4742 } else { 4743 break; 4744 } 4745 } 4746 4747 HG_(free)(genMap); 4748 4749 tl_assert(retained >= 0 && retained <= oldrefTreeN); 4750 4751 /* Now make up a big list of the oldrefTree entries we want to 4752 delete. We can't simultaneously traverse the tree and delete 4753 stuff from it, so first we need to copy them off somewhere 4754 else. (sigh) */ 4755 refs2del = VG_(newXA)( HG_(zalloc), "libhb.emmG.2", 4756 HG_(free), sizeof(Addr) ); 4757 4758 if (retained < oldrefTreeN) { 4759 4760 /* This is the normal (expected) case. We discard any ref whose 4761 generation number <= maxGen. */ 4762 VG_(initIterSWA)( oldrefTree ); 4763 while (VG_(nextIterSWA)( oldrefTree, &keyW, &valW )) { 4764 oldref = (OldRef*)valW; 4765 tl_assert(oldref->magic == OldRef_MAGIC); 4766 if (oldref->gen <= maxGen) { 4767 VG_(addToXA)( refs2del, &keyW ); 4768 } 4769 } 4770 if (VG_(clo_stats)) { 4771 VG_(message)(Vg_DebugMsg, 4772 "libhb: EvM GC: delete generations %lu and below, " 4773 "retaining %lu entries\n", 4774 maxGen, retained ); 4775 } 4776 4777 } else { 4778 4779 static UInt rand_seed = 0; /* leave as static */ 4780 4781 /* Degenerate case: there's only one generation in the entire 4782 tree, so we need to have some other way of deciding which 4783 refs to throw away. Just throw out half of them randomly. */ 4784 tl_assert(retained == oldrefTreeN); 4785 VG_(initIterSWA)( oldrefTree ); 4786 while (VG_(nextIterSWA)( oldrefTree, &keyW, &valW )) { 4787 UInt n; 4788 oldref = (OldRef*)valW; 4789 tl_assert(oldref->magic == OldRef_MAGIC); 4790 n = VG_(random)( &rand_seed ); 4791 if ((n & 0xFFF) < 0x800) { 4792 VG_(addToXA)( refs2del, &keyW ); 4793 retained--; 4794 } 4795 } 4796 if (VG_(clo_stats)) { 4797 VG_(message)(Vg_DebugMsg, 4798 "libhb: EvM GC: randomly delete half the entries, " 4799 "retaining %lu entries\n", 4800 retained ); 4801 } 4802 4803 } 4804 4805 n2del = VG_(sizeXA)( refs2del ); 4806 tl_assert(n2del == (Word)(oldrefTreeN - retained)); 4807 4808 if (0) VG_(printf)("%s","deleting entries\n"); 4809 for (i = 0; i < n2del; i++) { 4810 Bool b; 4811 Addr ga2del = *(Addr*)VG_(indexXA)( refs2del, i ); 4812 b = VG_(delFromSWA)( oldrefTree, &keyW, &valW, ga2del ); 4813 tl_assert(b); 4814 tl_assert(keyW == ga2del); 4815 oldref = (OldRef*)valW; 4816 for (j = 0; j < N_OLDREF_ACCS; j++) { 4817 ThrID aThrID = oldref->accs[j].thrid; 4818 RCEC* aRef = oldref->accs[j].rcec; 4819 if (aRef) { 4820 tl_assert(aThrID != 0); 4821 stats__ctxt_rcdec3++; 4822 ctxt__rcdec( aRef ); 4823 } else { 4824 tl_assert(aThrID == 0); 4825 } 4826 } 4827 4828 free_OldRef( oldref ); 4829 } 4830 4831 VG_(deleteXA)( refs2del ); 4832 4833 tl_assert( VG_(sizeSWA)( oldrefTree ) == retained ); 4834 4835 oldrefTreeN = retained; 4836 oldrefGenIncAt = oldrefTreeN; /* start new gen right away */ 4837 4838 /* Throw away all RCECs with zero reference counts */ 4839 for (i = 0; i < N_RCEC_TAB; i++) { 4840 RCEC** pp = &contextTab[i]; 4841 RCEC* p = *pp; 4842 while (p) { 4843 if (p->rc == 0) { 4844 *pp = p->next; 4845 free_RCEC(p); 4846 p = *pp; 4847 tl_assert(stats__ctxt_tab_curr > 0); 4848 stats__ctxt_tab_curr--; 4849 } else { 4850 pp = &p->next; 4851 p = p->next; 4852 } 4853 } 4854 } 4855 4856 /* Check the reference counts (expensive) */ 4857 if (CHECK_CEM) 4858 event_map__check_reference_counts( False/*after*/ ); 4859 4860 //if (0) 4861 //VG_(printf)("XXXX final sizes: oldrefTree %ld, contextTree %ld\n\n", 4862 // VG_(OSetGen_Size)(oldrefTree), VG_(OSetGen_Size)(contextTree)); 4863 4864 } 4865 4866 4867 ///////////////////////////////////////////////////////// 4868 // // 4869 // Core MSM // 4870 // // 4871 ///////////////////////////////////////////////////////// 4872 4873 /* Logic in msmcread/msmcwrite updated/verified after re-analysis, 19 4874 Nov 08, and again after [...], 4875 June 09. */ 4876 4877 static ULong stats__msmcread = 0; 4878 static ULong stats__msmcread_change = 0; 4879 static ULong stats__msmcwrite = 0; 4880 static ULong stats__msmcwrite_change = 0; 4881 4882 /* Some notes on the H1 history mechanism: 4883 4884 Transition rules are: 4885 4886 read_{Kr,Kw}(Cr,Cw) = (Cr, Cr `join` Kw) 4887 write_{Kr,Kw}(Cr,Cw) = (Cr `join` Kw, Cr `join` Kw) 4888 4889 After any access by a thread T to a location L, L's constraint pair 4890 (Cr,Cw) has Cw[T] == T's Kw[T], that is, == T's scalar W-clock. 4891 4892 After a race by thread T conflicting with some previous access by 4893 some other thread U, for a location with constraint (before 4894 processing the later access) (Cr,Cw), then Cw[U] is the segment in 4895 which the previously access lies. 4896 4897 Hence in record_race_info, we pass in Cfailed and Kfailed, which 4898 are compared so as to find out which thread(s) this access 4899 conflicts with. Once that is established, we also require the 4900 pre-update Cw for the location, so we can index into it for those 4901 threads, to get the scalar clock values for the point at which the 4902 former accesses were made. (In fact we only bother to do any of 4903 this for an arbitrarily chosen one of the conflicting threads, as 4904 that's simpler, it avoids flooding the user with vast amounts of 4905 mostly useless information, and because the program is wrong if it 4906 contains any races at all -- so we don't really need to show all 4907 conflicting access pairs initially, so long as we only show none if 4908 none exist). 4909 4910 --- 4911 4912 That requires the auxiliary proof that 4913 4914 (Cr `join` Kw)[T] == Kw[T] 4915 4916 Why should that be true? Because for any thread T, Kw[T] >= the 4917 scalar clock value for T known by any other thread. In other 4918 words, because T's value for its own scalar clock is at least as up 4919 to date as the value for it known by any other thread (that is true 4920 for both the R- and W- scalar clocks). Hence no other thread will 4921 be able to feed in a value for that element (indirectly via a 4922 constraint) which will exceed Kw[T], and hence the join cannot 4923 cause that particular element to advance. 4924 */ 4925 4926 __attribute__((noinline)) 4927 static void record_race_info ( Thr* acc_thr, 4928 Addr acc_addr, SizeT szB, Bool isWrite, 4929 VtsID Cfailed, 4930 VtsID Kfailed, 4931 VtsID Cw ) 4932 { 4933 /* Call here to report a race. We just hand it onwards to 4934 HG_(record_error_Race). If that in turn discovers that the 4935 error is going to be collected, then, at history_level 2, that 4936 queries the conflicting-event map. The alternative would be to 4937 query it right here. But that causes a lot of pointless queries 4938 for errors which will shortly be discarded as duplicates, and 4939 can become a performance overhead; so we defer the query until 4940 we know the error is not a duplicate. */ 4941 4942 /* Stacks for the bounds of the (or one of the) conflicting 4943 segment(s). These are only set at history_level 1. */ 4944 ExeContext* hist1_seg_start = NULL; 4945 ExeContext* hist1_seg_end = NULL; 4946 Thread* hist1_conf_thr = NULL; 4947 4948 tl_assert(acc_thr); 4949 tl_assert(acc_thr->hgthread); 4950 tl_assert(acc_thr->hgthread->hbthr == acc_thr); 4951 tl_assert(HG_(clo_history_level) >= 0 && HG_(clo_history_level) <= 2); 4952 4953 if (HG_(clo_history_level) == 1) { 4954 Bool found; 4955 Word firstIx, lastIx; 4956 ULong_n_EC key; 4957 4958 /* At history_level 1, we must round up the relevant stack-pair 4959 for the conflicting segment right now. This is because 4960 deferring it is complex; we can't (easily) put Kfailed and 4961 Cfailed into the XError and wait for later without 4962 getting tied up in difficulties with VtsID reference 4963 counting. So just do it now. */ 4964 Thr* confThr; 4965 ULong confTym = 0; 4966 /* Which thread are we in conflict with? There may be more than 4967 one, in which case VtsID__findFirst_notLEQ selects one arbitrarily 4968 (in fact it's the one with the lowest Thr* value). */ 4969 confThr = VtsID__findFirst_notLEQ( Cfailed, Kfailed ); 4970 /* This must exist! since if it was NULL then there's no 4971 conflict (semantics of return value of 4972 VtsID__findFirst_notLEQ), and msmc{read,write}, which has 4973 called us, just checked exactly this -- that there was in 4974 fact a race. */ 4975 tl_assert(confThr); 4976 4977 /* Get the scalar clock value that the conflicting thread 4978 introduced into the constraint. A careful examination of the 4979 base machine rules shows that this must be the same as the 4980 conflicting thread's scalar clock when it created this 4981 constraint. Hence we know the scalar clock of the 4982 conflicting thread when the conflicting access was made. */ 4983 confTym = VtsID__indexAt( Cfailed, confThr ); 4984 4985 /* Using this scalar clock, index into the conflicting thread's 4986 collection of stack traces made each time its vector clock 4987 (hence its scalar clock) changed. This gives the stack 4988 traces at the start and end of the conflicting segment (well, 4989 as per comment just above, of one of the conflicting 4990 segments, if there are more than one). */ 4991 key.ull = confTym; 4992 key.ec = NULL; 4993 /* tl_assert(confThr); -- asserted just above */ 4994 tl_assert(confThr->local_Kws_n_stacks); 4995 firstIx = lastIx = 0; 4996 found = VG_(lookupXA_UNSAFE)( 4997 confThr->local_Kws_n_stacks, 4998 &key, &firstIx, &lastIx, 4999 (Int(*)(void*,void*))cmp__ULong_n_EC__by_ULong 5000 ); 5001 if (0) VG_(printf)("record_race_info %u %u %u confThr %p " 5002 "confTym %llu found %d (%lu,%lu)\n", 5003 Cfailed, Kfailed, Cw, 5004 confThr, confTym, found, firstIx, lastIx); 5005 /* We can't indefinitely collect stack traces at VTS 5006 transitions, since we'd eventually run out of memory. Hence 5007 note_local_Kw_n_stack_for will eventually throw away old 5008 ones, which in turn means we might fail to find index value 5009 confTym in the array. */ 5010 if (found) { 5011 ULong_n_EC *pair_start, *pair_end; 5012 pair_start 5013 = (ULong_n_EC*)VG_(indexXA)( confThr->local_Kws_n_stacks, lastIx ); 5014 hist1_seg_start = pair_start->ec; 5015 if (lastIx+1 < VG_(sizeXA)( confThr->local_Kws_n_stacks )) { 5016 pair_end 5017 = (ULong_n_EC*)VG_(indexXA)( confThr->local_Kws_n_stacks, 5018 lastIx+1 ); 5019 /* from properties of VG_(lookupXA) and the comparison fn used: */ 5020 tl_assert(pair_start->ull < pair_end->ull); 5021 hist1_seg_end = pair_end->ec; 5022 /* Could do a bit better here. It may be that pair_end 5023 doesn't have a stack, but the following entries in the 5024 array have the same scalar Kw and to have a stack. So 5025 we should search a bit further along the array than 5026 lastIx+1 if hist1_seg_end is NULL. */ 5027 } else { 5028 if (!confThr->llexit_done) 5029 hist1_seg_end = main_get_EC( confThr ); 5030 } 5031 // seg_start could be NULL iff this is the first stack in the thread 5032 //if (seg_start) VG_(pp_ExeContext)(seg_start); 5033 //if (seg_end) VG_(pp_ExeContext)(seg_end); 5034 hist1_conf_thr = confThr->hgthread; 5035 } 5036 } 5037 5038 HG_(record_error_Race)( acc_thr->hgthread, acc_addr, 5039 szB, isWrite, 5040 hist1_conf_thr, hist1_seg_start, hist1_seg_end ); 5041 } 5042 5043 static Bool is_sane_SVal_C ( SVal sv ) { 5044 Bool leq; 5045 if (!SVal__isC(sv)) return True; 5046 leq = VtsID__cmpLEQ( SVal__unC_Rmin(sv), SVal__unC_Wmin(sv) ); 5047 return leq; 5048 } 5049 5050 5051 /* Compute new state following a read */ 5052 static inline SVal msmcread ( SVal svOld, 5053 /* The following are only needed for 5054 creating error reports. */ 5055 Thr* acc_thr, 5056 Addr acc_addr, SizeT szB ) 5057 { 5058 SVal svNew = SVal_INVALID; 5059 stats__msmcread++; 5060 5061 /* Redundant sanity check on the constraints */ 5062 if (CHECK_MSM) { 5063 tl_assert(is_sane_SVal_C(svOld)); 5064 } 5065 5066 if (LIKELY(SVal__isC(svOld))) { 5067 VtsID tviR = acc_thr->viR; 5068 VtsID tviW = acc_thr->viW; 5069 VtsID rmini = SVal__unC_Rmin(svOld); 5070 VtsID wmini = SVal__unC_Wmin(svOld); 5071 Bool leq = VtsID__cmpLEQ(rmini,tviR); 5072 if (LIKELY(leq)) { 5073 /* no race */ 5074 /* Note: RWLOCK subtlety: use tviW, not tviR */ 5075 svNew = SVal__mkC( rmini, VtsID__join2(wmini, tviW) ); 5076 goto out; 5077 } else { 5078 /* assert on sanity of constraints. */ 5079 Bool leqxx = VtsID__cmpLEQ(rmini,wmini); 5080 tl_assert(leqxx); 5081 // same as in non-race case 5082 svNew = SVal__mkC( rmini, VtsID__join2(wmini, tviW) ); 5083 record_race_info( acc_thr, acc_addr, szB, False/*!isWrite*/, 5084 rmini, /* Cfailed */ 5085 tviR, /* Kfailed */ 5086 wmini /* Cw */ ); 5087 goto out; 5088 } 5089 } 5090 if (SVal__isA(svOld)) { 5091 /* reading no-access memory (sigh); leave unchanged */ 5092 /* check for no pollution */ 5093 tl_assert(svOld == SVal_NOACCESS); 5094 svNew = SVal_NOACCESS; 5095 goto out; 5096 } 5097 if (0) VG_(printf)("msmcread: bad svOld: 0x%016llx\n", svOld); 5098 tl_assert(0); 5099 5100 out: 5101 if (CHECK_MSM) { 5102 tl_assert(is_sane_SVal_C(svNew)); 5103 } 5104 if (UNLIKELY(svNew != svOld)) { 5105 tl_assert(svNew != SVal_INVALID); 5106 if (HG_(clo_history_level) >= 2 5107 && SVal__isC(svOld) && SVal__isC(svNew)) { 5108 event_map_bind( acc_addr, szB, False/*!isWrite*/, acc_thr ); 5109 stats__msmcread_change++; 5110 } 5111 } 5112 return svNew; 5113 } 5114 5115 5116 /* Compute new state following a write */ 5117 static inline SVal msmcwrite ( SVal svOld, 5118 /* The following are only needed for 5119 creating error reports. */ 5120 Thr* acc_thr, 5121 Addr acc_addr, SizeT szB ) 5122 { 5123 SVal svNew = SVal_INVALID; 5124 stats__msmcwrite++; 5125 5126 /* Redundant sanity check on the constraints */ 5127 if (CHECK_MSM) { 5128 tl_assert(is_sane_SVal_C(svOld)); 5129 } 5130 5131 if (LIKELY(SVal__isC(svOld))) { 5132 VtsID tviW = acc_thr->viW; 5133 VtsID wmini = SVal__unC_Wmin(svOld); 5134 Bool leq = VtsID__cmpLEQ(wmini,tviW); 5135 if (LIKELY(leq)) { 5136 /* no race */ 5137 svNew = SVal__mkC( tviW, tviW ); 5138 goto out; 5139 } else { 5140 VtsID rmini = SVal__unC_Rmin(svOld); 5141 /* assert on sanity of constraints. */ 5142 Bool leqxx = VtsID__cmpLEQ(rmini,wmini); 5143 tl_assert(leqxx); 5144 // same as in non-race case 5145 // proof: in the non-race case, we have 5146 // rmini <= wmini (invar on constraints) 5147 // tviW <= tviR (invar on thread clocks) 5148 // wmini <= tviW (from run-time check) 5149 // hence from transitivity of <= we have 5150 // rmini <= wmini <= tviW 5151 // and so join(rmini,tviW) == tviW 5152 // and join(wmini,tviW) == tviW 5153 // qed. 5154 svNew = SVal__mkC( VtsID__join2(rmini, tviW), 5155 VtsID__join2(wmini, tviW) ); 5156 record_race_info( acc_thr, acc_addr, szB, True/*isWrite*/, 5157 wmini, /* Cfailed */ 5158 tviW, /* Kfailed */ 5159 wmini /* Cw */ ); 5160 goto out; 5161 } 5162 } 5163 if (SVal__isA(svOld)) { 5164 /* writing no-access memory (sigh); leave unchanged */ 5165 /* check for no pollution */ 5166 tl_assert(svOld == SVal_NOACCESS); 5167 svNew = SVal_NOACCESS; 5168 goto out; 5169 } 5170 if (0) VG_(printf)("msmcwrite: bad svOld: 0x%016llx\n", svOld); 5171 tl_assert(0); 5172 5173 out: 5174 if (CHECK_MSM) { 5175 tl_assert(is_sane_SVal_C(svNew)); 5176 } 5177 if (UNLIKELY(svNew != svOld)) { 5178 tl_assert(svNew != SVal_INVALID); 5179 if (HG_(clo_history_level) >= 2 5180 && SVal__isC(svOld) && SVal__isC(svNew)) { 5181 event_map_bind( acc_addr, szB, True/*isWrite*/, acc_thr ); 5182 stats__msmcwrite_change++; 5183 } 5184 } 5185 return svNew; 5186 } 5187 5188 5189 ///////////////////////////////////////////////////////// 5190 // // 5191 // Apply core MSM to specific memory locations // 5192 // // 5193 ///////////////////////////////////////////////////////// 5194 5195 /*------------- ZSM accesses: 8 bit sapply ------------- */ 5196 5197 static void zsm_sapply08__msmcread ( Thr* thr, Addr a ) { 5198 CacheLine* cl; 5199 UWord cloff, tno, toff; 5200 SVal svOld, svNew; 5201 UShort descr; 5202 stats__cline_cread08s++; 5203 cl = get_cacheline(a); 5204 cloff = get_cacheline_offset(a); 5205 tno = get_treeno(a); 5206 toff = get_tree_offset(a); /* == 0 .. 7 */ 5207 descr = cl->descrs[tno]; 5208 if (UNLIKELY( !(descr & (TREE_DESCR_8_0 << toff)) )) { 5209 SVal* tree = &cl->svals[tno << 3]; 5210 cl->descrs[tno] = pulldown_to_8(tree, toff, descr); 5211 if (CHECK_ZSM) 5212 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */ 5213 } 5214 svOld = cl->svals[cloff]; 5215 svNew = msmcread( svOld, thr,a,1 ); 5216 if (CHECK_ZSM) 5217 tl_assert(svNew != SVal_INVALID); 5218 cl->svals[cloff] = svNew; 5219 } 5220 5221 static void zsm_sapply08__msmcwrite ( Thr* thr, Addr a ) { 5222 CacheLine* cl; 5223 UWord cloff, tno, toff; 5224 SVal svOld, svNew; 5225 UShort descr; 5226 stats__cline_cwrite08s++; 5227 cl = get_cacheline(a); 5228 cloff = get_cacheline_offset(a); 5229 tno = get_treeno(a); 5230 toff = get_tree_offset(a); /* == 0 .. 7 */ 5231 descr = cl->descrs[tno]; 5232 if (UNLIKELY( !(descr & (TREE_DESCR_8_0 << toff)) )) { 5233 SVal* tree = &cl->svals[tno << 3]; 5234 cl->descrs[tno] = pulldown_to_8(tree, toff, descr); 5235 if (CHECK_ZSM) 5236 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */ 5237 } 5238 svOld = cl->svals[cloff]; 5239 svNew = msmcwrite( svOld, thr,a,1 ); 5240 if (CHECK_ZSM) 5241 tl_assert(svNew != SVal_INVALID); 5242 cl->svals[cloff] = svNew; 5243 } 5244 5245 /*------------- ZSM accesses: 16 bit sapply ------------- */ 5246 5247 static void zsm_sapply16__msmcread ( Thr* thr, Addr a ) { 5248 CacheLine* cl; 5249 UWord cloff, tno, toff; 5250 SVal svOld, svNew; 5251 UShort descr; 5252 stats__cline_cread16s++; 5253 if (UNLIKELY(!aligned16(a))) goto slowcase; 5254 cl = get_cacheline(a); 5255 cloff = get_cacheline_offset(a); 5256 tno = get_treeno(a); 5257 toff = get_tree_offset(a); /* == 0, 2, 4 or 6 */ 5258 descr = cl->descrs[tno]; 5259 if (UNLIKELY( !(descr & (TREE_DESCR_16_0 << toff)) )) { 5260 if (valid_value_is_below_me_16(descr, toff)) { 5261 goto slowcase; 5262 } else { 5263 SVal* tree = &cl->svals[tno << 3]; 5264 cl->descrs[tno] = pulldown_to_16(tree, toff, descr); 5265 } 5266 if (CHECK_ZSM) 5267 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */ 5268 } 5269 svOld = cl->svals[cloff]; 5270 svNew = msmcread( svOld, thr,a,2 ); 5271 if (CHECK_ZSM) 5272 tl_assert(svNew != SVal_INVALID); 5273 cl->svals[cloff] = svNew; 5274 return; 5275 slowcase: /* misaligned, or must go further down the tree */ 5276 stats__cline_16to8splits++; 5277 zsm_sapply08__msmcread( thr, a + 0 ); 5278 zsm_sapply08__msmcread( thr, a + 1 ); 5279 } 5280 5281 static void zsm_sapply16__msmcwrite ( Thr* thr, Addr a ) { 5282 CacheLine* cl; 5283 UWord cloff, tno, toff; 5284 SVal svOld, svNew; 5285 UShort descr; 5286 stats__cline_cwrite16s++; 5287 if (UNLIKELY(!aligned16(a))) goto slowcase; 5288 cl = get_cacheline(a); 5289 cloff = get_cacheline_offset(a); 5290 tno = get_treeno(a); 5291 toff = get_tree_offset(a); /* == 0, 2, 4 or 6 */ 5292 descr = cl->descrs[tno]; 5293 if (UNLIKELY( !(descr & (TREE_DESCR_16_0 << toff)) )) { 5294 if (valid_value_is_below_me_16(descr, toff)) { 5295 goto slowcase; 5296 } else { 5297 SVal* tree = &cl->svals[tno << 3]; 5298 cl->descrs[tno] = pulldown_to_16(tree, toff, descr); 5299 } 5300 if (CHECK_ZSM) 5301 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */ 5302 } 5303 svOld = cl->svals[cloff]; 5304 svNew = msmcwrite( svOld, thr,a,2 ); 5305 if (CHECK_ZSM) 5306 tl_assert(svNew != SVal_INVALID); 5307 cl->svals[cloff] = svNew; 5308 return; 5309 slowcase: /* misaligned, or must go further down the tree */ 5310 stats__cline_16to8splits++; 5311 zsm_sapply08__msmcwrite( thr, a + 0 ); 5312 zsm_sapply08__msmcwrite( thr, a + 1 ); 5313 } 5314 5315 /*------------- ZSM accesses: 32 bit sapply ------------- */ 5316 5317 static void zsm_sapply32__msmcread ( Thr* thr, Addr a ) { 5318 CacheLine* cl; 5319 UWord cloff, tno, toff; 5320 SVal svOld, svNew; 5321 UShort descr; 5322 stats__cline_cread32s++; 5323 if (UNLIKELY(!aligned32(a))) goto slowcase; 5324 cl = get_cacheline(a); 5325 cloff = get_cacheline_offset(a); 5326 tno = get_treeno(a); 5327 toff = get_tree_offset(a); /* == 0 or 4 */ 5328 descr = cl->descrs[tno]; 5329 if (UNLIKELY( !(descr & (TREE_DESCR_32_0 << toff)) )) { 5330 if (valid_value_is_above_me_32(descr, toff)) { 5331 SVal* tree = &cl->svals[tno << 3]; 5332 cl->descrs[tno] = pulldown_to_32(tree, toff, descr); 5333 } else { 5334 goto slowcase; 5335 } 5336 if (CHECK_ZSM) 5337 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */ 5338 } 5339 svOld = cl->svals[cloff]; 5340 svNew = msmcread( svOld, thr,a,4 ); 5341 if (CHECK_ZSM) 5342 tl_assert(svNew != SVal_INVALID); 5343 cl->svals[cloff] = svNew; 5344 return; 5345 slowcase: /* misaligned, or must go further down the tree */ 5346 stats__cline_32to16splits++; 5347 zsm_sapply16__msmcread( thr, a + 0 ); 5348 zsm_sapply16__msmcread( thr, a + 2 ); 5349 } 5350 5351 static void zsm_sapply32__msmcwrite ( Thr* thr, Addr a ) { 5352 CacheLine* cl; 5353 UWord cloff, tno, toff; 5354 SVal svOld, svNew; 5355 UShort descr; 5356 stats__cline_cwrite32s++; 5357 if (UNLIKELY(!aligned32(a))) goto slowcase; 5358 cl = get_cacheline(a); 5359 cloff = get_cacheline_offset(a); 5360 tno = get_treeno(a); 5361 toff = get_tree_offset(a); /* == 0 or 4 */ 5362 descr = cl->descrs[tno]; 5363 if (UNLIKELY( !(descr & (TREE_DESCR_32_0 << toff)) )) { 5364 if (valid_value_is_above_me_32(descr, toff)) { 5365 SVal* tree = &cl->svals[tno << 3]; 5366 cl->descrs[tno] = pulldown_to_32(tree, toff, descr); 5367 } else { 5368 goto slowcase; 5369 } 5370 if (CHECK_ZSM) 5371 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */ 5372 } 5373 svOld = cl->svals[cloff]; 5374 svNew = msmcwrite( svOld, thr,a,4 ); 5375 if (CHECK_ZSM) 5376 tl_assert(svNew != SVal_INVALID); 5377 cl->svals[cloff] = svNew; 5378 return; 5379 slowcase: /* misaligned, or must go further down the tree */ 5380 stats__cline_32to16splits++; 5381 zsm_sapply16__msmcwrite( thr, a + 0 ); 5382 zsm_sapply16__msmcwrite( thr, a + 2 ); 5383 } 5384 5385 /*------------- ZSM accesses: 64 bit sapply ------------- */ 5386 5387 static void zsm_sapply64__msmcread ( Thr* thr, Addr a ) { 5388 CacheLine* cl; 5389 UWord cloff, tno; 5390 //UWord toff; 5391 SVal svOld, svNew; 5392 UShort descr; 5393 stats__cline_cread64s++; 5394 if (UNLIKELY(!aligned64(a))) goto slowcase; 5395 cl = get_cacheline(a); 5396 cloff = get_cacheline_offset(a); 5397 tno = get_treeno(a); 5398 //toff = get_tree_offset(a); /* == 0, unused */ 5399 descr = cl->descrs[tno]; 5400 if (UNLIKELY( !(descr & TREE_DESCR_64) )) { 5401 goto slowcase; 5402 } 5403 svOld = cl->svals[cloff]; 5404 svNew = msmcread( svOld, thr,a,8 ); 5405 if (CHECK_ZSM) 5406 tl_assert(svNew != SVal_INVALID); 5407 cl->svals[cloff] = svNew; 5408 return; 5409 slowcase: /* misaligned, or must go further down the tree */ 5410 stats__cline_64to32splits++; 5411 zsm_sapply32__msmcread( thr, a + 0 ); 5412 zsm_sapply32__msmcread( thr, a + 4 ); 5413 } 5414 5415 static void zsm_sapply64__msmcwrite ( Thr* thr, Addr a ) { 5416 CacheLine* cl; 5417 UWord cloff, tno; 5418 //UWord toff; 5419 SVal svOld, svNew; 5420 UShort descr; 5421 stats__cline_cwrite64s++; 5422 if (UNLIKELY(!aligned64(a))) goto slowcase; 5423 cl = get_cacheline(a); 5424 cloff = get_cacheline_offset(a); 5425 tno = get_treeno(a); 5426 //toff = get_tree_offset(a); /* == 0, unused */ 5427 descr = cl->descrs[tno]; 5428 if (UNLIKELY( !(descr & TREE_DESCR_64) )) { 5429 goto slowcase; 5430 } 5431 svOld = cl->svals[cloff]; 5432 svNew = msmcwrite( svOld, thr,a,8 ); 5433 if (CHECK_ZSM) 5434 tl_assert(svNew != SVal_INVALID); 5435 cl->svals[cloff] = svNew; 5436 return; 5437 slowcase: /* misaligned, or must go further down the tree */ 5438 stats__cline_64to32splits++; 5439 zsm_sapply32__msmcwrite( thr, a + 0 ); 5440 zsm_sapply32__msmcwrite( thr, a + 4 ); 5441 } 5442 5443 /*--------------- ZSM accesses: 8 bit swrite --------------- */ 5444 5445 static 5446 void zsm_swrite08 ( Addr a, SVal svNew ) { 5447 CacheLine* cl; 5448 UWord cloff, tno, toff; 5449 UShort descr; 5450 stats__cline_swrite08s++; 5451 cl = get_cacheline(a); 5452 cloff = get_cacheline_offset(a); 5453 tno = get_treeno(a); 5454 toff = get_tree_offset(a); /* == 0 .. 7 */ 5455 descr = cl->descrs[tno]; 5456 if (UNLIKELY( !(descr & (TREE_DESCR_8_0 << toff)) )) { 5457 SVal* tree = &cl->svals[tno << 3]; 5458 cl->descrs[tno] = pulldown_to_8(tree, toff, descr); 5459 if (CHECK_ZSM) 5460 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */ 5461 } 5462 tl_assert(svNew != SVal_INVALID); 5463 cl->svals[cloff] = svNew; 5464 } 5465 5466 /*--------------- ZSM accesses: 16 bit swrite --------------- */ 5467 5468 static 5469 void zsm_swrite16 ( Addr a, SVal svNew ) { 5470 CacheLine* cl; 5471 UWord cloff, tno, toff; 5472 UShort descr; 5473 stats__cline_swrite16s++; 5474 if (UNLIKELY(!aligned16(a))) goto slowcase; 5475 cl = get_cacheline(a); 5476 cloff = get_cacheline_offset(a); 5477 tno = get_treeno(a); 5478 toff = get_tree_offset(a); /* == 0, 2, 4 or 6 */ 5479 descr = cl->descrs[tno]; 5480 if (UNLIKELY( !(descr & (TREE_DESCR_16_0 << toff)) )) { 5481 if (valid_value_is_below_me_16(descr, toff)) { 5482 /* Writing at this level. Need to fix up 'descr'. */ 5483 cl->descrs[tno] = pullup_descr_to_16(descr, toff); 5484 /* At this point, the tree does not match cl->descr[tno] any 5485 more. The assignments below will fix it up. */ 5486 } else { 5487 /* We can't indiscriminately write on the w16 node as in the 5488 w64 case, as that might make the node inconsistent with 5489 its parent. So first, pull down to this level. */ 5490 SVal* tree = &cl->svals[tno << 3]; 5491 cl->descrs[tno] = pulldown_to_16(tree, toff, descr); 5492 if (CHECK_ZSM) 5493 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */ 5494 } 5495 } 5496 tl_assert(svNew != SVal_INVALID); 5497 cl->svals[cloff + 0] = svNew; 5498 cl->svals[cloff + 1] = SVal_INVALID; 5499 return; 5500 slowcase: /* misaligned */ 5501 stats__cline_16to8splits++; 5502 zsm_swrite08( a + 0, svNew ); 5503 zsm_swrite08( a + 1, svNew ); 5504 } 5505 5506 /*--------------- ZSM accesses: 32 bit swrite --------------- */ 5507 5508 static 5509 void zsm_swrite32 ( Addr a, SVal svNew ) { 5510 CacheLine* cl; 5511 UWord cloff, tno, toff; 5512 UShort descr; 5513 stats__cline_swrite32s++; 5514 if (UNLIKELY(!aligned32(a))) goto slowcase; 5515 cl = get_cacheline(a); 5516 cloff = get_cacheline_offset(a); 5517 tno = get_treeno(a); 5518 toff = get_tree_offset(a); /* == 0 or 4 */ 5519 descr = cl->descrs[tno]; 5520 if (UNLIKELY( !(descr & (TREE_DESCR_32_0 << toff)) )) { 5521 if (valid_value_is_above_me_32(descr, toff)) { 5522 /* We can't indiscriminately write on the w32 node as in the 5523 w64 case, as that might make the node inconsistent with 5524 its parent. So first, pull down to this level. */ 5525 SVal* tree = &cl->svals[tno << 3]; 5526 cl->descrs[tno] = pulldown_to_32(tree, toff, descr); 5527 if (CHECK_ZSM) 5528 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */ 5529 } else { 5530 /* Writing at this level. Need to fix up 'descr'. */ 5531 cl->descrs[tno] = pullup_descr_to_32(descr, toff); 5532 /* At this point, the tree does not match cl->descr[tno] any 5533 more. The assignments below will fix it up. */ 5534 } 5535 } 5536 tl_assert(svNew != SVal_INVALID); 5537 cl->svals[cloff + 0] = svNew; 5538 cl->svals[cloff + 1] = SVal_INVALID; 5539 cl->svals[cloff + 2] = SVal_INVALID; 5540 cl->svals[cloff + 3] = SVal_INVALID; 5541 return; 5542 slowcase: /* misaligned */ 5543 stats__cline_32to16splits++; 5544 zsm_swrite16( a + 0, svNew ); 5545 zsm_swrite16( a + 2, svNew ); 5546 } 5547 5548 /*--------------- ZSM accesses: 64 bit swrite --------------- */ 5549 5550 static 5551 void zsm_swrite64 ( Addr a, SVal svNew ) { 5552 CacheLine* cl; 5553 UWord cloff, tno; 5554 //UWord toff; 5555 stats__cline_swrite64s++; 5556 if (UNLIKELY(!aligned64(a))) goto slowcase; 5557 cl = get_cacheline(a); 5558 cloff = get_cacheline_offset(a); 5559 tno = get_treeno(a); 5560 //toff = get_tree_offset(a); /* == 0, unused */ 5561 cl->descrs[tno] = TREE_DESCR_64; 5562 tl_assert(svNew != SVal_INVALID); 5563 cl->svals[cloff + 0] = svNew; 5564 cl->svals[cloff + 1] = SVal_INVALID; 5565 cl->svals[cloff + 2] = SVal_INVALID; 5566 cl->svals[cloff + 3] = SVal_INVALID; 5567 cl->svals[cloff + 4] = SVal_INVALID; 5568 cl->svals[cloff + 5] = SVal_INVALID; 5569 cl->svals[cloff + 6] = SVal_INVALID; 5570 cl->svals[cloff + 7] = SVal_INVALID; 5571 return; 5572 slowcase: /* misaligned */ 5573 stats__cline_64to32splits++; 5574 zsm_swrite32( a + 0, svNew ); 5575 zsm_swrite32( a + 4, svNew ); 5576 } 5577 5578 /*------------- ZSM accesses: 8 bit sread/scopy ------------- */ 5579 5580 static 5581 SVal zsm_sread08 ( Addr a ) { 5582 CacheLine* cl; 5583 UWord cloff, tno, toff; 5584 UShort descr; 5585 stats__cline_sread08s++; 5586 cl = get_cacheline(a); 5587 cloff = get_cacheline_offset(a); 5588 tno = get_treeno(a); 5589 toff = get_tree_offset(a); /* == 0 .. 7 */ 5590 descr = cl->descrs[tno]; 5591 if (UNLIKELY( !(descr & (TREE_DESCR_8_0 << toff)) )) { 5592 SVal* tree = &cl->svals[tno << 3]; 5593 cl->descrs[tno] = pulldown_to_8(tree, toff, descr); 5594 } 5595 return cl->svals[cloff]; 5596 } 5597 5598 static void zsm_scopy08 ( Addr src, Addr dst, Bool uu_normalise ) { 5599 SVal sv; 5600 stats__cline_scopy08s++; 5601 sv = zsm_sread08( src ); 5602 zsm_swrite08( dst, sv ); 5603 } 5604 5605 5606 /* Block-copy states (needed for implementing realloc()). Note this 5607 doesn't change the filtering arrangements. The caller of 5608 zsm_scopy_range needs to attend to that. */ 5609 5610 static void zsm_scopy_range ( Addr src, Addr dst, SizeT len ) 5611 { 5612 SizeT i; 5613 if (len == 0) 5614 return; 5615 5616 /* assert for non-overlappingness */ 5617 tl_assert(src+len <= dst || dst+len <= src); 5618 5619 /* To be simple, just copy byte by byte. But so as not to wreck 5620 performance for later accesses to dst[0 .. len-1], normalise 5621 destination lines as we finish with them, and also normalise the 5622 line containing the first and last address. */ 5623 for (i = 0; i < len; i++) { 5624 Bool normalise 5625 = get_cacheline_offset( dst+i+1 ) == 0 /* last in line */ 5626 || i == 0 /* first in range */ 5627 || i == len-1; /* last in range */ 5628 zsm_scopy08( src+i, dst+i, normalise ); 5629 } 5630 } 5631 5632 5633 /* For setting address ranges to a given value. Has considerable 5634 sophistication so as to avoid generating large numbers of pointless 5635 cache loads/writebacks for large ranges. */ 5636 5637 /* Do small ranges in-cache, in the obvious way. */ 5638 static 5639 void zsm_sset_range_SMALL ( Addr a, SizeT len, SVal svNew ) 5640 { 5641 /* fast track a couple of common cases */ 5642 if (len == 4 && aligned32(a)) { 5643 zsm_swrite32( a, svNew ); 5644 return; 5645 } 5646 if (len == 8 && aligned64(a)) { 5647 zsm_swrite64( a, svNew ); 5648 return; 5649 } 5650 5651 /* be completely general (but as efficient as possible) */ 5652 if (len == 0) return; 5653 5654 if (!aligned16(a) && len >= 1) { 5655 zsm_swrite08( a, svNew ); 5656 a += 1; 5657 len -= 1; 5658 tl_assert(aligned16(a)); 5659 } 5660 if (len == 0) return; 5661 5662 if (!aligned32(a) && len >= 2) { 5663 zsm_swrite16( a, svNew ); 5664 a += 2; 5665 len -= 2; 5666 tl_assert(aligned32(a)); 5667 } 5668 if (len == 0) return; 5669 5670 if (!aligned64(a) && len >= 4) { 5671 zsm_swrite32( a, svNew ); 5672 a += 4; 5673 len -= 4; 5674 tl_assert(aligned64(a)); 5675 } 5676 if (len == 0) return; 5677 5678 if (len >= 8) { 5679 tl_assert(aligned64(a)); 5680 while (len >= 8) { 5681 zsm_swrite64( a, svNew ); 5682 a += 8; 5683 len -= 8; 5684 } 5685 tl_assert(aligned64(a)); 5686 } 5687 if (len == 0) return; 5688 5689 if (len >= 4) 5690 tl_assert(aligned32(a)); 5691 if (len >= 4) { 5692 zsm_swrite32( a, svNew ); 5693 a += 4; 5694 len -= 4; 5695 } 5696 if (len == 0) return; 5697 5698 if (len >= 2) 5699 tl_assert(aligned16(a)); 5700 if (len >= 2) { 5701 zsm_swrite16( a, svNew ); 5702 a += 2; 5703 len -= 2; 5704 } 5705 if (len == 0) return; 5706 5707 if (len >= 1) { 5708 zsm_swrite08( a, svNew ); 5709 //a += 1; 5710 len -= 1; 5711 } 5712 tl_assert(len == 0); 5713 } 5714 5715 5716 /* If we're doing a small range, hand off to zsm_sset_range_SMALL. But 5717 for larger ranges, try to operate directly on the out-of-cache 5718 representation, rather than dragging lines into the cache, 5719 overwriting them, and forcing them out. This turns out to be an 5720 important performance optimisation. 5721 5722 Note that this doesn't change the filtering arrangements. The 5723 caller of zsm_sset_range needs to attend to that. */ 5724 5725 static void zsm_sset_range ( Addr a, SizeT len, SVal svNew ) 5726 { 5727 tl_assert(svNew != SVal_INVALID); 5728 stats__cache_make_New_arange += (ULong)len; 5729 5730 if (0 && len > 500) 5731 VG_(printf)("make New ( %#lx, %ld )\n", a, len ); 5732 5733 if (0) { 5734 static UWord n_New_in_cache = 0; 5735 static UWord n_New_not_in_cache = 0; 5736 /* tag is 'a' with the in-line offset masked out, 5737 eg a[31]..a[4] 0000 */ 5738 Addr tag = a & ~(N_LINE_ARANGE - 1); 5739 UWord wix = (a >> N_LINE_BITS) & (N_WAY_NENT - 1); 5740 if (LIKELY(tag == cache_shmem.tags0[wix])) { 5741 n_New_in_cache++; 5742 } else { 5743 n_New_not_in_cache++; 5744 } 5745 if (0 == ((n_New_in_cache + n_New_not_in_cache) % 100000)) 5746 VG_(printf)("shadow_mem_make_New: IN %lu OUT %lu\n", 5747 n_New_in_cache, n_New_not_in_cache ); 5748 } 5749 5750 if (LIKELY(len < 2 * N_LINE_ARANGE)) { 5751 zsm_sset_range_SMALL( a, len, svNew ); 5752 } else { 5753 Addr before_start = a; 5754 Addr aligned_start = cacheline_ROUNDUP(a); 5755 Addr after_start = cacheline_ROUNDDN(a + len); 5756 UWord before_len = aligned_start - before_start; 5757 UWord aligned_len = after_start - aligned_start; 5758 UWord after_len = a + len - after_start; 5759 tl_assert(before_start <= aligned_start); 5760 tl_assert(aligned_start <= after_start); 5761 tl_assert(before_len < N_LINE_ARANGE); 5762 tl_assert(after_len < N_LINE_ARANGE); 5763 tl_assert(get_cacheline_offset(aligned_start) == 0); 5764 if (get_cacheline_offset(a) == 0) { 5765 tl_assert(before_len == 0); 5766 tl_assert(a == aligned_start); 5767 } 5768 if (get_cacheline_offset(a+len) == 0) { 5769 tl_assert(after_len == 0); 5770 tl_assert(after_start == a+len); 5771 } 5772 if (before_len > 0) { 5773 zsm_sset_range_SMALL( before_start, before_len, svNew ); 5774 } 5775 if (after_len > 0) { 5776 zsm_sset_range_SMALL( after_start, after_len, svNew ); 5777 } 5778 stats__cache_make_New_inZrep += (ULong)aligned_len; 5779 5780 while (1) { 5781 Addr tag; 5782 UWord wix; 5783 if (aligned_start >= after_start) 5784 break; 5785 tl_assert(get_cacheline_offset(aligned_start) == 0); 5786 tag = aligned_start & ~(N_LINE_ARANGE - 1); 5787 wix = (aligned_start >> N_LINE_BITS) & (N_WAY_NENT - 1); 5788 if (tag == cache_shmem.tags0[wix]) { 5789 UWord i; 5790 for (i = 0; i < N_LINE_ARANGE / 8; i++) 5791 zsm_swrite64( aligned_start + i * 8, svNew ); 5792 } else { 5793 UWord i; 5794 Word zix; 5795 SecMap* sm; 5796 LineZ* lineZ; 5797 /* This line is not in the cache. Do not force it in; instead 5798 modify it in-place. */ 5799 /* find the Z line to write in and rcdec it or the 5800 associated F line. */ 5801 find_Z_for_writing( &sm, &zix, tag ); 5802 tl_assert(sm); 5803 tl_assert(zix >= 0 && zix < N_SECMAP_ZLINES); 5804 lineZ = &sm->linesZ[zix]; 5805 lineZ->dict[0] = svNew; 5806 lineZ->dict[1] = lineZ->dict[2] = lineZ->dict[3] = SVal_INVALID; 5807 for (i = 0; i < N_LINE_ARANGE/4; i++) 5808 lineZ->ix2s[i] = 0; /* all refer to dict[0] */ 5809 rcinc_LineZ(lineZ); 5810 } 5811 aligned_start += N_LINE_ARANGE; 5812 aligned_len -= N_LINE_ARANGE; 5813 } 5814 tl_assert(aligned_start == after_start); 5815 tl_assert(aligned_len == 0); 5816 } 5817 } 5818 5819 5820 ///////////////////////////////////////////////////////// 5821 // // 5822 // Front-filtering accesses // 5823 // // 5824 ///////////////////////////////////////////////////////// 5825 5826 static UWord stats__f_ac = 0; 5827 static UWord stats__f_sk = 0; 5828 5829 #if 0 5830 # define STATS__F_SHOW \ 5831 do { \ 5832 if (UNLIKELY(0 == (stats__f_ac & 0xFFFFFF))) \ 5833 VG_(printf)("filters: ac %lu sk %lu\n", \ 5834 stats__f_ac, stats__f_sk); \ 5835 } while (0) 5836 #else 5837 # define STATS__F_SHOW /* */ 5838 #endif 5839 5840 void zsm_sapply08_f__msmcwrite ( Thr* thr, Addr a ) { 5841 stats__f_ac++; 5842 STATS__F_SHOW; 5843 if (LIKELY(Filter__ok_to_skip_cwr08(thr->filter, a))) { 5844 stats__f_sk++; 5845 return; 5846 } 5847 zsm_sapply08__msmcwrite(thr, a); 5848 } 5849 5850 void zsm_sapply16_f__msmcwrite ( Thr* thr, Addr a ) { 5851 stats__f_ac++; 5852 STATS__F_SHOW; 5853 if (LIKELY(Filter__ok_to_skip_cwr16(thr->filter, a))) { 5854 stats__f_sk++; 5855 return; 5856 } 5857 zsm_sapply16__msmcwrite(thr, a); 5858 } 5859 5860 void zsm_sapply32_f__msmcwrite ( Thr* thr, Addr a ) { 5861 stats__f_ac++; 5862 STATS__F_SHOW; 5863 if (LIKELY(Filter__ok_to_skip_cwr32(thr->filter, a))) { 5864 stats__f_sk++; 5865 return; 5866 } 5867 zsm_sapply32__msmcwrite(thr, a); 5868 } 5869 5870 void zsm_sapply64_f__msmcwrite ( Thr* thr, Addr a ) { 5871 stats__f_ac++; 5872 STATS__F_SHOW; 5873 if (LIKELY(Filter__ok_to_skip_cwr64(thr->filter, a))) { 5874 stats__f_sk++; 5875 return; 5876 } 5877 zsm_sapply64__msmcwrite(thr, a); 5878 } 5879 5880 void zsm_sapplyNN_f__msmcwrite ( Thr* thr, Addr a, SizeT len ) 5881 { 5882 /* fast track a couple of common cases */ 5883 if (len == 4 && aligned32(a)) { 5884 zsm_sapply32_f__msmcwrite( thr, a ); 5885 return; 5886 } 5887 if (len == 8 && aligned64(a)) { 5888 zsm_sapply64_f__msmcwrite( thr, a ); 5889 return; 5890 } 5891 5892 /* be completely general (but as efficient as possible) */ 5893 if (len == 0) return; 5894 5895 if (!aligned16(a) && len >= 1) { 5896 zsm_sapply08_f__msmcwrite( thr, a ); 5897 a += 1; 5898 len -= 1; 5899 tl_assert(aligned16(a)); 5900 } 5901 if (len == 0) return; 5902 5903 if (!aligned32(a) && len >= 2) { 5904 zsm_sapply16_f__msmcwrite( thr, a ); 5905 a += 2; 5906 len -= 2; 5907 tl_assert(aligned32(a)); 5908 } 5909 if (len == 0) return; 5910 5911 if (!aligned64(a) && len >= 4) { 5912 zsm_sapply32_f__msmcwrite( thr, a ); 5913 a += 4; 5914 len -= 4; 5915 tl_assert(aligned64(a)); 5916 } 5917 if (len == 0) return; 5918 5919 if (len >= 8) { 5920 tl_assert(aligned64(a)); 5921 while (len >= 8) { 5922 zsm_sapply64_f__msmcwrite( thr, a ); 5923 a += 8; 5924 len -= 8; 5925 } 5926 tl_assert(aligned64(a)); 5927 } 5928 if (len == 0) return; 5929 5930 if (len >= 4) 5931 tl_assert(aligned32(a)); 5932 if (len >= 4) { 5933 zsm_sapply32_f__msmcwrite( thr, a ); 5934 a += 4; 5935 len -= 4; 5936 } 5937 if (len == 0) return; 5938 5939 if (len >= 2) 5940 tl_assert(aligned16(a)); 5941 if (len >= 2) { 5942 zsm_sapply16_f__msmcwrite( thr, a ); 5943 a += 2; 5944 len -= 2; 5945 } 5946 if (len == 0) return; 5947 5948 if (len >= 1) { 5949 zsm_sapply08_f__msmcwrite( thr, a ); 5950 //a += 1; 5951 len -= 1; 5952 } 5953 tl_assert(len == 0); 5954 } 5955 5956 void zsm_sapply08_f__msmcread ( Thr* thr, Addr a ) { 5957 stats__f_ac++; 5958 STATS__F_SHOW; 5959 if (LIKELY(Filter__ok_to_skip_crd08(thr->filter, a))) { 5960 stats__f_sk++; 5961 return; 5962 } 5963 zsm_sapply08__msmcread(thr, a); 5964 } 5965 5966 void zsm_sapply16_f__msmcread ( Thr* thr, Addr a ) { 5967 stats__f_ac++; 5968 STATS__F_SHOW; 5969 if (LIKELY(Filter__ok_to_skip_crd16(thr->filter, a))) { 5970 stats__f_sk++; 5971 return; 5972 } 5973 zsm_sapply16__msmcread(thr, a); 5974 } 5975 5976 void zsm_sapply32_f__msmcread ( Thr* thr, Addr a ) { 5977 stats__f_ac++; 5978 STATS__F_SHOW; 5979 if (LIKELY(Filter__ok_to_skip_crd32(thr->filter, a))) { 5980 stats__f_sk++; 5981 return; 5982 } 5983 zsm_sapply32__msmcread(thr, a); 5984 } 5985 5986 void zsm_sapply64_f__msmcread ( Thr* thr, Addr a ) { 5987 stats__f_ac++; 5988 STATS__F_SHOW; 5989 if (LIKELY(Filter__ok_to_skip_crd64(thr->filter, a))) { 5990 stats__f_sk++; 5991 return; 5992 } 5993 zsm_sapply64__msmcread(thr, a); 5994 } 5995 5996 void zsm_sapplyNN_f__msmcread ( Thr* thr, Addr a, SizeT len ) 5997 { 5998 /* fast track a couple of common cases */ 5999 if (len == 4 && aligned32(a)) { 6000 zsm_sapply32_f__msmcread( thr, a ); 6001 return; 6002 } 6003 if (len == 8 && aligned64(a)) { 6004 zsm_sapply64_f__msmcread( thr, a ); 6005 return; 6006 } 6007 6008 /* be completely general (but as efficient as possible) */ 6009 if (len == 0) return; 6010 6011 if (!aligned16(a) && len >= 1) { 6012 zsm_sapply08_f__msmcread( thr, a ); 6013 a += 1; 6014 len -= 1; 6015 tl_assert(aligned16(a)); 6016 } 6017 if (len == 0) return; 6018 6019 if (!aligned32(a) && len >= 2) { 6020 zsm_sapply16_f__msmcread( thr, a ); 6021 a += 2; 6022 len -= 2; 6023 tl_assert(aligned32(a)); 6024 } 6025 if (len == 0) return; 6026 6027 if (!aligned64(a) && len >= 4) { 6028 zsm_sapply32_f__msmcread( thr, a ); 6029 a += 4; 6030 len -= 4; 6031 tl_assert(aligned64(a)); 6032 } 6033 if (len == 0) return; 6034 6035 if (len >= 8) { 6036 tl_assert(aligned64(a)); 6037 while (len >= 8) { 6038 zsm_sapply64_f__msmcread( thr, a ); 6039 a += 8; 6040 len -= 8; 6041 } 6042 tl_assert(aligned64(a)); 6043 } 6044 if (len == 0) return; 6045 6046 if (len >= 4) 6047 tl_assert(aligned32(a)); 6048 if (len >= 4) { 6049 zsm_sapply32_f__msmcread( thr, a ); 6050 a += 4; 6051 len -= 4; 6052 } 6053 if (len == 0) return; 6054 6055 if (len >= 2) 6056 tl_assert(aligned16(a)); 6057 if (len >= 2) { 6058 zsm_sapply16_f__msmcread( thr, a ); 6059 a += 2; 6060 len -= 2; 6061 } 6062 if (len == 0) return; 6063 6064 if (len >= 1) { 6065 zsm_sapply08_f__msmcread( thr, a ); 6066 //a += 1; 6067 len -= 1; 6068 } 6069 tl_assert(len == 0); 6070 } 6071 6072 void libhb_Thr_resumes ( Thr* thr ) 6073 { 6074 if (0) VG_(printf)("resume %p\n", thr); 6075 tl_assert(thr); 6076 tl_assert(!thr->llexit_done); 6077 Filter__clear(thr->filter, "libhb_Thr_resumes"); 6078 /* A kludge, but .. if this thread doesn't have any marker stacks 6079 at all, get one right now. This is easier than figuring out 6080 exactly when at thread startup we can and can't take a stack 6081 snapshot. */ 6082 if (HG_(clo_history_level) == 1) { 6083 tl_assert(thr->local_Kws_n_stacks); 6084 if (VG_(sizeXA)( thr->local_Kws_n_stacks ) == 0) 6085 note_local_Kw_n_stack_for(thr); 6086 } 6087 } 6088 6089 6090 ///////////////////////////////////////////////////////// 6091 // // 6092 // Synchronisation objects // 6093 // // 6094 ///////////////////////////////////////////////////////// 6095 6096 /* A double linked list of all the SO's. */ 6097 SO* admin_SO = NULL; 6098 6099 static SO* SO__Alloc ( void ) 6100 { 6101 SO* so = HG_(zalloc)( "libhb.SO__Alloc.1", sizeof(SO) ); 6102 so->viR = VtsID_INVALID; 6103 so->viW = VtsID_INVALID; 6104 so->magic = SO_MAGIC; 6105 /* Add to double linked list */ 6106 if (admin_SO) { 6107 tl_assert(admin_SO->admin_prev == NULL); 6108 admin_SO->admin_prev = so; 6109 so->admin_next = admin_SO; 6110 } else { 6111 so->admin_next = NULL; 6112 } 6113 so->admin_prev = NULL; 6114 admin_SO = so; 6115 /* */ 6116 return so; 6117 } 6118 6119 static void SO__Dealloc ( SO* so ) 6120 { 6121 tl_assert(so); 6122 tl_assert(so->magic == SO_MAGIC); 6123 if (so->viR == VtsID_INVALID) { 6124 tl_assert(so->viW == VtsID_INVALID); 6125 } else { 6126 tl_assert(so->viW != VtsID_INVALID); 6127 VtsID__rcdec(so->viR); 6128 VtsID__rcdec(so->viW); 6129 } 6130 so->magic = 0; 6131 /* Del from double linked list */ 6132 if (so->admin_prev) 6133 so->admin_prev->admin_next = so->admin_next; 6134 if (so->admin_next) 6135 so->admin_next->admin_prev = so->admin_prev; 6136 if (so == admin_SO) 6137 admin_SO = so->admin_next; 6138 /* */ 6139 HG_(free)( so ); 6140 } 6141 6142 6143 ///////////////////////////////////////////////////////// 6144 // // 6145 // Top Level API // 6146 // // 6147 ///////////////////////////////////////////////////////// 6148 6149 static void show_thread_state ( HChar* str, Thr* t ) 6150 { 6151 if (1) return; 6152 if (t->viR == t->viW) { 6153 VG_(printf)("thr \"%s\" %p has vi* %u==", str, t, t->viR ); 6154 VtsID__pp( t->viR ); 6155 VG_(printf)("%s","\n"); 6156 } else { 6157 VG_(printf)("thr \"%s\" %p has viR %u==", str, t, t->viR ); 6158 VtsID__pp( t->viR ); 6159 VG_(printf)(" viW %u==", t->viW); 6160 VtsID__pp( t->viW ); 6161 VG_(printf)("%s","\n"); 6162 } 6163 } 6164 6165 6166 Thr* libhb_init ( 6167 void (*get_stacktrace)( Thr*, Addr*, UWord ), 6168 ExeContext* (*get_EC)( Thr* ) 6169 ) 6170 { 6171 Thr* thr; 6172 VtsID vi; 6173 6174 // We will have to have to store a large number of these, 6175 // so make sure they're the size we expect them to be. 6176 tl_assert(sizeof(ScalarTS) == 8); 6177 6178 /* because first 1024 unusable */ 6179 tl_assert(SCALARTS_N_THRBITS >= 11); 6180 /* so as to fit in a UInt w/ 3 bits to spare (see defn of 6181 Thr_n_RCEC). */ 6182 tl_assert(SCALARTS_N_THRBITS <= 29); 6183 6184 /* Need to be sure that Thr_n_RCEC is 2 words (64-bit) or 3 words 6185 (32-bit). It's not correctness-critical, but there are a lot of 6186 them, so it's important from a space viewpoint. Unfortunately 6187 we simply can't pack it into 2 words on a 32-bit target. */ 6188 if (sizeof(UWord) == 8) { 6189 tl_assert(sizeof(Thr_n_RCEC) == 16); 6190 } else { 6191 tl_assert(sizeof(Thr_n_RCEC) == 12); 6192 } 6193 6194 /* Word sets really are 32 bits. Even on a 64 bit target. */ 6195 tl_assert(sizeof(WordSetID) == 4); 6196 tl_assert(sizeof(WordSet) == sizeof(WordSetID)); 6197 6198 tl_assert(get_stacktrace); 6199 tl_assert(get_EC); 6200 main_get_stacktrace = get_stacktrace; 6201 main_get_EC = get_EC; 6202 6203 // No need to initialise hg_wordfm. 6204 // No need to initialise hg_wordset. 6205 6206 /* Allocated once and never deallocated. Used as a temporary in 6207 VTS singleton, tick and join operations. */ 6208 temp_max_sized_VTS = VTS__new( "libhb.libhb_init.1", ThrID_MAX_VALID ); 6209 temp_max_sized_VTS->id = VtsID_INVALID; 6210 verydead_thread_table_init(); 6211 vts_set_init(); 6212 vts_tab_init(); 6213 event_map_init(); 6214 VtsID__invalidate_caches(); 6215 6216 // initialise shadow memory 6217 zsm_init( SVal__rcinc, SVal__rcdec ); 6218 6219 thr = Thr__new(); 6220 vi = VtsID__mk_Singleton( thr, 1 ); 6221 thr->viR = vi; 6222 thr->viW = vi; 6223 VtsID__rcinc(thr->viR); 6224 VtsID__rcinc(thr->viW); 6225 6226 show_thread_state(" root", thr); 6227 return thr; 6228 } 6229 6230 6231 Thr* libhb_create ( Thr* parent ) 6232 { 6233 /* The child's VTSs are copies of the parent's VTSs, but ticked at 6234 the child's index. Since the child's index is guaranteed 6235 unique, it has never been seen before, so the implicit value 6236 before the tick is zero and after that is one. */ 6237 Thr* child = Thr__new(); 6238 6239 child->viR = VtsID__tick( parent->viR, child ); 6240 child->viW = VtsID__tick( parent->viW, child ); 6241 Filter__clear(child->filter, "libhb_create(child)"); 6242 VtsID__rcinc(child->viR); 6243 VtsID__rcinc(child->viW); 6244 /* We need to do note_local_Kw_n_stack_for( child ), but it's too 6245 early for that - it may not have a valid TId yet. So, let 6246 libhb_Thr_resumes pick it up the first time the thread runs. */ 6247 6248 tl_assert(VtsID__indexAt( child->viR, child ) == 1); 6249 tl_assert(VtsID__indexAt( child->viW, child ) == 1); 6250 6251 /* and the parent has to move along too */ 6252 VtsID__rcdec(parent->viR); 6253 VtsID__rcdec(parent->viW); 6254 parent->viR = VtsID__tick( parent->viR, parent ); 6255 parent->viW = VtsID__tick( parent->viW, parent ); 6256 Filter__clear(parent->filter, "libhb_create(parent)"); 6257 VtsID__rcinc(parent->viR); 6258 VtsID__rcinc(parent->viW); 6259 note_local_Kw_n_stack_for( parent ); 6260 6261 show_thread_state(" child", child); 6262 show_thread_state("parent", parent); 6263 6264 return child; 6265 } 6266 6267 /* Shut down the library, and print stats (in fact that's _all_ 6268 this is for. */ 6269 void libhb_shutdown ( Bool show_stats ) 6270 { 6271 if (show_stats) { 6272 VG_(printf)("%s","<<< BEGIN libhb stats >>>\n"); 6273 VG_(printf)(" secmaps: %'10lu allocd (%'12lu g-a-range)\n", 6274 stats__secmaps_allocd, 6275 stats__secmap_ga_space_covered); 6276 VG_(printf)(" linesZ: %'10lu allocd (%'12lu bytes occupied)\n", 6277 stats__secmap_linesZ_allocd, 6278 stats__secmap_linesZ_bytes); 6279 VG_(printf)(" linesF: %'10lu allocd (%'12lu bytes occupied)\n", 6280 stats__secmap_linesF_allocd, 6281 stats__secmap_linesF_bytes); 6282 VG_(printf)(" secmaps: %'10lu iterator steppings\n", 6283 stats__secmap_iterator_steppings); 6284 VG_(printf)(" secmaps: %'10lu searches (%'12lu slow)\n", 6285 stats__secmaps_search, stats__secmaps_search_slow); 6286 6287 VG_(printf)("%s","\n"); 6288 VG_(printf)(" cache: %'lu totrefs (%'lu misses)\n", 6289 stats__cache_totrefs, stats__cache_totmisses ); 6290 VG_(printf)(" cache: %'14lu Z-fetch, %'14lu F-fetch\n", 6291 stats__cache_Z_fetches, stats__cache_F_fetches ); 6292 VG_(printf)(" cache: %'14lu Z-wback, %'14lu F-wback\n", 6293 stats__cache_Z_wbacks, stats__cache_F_wbacks ); 6294 VG_(printf)(" cache: %'14lu invals, %'14lu flushes\n", 6295 stats__cache_invals, stats__cache_flushes ); 6296 VG_(printf)(" cache: %'14llu arange_New %'14llu direct-to-Zreps\n", 6297 stats__cache_make_New_arange, 6298 stats__cache_make_New_inZrep); 6299 6300 VG_(printf)("%s","\n"); 6301 VG_(printf)(" cline: %'10lu normalises\n", 6302 stats__cline_normalises ); 6303 VG_(printf)(" cline: c rds 8/4/2/1: %'13lu %'13lu %'13lu %'13lu\n", 6304 stats__cline_cread64s, 6305 stats__cline_cread32s, 6306 stats__cline_cread16s, 6307 stats__cline_cread08s ); 6308 VG_(printf)(" cline: c wrs 8/4/2/1: %'13lu %'13lu %'13lu %'13lu\n", 6309 stats__cline_cwrite64s, 6310 stats__cline_cwrite32s, 6311 stats__cline_cwrite16s, 6312 stats__cline_cwrite08s ); 6313 VG_(printf)(" cline: s wrs 8/4/2/1: %'13lu %'13lu %'13lu %'13lu\n", 6314 stats__cline_swrite64s, 6315 stats__cline_swrite32s, 6316 stats__cline_swrite16s, 6317 stats__cline_swrite08s ); 6318 VG_(printf)(" cline: s rd1s %'lu, s copy1s %'lu\n", 6319 stats__cline_sread08s, stats__cline_scopy08s ); 6320 VG_(printf)(" cline: splits: 8to4 %'12lu 4to2 %'12lu 2to1 %'12lu\n", 6321 stats__cline_64to32splits, 6322 stats__cline_32to16splits, 6323 stats__cline_16to8splits ); 6324 VG_(printf)(" cline: pulldowns: 8to4 %'12lu 4to2 %'12lu 2to1 %'12lu\n", 6325 stats__cline_64to32pulldown, 6326 stats__cline_32to16pulldown, 6327 stats__cline_16to8pulldown ); 6328 if (0) 6329 VG_(printf)(" cline: sizeof(CacheLineZ) %ld, covers %ld bytes of arange\n", 6330 (Word)sizeof(LineZ), (Word)N_LINE_ARANGE); 6331 6332 VG_(printf)("%s","\n"); 6333 6334 VG_(printf)(" libhb: %'13llu msmcread (%'llu dragovers)\n", 6335 stats__msmcread, stats__msmcread_change); 6336 VG_(printf)(" libhb: %'13llu msmcwrite (%'llu dragovers)\n", 6337 stats__msmcwrite, stats__msmcwrite_change); 6338 VG_(printf)(" libhb: %'13llu cmpLEQ queries (%'llu misses)\n", 6339 stats__cmpLEQ_queries, stats__cmpLEQ_misses); 6340 VG_(printf)(" libhb: %'13llu join2 queries (%'llu misses)\n", 6341 stats__join2_queries, stats__join2_misses); 6342 6343 VG_(printf)("%s","\n"); 6344 VG_(printf)( " libhb: VTSops: tick %'lu, join %'lu, cmpLEQ %'lu\n", 6345 stats__vts__tick, stats__vts__join, stats__vts__cmpLEQ ); 6346 VG_(printf)( " libhb: VTSops: cmp_structural %'lu (%'lu slow)\n", 6347 stats__vts__cmp_structural, stats__vts__cmp_structural_slow ); 6348 VG_(printf)( " libhb: VTSset: find__or__clone_and_add %'lu (%'lu allocd)\n", 6349 stats__vts_set__focaa, stats__vts_set__focaa_a ); 6350 VG_(printf)( " libhb: VTSops: indexAt_SLOW %'lu\n", 6351 stats__vts__indexat_slow ); 6352 6353 VG_(printf)("%s","\n"); 6354 VG_(printf)( 6355 " libhb: %ld entries in vts_table (approximately %lu bytes)\n", 6356 VG_(sizeXA)( vts_tab ), VG_(sizeXA)( vts_tab ) * sizeof(VtsTE) 6357 ); 6358 VG_(printf)( " libhb: %lu entries in vts_set\n", 6359 VG_(sizeFM)( vts_set ) ); 6360 6361 VG_(printf)("%s","\n"); 6362 VG_(printf)( " libhb: ctxt__rcdec: 1=%lu(%lu eq), 2=%lu, 3=%lu\n", 6363 stats__ctxt_rcdec1, stats__ctxt_rcdec1_eq, 6364 stats__ctxt_rcdec2, 6365 stats__ctxt_rcdec3 ); 6366 VG_(printf)( " libhb: ctxt__rcdec: calls %lu, discards %lu\n", 6367 stats__ctxt_rcdec_calls, stats__ctxt_rcdec_discards); 6368 VG_(printf)( " libhb: contextTab: %lu slots, %lu max ents\n", 6369 (UWord)N_RCEC_TAB, 6370 stats__ctxt_tab_curr ); 6371 VG_(printf)( " libhb: contextTab: %lu queries, %lu cmps\n", 6372 stats__ctxt_tab_qs, 6373 stats__ctxt_tab_cmps ); 6374 #if 0 6375 VG_(printf)("sizeof(AvlNode) = %lu\n", sizeof(AvlNode)); 6376 VG_(printf)("sizeof(WordBag) = %lu\n", sizeof(WordBag)); 6377 VG_(printf)("sizeof(MaybeWord) = %lu\n", sizeof(MaybeWord)); 6378 VG_(printf)("sizeof(CacheLine) = %lu\n", sizeof(CacheLine)); 6379 VG_(printf)("sizeof(LineZ) = %lu\n", sizeof(LineZ)); 6380 VG_(printf)("sizeof(LineF) = %lu\n", sizeof(LineF)); 6381 VG_(printf)("sizeof(SecMap) = %lu\n", sizeof(SecMap)); 6382 VG_(printf)("sizeof(Cache) = %lu\n", sizeof(Cache)); 6383 VG_(printf)("sizeof(SMCacheEnt) = %lu\n", sizeof(SMCacheEnt)); 6384 VG_(printf)("sizeof(CountedSVal) = %lu\n", sizeof(CountedSVal)); 6385 VG_(printf)("sizeof(VTS) = %lu\n", sizeof(VTS)); 6386 VG_(printf)("sizeof(ScalarTS) = %lu\n", sizeof(ScalarTS)); 6387 VG_(printf)("sizeof(VtsTE) = %lu\n", sizeof(VtsTE)); 6388 VG_(printf)("sizeof(MSMInfo) = %lu\n", sizeof(MSMInfo)); 6389 6390 VG_(printf)("sizeof(struct _XArray) = %lu\n", sizeof(struct _XArray)); 6391 VG_(printf)("sizeof(struct _WordFM) = %lu\n", sizeof(struct _WordFM)); 6392 VG_(printf)("sizeof(struct _Thr) = %lu\n", sizeof(struct _Thr)); 6393 VG_(printf)("sizeof(struct _SO) = %lu\n", sizeof(struct _SO)); 6394 #endif 6395 6396 VG_(printf)("%s","<<< END libhb stats >>>\n"); 6397 VG_(printf)("%s","\n"); 6398 6399 } 6400 } 6401 6402 /* Receive notification that a thread has low level exited. The 6403 significance here is that we do not expect to see any more memory 6404 references from it. */ 6405 void libhb_async_exit ( Thr* thr ) 6406 { 6407 tl_assert(thr); 6408 tl_assert(!thr->llexit_done); 6409 thr->llexit_done = True; 6410 6411 /* free up Filter and local_Kws_n_stacks (well, actually not the 6412 latter ..) */ 6413 tl_assert(thr->filter); 6414 HG_(free)(thr->filter); 6415 thr->filter = NULL; 6416 6417 /* Tell the VTS mechanism this thread has exited, so it can 6418 participate in VTS pruning. Note this can only happen if the 6419 thread has both ll_exited and has been joined with. */ 6420 if (thr->joinedwith_done) 6421 VTS__declare_thread_very_dead(thr); 6422 6423 /* Another space-accuracy tradeoff. Do we want to be able to show 6424 H1 history for conflicts in threads which have since exited? If 6425 yes, then we better not free up thr->local_Kws_n_stacks. The 6426 downside is a potential per-thread leak of up to 6427 N_KWs_N_STACKs_PER_THREAD * sizeof(ULong_n_EC) * whatever the 6428 XArray average overcommit factor is (1.5 I'd guess). */ 6429 // hence: 6430 // VG_(deleteXA)(thr->local_Kws_n_stacks); 6431 // thr->local_Kws_n_stacks = NULL; 6432 } 6433 6434 /* Receive notification that a thread has been joined with. The 6435 significance here is that we do not expect to see any further 6436 references to its vector clocks (Thr::viR and Thr::viW). */ 6437 void libhb_joinedwith_done ( Thr* thr ) 6438 { 6439 tl_assert(thr); 6440 /* Caller must ensure that this is only ever called once per Thr. */ 6441 tl_assert(!thr->joinedwith_done); 6442 thr->joinedwith_done = True; 6443 if (thr->llexit_done) 6444 VTS__declare_thread_very_dead(thr); 6445 } 6446 6447 6448 /* Both Segs and SOs point to VTSs. However, there is no sharing, so 6449 a Seg that points at a VTS is its one-and-only owner, and ditto for 6450 a SO that points at a VTS. */ 6451 6452 SO* libhb_so_alloc ( void ) 6453 { 6454 return SO__Alloc(); 6455 } 6456 6457 void libhb_so_dealloc ( SO* so ) 6458 { 6459 tl_assert(so); 6460 tl_assert(so->magic == SO_MAGIC); 6461 SO__Dealloc(so); 6462 } 6463 6464 /* See comments in libhb.h for details on the meaning of 6465 strong vs weak sends and strong vs weak receives. */ 6466 void libhb_so_send ( Thr* thr, SO* so, Bool strong_send ) 6467 { 6468 /* Copy the VTSs from 'thr' into the sync object, and then move 6469 the thread along one step. */ 6470 6471 tl_assert(so); 6472 tl_assert(so->magic == SO_MAGIC); 6473 6474 /* stay sane .. a thread's read-clock must always lead or be the 6475 same as its write-clock */ 6476 { Bool leq = VtsID__cmpLEQ(thr->viW, thr->viR); 6477 tl_assert(leq); 6478 } 6479 6480 /* since we're overwriting the VtsIDs in the SO, we need to drop 6481 any references made by the previous contents thereof */ 6482 if (so->viR == VtsID_INVALID) { 6483 tl_assert(so->viW == VtsID_INVALID); 6484 so->viR = thr->viR; 6485 so->viW = thr->viW; 6486 VtsID__rcinc(so->viR); 6487 VtsID__rcinc(so->viW); 6488 } else { 6489 /* In a strong send, we dump any previous VC in the SO and 6490 install the sending thread's VC instead. For a weak send we 6491 must join2 with what's already there. */ 6492 tl_assert(so->viW != VtsID_INVALID); 6493 VtsID__rcdec(so->viR); 6494 VtsID__rcdec(so->viW); 6495 so->viR = strong_send ? thr->viR : VtsID__join2( so->viR, thr->viR ); 6496 so->viW = strong_send ? thr->viW : VtsID__join2( so->viW, thr->viW ); 6497 VtsID__rcinc(so->viR); 6498 VtsID__rcinc(so->viW); 6499 } 6500 6501 /* move both parent clocks along */ 6502 VtsID__rcdec(thr->viR); 6503 VtsID__rcdec(thr->viW); 6504 thr->viR = VtsID__tick( thr->viR, thr ); 6505 thr->viW = VtsID__tick( thr->viW, thr ); 6506 if (!thr->llexit_done) { 6507 Filter__clear(thr->filter, "libhb_so_send"); 6508 note_local_Kw_n_stack_for(thr); 6509 } 6510 VtsID__rcinc(thr->viR); 6511 VtsID__rcinc(thr->viW); 6512 6513 if (strong_send) 6514 show_thread_state("s-send", thr); 6515 else 6516 show_thread_state("w-send", thr); 6517 } 6518 6519 void libhb_so_recv ( Thr* thr, SO* so, Bool strong_recv ) 6520 { 6521 tl_assert(so); 6522 tl_assert(so->magic == SO_MAGIC); 6523 6524 if (so->viR != VtsID_INVALID) { 6525 tl_assert(so->viW != VtsID_INVALID); 6526 6527 /* Weak receive (basically, an R-acquisition of a R-W lock). 6528 This advances the read-clock of the receiver, but not the 6529 write-clock. */ 6530 VtsID__rcdec(thr->viR); 6531 thr->viR = VtsID__join2( thr->viR, so->viR ); 6532 VtsID__rcinc(thr->viR); 6533 6534 /* At one point (r10589) it seemed safest to tick the clocks for 6535 the receiving thread after the join. But on reflection, I 6536 wonder if that might cause it to 'overtake' constraints, 6537 which could lead to missing races. So, back out that part of 6538 r10589. */ 6539 //VtsID__rcdec(thr->viR); 6540 //thr->viR = VtsID__tick( thr->viR, thr ); 6541 //VtsID__rcinc(thr->viR); 6542 6543 /* For a strong receive, we also advance the receiver's write 6544 clock, which means the receive as a whole is essentially 6545 equivalent to a W-acquisition of a R-W lock. */ 6546 if (strong_recv) { 6547 VtsID__rcdec(thr->viW); 6548 thr->viW = VtsID__join2( thr->viW, so->viW ); 6549 VtsID__rcinc(thr->viW); 6550 6551 /* See comment just above, re r10589. */ 6552 //VtsID__rcdec(thr->viW); 6553 //thr->viW = VtsID__tick( thr->viW, thr ); 6554 //VtsID__rcinc(thr->viW); 6555 } 6556 6557 if (thr->filter) 6558 Filter__clear(thr->filter, "libhb_so_recv"); 6559 note_local_Kw_n_stack_for(thr); 6560 6561 if (strong_recv) 6562 show_thread_state("s-recv", thr); 6563 else 6564 show_thread_state("w-recv", thr); 6565 6566 } else { 6567 tl_assert(so->viW == VtsID_INVALID); 6568 /* Deal with degenerate case: 'so' has no vts, so there has been 6569 no message posted to it. Just ignore this case. */ 6570 show_thread_state("d-recv", thr); 6571 } 6572 } 6573 6574 Bool libhb_so_everSent ( SO* so ) 6575 { 6576 if (so->viR == VtsID_INVALID) { 6577 tl_assert(so->viW == VtsID_INVALID); 6578 return False; 6579 } else { 6580 tl_assert(so->viW != VtsID_INVALID); 6581 return True; 6582 } 6583 } 6584 6585 #define XXX1 0 // 0x67a106c 6586 #define XXX2 0 6587 6588 static inline Bool TRACEME(Addr a, SizeT szB) { 6589 if (XXX1 && a <= XXX1 && XXX1 <= a+szB) return True; 6590 if (XXX2 && a <= XXX2 && XXX2 <= a+szB) return True; 6591 return False; 6592 } 6593 static void trace ( Thr* thr, Addr a, SizeT szB, HChar* s ) { 6594 SVal sv = zsm_sread08(a); 6595 VG_(printf)("thr %p (%#lx,%lu) %s: 0x%016llx ", thr,a,szB,s,sv); 6596 show_thread_state("", thr); 6597 VG_(printf)("%s","\n"); 6598 } 6599 6600 void libhb_srange_new ( Thr* thr, Addr a, SizeT szB ) 6601 { 6602 SVal sv = SVal__mkC(thr->viW, thr->viW); 6603 tl_assert(is_sane_SVal_C(sv)); 6604 if (0 && TRACEME(a,szB)) trace(thr,a,szB,"nw-before"); 6605 zsm_sset_range( a, szB, sv ); 6606 Filter__clear_range( thr->filter, a, szB ); 6607 if (0 && TRACEME(a,szB)) trace(thr,a,szB,"nw-after "); 6608 } 6609 6610 void libhb_srange_noaccess_NoFX ( Thr* thr, Addr a, SizeT szB ) 6611 { 6612 /* do nothing */ 6613 } 6614 6615 void libhb_srange_noaccess_AHAE ( Thr* thr, Addr a, SizeT szB ) 6616 { 6617 /* This really does put the requested range in NoAccess. It's 6618 expensive though. */ 6619 SVal sv = SVal_NOACCESS; 6620 tl_assert(is_sane_SVal_C(sv)); 6621 zsm_sset_range( a, szB, sv ); 6622 Filter__clear_range( thr->filter, a, szB ); 6623 } 6624 6625 void libhb_srange_untrack ( Thr* thr, Addr a, SizeT szB ) 6626 { 6627 SVal sv = SVal_NOACCESS; 6628 tl_assert(is_sane_SVal_C(sv)); 6629 if (0 && TRACEME(a,szB)) trace(thr,a,szB,"untrack-before"); 6630 zsm_sset_range( a, szB, sv ); 6631 Filter__clear_range( thr->filter, a, szB ); 6632 if (0 && TRACEME(a,szB)) trace(thr,a,szB,"untrack-after "); 6633 } 6634 6635 Thread* libhb_get_Thr_hgthread ( Thr* thr ) { 6636 tl_assert(thr); 6637 return thr->hgthread; 6638 } 6639 6640 void libhb_set_Thr_hgthread ( Thr* thr, Thread* hgthread ) { 6641 tl_assert(thr); 6642 thr->hgthread = hgthread; 6643 } 6644 6645 void libhb_copy_shadow_state ( Thr* thr, Addr src, Addr dst, SizeT len ) 6646 { 6647 zsm_scopy_range(src, dst, len); 6648 Filter__clear_range( thr->filter, dst, len ); 6649 } 6650 6651 void libhb_maybe_GC ( void ) 6652 { 6653 event_map_maybe_GC(); 6654 /* If there are still freelist entries available, no need for a 6655 GC. */ 6656 if (vts_tab_freelist != VtsID_INVALID) 6657 return; 6658 /* So all the table entries are full, and we're having to expand 6659 the table. But did we hit the threshhold point yet? */ 6660 if (VG_(sizeXA)( vts_tab ) < vts_next_GC_at) 6661 return; 6662 vts_tab__do_GC( False/*don't show stats*/ ); 6663 } 6664 6665 6666 ///////////////////////////////////////////////////////////////// 6667 ///////////////////////////////////////////////////////////////// 6668 // // 6669 // SECTION END main library // 6670 // // 6671 ///////////////////////////////////////////////////////////////// 6672 ///////////////////////////////////////////////////////////////// 6673 6674 /*--------------------------------------------------------------------*/ 6675 /*--- end libhb_main.c ---*/ 6676 /*--------------------------------------------------------------------*/ 6677