Home | History | Annotate | Download | only in re2
      1 // Copyright 2007 The RE2 Authors.  All Rights Reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // Compile regular expression to Prog.
      6 //
      7 // Prog and Inst are defined in prog.h.
      8 // This file's external interface is just Regexp::CompileToProg.
      9 // The Compiler class defined in this file is private.
     10 
     11 #include "re2/prog.h"
     12 #include "re2/re2.h"
     13 #include "re2/regexp.h"
     14 #include "re2/walker-inl.h"
     15 
     16 namespace re2 {
     17 
     18 // List of pointers to Inst* that need to be filled in (patched).
     19 // Because the Inst* haven't been filled in yet,
     20 // we can use the Inst* word to hold the list's "next" pointer.
     21 // It's kind of sleazy, but it works well in practice.
     22 // See http://swtch.com/~rsc/regexp/regexp1.html for inspiration.
     23 //
     24 // Because the out and out1 fields in Inst are no longer pointers,
     25 // we can't use pointers directly here either.  Instead, p refers
     26 // to inst_[p>>1].out (p&1 == 0) or inst_[p>>1].out1 (p&1 == 1).
     27 // p == 0 represents the NULL list.  This is okay because instruction #0
     28 // is always the fail instruction, which never appears on a list.
     29 
     30 struct PatchList {
     31   uint32 p;
     32 
     33   // Returns patch list containing just p.
     34   static PatchList Mk(uint32 p);
     35 
     36   // Patches all the entries on l to have value v.
     37   // Caller must not ever use patch list again.
     38   static void Patch(Prog::Inst *inst0, PatchList l, uint32 v);
     39 
     40   // Deref returns the next pointer pointed at by p.
     41   static PatchList Deref(Prog::Inst *inst0, PatchList l);
     42 
     43   // Appends two patch lists and returns result.
     44   static PatchList Append(Prog::Inst *inst0, PatchList l1, PatchList l2);
     45 };
     46 
     47 static PatchList nullPatchList = { 0 };
     48 
     49 // Returns patch list containing just p.
     50 PatchList PatchList::Mk(uint32 p) {
     51   PatchList l;
     52   l.p = p;
     53   return l;
     54 }
     55 
     56 // Returns the next pointer pointed at by l.
     57 PatchList PatchList::Deref(Prog::Inst* inst0, PatchList l) {
     58   Prog::Inst* ip = &inst0[l.p>>1];
     59   if (l.p&1)
     60     l.p = ip->out1();
     61   else
     62     l.p = ip->out();
     63   return l;
     64 }
     65 
     66 // Patches all the entries on l to have value v.
     67 void PatchList::Patch(Prog::Inst *inst0, PatchList l, uint32 val) {
     68   while (l.p != 0) {
     69     Prog::Inst* ip = &inst0[l.p>>1];
     70     if (l.p&1) {
     71       l.p = ip->out1();
     72       ip->out1_ = val;
     73     } else {
     74       l.p = ip->out();
     75       ip->set_out(val);
     76     }
     77   }
     78 }
     79 
     80 // Appends two patch lists and returns result.
     81 PatchList PatchList::Append(Prog::Inst* inst0, PatchList l1, PatchList l2) {
     82   if (l1.p == 0)
     83     return l2;
     84   if (l2.p == 0)
     85     return l1;
     86 
     87   PatchList l = l1;
     88   for (;;) {
     89     PatchList next = PatchList::Deref(inst0, l);
     90     if (next.p == 0)
     91       break;
     92     l = next;
     93   }
     94 
     95   Prog::Inst* ip = &inst0[l.p>>1];
     96   if (l.p&1)
     97     ip->out1_ = l2.p;
     98   else
     99     ip->set_out(l2.p);
    100 
    101   return l1;
    102 }
    103 
    104 // Compiled program fragment.
    105 struct Frag {
    106   uint32 begin;
    107   PatchList end;
    108 
    109   Frag() : begin(0) { end.p = 0; }  // needed so Frag can go in vector
    110   Frag(uint32 begin, PatchList end) : begin(begin), end(end) {}
    111 };
    112 
    113 static Frag kNullFrag;
    114 
    115 // Input encodings.
    116 enum Encoding {
    117   kEncodingUTF8 = 1,  // UTF-8 (0-10FFFF)
    118   kEncodingLatin1,    // Latin1 (0-FF)
    119 };
    120 
    121 class Compiler : public Regexp::Walker<Frag> {
    122  public:
    123   explicit Compiler();
    124   ~Compiler();
    125 
    126   // Compiles Regexp to a new Prog.
    127   // Caller is responsible for deleting Prog when finished with it.
    128   // If reversed is true, compiles for walking over the input
    129   // string backward (reverses all concatenations).
    130   static Prog *Compile(Regexp* re, bool reversed, int64 max_mem);
    131 
    132   // Compiles alternation of all the re to a new Prog.
    133   // Each re has a match with an id equal to its index in the vector.
    134   static Prog* CompileSet(const RE2::Options& options, RE2::Anchor anchor,
    135                           Regexp* re);
    136 
    137   // Interface for Regexp::Walker, which helps traverse the Regexp.
    138   // The walk is purely post-recursive: given the machines for the
    139   // children, PostVisit combines them to create the machine for
    140   // the current node.  The child_args are Frags.
    141   // The Compiler traverses the Regexp parse tree, visiting
    142   // each node in depth-first order.  It invokes PreVisit before
    143   // visiting the node's children and PostVisit after visiting
    144   // the children.
    145   Frag PreVisit(Regexp* re, Frag parent_arg, bool* stop);
    146   Frag PostVisit(Regexp* re, Frag parent_arg, Frag pre_arg, Frag* child_args,
    147                  int nchild_args);
    148   Frag ShortVisit(Regexp* re, Frag parent_arg);
    149   Frag Copy(Frag arg);
    150 
    151   // Given fragment a, returns a+ or a+?; a* or a*?; a? or a??
    152   Frag Plus(Frag a, bool nongreedy);
    153   Frag Star(Frag a, bool nongreedy);
    154   Frag Quest(Frag a, bool nongreedy);
    155 
    156   // Given fragment a, returns (a) capturing as \n.
    157   Frag Capture(Frag a, int n);
    158 
    159   // Given fragments a and b, returns ab; a|b
    160   Frag Cat(Frag a, Frag b);
    161   Frag Alt(Frag a, Frag b);
    162 
    163   // Returns a fragment that can't match anything.
    164   Frag NoMatch();
    165 
    166   // Returns a fragment that matches the empty string.
    167   Frag Match(int32 id);
    168 
    169   // Returns a no-op fragment.
    170   Frag Nop();
    171 
    172   // Returns a fragment matching the byte range lo-hi.
    173   Frag ByteRange(int lo, int hi, bool foldcase);
    174 
    175   // Returns a fragment matching an empty-width special op.
    176   Frag EmptyWidth(EmptyOp op);
    177 
    178   // Adds n instructions to the program.
    179   // Returns the index of the first one.
    180   // Returns -1 if no more instructions are available.
    181   int AllocInst(int n);
    182 
    183   // Deletes unused instructions.
    184   void Trim();
    185 
    186   // Rune range compiler.
    187 
    188   // Begins a new alternation.
    189   void BeginRange();
    190 
    191   // Adds a fragment matching the rune range lo-hi.
    192   void AddRuneRange(Rune lo, Rune hi, bool foldcase);
    193   void AddRuneRangeLatin1(Rune lo, Rune hi, bool foldcase);
    194   void AddRuneRangeUTF8(Rune lo, Rune hi, bool foldcase);
    195   void Add_80_10ffff();
    196 
    197   // New suffix that matches the byte range lo-hi, then goes to next.
    198   int RuneByteSuffix(uint8 lo, uint8 hi, bool foldcase, int next);
    199   int UncachedRuneByteSuffix(uint8 lo, uint8 hi, bool foldcase, int next);
    200 
    201   // Adds a suffix to alternation.
    202   void AddSuffix(int id);
    203 
    204   // Returns the alternation of all the added suffixes.
    205   Frag EndRange();
    206 
    207   // Single rune.
    208   Frag Literal(Rune r, bool foldcase);
    209 
    210   void Setup(Regexp::ParseFlags, int64, RE2::Anchor);
    211   Prog* Finish();
    212 
    213   // Returns .* where dot = any byte
    214   Frag DotStar();
    215 
    216  private:
    217   Prog* prog_;         // Program being built.
    218   bool failed_;        // Did we give up compiling?
    219   Encoding encoding_;  // Input encoding
    220   bool reversed_;      // Should program run backward over text?
    221 
    222   int max_inst_;       // Maximum number of instructions.
    223 
    224   Prog::Inst* inst_;   // Pointer to first instruction.
    225   int inst_len_;       // Number of instructions used.
    226   int inst_cap_;       // Number of instructions allocated.
    227 
    228   int64 max_mem_;      // Total memory budget.
    229 
    230   map<uint64, int> rune_cache_;
    231   Frag rune_range_;
    232 
    233   RE2::Anchor anchor_;  // anchor mode for RE2::Set
    234 
    235   DISALLOW_EVIL_CONSTRUCTORS(Compiler);
    236 };
    237 
    238 Compiler::Compiler() {
    239   prog_ = new Prog();
    240   failed_ = false;
    241   encoding_ = kEncodingUTF8;
    242   reversed_ = false;
    243   inst_ = NULL;
    244   inst_len_ = 0;
    245   inst_cap_ = 0;
    246   max_inst_ = 1;  // make AllocInst for fail instruction okay
    247   max_mem_ = 0;
    248   int fail = AllocInst(1);
    249   inst_[fail].InitFail();
    250   max_inst_ = 0;  // Caller must change
    251 }
    252 
    253 Compiler::~Compiler() {
    254   delete prog_;
    255   delete[] inst_;
    256 }
    257 
    258 int Compiler::AllocInst(int n) {
    259   if (failed_ || inst_len_ + n > max_inst_) {
    260     failed_ = true;
    261     return -1;
    262   }
    263 
    264   if (inst_len_ + n > inst_cap_) {
    265     if (inst_cap_ == 0)
    266       inst_cap_ = 8;
    267     while (inst_len_ + n > inst_cap_)
    268       inst_cap_ *= 2;
    269     Prog::Inst* ip = new Prog::Inst[inst_cap_];
    270     memmove(ip, inst_, inst_len_ * sizeof ip[0]);
    271     memset(ip + inst_len_, 0, (inst_cap_ - inst_len_) * sizeof ip[0]);
    272     delete[] inst_;
    273     inst_ = ip;
    274   }
    275   int id = inst_len_;
    276   inst_len_ += n;
    277   return id;
    278 }
    279 
    280 void Compiler::Trim() {
    281   if (inst_len_ < inst_cap_) {
    282     Prog::Inst* ip = new Prog::Inst[inst_len_];
    283     memmove(ip, inst_, inst_len_ * sizeof ip[0]);
    284     delete[] inst_;
    285     inst_ = ip;
    286     inst_cap_ = inst_len_;
    287   }
    288 }
    289 
    290 // These routines are somewhat hard to visualize in text --
    291 // see http://swtch.com/~rsc/regexp/regexp1.html for
    292 // pictures explaining what is going on here.
    293 
    294 // Returns an unmatchable fragment.
    295 Frag Compiler::NoMatch() {
    296   return Frag(0, nullPatchList);
    297 }
    298 
    299 // Is a an unmatchable fragment?
    300 static bool IsNoMatch(Frag a) {
    301   return a.begin == 0;
    302 }
    303 
    304 // Given fragments a and b, returns fragment for ab.
    305 Frag Compiler::Cat(Frag a, Frag b) {
    306   if (IsNoMatch(a) || IsNoMatch(b))
    307     return NoMatch();
    308 
    309   // Elide no-op.
    310   Prog::Inst* begin = &inst_[a.begin];
    311   if (begin->opcode() == kInstNop &&
    312       a.end.p == (a.begin << 1) &&
    313       begin->out() == 0) {
    314     PatchList::Patch(inst_, a.end, b.begin);  // in case refs to a somewhere
    315     return b;
    316   }
    317 
    318   // To run backward over string, reverse all concatenations.
    319   if (reversed_) {
    320     PatchList::Patch(inst_, b.end, a.begin);
    321     return Frag(b.begin, a.end);
    322   }
    323 
    324   PatchList::Patch(inst_, a.end, b.begin);
    325   return Frag(a.begin, b.end);
    326 }
    327 
    328 // Given fragments for a and b, returns fragment for a|b.
    329 Frag Compiler::Alt(Frag a, Frag b) {
    330   // Special case for convenience in loops.
    331   if (IsNoMatch(a))
    332     return b;
    333   if (IsNoMatch(b))
    334     return a;
    335 
    336   int id = AllocInst(1);
    337   if (id < 0)
    338     return NoMatch();
    339 
    340   inst_[id].InitAlt(a.begin, b.begin);
    341   return Frag(id, PatchList::Append(inst_, a.end, b.end));
    342 }
    343 
    344 // When capturing submatches in like-Perl mode, a kOpAlt Inst
    345 // treats out_ as the first choice, out1_ as the second.
    346 //
    347 // For *, +, and ?, if out_ causes another repetition,
    348 // then the operator is greedy.  If out1_ is the repetition
    349 // (and out_ moves forward), then the operator is non-greedy.
    350 
    351 // Given a fragment a, returns a fragment for a* or a*? (if nongreedy)
    352 Frag Compiler::Star(Frag a, bool nongreedy) {
    353   int id = AllocInst(1);
    354   if (id < 0)
    355     return NoMatch();
    356   inst_[id].InitAlt(0, 0);
    357   PatchList::Patch(inst_, a.end, id);
    358   if (nongreedy) {
    359     inst_[id].out1_ = a.begin;
    360     return Frag(id, PatchList::Mk(id << 1));
    361   } else {
    362     inst_[id].set_out(a.begin);
    363     return Frag(id, PatchList::Mk((id << 1) | 1));
    364   }
    365 }
    366 
    367 // Given a fragment for a, returns a fragment for a+ or a+? (if nongreedy)
    368 Frag Compiler::Plus(Frag a, bool nongreedy) {
    369   // a+ is just a* with a different entry point.
    370   Frag f = Star(a, nongreedy);
    371   return Frag(a.begin, f.end);
    372 }
    373 
    374 // Given a fragment for a, returns a fragment for a? or a?? (if nongreedy)
    375 Frag Compiler::Quest(Frag a, bool nongreedy) {
    376   int id = AllocInst(1);
    377   if (id < 0)
    378     return NoMatch();
    379   PatchList pl;
    380   if (nongreedy) {
    381     inst_[id].InitAlt(0, a.begin);
    382     pl = PatchList::Mk(id << 1);
    383   } else {
    384     inst_[id].InitAlt(a.begin, 0);
    385     pl = PatchList::Mk((id << 1) | 1);
    386   }
    387   return Frag(id, PatchList::Append(inst_, pl, a.end));
    388 }
    389 
    390 // Returns a fragment for the byte range lo-hi.
    391 Frag Compiler::ByteRange(int lo, int hi, bool foldcase) {
    392   int id = AllocInst(1);
    393   if (id < 0)
    394     return NoMatch();
    395   inst_[id].InitByteRange(lo, hi, foldcase, 0);
    396   prog_->byte_inst_count_++;
    397   prog_->MarkByteRange(lo, hi);
    398   if (foldcase && lo <= 'z' && hi >= 'a') {
    399     if (lo < 'a')
    400       lo = 'a';
    401     if (hi > 'z')
    402       hi = 'z';
    403     if (lo <= hi)
    404       prog_->MarkByteRange(lo + 'A' - 'a', hi + 'A' - 'a');
    405   }
    406   return Frag(id, PatchList::Mk(id << 1));
    407 }
    408 
    409 // Returns a no-op fragment.  Sometimes unavoidable.
    410 Frag Compiler::Nop() {
    411   int id = AllocInst(1);
    412   if (id < 0)
    413     return NoMatch();
    414   inst_[id].InitNop(0);
    415   return Frag(id, PatchList::Mk(id << 1));
    416 }
    417 
    418 // Returns a fragment that signals a match.
    419 Frag Compiler::Match(int32 match_id) {
    420   int id = AllocInst(1);
    421   if (id < 0)
    422     return NoMatch();
    423   inst_[id].InitMatch(match_id);
    424   return Frag(id, nullPatchList);
    425 }
    426 
    427 // Returns a fragment matching a particular empty-width op (like ^ or $)
    428 Frag Compiler::EmptyWidth(EmptyOp empty) {
    429   int id = AllocInst(1);
    430   if (id < 0)
    431     return NoMatch();
    432   inst_[id].InitEmptyWidth(empty, 0);
    433   if (empty & (kEmptyBeginLine|kEmptyEndLine))
    434     prog_->MarkByteRange('\n', '\n');
    435   if (empty & (kEmptyWordBoundary|kEmptyNonWordBoundary)) {
    436     int j;
    437     for (int i = 0; i < 256; i = j) {
    438       for (j = i+1; j < 256 && Prog::IsWordChar(i) == Prog::IsWordChar(j); j++)
    439         ;
    440       prog_->MarkByteRange(i, j-1);
    441     }
    442   }
    443   return Frag(id, PatchList::Mk(id << 1));
    444 }
    445 
    446 // Given a fragment a, returns a fragment with capturing parens around a.
    447 Frag Compiler::Capture(Frag a, int n) {
    448   int id = AllocInst(2);
    449   if (id < 0)
    450     return NoMatch();
    451   inst_[id].InitCapture(2*n, a.begin);
    452   inst_[id+1].InitCapture(2*n+1, 0);
    453   PatchList::Patch(inst_, a.end, id+1);
    454 
    455   return Frag(id, PatchList::Mk((id+1) << 1));
    456 }
    457 
    458 // A Rune is a name for a Unicode code point.
    459 // Returns maximum rune encoded by UTF-8 sequence of length len.
    460 static int MaxRune(int len) {
    461   int b;  // number of Rune blents lenn len-byte UTF-8 sequence (len < UTFmax)
    462   if (len == 1)
    463     b = 7;
    464   else
    465     b = 8-(len+1) + 6*(len-1);
    466   return (1<<b) - 1;   // maximum Rune for b bits.
    467 }
    468 
    469 // The rune range compiler caches common suffix fragments,
    470 // which are very common in UTF-8 (e.g., [80-bf]).
    471 // The fragment suffixes are identified by their start
    472 // instructions.  NULL denotes the eventual end match.
    473 // The Frag accumulates in rune_range_.  Caching common
    474 // suffixes reduces the UTF-8 "." from 32 to 24 instructions,
    475 // and it reduces the corresponding one-pass NFA from 16 nodes to 8.
    476 
    477 void Compiler::BeginRange() {
    478   rune_cache_.clear();
    479   rune_range_.begin = 0;
    480   rune_range_.end = nullPatchList;
    481 }
    482 
    483 int Compiler::UncachedRuneByteSuffix(uint8 lo, uint8 hi, bool foldcase,
    484                                      int next) {
    485   Frag f = ByteRange(lo, hi, foldcase);
    486   if (next != 0) {
    487     PatchList::Patch(inst_, f.end, next);
    488   } else {
    489     rune_range_.end = PatchList::Append(inst_, rune_range_.end, f.end);
    490   }
    491   return f.begin;
    492 }
    493 
    494 int Compiler::RuneByteSuffix(uint8 lo, uint8 hi, bool foldcase, int next) {
    495   // In Latin1 mode, there's no point in caching.
    496   // In forward UTF-8 mode, only need to cache continuation bytes.
    497   if (encoding_ == kEncodingLatin1 ||
    498       (encoding_ == kEncodingUTF8 &&
    499        !reversed_ &&
    500        !(0x80 <= lo && hi <= 0xbf))) {
    501     return UncachedRuneByteSuffix(lo, hi, foldcase, next);
    502   }
    503 
    504   uint64 key = ((uint64)next << 17) | (lo<<9) | (hi<<1) | foldcase;
    505   map<uint64, int>::iterator it = rune_cache_.find(key);
    506   if (it != rune_cache_.end())
    507     return it->second;
    508   int id = UncachedRuneByteSuffix(lo, hi, foldcase, next);
    509   rune_cache_[key] = id;
    510   return id;
    511 }
    512 
    513 void Compiler::AddSuffix(int id) {
    514   if (rune_range_.begin == 0) {
    515     rune_range_.begin = id;
    516     return;
    517   }
    518 
    519   int alt = AllocInst(1);
    520   if (alt < 0) {
    521     rune_range_.begin = 0;
    522     return;
    523   }
    524   inst_[alt].InitAlt(rune_range_.begin, id);
    525   rune_range_.begin = alt;
    526 }
    527 
    528 Frag Compiler::EndRange() {
    529   return rune_range_;
    530 }
    531 
    532 // Converts rune range lo-hi into a fragment that recognizes
    533 // the bytes that would make up those runes in the current
    534 // encoding (Latin 1 or UTF-8).
    535 // This lets the machine work byte-by-byte even when
    536 // using multibyte encodings.
    537 
    538 void Compiler::AddRuneRange(Rune lo, Rune hi, bool foldcase) {
    539   switch (encoding_) {
    540     default:
    541     case kEncodingUTF8:
    542       AddRuneRangeUTF8(lo, hi, foldcase);
    543       break;
    544     case kEncodingLatin1:
    545       AddRuneRangeLatin1(lo, hi, foldcase);
    546       break;
    547   }
    548 }
    549 
    550 void Compiler::AddRuneRangeLatin1(Rune lo, Rune hi, bool foldcase) {
    551   // Latin1 is easy: runes *are* bytes.
    552   if (lo > hi || lo > 0xFF)
    553     return;
    554   if (hi > 0xFF)
    555     hi = 0xFF;
    556   AddSuffix(RuneByteSuffix(lo, hi, foldcase, 0));
    557 }
    558 
    559 // Table describing how to make a UTF-8 matching machine
    560 // for the rune range 80-10FFFF (Runeself-Runemax).
    561 // This range happens frequently enough (for example /./ and /[^a-z]/)
    562 // and the rune_cache_ map is slow enough that this is worth
    563 // special handling.  Makes compilation of a small expression
    564 // with a dot in it about 10% faster.
    565 // The * in the comments below mark whole sequences.
    566 static struct ByteRangeProg {
    567   int next;
    568   int lo;
    569   int hi;
    570 } prog_80_10ffff[] = {
    571   // Two-byte
    572   { -1, 0x80, 0xBF, },  // 0:  80-BF
    573   {  0, 0xC2, 0xDF, },  // 1:  C2-DF 80-BF*
    574 
    575   // Three-byte
    576   {  0, 0xA0, 0xBF, },  // 2:  A0-BF 80-BF
    577   {  2, 0xE0, 0xE0, },  // 3:  E0 A0-BF 80-BF*
    578   {  0, 0x80, 0xBF, },  // 4:  80-BF 80-BF
    579   {  4, 0xE1, 0xEF, },  // 5:  E1-EF 80-BF 80-BF*
    580 
    581   // Four-byte
    582   {  4, 0x90, 0xBF, },  // 6:  90-BF 80-BF 80-BF
    583   {  6, 0xF0, 0xF0, },  // 7:  F0 90-BF 80-BF 80-BF*
    584   {  4, 0x80, 0xBF, },  // 8:  80-BF 80-BF 80-BF
    585   {  8, 0xF1, 0xF3, },  // 9: F1-F3 80-BF 80-BF 80-BF*
    586   {  4, 0x80, 0x8F, },  // 10: 80-8F 80-BF 80-BF
    587   { 10, 0xF4, 0xF4, },  // 11: F4 80-8F 80-BF 80-BF*
    588 };
    589 
    590 void Compiler::Add_80_10ffff() {
    591   int inst[arraysize(prog_80_10ffff)];
    592   for (int i = 0; i < arraysize(prog_80_10ffff); i++) {
    593     const ByteRangeProg& p = prog_80_10ffff[i];
    594     int next = 0;
    595     if (p.next >= 0)
    596       next = inst[p.next];
    597     inst[i] = UncachedRuneByteSuffix(p.lo, p.hi, false, next);
    598     if ((p.lo & 0xC0) != 0x80)
    599       AddSuffix(inst[i]);
    600   }
    601 }
    602 
    603 void Compiler::AddRuneRangeUTF8(Rune lo, Rune hi, bool foldcase) {
    604   if (lo > hi)
    605     return;
    606 
    607   // Pick off 80-10FFFF as a common special case
    608   // that can bypass the slow rune_cache_.
    609   if (lo == 0x80 && hi == 0x10ffff && !reversed_) {
    610     Add_80_10ffff();
    611     return;
    612   }
    613 
    614   // Split range into same-length sized ranges.
    615   for (int i = 1; i < UTFmax; i++) {
    616     Rune max = MaxRune(i);
    617     if (lo <= max && max < hi) {
    618       AddRuneRangeUTF8(lo, max, foldcase);
    619       AddRuneRangeUTF8(max+1, hi, foldcase);
    620       return;
    621     }
    622   }
    623 
    624   // ASCII range is always a special case.
    625   if (hi < Runeself) {
    626     AddSuffix(RuneByteSuffix(lo, hi, foldcase, 0));
    627     return;
    628   }
    629 
    630   // Split range into sections that agree on leading bytes.
    631   for (int i = 1; i < UTFmax; i++) {
    632     uint m = (1<<(6*i)) - 1;  // last i bytes of a UTF-8 sequence
    633     if ((lo & ~m) != (hi & ~m)) {
    634       if ((lo & m) != 0) {
    635         AddRuneRangeUTF8(lo, lo|m, foldcase);
    636         AddRuneRangeUTF8((lo|m)+1, hi, foldcase);
    637         return;
    638       }
    639       if ((hi & m) != m) {
    640         AddRuneRangeUTF8(lo, (hi&~m)-1, foldcase);
    641         AddRuneRangeUTF8(hi&~m, hi, foldcase);
    642         return;
    643       }
    644     }
    645   }
    646 
    647   // Finally.  Generate byte matching equivalent for lo-hi.
    648   uint8 ulo[UTFmax], uhi[UTFmax];
    649   int n = runetochar(reinterpret_cast<char*>(ulo), &lo);
    650   int m = runetochar(reinterpret_cast<char*>(uhi), &hi);
    651   (void)m;  // USED(m)
    652   DCHECK_EQ(n, m);
    653 
    654   int id = 0;
    655   if (reversed_) {
    656     for (int i = 0; i < n; i++)
    657       id = RuneByteSuffix(ulo[i], uhi[i], false, id);
    658   } else {
    659     for (int i = n-1; i >= 0; i--)
    660       id = RuneByteSuffix(ulo[i], uhi[i], false, id);
    661   }
    662   AddSuffix(id);
    663 }
    664 
    665 // Should not be called.
    666 Frag Compiler::Copy(Frag arg) {
    667   // We're using WalkExponential; there should be no copying.
    668   LOG(DFATAL) << "Compiler::Copy called!";
    669   failed_ = true;
    670   return NoMatch();
    671 }
    672 
    673 // Visits a node quickly; called once WalkExponential has
    674 // decided to cut this walk short.
    675 Frag Compiler::ShortVisit(Regexp* re, Frag) {
    676   failed_ = true;
    677   return NoMatch();
    678 }
    679 
    680 // Called before traversing a node's children during the walk.
    681 Frag Compiler::PreVisit(Regexp* re, Frag, bool* stop) {
    682   // Cut off walk if we've already failed.
    683   if (failed_)
    684     *stop = true;
    685 
    686   return kNullFrag;  // not used by caller
    687 }
    688 
    689 Frag Compiler::Literal(Rune r, bool foldcase) {
    690   switch (encoding_) {
    691     default:
    692       return kNullFrag;
    693 
    694     case kEncodingLatin1:
    695       return ByteRange(r, r, foldcase);
    696 
    697     case kEncodingUTF8: {
    698       if (r < Runeself)  // Make common case fast.
    699         return ByteRange(r, r, foldcase);
    700       uint8 buf[UTFmax];
    701       int n = runetochar(reinterpret_cast<char*>(buf), &r);
    702       Frag f = ByteRange((uint8)buf[0], buf[0], false);
    703       for (int i = 1; i < n; i++)
    704         f = Cat(f, ByteRange((uint8)buf[i], buf[i], false));
    705       return f;
    706     }
    707   }
    708 }
    709 
    710 // Called after traversing the node's children during the walk.
    711 // Given their frags, build and return the frag for this re.
    712 Frag Compiler::PostVisit(Regexp* re, Frag, Frag, Frag* child_frags,
    713                          int nchild_frags) {
    714   // If a child failed, don't bother going forward, especially
    715   // since the child_frags might contain Frags with NULLs in them.
    716   if (failed_)
    717     return NoMatch();
    718 
    719   // Given the child fragments, return the fragment for this node.
    720   switch (re->op()) {
    721     case kRegexpRepeat:
    722       // Should not see; code at bottom of function will print error
    723       break;
    724 
    725     case kRegexpNoMatch:
    726       return NoMatch();
    727 
    728     case kRegexpEmptyMatch:
    729       return Nop();
    730 
    731     case kRegexpHaveMatch: {
    732       Frag f = Match(re->match_id());
    733       // Remember unanchored match to end of string.
    734       if (anchor_ != RE2::ANCHOR_BOTH)
    735         f = Cat(DotStar(), f);
    736       return f;
    737     }
    738 
    739     case kRegexpConcat: {
    740       Frag f = child_frags[0];
    741       for (int i = 1; i < nchild_frags; i++)
    742         f = Cat(f, child_frags[i]);
    743       return f;
    744     }
    745 
    746     case kRegexpAlternate: {
    747       Frag f = child_frags[0];
    748       for (int i = 1; i < nchild_frags; i++)
    749         f = Alt(f, child_frags[i]);
    750       return f;
    751     }
    752 
    753     case kRegexpStar:
    754       return Star(child_frags[0], re->parse_flags()&Regexp::NonGreedy);
    755 
    756     case kRegexpPlus:
    757       return Plus(child_frags[0], re->parse_flags()&Regexp::NonGreedy);
    758 
    759     case kRegexpQuest:
    760       return Quest(child_frags[0], re->parse_flags()&Regexp::NonGreedy);
    761 
    762     case kRegexpLiteral:
    763       return Literal(re->rune(), re->parse_flags()&Regexp::FoldCase);
    764 
    765     case kRegexpLiteralString: {
    766       // Concatenation of literals.
    767       if (re->nrunes() == 0)
    768         return Nop();
    769       Frag f;
    770       for (int i = 0; i < re->nrunes(); i++) {
    771         Frag f1 = Literal(re->runes()[i], re->parse_flags()&Regexp::FoldCase);
    772         if (i == 0)
    773           f = f1;
    774         else
    775           f = Cat(f, f1);
    776       }
    777       return f;
    778     }
    779 
    780     case kRegexpAnyChar:
    781       BeginRange();
    782       AddRuneRange(0, Runemax, false);
    783       return EndRange();
    784 
    785     case kRegexpAnyByte:
    786       return ByteRange(0x00, 0xFF, false);
    787 
    788     case kRegexpCharClass: {
    789       CharClass* cc = re->cc();
    790       if (cc->empty()) {
    791         // This can't happen.
    792         LOG(DFATAL) << "No ranges in char class";
    793         failed_ = true;
    794         return NoMatch();
    795       }
    796 
    797       // ASCII case-folding optimization: if the char class
    798       // behaves the same on A-Z as it does on a-z,
    799       // discard any ranges wholly contained in A-Z
    800       // and mark the other ranges as foldascii.
    801       // This reduces the size of a program for
    802       // (?i)abc from 3 insts per letter to 1 per letter.
    803       bool foldascii = cc->FoldsASCII();
    804 
    805       // Character class is just a big OR of the different
    806       // character ranges in the class.
    807       BeginRange();
    808       for (CharClass::iterator i = cc->begin(); i != cc->end(); ++i) {
    809         // ASCII case-folding optimization (see above).
    810         if (foldascii && 'A' <= i->lo && i->hi <= 'Z')
    811           continue;
    812 
    813         // If this range contains all of A-Za-z or none of it,
    814         // the fold flag is unnecessary; don't bother.
    815         bool fold = foldascii;
    816         if ((i->lo <= 'A' && 'z' <= i->hi) || i->hi < 'A' || 'z' < i->lo)
    817           fold = false;
    818 
    819         AddRuneRange(i->lo, i->hi, fold);
    820       }
    821       return EndRange();
    822     }
    823 
    824     case kRegexpCapture:
    825       // If this is a non-capturing parenthesis -- (?:foo) --
    826       // just use the inner expression.
    827       if (re->cap() < 0)
    828         return child_frags[0];
    829       return Capture(child_frags[0], re->cap());
    830 
    831     case kRegexpBeginLine:
    832       return EmptyWidth(reversed_ ? kEmptyEndLine : kEmptyBeginLine);
    833 
    834     case kRegexpEndLine:
    835       return EmptyWidth(reversed_ ? kEmptyBeginLine : kEmptyEndLine);
    836 
    837     case kRegexpBeginText:
    838       return EmptyWidth(reversed_ ? kEmptyEndText : kEmptyBeginText);
    839 
    840     case kRegexpEndText:
    841       return EmptyWidth(reversed_ ? kEmptyBeginText : kEmptyEndText);
    842 
    843     case kRegexpWordBoundary:
    844       return EmptyWidth(kEmptyWordBoundary);
    845 
    846     case kRegexpNoWordBoundary:
    847       return EmptyWidth(kEmptyNonWordBoundary);
    848   }
    849   LOG(DFATAL) << "Missing case in Compiler: " << re->op();
    850   failed_ = true;
    851   return NoMatch();
    852 }
    853 
    854 // Is this regexp required to start at the beginning of the text?
    855 // Only approximate; can return false for complicated regexps like (\Aa|\Ab),
    856 // but handles (\A(a|b)).  Could use the Walker to write a more exact one.
    857 static bool IsAnchorStart(Regexp** pre, int depth) {
    858   Regexp* re = *pre;
    859   Regexp* sub;
    860   // The depth limit makes sure that we don't overflow
    861   // the stack on a deeply nested regexp.  As the comment
    862   // above says, IsAnchorStart is conservative, so returning
    863   // a false negative is okay.  The exact limit is somewhat arbitrary.
    864   if (re == NULL || depth >= 4)
    865     return false;
    866   switch (re->op()) {
    867     default:
    868       break;
    869     case kRegexpConcat:
    870       if (re->nsub() > 0) {
    871         sub = re->sub()[0]->Incref();
    872         if (IsAnchorStart(&sub, depth+1)) {
    873           Regexp** subcopy = new Regexp*[re->nsub()];
    874           subcopy[0] = sub;  // already have reference
    875           for (int i = 1; i < re->nsub(); i++)
    876             subcopy[i] = re->sub()[i]->Incref();
    877           *pre = Regexp::Concat(subcopy, re->nsub(), re->parse_flags());
    878           delete[] subcopy;
    879           re->Decref();
    880           return true;
    881         }
    882         sub->Decref();
    883       }
    884       break;
    885     case kRegexpCapture:
    886       sub = re->sub()[0]->Incref();
    887       if (IsAnchorStart(&sub, depth+1)) {
    888         *pre = Regexp::Capture(sub, re->parse_flags(), re->cap());
    889         re->Decref();
    890         return true;
    891       }
    892       sub->Decref();
    893       break;
    894     case kRegexpBeginText:
    895       *pre = Regexp::LiteralString(NULL, 0, re->parse_flags());
    896       re->Decref();
    897       return true;
    898   }
    899   return false;
    900 }
    901 
    902 // Is this regexp required to start at the end of the text?
    903 // Only approximate; can return false for complicated regexps like (a\z|b\z),
    904 // but handles ((a|b)\z).  Could use the Walker to write a more exact one.
    905 static bool IsAnchorEnd(Regexp** pre, int depth) {
    906   Regexp* re = *pre;
    907   Regexp* sub;
    908   // The depth limit makes sure that we don't overflow
    909   // the stack on a deeply nested regexp.  As the comment
    910   // above says, IsAnchorEnd is conservative, so returning
    911   // a false negative is okay.  The exact limit is somewhat arbitrary.
    912   if (re == NULL || depth >= 4)
    913     return false;
    914   switch (re->op()) {
    915     default:
    916       break;
    917     case kRegexpConcat:
    918       if (re->nsub() > 0) {
    919         sub = re->sub()[re->nsub() - 1]->Incref();
    920         if (IsAnchorEnd(&sub, depth+1)) {
    921           Regexp** subcopy = new Regexp*[re->nsub()];
    922           subcopy[re->nsub() - 1] = sub;  // already have reference
    923           for (int i = 0; i < re->nsub() - 1; i++)
    924             subcopy[i] = re->sub()[i]->Incref();
    925           *pre = Regexp::Concat(subcopy, re->nsub(), re->parse_flags());
    926           delete[] subcopy;
    927           re->Decref();
    928           return true;
    929         }
    930         sub->Decref();
    931       }
    932       break;
    933     case kRegexpCapture:
    934       sub = re->sub()[0]->Incref();
    935       if (IsAnchorEnd(&sub, depth+1)) {
    936         *pre = Regexp::Capture(sub, re->parse_flags(), re->cap());
    937         re->Decref();
    938         return true;
    939       }
    940       sub->Decref();
    941       break;
    942     case kRegexpEndText:
    943       *pre = Regexp::LiteralString(NULL, 0, re->parse_flags());
    944       re->Decref();
    945       return true;
    946   }
    947   return false;
    948 }
    949 
    950 void Compiler::Setup(Regexp::ParseFlags flags, int64 max_mem,
    951                      RE2::Anchor anchor) {
    952   prog_->set_flags(flags);
    953 
    954   if (flags & Regexp::Latin1)
    955     encoding_ = kEncodingLatin1;
    956   max_mem_ = max_mem;
    957   if (max_mem <= 0) {
    958     max_inst_ = 100000;  // more than enough
    959   } else if (max_mem <= sizeof(Prog)) {
    960     // No room for anything.
    961     max_inst_ = 0;
    962   } else {
    963     int64 m = (max_mem - sizeof(Prog)) / sizeof(Prog::Inst);
    964     // Limit instruction count so that inst->id() fits nicely in an int.
    965     // SparseArray also assumes that the indices (inst->id()) are ints.
    966     // The call to WalkExponential uses 2*max_inst_ below,
    967     // and other places in the code use 2 or 3 * prog->size().
    968     // Limiting to 2^24 should avoid overflow in those places.
    969     // (The point of allowing more than 32 bits of memory is to
    970     // have plenty of room for the DFA states, not to use it up
    971     // on the program.)
    972     if (m >= 1<<24)
    973       m = 1<<24;
    974 
    975     // Inst imposes its own limit (currently bigger than 2^24 but be safe).
    976     if (m > Prog::Inst::kMaxInst)
    977       m = Prog::Inst::kMaxInst;
    978 
    979     max_inst_ = m;
    980   }
    981 
    982   anchor_ = anchor;
    983 }
    984 
    985 // Compiles re, returning program.
    986 // Caller is responsible for deleting prog_.
    987 // If reversed is true, compiles a program that expects
    988 // to run over the input string backward (reverses all concatenations).
    989 // The reversed flag is also recorded in the returned program.
    990 Prog* Compiler::Compile(Regexp* re, bool reversed, int64 max_mem) {
    991   Compiler c;
    992 
    993   c.Setup(re->parse_flags(), max_mem, RE2::ANCHOR_BOTH /* unused */);
    994   c.reversed_ = reversed;
    995 
    996   // Simplify to remove things like counted repetitions
    997   // and character classes like \d.
    998   Regexp* sre = re->Simplify();
    999   if (sre == NULL)
   1000     return NULL;
   1001 
   1002   // Record whether prog is anchored, removing the anchors.
   1003   // (They get in the way of other optimizations.)
   1004   bool is_anchor_start = IsAnchorStart(&sre, 0);
   1005   bool is_anchor_end = IsAnchorEnd(&sre, 0);
   1006 
   1007   // Generate fragment for entire regexp.
   1008   Frag f = c.WalkExponential(sre, kNullFrag, 2*c.max_inst_);
   1009   sre->Decref();
   1010   if (c.failed_)
   1011     return NULL;
   1012 
   1013   // Success!  Finish by putting Match node at end, and record start.
   1014   // Turn off c.reversed_ (if it is set) to force the remaining concatenations
   1015   // to behave normally.
   1016   c.reversed_ = false;
   1017   Frag all = c.Cat(f, c.Match(0));
   1018   c.prog_->set_start(all.begin);
   1019 
   1020   if (reversed) {
   1021     c.prog_->set_anchor_start(is_anchor_end);
   1022     c.prog_->set_anchor_end(is_anchor_start);
   1023   } else {
   1024     c.prog_->set_anchor_start(is_anchor_start);
   1025     c.prog_->set_anchor_end(is_anchor_end);
   1026   }
   1027 
   1028   // Also create unanchored version, which starts with a .*? loop.
   1029   if (c.prog_->anchor_start()) {
   1030     c.prog_->set_start_unanchored(c.prog_->start());
   1031   } else {
   1032     Frag unanchored = c.Cat(c.DotStar(), all);
   1033     c.prog_->set_start_unanchored(unanchored.begin);
   1034   }
   1035 
   1036   c.prog_->set_reversed(reversed);
   1037 
   1038   // Hand ownership of prog_ to caller.
   1039   return c.Finish();
   1040 }
   1041 
   1042 Prog* Compiler::Finish() {
   1043   if (failed_)
   1044     return NULL;
   1045 
   1046   if (prog_->start() == 0 && prog_->start_unanchored() == 0) {
   1047     // No possible matches; keep Fail instruction only.
   1048     inst_len_ = 1;
   1049   }
   1050 
   1051   // Trim instruction to minimum array and transfer to Prog.
   1052   Trim();
   1053   prog_->inst_ = inst_;
   1054   prog_->size_ = inst_len_;
   1055   inst_ = NULL;
   1056 
   1057   // Compute byte map.
   1058   prog_->ComputeByteMap();
   1059 
   1060   prog_->Optimize();
   1061 
   1062   // Record remaining memory for DFA.
   1063   if (max_mem_ <= 0) {
   1064     prog_->set_dfa_mem(1<<20);
   1065   } else {
   1066     int64 m = max_mem_ - sizeof(Prog) - inst_len_*sizeof(Prog::Inst);
   1067     if (m < 0)
   1068       m = 0;
   1069     prog_->set_dfa_mem(m);
   1070   }
   1071 
   1072   Prog* p = prog_;
   1073   prog_ = NULL;
   1074   return p;
   1075 }
   1076 
   1077 // Converts Regexp to Prog.
   1078 Prog* Regexp::CompileToProg(int64 max_mem) {
   1079   return Compiler::Compile(this, false, max_mem);
   1080 }
   1081 
   1082 Prog* Regexp::CompileToReverseProg(int64 max_mem) {
   1083   return Compiler::Compile(this, true, max_mem);
   1084 }
   1085 
   1086 Frag Compiler::DotStar() {
   1087   return Star(ByteRange(0x00, 0xff, false), true);
   1088 }
   1089 
   1090 // Compiles RE set to Prog.
   1091 Prog* Compiler::CompileSet(const RE2::Options& options, RE2::Anchor anchor,
   1092                            Regexp* re) {
   1093   Compiler c;
   1094 
   1095   Regexp::ParseFlags pf = static_cast<Regexp::ParseFlags>(options.ParseFlags());
   1096   c.Setup(pf, options.max_mem(), anchor);
   1097 
   1098   // Compile alternation of fragments.
   1099   Frag all = c.WalkExponential(re, kNullFrag, 2*c.max_inst_);
   1100   re->Decref();
   1101   if (c.failed_)
   1102     return NULL;
   1103 
   1104   if (anchor == RE2::UNANCHORED) {
   1105     // The trailing .* was added while handling kRegexpHaveMatch.
   1106     // We just have to add the leading one.
   1107     all = c.Cat(c.DotStar(), all);
   1108   }
   1109 
   1110   c.prog_->set_start(all.begin);
   1111   c.prog_->set_start_unanchored(all.begin);
   1112   c.prog_->set_anchor_start(true);
   1113   c.prog_->set_anchor_end(true);
   1114 
   1115   Prog* prog = c.Finish();
   1116   if (prog == NULL)
   1117     return NULL;
   1118 
   1119   // Make sure DFA has enough memory to operate,
   1120   // since we're not going to fall back to the NFA.
   1121   bool failed;
   1122   StringPiece sp = "hello, world";
   1123   prog->SearchDFA(sp, sp, Prog::kAnchored, Prog::kManyMatch,
   1124                   NULL, &failed, NULL);
   1125   if (failed) {
   1126     delete prog;
   1127     return NULL;
   1128   }
   1129 
   1130   return prog;
   1131 }
   1132 
   1133 Prog* Prog::CompileSet(const RE2::Options& options, RE2::Anchor anchor,
   1134                        Regexp* re) {
   1135   return Compiler::CompileSet(options, anchor, re);
   1136 }
   1137 
   1138 }  // namespace re2
   1139