Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the SmallVector class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ADT_SMALLVECTOR_H
     15 #define LLVM_ADT_SMALLVECTOR_H
     16 
     17 #include "llvm/Support/AlignOf.h"
     18 #include "llvm/Support/Compiler.h"
     19 #include "llvm/Support/type_traits.h"
     20 #include <algorithm>
     21 #include <cassert>
     22 #include <cstddef>
     23 #include <cstdlib>
     24 #include <cstring>
     25 #include <iterator>
     26 #include <memory>
     27 
     28 namespace llvm {
     29 
     30 /// SmallVectorBase - This is all the non-templated stuff common to all
     31 /// SmallVectors.
     32 class SmallVectorBase {
     33 protected:
     34   void *BeginX, *EndX, *CapacityX;
     35 
     36 protected:
     37   SmallVectorBase(void *FirstEl, size_t Size)
     38     : BeginX(FirstEl), EndX(FirstEl), CapacityX((char*)FirstEl+Size) {}
     39 
     40   /// grow_pod - This is an implementation of the grow() method which only works
     41   /// on POD-like data types and is out of line to reduce code duplication.
     42   void grow_pod(void *FirstEl, size_t MinSizeInBytes, size_t TSize);
     43 
     44 public:
     45   /// size_in_bytes - This returns size()*sizeof(T).
     46   size_t size_in_bytes() const {
     47     return size_t((char*)EndX - (char*)BeginX);
     48   }
     49 
     50   /// capacity_in_bytes - This returns capacity()*sizeof(T).
     51   size_t capacity_in_bytes() const {
     52     return size_t((char*)CapacityX - (char*)BeginX);
     53   }
     54 
     55   bool empty() const { return BeginX == EndX; }
     56 };
     57 
     58 template <typename T, unsigned N> struct SmallVectorStorage;
     59 
     60 /// SmallVectorTemplateCommon - This is the part of SmallVectorTemplateBase
     61 /// which does not depend on whether the type T is a POD. The extra dummy
     62 /// template argument is used by ArrayRef to avoid unnecessarily requiring T
     63 /// to be complete.
     64 template <typename T, typename = void>
     65 class SmallVectorTemplateCommon : public SmallVectorBase {
     66 private:
     67   template <typename, unsigned> friend struct SmallVectorStorage;
     68 
     69   // Allocate raw space for N elements of type T.  If T has a ctor or dtor, we
     70   // don't want it to be automatically run, so we need to represent the space as
     71   // something else.  Use an array of char of sufficient alignment.
     72   typedef llvm::AlignedCharArrayUnion<T> U;
     73   U FirstEl;
     74   // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
     75 
     76 protected:
     77   SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(&FirstEl, Size) {}
     78 
     79   void grow_pod(size_t MinSizeInBytes, size_t TSize) {
     80     SmallVectorBase::grow_pod(&FirstEl, MinSizeInBytes, TSize);
     81   }
     82 
     83   /// isSmall - Return true if this is a smallvector which has not had dynamic
     84   /// memory allocated for it.
     85   bool isSmall() const {
     86     return BeginX == static_cast<const void*>(&FirstEl);
     87   }
     88 
     89   /// resetToSmall - Put this vector in a state of being small.
     90   void resetToSmall() {
     91     BeginX = EndX = CapacityX = &FirstEl;
     92   }
     93 
     94   void setEnd(T *P) { this->EndX = P; }
     95 public:
     96   typedef size_t size_type;
     97   typedef ptrdiff_t difference_type;
     98   typedef T value_type;
     99   typedef T *iterator;
    100   typedef const T *const_iterator;
    101 
    102   typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
    103   typedef std::reverse_iterator<iterator> reverse_iterator;
    104 
    105   typedef T &reference;
    106   typedef const T &const_reference;
    107   typedef T *pointer;
    108   typedef const T *const_pointer;
    109 
    110   // forward iterator creation methods.
    111   iterator begin() { return (iterator)this->BeginX; }
    112   const_iterator begin() const { return (const_iterator)this->BeginX; }
    113   iterator end() { return (iterator)this->EndX; }
    114   const_iterator end() const { return (const_iterator)this->EndX; }
    115 protected:
    116   iterator capacity_ptr() { return (iterator)this->CapacityX; }
    117   const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
    118 public:
    119 
    120   // reverse iterator creation methods.
    121   reverse_iterator rbegin()            { return reverse_iterator(end()); }
    122   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
    123   reverse_iterator rend()              { return reverse_iterator(begin()); }
    124   const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
    125 
    126   size_type size() const { return end()-begin(); }
    127   size_type max_size() const { return size_type(-1) / sizeof(T); }
    128 
    129   /// capacity - Return the total number of elements in the currently allocated
    130   /// buffer.
    131   size_t capacity() const { return capacity_ptr() - begin(); }
    132 
    133   /// data - Return a pointer to the vector's buffer, even if empty().
    134   pointer data() { return pointer(begin()); }
    135   /// data - Return a pointer to the vector's buffer, even if empty().
    136   const_pointer data() const { return const_pointer(begin()); }
    137 
    138   reference operator[](unsigned idx) {
    139     assert(begin() + idx < end());
    140     return begin()[idx];
    141   }
    142   const_reference operator[](unsigned idx) const {
    143     assert(begin() + idx < end());
    144     return begin()[idx];
    145   }
    146 
    147   reference front() {
    148     return begin()[0];
    149   }
    150   const_reference front() const {
    151     return begin()[0];
    152   }
    153 
    154   reference back() {
    155     return end()[-1];
    156   }
    157   const_reference back() const {
    158     return end()[-1];
    159   }
    160 };
    161 
    162 /// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
    163 /// implementations that are designed to work with non-POD-like T's.
    164 template <typename T, bool isPodLike>
    165 class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
    166 protected:
    167   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
    168 
    169   static void destroy_range(T *S, T *E) {
    170     while (S != E) {
    171       --E;
    172       E->~T();
    173     }
    174   }
    175 
    176   /// move - Use move-assignment to move the range [I, E) onto the
    177   /// objects starting with "Dest".  This is just <memory>'s
    178   /// std::move, but not all stdlibs actually provide that.
    179   template<typename It1, typename It2>
    180   static It2 move(It1 I, It1 E, It2 Dest) {
    181 #if LLVM_USE_RVALUE_REFERENCES
    182     for (; I != E; ++I, ++Dest)
    183       *Dest = ::std::move(*I);
    184     return Dest;
    185 #else
    186     return ::std::copy(I, E, Dest);
    187 #endif
    188   }
    189 
    190   /// move_backward - Use move-assignment to move the range
    191   /// [I, E) onto the objects ending at "Dest", moving objects
    192   /// in reverse order.  This is just <algorithm>'s
    193   /// std::move_backward, but not all stdlibs actually provide that.
    194   template<typename It1, typename It2>
    195   static It2 move_backward(It1 I, It1 E, It2 Dest) {
    196 #if LLVM_USE_RVALUE_REFERENCES
    197     while (I != E)
    198       *--Dest = ::std::move(*--E);
    199     return Dest;
    200 #else
    201     return ::std::copy_backward(I, E, Dest);
    202 #endif
    203   }
    204 
    205   /// uninitialized_move - Move the range [I, E) into the uninitialized
    206   /// memory starting with "Dest", constructing elements as needed.
    207   template<typename It1, typename It2>
    208   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
    209 #if LLVM_USE_RVALUE_REFERENCES
    210     for (; I != E; ++I, ++Dest)
    211       ::new ((void*) &*Dest) T(::std::move(*I));
    212 #else
    213     ::std::uninitialized_copy(I, E, Dest);
    214 #endif
    215   }
    216 
    217   /// uninitialized_copy - Copy the range [I, E) onto the uninitialized
    218   /// memory starting with "Dest", constructing elements as needed.
    219   template<typename It1, typename It2>
    220   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
    221     std::uninitialized_copy(I, E, Dest);
    222   }
    223 
    224   /// grow - Grow the allocated memory (without initializing new
    225   /// elements), doubling the size of the allocated memory.
    226   /// Guarantees space for at least one more element, or MinSize more
    227   /// elements if specified.
    228   void grow(size_t MinSize = 0);
    229 
    230 public:
    231   void push_back(const T &Elt) {
    232     if (this->EndX < this->CapacityX) {
    233     Retry:
    234       ::new ((void*) this->end()) T(Elt);
    235       this->setEnd(this->end()+1);
    236       return;
    237     }
    238     this->grow();
    239     goto Retry;
    240   }
    241 
    242 #if LLVM_USE_RVALUE_REFERENCES
    243   void push_back(T &&Elt) {
    244     if (this->EndX < this->CapacityX) {
    245     Retry:
    246       ::new ((void*) this->end()) T(::std::move(Elt));
    247       this->setEnd(this->end()+1);
    248       return;
    249     }
    250     this->grow();
    251     goto Retry;
    252   }
    253 #endif
    254 
    255   void pop_back() {
    256     this->setEnd(this->end()-1);
    257     this->end()->~T();
    258   }
    259 };
    260 
    261 // Define this out-of-line to dissuade the C++ compiler from inlining it.
    262 template <typename T, bool isPodLike>
    263 void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
    264   size_t CurCapacity = this->capacity();
    265   size_t CurSize = this->size();
    266   size_t NewCapacity = 2*CurCapacity + 1; // Always grow, even from zero.
    267   if (NewCapacity < MinSize)
    268     NewCapacity = MinSize;
    269   T *NewElts = static_cast<T*>(malloc(NewCapacity*sizeof(T)));
    270 
    271   // Move the elements over.
    272   this->uninitialized_move(this->begin(), this->end(), NewElts);
    273 
    274   // Destroy the original elements.
    275   destroy_range(this->begin(), this->end());
    276 
    277   // If this wasn't grown from the inline copy, deallocate the old space.
    278   if (!this->isSmall())
    279     free(this->begin());
    280 
    281   this->setEnd(NewElts+CurSize);
    282   this->BeginX = NewElts;
    283   this->CapacityX = this->begin()+NewCapacity;
    284 }
    285 
    286 
    287 /// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
    288 /// implementations that are designed to work with POD-like T's.
    289 template <typename T>
    290 class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
    291 protected:
    292   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
    293 
    294   // No need to do a destroy loop for POD's.
    295   static void destroy_range(T *, T *) {}
    296 
    297   /// move - Use move-assignment to move the range [I, E) onto the
    298   /// objects starting with "Dest".  For PODs, this is just memcpy.
    299   template<typename It1, typename It2>
    300   static It2 move(It1 I, It1 E, It2 Dest) {
    301     return ::std::copy(I, E, Dest);
    302   }
    303 
    304   /// move_backward - Use move-assignment to move the range
    305   /// [I, E) onto the objects ending at "Dest", moving objects
    306   /// in reverse order.
    307   template<typename It1, typename It2>
    308   static It2 move_backward(It1 I, It1 E, It2 Dest) {
    309     return ::std::copy_backward(I, E, Dest);
    310   }
    311 
    312   /// uninitialized_move - Move the range [I, E) onto the uninitialized memory
    313   /// starting with "Dest", constructing elements into it as needed.
    314   template<typename It1, typename It2>
    315   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
    316     // Just do a copy.
    317     uninitialized_copy(I, E, Dest);
    318   }
    319 
    320   /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
    321   /// starting with "Dest", constructing elements into it as needed.
    322   template<typename It1, typename It2>
    323   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
    324     // Arbitrary iterator types; just use the basic implementation.
    325     std::uninitialized_copy(I, E, Dest);
    326   }
    327 
    328   /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
    329   /// starting with "Dest", constructing elements into it as needed.
    330   template<typename T1, typename T2>
    331   static void uninitialized_copy(T1 *I, T1 *E, T2 *Dest) {
    332     // Use memcpy for PODs iterated by pointers (which includes SmallVector
    333     // iterators): std::uninitialized_copy optimizes to memmove, but we can
    334     // use memcpy here.
    335     memcpy(Dest, I, (E-I)*sizeof(T));
    336   }
    337 
    338   /// grow - double the size of the allocated memory, guaranteeing space for at
    339   /// least one more element or MinSize if specified.
    340   void grow(size_t MinSize = 0) {
    341     this->grow_pod(MinSize*sizeof(T), sizeof(T));
    342   }
    343 public:
    344   void push_back(const T &Elt) {
    345     if (this->EndX < this->CapacityX) {
    346     Retry:
    347       memcpy(this->end(), &Elt, sizeof(T));
    348       this->setEnd(this->end()+1);
    349       return;
    350     }
    351     this->grow();
    352     goto Retry;
    353   }
    354 
    355   void pop_back() {
    356     this->setEnd(this->end()-1);
    357   }
    358 };
    359 
    360 
    361 /// SmallVectorImpl - This class consists of common code factored out of the
    362 /// SmallVector class to reduce code duplication based on the SmallVector 'N'
    363 /// template parameter.
    364 template <typename T>
    365 class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
    366   typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass;
    367 
    368   SmallVectorImpl(const SmallVectorImpl&); // DISABLED.
    369 public:
    370   typedef typename SuperClass::iterator iterator;
    371   typedef typename SuperClass::size_type size_type;
    372 
    373 protected:
    374   // Default ctor - Initialize to empty.
    375   explicit SmallVectorImpl(unsigned N)
    376     : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
    377   }
    378 
    379 public:
    380   ~SmallVectorImpl() {
    381     // Destroy the constructed elements in the vector.
    382     this->destroy_range(this->begin(), this->end());
    383 
    384     // If this wasn't grown from the inline copy, deallocate the old space.
    385     if (!this->isSmall())
    386       free(this->begin());
    387   }
    388 
    389 
    390   void clear() {
    391     this->destroy_range(this->begin(), this->end());
    392     this->EndX = this->BeginX;
    393   }
    394 
    395   void resize(unsigned N) {
    396     if (N < this->size()) {
    397       this->destroy_range(this->begin()+N, this->end());
    398       this->setEnd(this->begin()+N);
    399     } else if (N > this->size()) {
    400       if (this->capacity() < N)
    401         this->grow(N);
    402       std::uninitialized_fill(this->end(), this->begin()+N, T());
    403       this->setEnd(this->begin()+N);
    404     }
    405   }
    406 
    407   void resize(unsigned N, const T &NV) {
    408     if (N < this->size()) {
    409       this->destroy_range(this->begin()+N, this->end());
    410       this->setEnd(this->begin()+N);
    411     } else if (N > this->size()) {
    412       if (this->capacity() < N)
    413         this->grow(N);
    414       std::uninitialized_fill(this->end(), this->begin()+N, NV);
    415       this->setEnd(this->begin()+N);
    416     }
    417   }
    418 
    419   void reserve(unsigned N) {
    420     if (this->capacity() < N)
    421       this->grow(N);
    422   }
    423 
    424   T pop_back_val() {
    425 #if LLVM_USE_RVALUE_REFERENCES
    426     T Result = ::std::move(this->back());
    427 #else
    428     T Result = this->back();
    429 #endif
    430     this->pop_back();
    431     return Result;
    432   }
    433 
    434   void swap(SmallVectorImpl &RHS);
    435 
    436   /// append - Add the specified range to the end of the SmallVector.
    437   ///
    438   template<typename in_iter>
    439   void append(in_iter in_start, in_iter in_end) {
    440     size_type NumInputs = std::distance(in_start, in_end);
    441     // Grow allocated space if needed.
    442     if (NumInputs > size_type(this->capacity_ptr()-this->end()))
    443       this->grow(this->size()+NumInputs);
    444 
    445     // Copy the new elements over.
    446     // TODO: NEED To compile time dispatch on whether in_iter is a random access
    447     // iterator to use the fast uninitialized_copy.
    448     std::uninitialized_copy(in_start, in_end, this->end());
    449     this->setEnd(this->end() + NumInputs);
    450   }
    451 
    452   /// append - Add the specified range to the end of the SmallVector.
    453   ///
    454   void append(size_type NumInputs, const T &Elt) {
    455     // Grow allocated space if needed.
    456     if (NumInputs > size_type(this->capacity_ptr()-this->end()))
    457       this->grow(this->size()+NumInputs);
    458 
    459     // Copy the new elements over.
    460     std::uninitialized_fill_n(this->end(), NumInputs, Elt);
    461     this->setEnd(this->end() + NumInputs);
    462   }
    463 
    464   void assign(unsigned NumElts, const T &Elt) {
    465     clear();
    466     if (this->capacity() < NumElts)
    467       this->grow(NumElts);
    468     this->setEnd(this->begin()+NumElts);
    469     std::uninitialized_fill(this->begin(), this->end(), Elt);
    470   }
    471 
    472   iterator erase(iterator I) {
    473     assert(I >= this->begin() && "Iterator to erase is out of bounds.");
    474     assert(I < this->end() && "Erasing at past-the-end iterator.");
    475 
    476     iterator N = I;
    477     // Shift all elts down one.
    478     this->move(I+1, this->end(), I);
    479     // Drop the last elt.
    480     this->pop_back();
    481     return(N);
    482   }
    483 
    484   iterator erase(iterator S, iterator E) {
    485     assert(S >= this->begin() && "Range to erase is out of bounds.");
    486     assert(S <= E && "Trying to erase invalid range.");
    487     assert(E <= this->end() && "Trying to erase past the end.");
    488 
    489     iterator N = S;
    490     // Shift all elts down.
    491     iterator I = this->move(E, this->end(), S);
    492     // Drop the last elts.
    493     this->destroy_range(I, this->end());
    494     this->setEnd(I);
    495     return(N);
    496   }
    497 
    498 #if LLVM_USE_RVALUE_REFERENCES
    499   iterator insert(iterator I, T &&Elt) {
    500     if (I == this->end()) {  // Important special case for empty vector.
    501       this->push_back(::std::move(Elt));
    502       return this->end()-1;
    503     }
    504 
    505     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    506     assert(I <= this->end() && "Inserting past the end of the vector.");
    507 
    508     if (this->EndX < this->CapacityX) {
    509     Retry:
    510       ::new ((void*) this->end()) T(::std::move(this->back()));
    511       this->setEnd(this->end()+1);
    512       // Push everything else over.
    513       this->move_backward(I, this->end()-1, this->end());
    514 
    515       // If we just moved the element we're inserting, be sure to update
    516       // the reference.
    517       T *EltPtr = &Elt;
    518       if (I <= EltPtr && EltPtr < this->EndX)
    519         ++EltPtr;
    520 
    521       *I = ::std::move(*EltPtr);
    522       return I;
    523     }
    524     size_t EltNo = I-this->begin();
    525     this->grow();
    526     I = this->begin()+EltNo;
    527     goto Retry;
    528   }
    529 #endif
    530 
    531   iterator insert(iterator I, const T &Elt) {
    532     if (I == this->end()) {  // Important special case for empty vector.
    533       this->push_back(Elt);
    534       return this->end()-1;
    535     }
    536 
    537     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    538     assert(I <= this->end() && "Inserting past the end of the vector.");
    539 
    540     if (this->EndX < this->CapacityX) {
    541     Retry:
    542       ::new ((void*) this->end()) T(this->back());
    543       this->setEnd(this->end()+1);
    544       // Push everything else over.
    545       this->move_backward(I, this->end()-1, this->end());
    546 
    547       // If we just moved the element we're inserting, be sure to update
    548       // the reference.
    549       const T *EltPtr = &Elt;
    550       if (I <= EltPtr && EltPtr < this->EndX)
    551         ++EltPtr;
    552 
    553       *I = *EltPtr;
    554       return I;
    555     }
    556     size_t EltNo = I-this->begin();
    557     this->grow();
    558     I = this->begin()+EltNo;
    559     goto Retry;
    560   }
    561 
    562   iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
    563     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
    564     size_t InsertElt = I - this->begin();
    565 
    566     if (I == this->end()) {  // Important special case for empty vector.
    567       append(NumToInsert, Elt);
    568       return this->begin()+InsertElt;
    569     }
    570 
    571     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    572     assert(I <= this->end() && "Inserting past the end of the vector.");
    573 
    574     // Ensure there is enough space.
    575     reserve(static_cast<unsigned>(this->size() + NumToInsert));
    576 
    577     // Uninvalidate the iterator.
    578     I = this->begin()+InsertElt;
    579 
    580     // If there are more elements between the insertion point and the end of the
    581     // range than there are being inserted, we can use a simple approach to
    582     // insertion.  Since we already reserved space, we know that this won't
    583     // reallocate the vector.
    584     if (size_t(this->end()-I) >= NumToInsert) {
    585       T *OldEnd = this->end();
    586       append(this->end()-NumToInsert, this->end());
    587 
    588       // Copy the existing elements that get replaced.
    589       this->move_backward(I, OldEnd-NumToInsert, OldEnd);
    590 
    591       std::fill_n(I, NumToInsert, Elt);
    592       return I;
    593     }
    594 
    595     // Otherwise, we're inserting more elements than exist already, and we're
    596     // not inserting at the end.
    597 
    598     // Move over the elements that we're about to overwrite.
    599     T *OldEnd = this->end();
    600     this->setEnd(this->end() + NumToInsert);
    601     size_t NumOverwritten = OldEnd-I;
    602     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
    603 
    604     // Replace the overwritten part.
    605     std::fill_n(I, NumOverwritten, Elt);
    606 
    607     // Insert the non-overwritten middle part.
    608     std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
    609     return I;
    610   }
    611 
    612   template<typename ItTy>
    613   iterator insert(iterator I, ItTy From, ItTy To) {
    614     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
    615     size_t InsertElt = I - this->begin();
    616 
    617     if (I == this->end()) {  // Important special case for empty vector.
    618       append(From, To);
    619       return this->begin()+InsertElt;
    620     }
    621 
    622     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    623     assert(I <= this->end() && "Inserting past the end of the vector.");
    624 
    625     size_t NumToInsert = std::distance(From, To);
    626 
    627     // Ensure there is enough space.
    628     reserve(static_cast<unsigned>(this->size() + NumToInsert));
    629 
    630     // Uninvalidate the iterator.
    631     I = this->begin()+InsertElt;
    632 
    633     // If there are more elements between the insertion point and the end of the
    634     // range than there are being inserted, we can use a simple approach to
    635     // insertion.  Since we already reserved space, we know that this won't
    636     // reallocate the vector.
    637     if (size_t(this->end()-I) >= NumToInsert) {
    638       T *OldEnd = this->end();
    639       append(this->end()-NumToInsert, this->end());
    640 
    641       // Copy the existing elements that get replaced.
    642       this->move_backward(I, OldEnd-NumToInsert, OldEnd);
    643 
    644       std::copy(From, To, I);
    645       return I;
    646     }
    647 
    648     // Otherwise, we're inserting more elements than exist already, and we're
    649     // not inserting at the end.
    650 
    651     // Move over the elements that we're about to overwrite.
    652     T *OldEnd = this->end();
    653     this->setEnd(this->end() + NumToInsert);
    654     size_t NumOverwritten = OldEnd-I;
    655     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
    656 
    657     // Replace the overwritten part.
    658     for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
    659       *J = *From;
    660       ++J; ++From;
    661     }
    662 
    663     // Insert the non-overwritten middle part.
    664     this->uninitialized_copy(From, To, OldEnd);
    665     return I;
    666   }
    667 
    668   SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
    669 
    670 #if LLVM_USE_RVALUE_REFERENCES
    671   SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
    672 #endif
    673 
    674   bool operator==(const SmallVectorImpl &RHS) const {
    675     if (this->size() != RHS.size()) return false;
    676     return std::equal(this->begin(), this->end(), RHS.begin());
    677   }
    678   bool operator!=(const SmallVectorImpl &RHS) const {
    679     return !(*this == RHS);
    680   }
    681 
    682   bool operator<(const SmallVectorImpl &RHS) const {
    683     return std::lexicographical_compare(this->begin(), this->end(),
    684                                         RHS.begin(), RHS.end());
    685   }
    686 
    687   /// set_size - Set the array size to \arg N, which the current array must have
    688   /// enough capacity for.
    689   ///
    690   /// This does not construct or destroy any elements in the vector.
    691   ///
    692   /// Clients can use this in conjunction with capacity() to write past the end
    693   /// of the buffer when they know that more elements are available, and only
    694   /// update the size later. This avoids the cost of value initializing elements
    695   /// which will only be overwritten.
    696   void set_size(unsigned N) {
    697     assert(N <= this->capacity());
    698     this->setEnd(this->begin() + N);
    699   }
    700 };
    701 
    702 
    703 template <typename T>
    704 void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
    705   if (this == &RHS) return;
    706 
    707   // We can only avoid copying elements if neither vector is small.
    708   if (!this->isSmall() && !RHS.isSmall()) {
    709     std::swap(this->BeginX, RHS.BeginX);
    710     std::swap(this->EndX, RHS.EndX);
    711     std::swap(this->CapacityX, RHS.CapacityX);
    712     return;
    713   }
    714   if (RHS.size() > this->capacity())
    715     this->grow(RHS.size());
    716   if (this->size() > RHS.capacity())
    717     RHS.grow(this->size());
    718 
    719   // Swap the shared elements.
    720   size_t NumShared = this->size();
    721   if (NumShared > RHS.size()) NumShared = RHS.size();
    722   for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i)
    723     std::swap((*this)[i], RHS[i]);
    724 
    725   // Copy over the extra elts.
    726   if (this->size() > RHS.size()) {
    727     size_t EltDiff = this->size() - RHS.size();
    728     this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
    729     RHS.setEnd(RHS.end()+EltDiff);
    730     this->destroy_range(this->begin()+NumShared, this->end());
    731     this->setEnd(this->begin()+NumShared);
    732   } else if (RHS.size() > this->size()) {
    733     size_t EltDiff = RHS.size() - this->size();
    734     this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
    735     this->setEnd(this->end() + EltDiff);
    736     this->destroy_range(RHS.begin()+NumShared, RHS.end());
    737     RHS.setEnd(RHS.begin()+NumShared);
    738   }
    739 }
    740 
    741 template <typename T>
    742 SmallVectorImpl<T> &SmallVectorImpl<T>::
    743   operator=(const SmallVectorImpl<T> &RHS) {
    744   // Avoid self-assignment.
    745   if (this == &RHS) return *this;
    746 
    747   // If we already have sufficient space, assign the common elements, then
    748   // destroy any excess.
    749   size_t RHSSize = RHS.size();
    750   size_t CurSize = this->size();
    751   if (CurSize >= RHSSize) {
    752     // Assign common elements.
    753     iterator NewEnd;
    754     if (RHSSize)
    755       NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
    756     else
    757       NewEnd = this->begin();
    758 
    759     // Destroy excess elements.
    760     this->destroy_range(NewEnd, this->end());
    761 
    762     // Trim.
    763     this->setEnd(NewEnd);
    764     return *this;
    765   }
    766 
    767   // If we have to grow to have enough elements, destroy the current elements.
    768   // This allows us to avoid copying them during the grow.
    769   // FIXME: don't do this if they're efficiently moveable.
    770   if (this->capacity() < RHSSize) {
    771     // Destroy current elements.
    772     this->destroy_range(this->begin(), this->end());
    773     this->setEnd(this->begin());
    774     CurSize = 0;
    775     this->grow(RHSSize);
    776   } else if (CurSize) {
    777     // Otherwise, use assignment for the already-constructed elements.
    778     std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
    779   }
    780 
    781   // Copy construct the new elements in place.
    782   this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
    783                            this->begin()+CurSize);
    784 
    785   // Set end.
    786   this->setEnd(this->begin()+RHSSize);
    787   return *this;
    788 }
    789 
    790 #if LLVM_USE_RVALUE_REFERENCES
    791 template <typename T>
    792 SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
    793   // Avoid self-assignment.
    794   if (this == &RHS) return *this;
    795 
    796   // If the RHS isn't small, clear this vector and then steal its buffer.
    797   if (!RHS.isSmall()) {
    798     this->destroy_range(this->begin(), this->end());
    799     if (!this->isSmall()) free(this->begin());
    800     this->BeginX = RHS.BeginX;
    801     this->EndX = RHS.EndX;
    802     this->CapacityX = RHS.CapacityX;
    803     RHS.resetToSmall();
    804     return *this;
    805   }
    806 
    807   // If we already have sufficient space, assign the common elements, then
    808   // destroy any excess.
    809   size_t RHSSize = RHS.size();
    810   size_t CurSize = this->size();
    811   if (CurSize >= RHSSize) {
    812     // Assign common elements.
    813     iterator NewEnd = this->begin();
    814     if (RHSSize)
    815       NewEnd = this->move(RHS.begin(), RHS.end(), NewEnd);
    816 
    817     // Destroy excess elements and trim the bounds.
    818     this->destroy_range(NewEnd, this->end());
    819     this->setEnd(NewEnd);
    820 
    821     // Clear the RHS.
    822     RHS.clear();
    823 
    824     return *this;
    825   }
    826 
    827   // If we have to grow to have enough elements, destroy the current elements.
    828   // This allows us to avoid copying them during the grow.
    829   // FIXME: this may not actually make any sense if we can efficiently move
    830   // elements.
    831   if (this->capacity() < RHSSize) {
    832     // Destroy current elements.
    833     this->destroy_range(this->begin(), this->end());
    834     this->setEnd(this->begin());
    835     CurSize = 0;
    836     this->grow(RHSSize);
    837   } else if (CurSize) {
    838     // Otherwise, use assignment for the already-constructed elements.
    839     this->move(RHS.begin(), RHS.end(), this->begin());
    840   }
    841 
    842   // Move-construct the new elements in place.
    843   this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
    844                            this->begin()+CurSize);
    845 
    846   // Set end.
    847   this->setEnd(this->begin()+RHSSize);
    848 
    849   RHS.clear();
    850   return *this;
    851 }
    852 #endif
    853 
    854 /// Storage for the SmallVector elements which aren't contained in
    855 /// SmallVectorTemplateCommon. There are 'N-1' elements here. The remaining '1'
    856 /// element is in the base class. This is specialized for the N=1 and N=0 cases
    857 /// to avoid allocating unnecessary storage.
    858 template <typename T, unsigned N>
    859 struct SmallVectorStorage {
    860   typename SmallVectorTemplateCommon<T>::U InlineElts[N - 1];
    861 };
    862 template <typename T> struct SmallVectorStorage<T, 1> {};
    863 template <typename T> struct SmallVectorStorage<T, 0> {};
    864 
    865 /// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
    866 /// for the case when the array is small.  It contains some number of elements
    867 /// in-place, which allows it to avoid heap allocation when the actual number of
    868 /// elements is below that threshold.  This allows normal "small" cases to be
    869 /// fast without losing generality for large inputs.
    870 ///
    871 /// Note that this does not attempt to be exception safe.
    872 ///
    873 template <typename T, unsigned N>
    874 class SmallVector : public SmallVectorImpl<T> {
    875   /// Storage - Inline space for elements which aren't stored in the base class.
    876   SmallVectorStorage<T, N> Storage;
    877 public:
    878   SmallVector() : SmallVectorImpl<T>(N) {
    879   }
    880 
    881   explicit SmallVector(unsigned Size, const T &Value = T())
    882     : SmallVectorImpl<T>(N) {
    883     this->assign(Size, Value);
    884   }
    885 
    886   template<typename ItTy>
    887   SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
    888     this->append(S, E);
    889   }
    890 
    891   SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
    892     if (!RHS.empty())
    893       SmallVectorImpl<T>::operator=(RHS);
    894   }
    895 
    896   const SmallVector &operator=(const SmallVector &RHS) {
    897     SmallVectorImpl<T>::operator=(RHS);
    898     return *this;
    899   }
    900 
    901 #if LLVM_USE_RVALUE_REFERENCES
    902   SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
    903     if (!RHS.empty())
    904       SmallVectorImpl<T>::operator=(::std::move(RHS));
    905   }
    906 
    907   const SmallVector &operator=(SmallVector &&RHS) {
    908     SmallVectorImpl<T>::operator=(::std::move(RHS));
    909     return *this;
    910   }
    911 #endif
    912 
    913 };
    914 
    915 template<typename T, unsigned N>
    916 static inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
    917   return X.capacity_in_bytes();
    918 }
    919 
    920 } // End llvm namespace
    921 
    922 namespace std {
    923   /// Implement std::swap in terms of SmallVector swap.
    924   template<typename T>
    925   inline void
    926   swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
    927     LHS.swap(RHS);
    928   }
    929 
    930   /// Implement std::swap in terms of SmallVector swap.
    931   template<typename T, unsigned N>
    932   inline void
    933   swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
    934     LHS.swap(RHS);
    935   }
    936 }
    937 
    938 #endif
    939