1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include <math.h> 29 30 #include "../include/v8stdint.h" 31 #include "checks.h" 32 #include "utils.h" 33 34 #include "bignum-dtoa.h" 35 36 #include "bignum.h" 37 #include "double.h" 38 39 namespace v8 { 40 namespace internal { 41 42 static int NormalizedExponent(uint64_t significand, int exponent) { 43 ASSERT(significand != 0); 44 while ((significand & Double::kHiddenBit) == 0) { 45 significand = significand << 1; 46 exponent = exponent - 1; 47 } 48 return exponent; 49 } 50 51 52 // Forward declarations: 53 // Returns an estimation of k such that 10^(k-1) <= v < 10^k. 54 static int EstimatePower(int exponent); 55 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator 56 // and denominator. 57 static void InitialScaledStartValues(double v, 58 int estimated_power, 59 bool need_boundary_deltas, 60 Bignum* numerator, 61 Bignum* denominator, 62 Bignum* delta_minus, 63 Bignum* delta_plus); 64 // Multiplies numerator/denominator so that its values lies in the range 1-10. 65 // Returns decimal_point s.t. 66 // v = numerator'/denominator' * 10^(decimal_point-1) 67 // where numerator' and denominator' are the values of numerator and 68 // denominator after the call to this function. 69 static void FixupMultiply10(int estimated_power, bool is_even, 70 int* decimal_point, 71 Bignum* numerator, Bignum* denominator, 72 Bignum* delta_minus, Bignum* delta_plus); 73 // Generates digits from the left to the right and stops when the generated 74 // digits yield the shortest decimal representation of v. 75 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, 76 Bignum* delta_minus, Bignum* delta_plus, 77 bool is_even, 78 Vector<char> buffer, int* length); 79 // Generates 'requested_digits' after the decimal point. 80 static void BignumToFixed(int requested_digits, int* decimal_point, 81 Bignum* numerator, Bignum* denominator, 82 Vector<char>(buffer), int* length); 83 // Generates 'count' digits of numerator/denominator. 84 // Once 'count' digits have been produced rounds the result depending on the 85 // remainder (remainders of exactly .5 round upwards). Might update the 86 // decimal_point when rounding up (for example for 0.9999). 87 static void GenerateCountedDigits(int count, int* decimal_point, 88 Bignum* numerator, Bignum* denominator, 89 Vector<char>(buffer), int* length); 90 91 92 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, 93 Vector<char> buffer, int* length, int* decimal_point) { 94 ASSERT(v > 0); 95 ASSERT(!Double(v).IsSpecial()); 96 uint64_t significand = Double(v).Significand(); 97 bool is_even = (significand & 1) == 0; 98 int exponent = Double(v).Exponent(); 99 int normalized_exponent = NormalizedExponent(significand, exponent); 100 // estimated_power might be too low by 1. 101 int estimated_power = EstimatePower(normalized_exponent); 102 103 // Shortcut for Fixed. 104 // The requested digits correspond to the digits after the point. If the 105 // number is much too small, then there is no need in trying to get any 106 // digits. 107 if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) { 108 buffer[0] = '\0'; 109 *length = 0; 110 // Set decimal-point to -requested_digits. This is what Gay does. 111 // Note that it should not have any effect anyways since the string is 112 // empty. 113 *decimal_point = -requested_digits; 114 return; 115 } 116 117 Bignum numerator; 118 Bignum denominator; 119 Bignum delta_minus; 120 Bignum delta_plus; 121 // Make sure the bignum can grow large enough. The smallest double equals 122 // 4e-324. In this case the denominator needs fewer than 324*4 binary digits. 123 // The maximum double is 1.7976931348623157e308 which needs fewer than 124 // 308*4 binary digits. 125 ASSERT(Bignum::kMaxSignificantBits >= 324*4); 126 bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST); 127 InitialScaledStartValues(v, estimated_power, need_boundary_deltas, 128 &numerator, &denominator, 129 &delta_minus, &delta_plus); 130 // We now have v = (numerator / denominator) * 10^estimated_power. 131 FixupMultiply10(estimated_power, is_even, decimal_point, 132 &numerator, &denominator, 133 &delta_minus, &delta_plus); 134 // We now have v = (numerator / denominator) * 10^(decimal_point-1), and 135 // 1 <= (numerator + delta_plus) / denominator < 10 136 switch (mode) { 137 case BIGNUM_DTOA_SHORTEST: 138 GenerateShortestDigits(&numerator, &denominator, 139 &delta_minus, &delta_plus, 140 is_even, buffer, length); 141 break; 142 case BIGNUM_DTOA_FIXED: 143 BignumToFixed(requested_digits, decimal_point, 144 &numerator, &denominator, 145 buffer, length); 146 break; 147 case BIGNUM_DTOA_PRECISION: 148 GenerateCountedDigits(requested_digits, decimal_point, 149 &numerator, &denominator, 150 buffer, length); 151 break; 152 default: 153 UNREACHABLE(); 154 } 155 buffer[*length] = '\0'; 156 } 157 158 159 // The procedure starts generating digits from the left to the right and stops 160 // when the generated digits yield the shortest decimal representation of v. A 161 // decimal representation of v is a number lying closer to v than to any other 162 // double, so it converts to v when read. 163 // 164 // This is true if d, the decimal representation, is between m- and m+, the 165 // upper and lower boundaries. d must be strictly between them if !is_even. 166 // m- := (numerator - delta_minus) / denominator 167 // m+ := (numerator + delta_plus) / denominator 168 // 169 // Precondition: 0 <= (numerator+delta_plus) / denominator < 10. 170 // If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit 171 // will be produced. This should be the standard precondition. 172 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, 173 Bignum* delta_minus, Bignum* delta_plus, 174 bool is_even, 175 Vector<char> buffer, int* length) { 176 // Small optimization: if delta_minus and delta_plus are the same just reuse 177 // one of the two bignums. 178 if (Bignum::Equal(*delta_minus, *delta_plus)) { 179 delta_plus = delta_minus; 180 } 181 *length = 0; 182 while (true) { 183 uint16_t digit; 184 digit = numerator->DivideModuloIntBignum(*denominator); 185 ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. 186 // digit = numerator / denominator (integer division). 187 // numerator = numerator % denominator. 188 buffer[(*length)++] = digit + '0'; 189 190 // Can we stop already? 191 // If the remainder of the division is less than the distance to the lower 192 // boundary we can stop. In this case we simply round down (discarding the 193 // remainder). 194 // Similarly we test if we can round up (using the upper boundary). 195 bool in_delta_room_minus; 196 bool in_delta_room_plus; 197 if (is_even) { 198 in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus); 199 } else { 200 in_delta_room_minus = Bignum::Less(*numerator, *delta_minus); 201 } 202 if (is_even) { 203 in_delta_room_plus = 204 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; 205 } else { 206 in_delta_room_plus = 207 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; 208 } 209 if (!in_delta_room_minus && !in_delta_room_plus) { 210 // Prepare for next iteration. 211 numerator->Times10(); 212 delta_minus->Times10(); 213 // We optimized delta_plus to be equal to delta_minus (if they share the 214 // same value). So don't multiply delta_plus if they point to the same 215 // object. 216 if (delta_minus != delta_plus) { 217 delta_plus->Times10(); 218 } 219 } else if (in_delta_room_minus && in_delta_room_plus) { 220 // Let's see if 2*numerator < denominator. 221 // If yes, then the next digit would be < 5 and we can round down. 222 int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator); 223 if (compare < 0) { 224 // Remaining digits are less than .5. -> Round down (== do nothing). 225 } else if (compare > 0) { 226 // Remaining digits are more than .5 of denominator. -> Round up. 227 // Note that the last digit could not be a '9' as otherwise the whole 228 // loop would have stopped earlier. 229 // We still have an assert here in case the preconditions were not 230 // satisfied. 231 ASSERT(buffer[(*length) - 1] != '9'); 232 buffer[(*length) - 1]++; 233 } else { 234 // Halfway case. 235 // TODO(floitsch): need a way to solve half-way cases. 236 // For now let's round towards even (since this is what Gay seems to 237 // do). 238 239 if ((buffer[(*length) - 1] - '0') % 2 == 0) { 240 // Round down => Do nothing. 241 } else { 242 ASSERT(buffer[(*length) - 1] != '9'); 243 buffer[(*length) - 1]++; 244 } 245 } 246 return; 247 } else if (in_delta_room_minus) { 248 // Round down (== do nothing). 249 return; 250 } else { // in_delta_room_plus 251 // Round up. 252 // Note again that the last digit could not be '9' since this would have 253 // stopped the loop earlier. 254 // We still have an ASSERT here, in case the preconditions were not 255 // satisfied. 256 ASSERT(buffer[(*length) -1] != '9'); 257 buffer[(*length) - 1]++; 258 return; 259 } 260 } 261 } 262 263 264 // Let v = numerator / denominator < 10. 265 // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point) 266 // from left to right. Once 'count' digits have been produced we decide wether 267 // to round up or down. Remainders of exactly .5 round upwards. Numbers such 268 // as 9.999999 propagate a carry all the way, and change the 269 // exponent (decimal_point), when rounding upwards. 270 static void GenerateCountedDigits(int count, int* decimal_point, 271 Bignum* numerator, Bignum* denominator, 272 Vector<char>(buffer), int* length) { 273 ASSERT(count >= 0); 274 for (int i = 0; i < count - 1; ++i) { 275 uint16_t digit; 276 digit = numerator->DivideModuloIntBignum(*denominator); 277 ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. 278 // digit = numerator / denominator (integer division). 279 // numerator = numerator % denominator. 280 buffer[i] = digit + '0'; 281 // Prepare for next iteration. 282 numerator->Times10(); 283 } 284 // Generate the last digit. 285 uint16_t digit; 286 digit = numerator->DivideModuloIntBignum(*denominator); 287 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { 288 digit++; 289 } 290 buffer[count - 1] = digit + '0'; 291 // Correct bad digits (in case we had a sequence of '9's). Propagate the 292 // carry until we hat a non-'9' or til we reach the first digit. 293 for (int i = count - 1; i > 0; --i) { 294 if (buffer[i] != '0' + 10) break; 295 buffer[i] = '0'; 296 buffer[i - 1]++; 297 } 298 if (buffer[0] == '0' + 10) { 299 // Propagate a carry past the top place. 300 buffer[0] = '1'; 301 (*decimal_point)++; 302 } 303 *length = count; 304 } 305 306 307 // Generates 'requested_digits' after the decimal point. It might omit 308 // trailing '0's. If the input number is too small then no digits at all are 309 // generated (ex.: 2 fixed digits for 0.00001). 310 // 311 // Input verifies: 1 <= (numerator + delta) / denominator < 10. 312 static void BignumToFixed(int requested_digits, int* decimal_point, 313 Bignum* numerator, Bignum* denominator, 314 Vector<char>(buffer), int* length) { 315 // Note that we have to look at more than just the requested_digits, since 316 // a number could be rounded up. Example: v=0.5 with requested_digits=0. 317 // Even though the power of v equals 0 we can't just stop here. 318 if (-(*decimal_point) > requested_digits) { 319 // The number is definitively too small. 320 // Ex: 0.001 with requested_digits == 1. 321 // Set decimal-point to -requested_digits. This is what Gay does. 322 // Note that it should not have any effect anyways since the string is 323 // empty. 324 *decimal_point = -requested_digits; 325 *length = 0; 326 return; 327 } else if (-(*decimal_point) == requested_digits) { 328 // We only need to verify if the number rounds down or up. 329 // Ex: 0.04 and 0.06 with requested_digits == 1. 330 ASSERT(*decimal_point == -requested_digits); 331 // Initially the fraction lies in range (1, 10]. Multiply the denominator 332 // by 10 so that we can compare more easily. 333 denominator->Times10(); 334 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { 335 // If the fraction is >= 0.5 then we have to include the rounded 336 // digit. 337 buffer[0] = '1'; 338 *length = 1; 339 (*decimal_point)++; 340 } else { 341 // Note that we caught most of similar cases earlier. 342 *length = 0; 343 } 344 return; 345 } else { 346 // The requested digits correspond to the digits after the point. 347 // The variable 'needed_digits' includes the digits before the point. 348 int needed_digits = (*decimal_point) + requested_digits; 349 GenerateCountedDigits(needed_digits, decimal_point, 350 numerator, denominator, 351 buffer, length); 352 } 353 } 354 355 356 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where 357 // v = f * 2^exponent and 2^52 <= f < 2^53. 358 // v is hence a normalized double with the given exponent. The output is an 359 // approximation for the exponent of the decimal approimation .digits * 10^k. 360 // 361 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1. 362 // Note: this property holds for v's upper boundary m+ too. 363 // 10^k <= m+ < 10^k+1. 364 // (see explanation below). 365 // 366 // Examples: 367 // EstimatePower(0) => 16 368 // EstimatePower(-52) => 0 369 // 370 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0. 371 static int EstimatePower(int exponent) { 372 // This function estimates log10 of v where v = f*2^e (with e == exponent). 373 // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)). 374 // Note that f is bounded by its container size. Let p = 53 (the double's 375 // significand size). Then 2^(p-1) <= f < 2^p. 376 // 377 // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close 378 // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)). 379 // The computed number undershoots by less than 0.631 (when we compute log3 380 // and not log10). 381 // 382 // Optimization: since we only need an approximated result this computation 383 // can be performed on 64 bit integers. On x86/x64 architecture the speedup is 384 // not really measurable, though. 385 // 386 // Since we want to avoid overshooting we decrement by 1e10 so that 387 // floating-point imprecisions don't affect us. 388 // 389 // Explanation for v's boundary m+: the computation takes advantage of 390 // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement 391 // (even for denormals where the delta can be much more important). 392 393 const double k1Log10 = 0.30102999566398114; // 1/lg(10) 394 395 // For doubles len(f) == 53 (don't forget the hidden bit). 396 const int kSignificandSize = 53; 397 double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10); 398 return static_cast<int>(estimate); 399 } 400 401 402 // See comments for InitialScaledStartValues. 403 static void InitialScaledStartValuesPositiveExponent( 404 double v, int estimated_power, bool need_boundary_deltas, 405 Bignum* numerator, Bignum* denominator, 406 Bignum* delta_minus, Bignum* delta_plus) { 407 // A positive exponent implies a positive power. 408 ASSERT(estimated_power >= 0); 409 // Since the estimated_power is positive we simply multiply the denominator 410 // by 10^estimated_power. 411 412 // numerator = v. 413 numerator->AssignUInt64(Double(v).Significand()); 414 numerator->ShiftLeft(Double(v).Exponent()); 415 // denominator = 10^estimated_power. 416 denominator->AssignPowerUInt16(10, estimated_power); 417 418 if (need_boundary_deltas) { 419 // Introduce a common denominator so that the deltas to the boundaries are 420 // integers. 421 denominator->ShiftLeft(1); 422 numerator->ShiftLeft(1); 423 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common 424 // denominator (of 2) delta_plus equals 2^e. 425 delta_plus->AssignUInt16(1); 426 delta_plus->ShiftLeft(Double(v).Exponent()); 427 // Same for delta_minus (with adjustments below if f == 2^p-1). 428 delta_minus->AssignUInt16(1); 429 delta_minus->ShiftLeft(Double(v).Exponent()); 430 431 // If the significand (without the hidden bit) is 0, then the lower 432 // boundary is closer than just half a ulp (unit in the last place). 433 // There is only one exception: if the next lower number is a denormal then 434 // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we 435 // have to test it in the other function where exponent < 0). 436 uint64_t v_bits = Double(v).AsUint64(); 437 if ((v_bits & Double::kSignificandMask) == 0) { 438 // The lower boundary is closer at half the distance of "normal" numbers. 439 // Increase the common denominator and adapt all but the delta_minus. 440 denominator->ShiftLeft(1); // *2 441 numerator->ShiftLeft(1); // *2 442 delta_plus->ShiftLeft(1); // *2 443 } 444 } 445 } 446 447 448 // See comments for InitialScaledStartValues 449 static void InitialScaledStartValuesNegativeExponentPositivePower( 450 double v, int estimated_power, bool need_boundary_deltas, 451 Bignum* numerator, Bignum* denominator, 452 Bignum* delta_minus, Bignum* delta_plus) { 453 uint64_t significand = Double(v).Significand(); 454 int exponent = Double(v).Exponent(); 455 // v = f * 2^e with e < 0, and with estimated_power >= 0. 456 // This means that e is close to 0 (have a look at how estimated_power is 457 // computed). 458 459 // numerator = significand 460 // since v = significand * 2^exponent this is equivalent to 461 // numerator = v * / 2^-exponent 462 numerator->AssignUInt64(significand); 463 // denominator = 10^estimated_power * 2^-exponent (with exponent < 0) 464 denominator->AssignPowerUInt16(10, estimated_power); 465 denominator->ShiftLeft(-exponent); 466 467 if (need_boundary_deltas) { 468 // Introduce a common denominator so that the deltas to the boundaries are 469 // integers. 470 denominator->ShiftLeft(1); 471 numerator->ShiftLeft(1); 472 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common 473 // denominator (of 2) delta_plus equals 2^e. 474 // Given that the denominator already includes v's exponent the distance 475 // to the boundaries is simply 1. 476 delta_plus->AssignUInt16(1); 477 // Same for delta_minus (with adjustments below if f == 2^p-1). 478 delta_minus->AssignUInt16(1); 479 480 // If the significand (without the hidden bit) is 0, then the lower 481 // boundary is closer than just one ulp (unit in the last place). 482 // There is only one exception: if the next lower number is a denormal 483 // then the distance is 1 ulp. Since the exponent is close to zero 484 // (otherwise estimated_power would have been negative) this cannot happen 485 // here either. 486 uint64_t v_bits = Double(v).AsUint64(); 487 if ((v_bits & Double::kSignificandMask) == 0) { 488 // The lower boundary is closer at half the distance of "normal" numbers. 489 // Increase the denominator and adapt all but the delta_minus. 490 denominator->ShiftLeft(1); // *2 491 numerator->ShiftLeft(1); // *2 492 delta_plus->ShiftLeft(1); // *2 493 } 494 } 495 } 496 497 498 // See comments for InitialScaledStartValues 499 static void InitialScaledStartValuesNegativeExponentNegativePower( 500 double v, int estimated_power, bool need_boundary_deltas, 501 Bignum* numerator, Bignum* denominator, 502 Bignum* delta_minus, Bignum* delta_plus) { 503 const uint64_t kMinimalNormalizedExponent = 504 V8_2PART_UINT64_C(0x00100000, 00000000); 505 uint64_t significand = Double(v).Significand(); 506 int exponent = Double(v).Exponent(); 507 // Instead of multiplying the denominator with 10^estimated_power we 508 // multiply all values (numerator and deltas) by 10^-estimated_power. 509 510 // Use numerator as temporary container for power_ten. 511 Bignum* power_ten = numerator; 512 power_ten->AssignPowerUInt16(10, -estimated_power); 513 514 if (need_boundary_deltas) { 515 // Since power_ten == numerator we must make a copy of 10^estimated_power 516 // before we complete the computation of the numerator. 517 // delta_plus = delta_minus = 10^estimated_power 518 delta_plus->AssignBignum(*power_ten); 519 delta_minus->AssignBignum(*power_ten); 520 } 521 522 // numerator = significand * 2 * 10^-estimated_power 523 // since v = significand * 2^exponent this is equivalent to 524 // numerator = v * 10^-estimated_power * 2 * 2^-exponent. 525 // Remember: numerator has been abused as power_ten. So no need to assign it 526 // to itself. 527 ASSERT(numerator == power_ten); 528 numerator->MultiplyByUInt64(significand); 529 530 // denominator = 2 * 2^-exponent with exponent < 0. 531 denominator->AssignUInt16(1); 532 denominator->ShiftLeft(-exponent); 533 534 if (need_boundary_deltas) { 535 // Introduce a common denominator so that the deltas to the boundaries are 536 // integers. 537 numerator->ShiftLeft(1); 538 denominator->ShiftLeft(1); 539 // With this shift the boundaries have their correct value, since 540 // delta_plus = 10^-estimated_power, and 541 // delta_minus = 10^-estimated_power. 542 // These assignments have been done earlier. 543 544 // The special case where the lower boundary is twice as close. 545 // This time we have to look out for the exception too. 546 uint64_t v_bits = Double(v).AsUint64(); 547 if ((v_bits & Double::kSignificandMask) == 0 && 548 // The only exception where a significand == 0 has its boundaries at 549 // "normal" distances: 550 (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) { 551 numerator->ShiftLeft(1); // *2 552 denominator->ShiftLeft(1); // *2 553 delta_plus->ShiftLeft(1); // *2 554 } 555 } 556 } 557 558 559 // Let v = significand * 2^exponent. 560 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator 561 // and denominator. The functions GenerateShortestDigits and 562 // GenerateCountedDigits will then convert this ratio to its decimal 563 // representation d, with the required accuracy. 564 // Then d * 10^estimated_power is the representation of v. 565 // (Note: the fraction and the estimated_power might get adjusted before 566 // generating the decimal representation.) 567 // 568 // The initial start values consist of: 569 // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power. 570 // - a scaled (common) denominator. 571 // optionally (used by GenerateShortestDigits to decide if it has the shortest 572 // decimal converting back to v): 573 // - v - m-: the distance to the lower boundary. 574 // - m+ - v: the distance to the upper boundary. 575 // 576 // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator. 577 // 578 // Let ep == estimated_power, then the returned values will satisfy: 579 // v / 10^ep = numerator / denominator. 580 // v's boundarys m- and m+: 581 // m- / 10^ep == v / 10^ep - delta_minus / denominator 582 // m+ / 10^ep == v / 10^ep + delta_plus / denominator 583 // Or in other words: 584 // m- == v - delta_minus * 10^ep / denominator; 585 // m+ == v + delta_plus * 10^ep / denominator; 586 // 587 // Since 10^(k-1) <= v < 10^k (with k == estimated_power) 588 // or 10^k <= v < 10^(k+1) 589 // we then have 0.1 <= numerator/denominator < 1 590 // or 1 <= numerator/denominator < 10 591 // 592 // It is then easy to kickstart the digit-generation routine. 593 // 594 // The boundary-deltas are only filled if need_boundary_deltas is set. 595 static void InitialScaledStartValues(double v, 596 int estimated_power, 597 bool need_boundary_deltas, 598 Bignum* numerator, 599 Bignum* denominator, 600 Bignum* delta_minus, 601 Bignum* delta_plus) { 602 if (Double(v).Exponent() >= 0) { 603 InitialScaledStartValuesPositiveExponent( 604 v, estimated_power, need_boundary_deltas, 605 numerator, denominator, delta_minus, delta_plus); 606 } else if (estimated_power >= 0) { 607 InitialScaledStartValuesNegativeExponentPositivePower( 608 v, estimated_power, need_boundary_deltas, 609 numerator, denominator, delta_minus, delta_plus); 610 } else { 611 InitialScaledStartValuesNegativeExponentNegativePower( 612 v, estimated_power, need_boundary_deltas, 613 numerator, denominator, delta_minus, delta_plus); 614 } 615 } 616 617 618 // This routine multiplies numerator/denominator so that its values lies in the 619 // range 1-10. That is after a call to this function we have: 620 // 1 <= (numerator + delta_plus) /denominator < 10. 621 // Let numerator the input before modification and numerator' the argument 622 // after modification, then the output-parameter decimal_point is such that 623 // numerator / denominator * 10^estimated_power == 624 // numerator' / denominator' * 10^(decimal_point - 1) 625 // In some cases estimated_power was too low, and this is already the case. We 626 // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k == 627 // estimated_power) but do not touch the numerator or denominator. 628 // Otherwise the routine multiplies the numerator and the deltas by 10. 629 static void FixupMultiply10(int estimated_power, bool is_even, 630 int* decimal_point, 631 Bignum* numerator, Bignum* denominator, 632 Bignum* delta_minus, Bignum* delta_plus) { 633 bool in_range; 634 if (is_even) { 635 // For IEEE doubles half-way cases (in decimal system numbers ending with 5) 636 // are rounded to the closest floating-point number with even significand. 637 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; 638 } else { 639 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; 640 } 641 if (in_range) { 642 // Since numerator + delta_plus >= denominator we already have 643 // 1 <= numerator/denominator < 10. Simply update the estimated_power. 644 *decimal_point = estimated_power + 1; 645 } else { 646 *decimal_point = estimated_power; 647 numerator->Times10(); 648 if (Bignum::Equal(*delta_minus, *delta_plus)) { 649 delta_minus->Times10(); 650 delta_plus->AssignBignum(*delta_minus); 651 } else { 652 delta_minus->Times10(); 653 delta_plus->Times10(); 654 } 655 } 656 } 657 658 } } // namespace v8::internal 659