Home | History | Annotate | Download | only in Analysis
      1 //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
     11 // conditions), based off of an annotation system.
     12 //
     13 // See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
     14 // information.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "clang/Analysis/Analyses/ThreadSafety.h"
     19 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
     20 #include "clang/Analysis/AnalysisContext.h"
     21 #include "clang/Analysis/CFG.h"
     22 #include "clang/Analysis/CFGStmtMap.h"
     23 #include "clang/AST/DeclCXX.h"
     24 #include "clang/AST/ExprCXX.h"
     25 #include "clang/AST/StmtCXX.h"
     26 #include "clang/AST/StmtVisitor.h"
     27 #include "clang/Basic/SourceManager.h"
     28 #include "clang/Basic/SourceLocation.h"
     29 #include "clang/Basic/OperatorKinds.h"
     30 #include "llvm/ADT/BitVector.h"
     31 #include "llvm/ADT/FoldingSet.h"
     32 #include "llvm/ADT/ImmutableMap.h"
     33 #include "llvm/ADT/PostOrderIterator.h"
     34 #include "llvm/ADT/SmallVector.h"
     35 #include "llvm/ADT/StringRef.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 #include <algorithm>
     38 #include <utility>
     39 #include <vector>
     40 
     41 using namespace clang;
     42 using namespace thread_safety;
     43 
     44 // Key method definition
     45 ThreadSafetyHandler::~ThreadSafetyHandler() {}
     46 
     47 namespace {
     48 
     49 /// SExpr implements a simple expression language that is used to store,
     50 /// compare, and pretty-print C++ expressions.  Unlike a clang Expr, a SExpr
     51 /// does not capture surface syntax, and it does not distinguish between
     52 /// C++ concepts, like pointers and references, that have no real semantic
     53 /// differences.  This simplicity allows SExprs to be meaningfully compared,
     54 /// e.g.
     55 ///        (x)          =  x
     56 ///        (*this).foo  =  this->foo
     57 ///        *&a          =  a
     58 ///
     59 /// Thread-safety analysis works by comparing lock expressions.  Within the
     60 /// body of a function, an expression such as "x->foo->bar.mu" will resolve to
     61 /// a particular mutex object at run-time.  Subsequent occurrences of the same
     62 /// expression (where "same" means syntactic equality) will refer to the same
     63 /// run-time object if three conditions hold:
     64 /// (1) Local variables in the expression, such as "x" have not changed.
     65 /// (2) Values on the heap that affect the expression have not changed.
     66 /// (3) The expression involves only pure function calls.
     67 ///
     68 /// The current implementation assumes, but does not verify, that multiple uses
     69 /// of the same lock expression satisfies these criteria.
     70 class SExpr {
     71 private:
     72   enum ExprOp {
     73     EOP_Nop,       ///< No-op
     74     EOP_Wildcard,  ///< Matches anything.
     75     EOP_Universal, ///< Universal lock.
     76     EOP_This,      ///< This keyword.
     77     EOP_NVar,      ///< Named variable.
     78     EOP_LVar,      ///< Local variable.
     79     EOP_Dot,       ///< Field access
     80     EOP_Call,      ///< Function call
     81     EOP_MCall,     ///< Method call
     82     EOP_Index,     ///< Array index
     83     EOP_Unary,     ///< Unary operation
     84     EOP_Binary,    ///< Binary operation
     85     EOP_Unknown    ///< Catchall for everything else
     86   };
     87 
     88 
     89   class SExprNode {
     90    private:
     91     unsigned char  Op;     ///< Opcode of the root node
     92     unsigned char  Flags;  ///< Additional opcode-specific data
     93     unsigned short Sz;     ///< Number of child nodes
     94     const void*    Data;   ///< Additional opcode-specific data
     95 
     96    public:
     97     SExprNode(ExprOp O, unsigned F, const void* D)
     98       : Op(static_cast<unsigned char>(O)),
     99         Flags(static_cast<unsigned char>(F)), Sz(1), Data(D)
    100     { }
    101 
    102     unsigned size() const        { return Sz; }
    103     void     setSize(unsigned S) { Sz = S;    }
    104 
    105     ExprOp   kind() const { return static_cast<ExprOp>(Op); }
    106 
    107     const NamedDecl* getNamedDecl() const {
    108       assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot);
    109       return reinterpret_cast<const NamedDecl*>(Data);
    110     }
    111 
    112     const NamedDecl* getFunctionDecl() const {
    113       assert(Op == EOP_Call || Op == EOP_MCall);
    114       return reinterpret_cast<const NamedDecl*>(Data);
    115     }
    116 
    117     bool isArrow() const { return Op == EOP_Dot && Flags == 1; }
    118     void setArrow(bool A) { Flags = A ? 1 : 0; }
    119 
    120     unsigned arity() const {
    121       switch (Op) {
    122         case EOP_Nop:       return 0;
    123         case EOP_Wildcard:  return 0;
    124         case EOP_Universal: return 0;
    125         case EOP_NVar:      return 0;
    126         case EOP_LVar:      return 0;
    127         case EOP_This:      return 0;
    128         case EOP_Dot:       return 1;
    129         case EOP_Call:      return Flags+1;  // First arg is function.
    130         case EOP_MCall:     return Flags+1;  // First arg is implicit obj.
    131         case EOP_Index:     return 2;
    132         case EOP_Unary:     return 1;
    133         case EOP_Binary:    return 2;
    134         case EOP_Unknown:   return Flags;
    135       }
    136       return 0;
    137     }
    138 
    139     bool operator==(const SExprNode& Other) const {
    140       // Ignore flags and size -- they don't matter.
    141       return (Op == Other.Op &&
    142               Data == Other.Data);
    143     }
    144 
    145     bool operator!=(const SExprNode& Other) const {
    146       return !(*this == Other);
    147     }
    148 
    149     bool matches(const SExprNode& Other) const {
    150       return (*this == Other) ||
    151              (Op == EOP_Wildcard) ||
    152              (Other.Op == EOP_Wildcard);
    153     }
    154   };
    155 
    156 
    157   /// \brief Encapsulates the lexical context of a function call.  The lexical
    158   /// context includes the arguments to the call, including the implicit object
    159   /// argument.  When an attribute containing a mutex expression is attached to
    160   /// a method, the expression may refer to formal parameters of the method.
    161   /// Actual arguments must be substituted for formal parameters to derive
    162   /// the appropriate mutex expression in the lexical context where the function
    163   /// is called.  PrevCtx holds the context in which the arguments themselves
    164   /// should be evaluated; multiple calling contexts can be chained together
    165   /// by the lock_returned attribute.
    166   struct CallingContext {
    167     const NamedDecl* AttrDecl;   // The decl to which the attribute is attached.
    168     Expr*            SelfArg;    // Implicit object argument -- e.g. 'this'
    169     bool             SelfArrow;  // is Self referred to with -> or .?
    170     unsigned         NumArgs;    // Number of funArgs
    171     Expr**           FunArgs;    // Function arguments
    172     CallingContext*  PrevCtx;    // The previous context; or 0 if none.
    173 
    174     CallingContext(const NamedDecl *D = 0, Expr *S = 0,
    175                    unsigned N = 0, Expr **A = 0, CallingContext *P = 0)
    176       : AttrDecl(D), SelfArg(S), SelfArrow(false),
    177         NumArgs(N), FunArgs(A), PrevCtx(P)
    178     { }
    179   };
    180 
    181   typedef SmallVector<SExprNode, 4> NodeVector;
    182 
    183 private:
    184   // A SExpr is a list of SExprNodes in prefix order.  The Size field allows
    185   // the list to be traversed as a tree.
    186   NodeVector NodeVec;
    187 
    188 private:
    189   unsigned makeNop() {
    190     NodeVec.push_back(SExprNode(EOP_Nop, 0, 0));
    191     return NodeVec.size()-1;
    192   }
    193 
    194   unsigned makeWildcard() {
    195     NodeVec.push_back(SExprNode(EOP_Wildcard, 0, 0));
    196     return NodeVec.size()-1;
    197   }
    198 
    199   unsigned makeUniversal() {
    200     NodeVec.push_back(SExprNode(EOP_Universal, 0, 0));
    201     return NodeVec.size()-1;
    202   }
    203 
    204   unsigned makeNamedVar(const NamedDecl *D) {
    205     NodeVec.push_back(SExprNode(EOP_NVar, 0, D));
    206     return NodeVec.size()-1;
    207   }
    208 
    209   unsigned makeLocalVar(const NamedDecl *D) {
    210     NodeVec.push_back(SExprNode(EOP_LVar, 0, D));
    211     return NodeVec.size()-1;
    212   }
    213 
    214   unsigned makeThis() {
    215     NodeVec.push_back(SExprNode(EOP_This, 0, 0));
    216     return NodeVec.size()-1;
    217   }
    218 
    219   unsigned makeDot(const NamedDecl *D, bool Arrow) {
    220     NodeVec.push_back(SExprNode(EOP_Dot, Arrow ? 1 : 0, D));
    221     return NodeVec.size()-1;
    222   }
    223 
    224   unsigned makeCall(unsigned NumArgs, const NamedDecl *D) {
    225     NodeVec.push_back(SExprNode(EOP_Call, NumArgs, D));
    226     return NodeVec.size()-1;
    227   }
    228 
    229   unsigned makeMCall(unsigned NumArgs, const NamedDecl *D) {
    230     NodeVec.push_back(SExprNode(EOP_MCall, NumArgs, D));
    231     return NodeVec.size()-1;
    232   }
    233 
    234   unsigned makeIndex() {
    235     NodeVec.push_back(SExprNode(EOP_Index, 0, 0));
    236     return NodeVec.size()-1;
    237   }
    238 
    239   unsigned makeUnary() {
    240     NodeVec.push_back(SExprNode(EOP_Unary, 0, 0));
    241     return NodeVec.size()-1;
    242   }
    243 
    244   unsigned makeBinary() {
    245     NodeVec.push_back(SExprNode(EOP_Binary, 0, 0));
    246     return NodeVec.size()-1;
    247   }
    248 
    249   unsigned makeUnknown(unsigned Arity) {
    250     NodeVec.push_back(SExprNode(EOP_Unknown, Arity, 0));
    251     return NodeVec.size()-1;
    252   }
    253 
    254   /// Build an SExpr from the given C++ expression.
    255   /// Recursive function that terminates on DeclRefExpr.
    256   /// Note: this function merely creates a SExpr; it does not check to
    257   /// ensure that the original expression is a valid mutex expression.
    258   ///
    259   /// NDeref returns the number of Derefence and AddressOf operations
    260   /// preceeding the Expr; this is used to decide whether to pretty-print
    261   /// SExprs with . or ->.
    262   unsigned buildSExpr(Expr *Exp, CallingContext* CallCtx, int* NDeref = 0) {
    263     if (!Exp)
    264       return 0;
    265 
    266     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
    267       NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
    268       ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
    269       if (PV) {
    270         FunctionDecl *FD =
    271           cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
    272         unsigned i = PV->getFunctionScopeIndex();
    273 
    274         if (CallCtx && CallCtx->FunArgs &&
    275             FD == CallCtx->AttrDecl->getCanonicalDecl()) {
    276           // Substitute call arguments for references to function parameters
    277           assert(i < CallCtx->NumArgs);
    278           return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx, NDeref);
    279         }
    280         // Map the param back to the param of the original function declaration.
    281         makeNamedVar(FD->getParamDecl(i));
    282         return 1;
    283       }
    284       // Not a function parameter -- just store the reference.
    285       makeNamedVar(ND);
    286       return 1;
    287     } else if (isa<CXXThisExpr>(Exp)) {
    288       // Substitute parent for 'this'
    289       if (CallCtx && CallCtx->SelfArg) {
    290         if (!CallCtx->SelfArrow && NDeref)
    291           // 'this' is a pointer, but self is not, so need to take address.
    292           --(*NDeref);
    293         return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref);
    294       }
    295       else {
    296         makeThis();
    297         return 1;
    298       }
    299     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
    300       NamedDecl *ND = ME->getMemberDecl();
    301       int ImplicitDeref = ME->isArrow() ? 1 : 0;
    302       unsigned Root = makeDot(ND, false);
    303       unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref);
    304       NodeVec[Root].setArrow(ImplicitDeref > 0);
    305       NodeVec[Root].setSize(Sz + 1);
    306       return Sz + 1;
    307     } else if (CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) {
    308       // When calling a function with a lock_returned attribute, replace
    309       // the function call with the expression in lock_returned.
    310       CXXMethodDecl* MD =
    311         cast<CXXMethodDecl>(CMCE->getMethodDecl()->getMostRecentDecl());
    312       if (LockReturnedAttr* At = MD->getAttr<LockReturnedAttr>()) {
    313         CallingContext LRCallCtx(CMCE->getMethodDecl());
    314         LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument();
    315         LRCallCtx.SelfArrow =
    316           dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow();
    317         LRCallCtx.NumArgs = CMCE->getNumArgs();
    318         LRCallCtx.FunArgs = CMCE->getArgs();
    319         LRCallCtx.PrevCtx = CallCtx;
    320         return buildSExpr(At->getArg(), &LRCallCtx);
    321       }
    322       // Hack to treat smart pointers and iterators as pointers;
    323       // ignore any method named get().
    324       if (CMCE->getMethodDecl()->getNameAsString() == "get" &&
    325           CMCE->getNumArgs() == 0) {
    326         if (NDeref && dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow())
    327           ++(*NDeref);
    328         return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx, NDeref);
    329       }
    330       unsigned NumCallArgs = CMCE->getNumArgs();
    331       unsigned Root =
    332         makeMCall(NumCallArgs, CMCE->getMethodDecl()->getCanonicalDecl());
    333       unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx);
    334       Expr** CallArgs = CMCE->getArgs();
    335       for (unsigned i = 0; i < NumCallArgs; ++i) {
    336         Sz += buildSExpr(CallArgs[i], CallCtx);
    337       }
    338       NodeVec[Root].setSize(Sz + 1);
    339       return Sz + 1;
    340     } else if (CallExpr *CE = dyn_cast<CallExpr>(Exp)) {
    341       FunctionDecl* FD =
    342         cast<FunctionDecl>(CE->getDirectCallee()->getMostRecentDecl());
    343       if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
    344         CallingContext LRCallCtx(CE->getDirectCallee());
    345         LRCallCtx.NumArgs = CE->getNumArgs();
    346         LRCallCtx.FunArgs = CE->getArgs();
    347         LRCallCtx.PrevCtx = CallCtx;
    348         return buildSExpr(At->getArg(), &LRCallCtx);
    349       }
    350       // Treat smart pointers and iterators as pointers;
    351       // ignore the * and -> operators.
    352       if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(CE)) {
    353         OverloadedOperatorKind k = OE->getOperator();
    354         if (k == OO_Star) {
    355           if (NDeref) ++(*NDeref);
    356           return buildSExpr(OE->getArg(0), CallCtx, NDeref);
    357         }
    358         else if (k == OO_Arrow) {
    359           return buildSExpr(OE->getArg(0), CallCtx, NDeref);
    360         }
    361       }
    362       unsigned NumCallArgs = CE->getNumArgs();
    363       unsigned Root = makeCall(NumCallArgs, 0);
    364       unsigned Sz = buildSExpr(CE->getCallee(), CallCtx);
    365       Expr** CallArgs = CE->getArgs();
    366       for (unsigned i = 0; i < NumCallArgs; ++i) {
    367         Sz += buildSExpr(CallArgs[i], CallCtx);
    368       }
    369       NodeVec[Root].setSize(Sz+1);
    370       return Sz+1;
    371     } else if (BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) {
    372       unsigned Root = makeBinary();
    373       unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx);
    374       Sz += buildSExpr(BOE->getRHS(), CallCtx);
    375       NodeVec[Root].setSize(Sz);
    376       return Sz;
    377     } else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) {
    378       // Ignore & and * operators -- they're no-ops.
    379       // However, we try to figure out whether the expression is a pointer,
    380       // so we can use . and -> appropriately in error messages.
    381       if (UOE->getOpcode() == UO_Deref) {
    382         if (NDeref) ++(*NDeref);
    383         return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
    384       }
    385       if (UOE->getOpcode() == UO_AddrOf) {
    386         if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UOE->getSubExpr())) {
    387           if (DRE->getDecl()->isCXXInstanceMember()) {
    388             // This is a pointer-to-member expression, e.g. &MyClass::mu_.
    389             // We interpret this syntax specially, as a wildcard.
    390             unsigned Root = makeDot(DRE->getDecl(), false);
    391             makeWildcard();
    392             NodeVec[Root].setSize(2);
    393             return 2;
    394           }
    395         }
    396         if (NDeref) --(*NDeref);
    397         return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
    398       }
    399       unsigned Root = makeUnary();
    400       unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx);
    401       NodeVec[Root].setSize(Sz);
    402       return Sz;
    403     } else if (ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Exp)) {
    404       unsigned Root = makeIndex();
    405       unsigned Sz = buildSExpr(ASE->getBase(), CallCtx);
    406       Sz += buildSExpr(ASE->getIdx(), CallCtx);
    407       NodeVec[Root].setSize(Sz);
    408       return Sz;
    409     } else if (AbstractConditionalOperator *CE =
    410                dyn_cast<AbstractConditionalOperator>(Exp)) {
    411       unsigned Root = makeUnknown(3);
    412       unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
    413       Sz += buildSExpr(CE->getTrueExpr(), CallCtx);
    414       Sz += buildSExpr(CE->getFalseExpr(), CallCtx);
    415       NodeVec[Root].setSize(Sz);
    416       return Sz;
    417     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) {
    418       unsigned Root = makeUnknown(3);
    419       unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
    420       Sz += buildSExpr(CE->getLHS(), CallCtx);
    421       Sz += buildSExpr(CE->getRHS(), CallCtx);
    422       NodeVec[Root].setSize(Sz);
    423       return Sz;
    424     } else if (CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
    425       return buildSExpr(CE->getSubExpr(), CallCtx, NDeref);
    426     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
    427       return buildSExpr(PE->getSubExpr(), CallCtx, NDeref);
    428     } else if (ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Exp)) {
    429       return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref);
    430     } else if (CXXBindTemporaryExpr *E = dyn_cast<CXXBindTemporaryExpr>(Exp)) {
    431       return buildSExpr(E->getSubExpr(), CallCtx, NDeref);
    432     } else if (isa<CharacterLiteral>(Exp) ||
    433                isa<CXXNullPtrLiteralExpr>(Exp) ||
    434                isa<GNUNullExpr>(Exp) ||
    435                isa<CXXBoolLiteralExpr>(Exp) ||
    436                isa<FloatingLiteral>(Exp) ||
    437                isa<ImaginaryLiteral>(Exp) ||
    438                isa<IntegerLiteral>(Exp) ||
    439                isa<StringLiteral>(Exp) ||
    440                isa<ObjCStringLiteral>(Exp)) {
    441       makeNop();
    442       return 1;  // FIXME: Ignore literals for now
    443     } else {
    444       makeNop();
    445       return 1;  // Ignore.  FIXME: mark as invalid expression?
    446     }
    447   }
    448 
    449   /// \brief Construct a SExpr from an expression.
    450   /// \param MutexExp The original mutex expression within an attribute
    451   /// \param DeclExp An expression involving the Decl on which the attribute
    452   ///        occurs.
    453   /// \param D  The declaration to which the lock/unlock attribute is attached.
    454   void buildSExprFromExpr(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) {
    455     CallingContext CallCtx(D);
    456 
    457 
    458     if (MutexExp) {
    459       if (StringLiteral* SLit = dyn_cast<StringLiteral>(MutexExp)) {
    460         if (SLit->getString() == StringRef("*"))
    461           // The "*" expr is a universal lock, which essentially turns off
    462           // checks until it is removed from the lockset.
    463           makeUniversal();
    464         else
    465           // Ignore other string literals for now.
    466           makeNop();
    467         return;
    468       }
    469     }
    470 
    471     // If we are processing a raw attribute expression, with no substitutions.
    472     if (DeclExp == 0) {
    473       buildSExpr(MutexExp, 0);
    474       return;
    475     }
    476 
    477     // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
    478     // for formal parameters when we call buildMutexID later.
    479     if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
    480       CallCtx.SelfArg   = ME->getBase();
    481       CallCtx.SelfArrow = ME->isArrow();
    482     } else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
    483       CallCtx.SelfArg   = CE->getImplicitObjectArgument();
    484       CallCtx.SelfArrow = dyn_cast<MemberExpr>(CE->getCallee())->isArrow();
    485       CallCtx.NumArgs   = CE->getNumArgs();
    486       CallCtx.FunArgs   = CE->getArgs();
    487     } else if (CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
    488       CallCtx.NumArgs = CE->getNumArgs();
    489       CallCtx.FunArgs = CE->getArgs();
    490     } else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
    491       CallCtx.SelfArg = 0;  // FIXME -- get the parent from DeclStmt
    492       CallCtx.NumArgs = CE->getNumArgs();
    493       CallCtx.FunArgs = CE->getArgs();
    494     } else if (D && isa<CXXDestructorDecl>(D)) {
    495       // There's no such thing as a "destructor call" in the AST.
    496       CallCtx.SelfArg = DeclExp;
    497     }
    498 
    499     // If the attribute has no arguments, then assume the argument is "this".
    500     if (MutexExp == 0) {
    501       buildSExpr(CallCtx.SelfArg, 0);
    502       return;
    503     }
    504 
    505     // For most attributes.
    506     buildSExpr(MutexExp, &CallCtx);
    507   }
    508 
    509   /// \brief Get index of next sibling of node i.
    510   unsigned getNextSibling(unsigned i) const {
    511     return i + NodeVec[i].size();
    512   }
    513 
    514 public:
    515   explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); }
    516 
    517   /// \param MutexExp The original mutex expression within an attribute
    518   /// \param DeclExp An expression involving the Decl on which the attribute
    519   ///        occurs.
    520   /// \param D  The declaration to which the lock/unlock attribute is attached.
    521   /// Caller must check isValid() after construction.
    522   SExpr(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) {
    523     buildSExprFromExpr(MutexExp, DeclExp, D);
    524   }
    525 
    526   /// Return true if this is a valid decl sequence.
    527   /// Caller must call this by hand after construction to handle errors.
    528   bool isValid() const {
    529     return !NodeVec.empty();
    530   }
    531 
    532   bool shouldIgnore() const {
    533     // Nop is a mutex that we have decided to deliberately ignore.
    534     assert(NodeVec.size() > 0 && "Invalid Mutex");
    535     return NodeVec[0].kind() == EOP_Nop;
    536   }
    537 
    538   bool isUniversal() const {
    539     assert(NodeVec.size() > 0 && "Invalid Mutex");
    540     return NodeVec[0].kind() == EOP_Universal;
    541   }
    542 
    543   /// Issue a warning about an invalid lock expression
    544   static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp,
    545                               Expr *DeclExp, const NamedDecl* D) {
    546     SourceLocation Loc;
    547     if (DeclExp)
    548       Loc = DeclExp->getExprLoc();
    549 
    550     // FIXME: add a note about the attribute location in MutexExp or D
    551     if (Loc.isValid())
    552       Handler.handleInvalidLockExp(Loc);
    553   }
    554 
    555   bool operator==(const SExpr &other) const {
    556     return NodeVec == other.NodeVec;
    557   }
    558 
    559   bool operator!=(const SExpr &other) const {
    560     return !(*this == other);
    561   }
    562 
    563   bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const {
    564     if (NodeVec[i].matches(Other.NodeVec[j])) {
    565       unsigned n = NodeVec[i].arity();
    566       bool Result = true;
    567       unsigned ci = i+1;  // first child of i
    568       unsigned cj = j+1;  // first child of j
    569       for (unsigned k = 0; k < n;
    570            ++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) {
    571         Result = Result && matches(Other, ci, cj);
    572       }
    573       return Result;
    574     }
    575     return false;
    576   }
    577 
    578   // A partial match between a.mu and b.mu returns true a and b have the same
    579   // type (and thus mu refers to the same mutex declaration), regardless of
    580   // whether a and b are different objects or not.
    581   bool partiallyMatches(const SExpr &Other) const {
    582     if (NodeVec[0].kind() == EOP_Dot)
    583       return NodeVec[0].matches(Other.NodeVec[0]);
    584     return false;
    585   }
    586 
    587   /// \brief Pretty print a lock expression for use in error messages.
    588   std::string toString(unsigned i = 0) const {
    589     assert(isValid());
    590     if (i >= NodeVec.size())
    591       return "";
    592 
    593     const SExprNode* N = &NodeVec[i];
    594     switch (N->kind()) {
    595       case EOP_Nop:
    596         return "_";
    597       case EOP_Wildcard:
    598         return "(?)";
    599       case EOP_Universal:
    600         return "*";
    601       case EOP_This:
    602         return "this";
    603       case EOP_NVar:
    604       case EOP_LVar: {
    605         return N->getNamedDecl()->getNameAsString();
    606       }
    607       case EOP_Dot: {
    608         if (NodeVec[i+1].kind() == EOP_Wildcard) {
    609           std::string S = "&";
    610           S += N->getNamedDecl()->getQualifiedNameAsString();
    611           return S;
    612         }
    613         std::string FieldName = N->getNamedDecl()->getNameAsString();
    614         if (NodeVec[i+1].kind() == EOP_This)
    615           return FieldName;
    616 
    617         std::string S = toString(i+1);
    618         if (N->isArrow())
    619           return S + "->" + FieldName;
    620         else
    621           return S + "." + FieldName;
    622       }
    623       case EOP_Call: {
    624         std::string S = toString(i+1) + "(";
    625         unsigned NumArgs = N->arity()-1;
    626         unsigned ci = getNextSibling(i+1);
    627         for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
    628           S += toString(ci);
    629           if (k+1 < NumArgs) S += ",";
    630         }
    631         S += ")";
    632         return S;
    633       }
    634       case EOP_MCall: {
    635         std::string S = "";
    636         if (NodeVec[i+1].kind() != EOP_This)
    637           S = toString(i+1) + ".";
    638         if (const NamedDecl *D = N->getFunctionDecl())
    639           S += D->getNameAsString() + "(";
    640         else
    641           S += "#(";
    642         unsigned NumArgs = N->arity()-1;
    643         unsigned ci = getNextSibling(i+1);
    644         for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
    645           S += toString(ci);
    646           if (k+1 < NumArgs) S += ",";
    647         }
    648         S += ")";
    649         return S;
    650       }
    651       case EOP_Index: {
    652         std::string S1 = toString(i+1);
    653         std::string S2 = toString(i+1 + NodeVec[i+1].size());
    654         return S1 + "[" + S2 + "]";
    655       }
    656       case EOP_Unary: {
    657         std::string S = toString(i+1);
    658         return "#" + S;
    659       }
    660       case EOP_Binary: {
    661         std::string S1 = toString(i+1);
    662         std::string S2 = toString(i+1 + NodeVec[i+1].size());
    663         return "(" + S1 + "#" + S2 + ")";
    664       }
    665       case EOP_Unknown: {
    666         unsigned NumChildren = N->arity();
    667         if (NumChildren == 0)
    668           return "(...)";
    669         std::string S = "(";
    670         unsigned ci = i+1;
    671         for (unsigned j = 0; j < NumChildren; ++j, ci = getNextSibling(ci)) {
    672           S += toString(ci);
    673           if (j+1 < NumChildren) S += "#";
    674         }
    675         S += ")";
    676         return S;
    677       }
    678     }
    679     return "";
    680   }
    681 };
    682 
    683 
    684 
    685 /// \brief A short list of SExprs
    686 class MutexIDList : public SmallVector<SExpr, 3> {
    687 public:
    688   /// \brief Return true if the list contains the specified SExpr
    689   /// Performs a linear search, because these lists are almost always very small.
    690   bool contains(const SExpr& M) {
    691     for (iterator I=begin(),E=end(); I != E; ++I)
    692       if ((*I) == M) return true;
    693     return false;
    694   }
    695 
    696   /// \brief Push M onto list, bud discard duplicates
    697   void push_back_nodup(const SExpr& M) {
    698     if (!contains(M)) push_back(M);
    699   }
    700 };
    701 
    702 
    703 
    704 /// \brief This is a helper class that stores info about the most recent
    705 /// accquire of a Lock.
    706 ///
    707 /// The main body of the analysis maps MutexIDs to LockDatas.
    708 struct LockData {
    709   SourceLocation AcquireLoc;
    710 
    711   /// \brief LKind stores whether a lock is held shared or exclusively.
    712   /// Note that this analysis does not currently support either re-entrant
    713   /// locking or lock "upgrading" and "downgrading" between exclusive and
    714   /// shared.
    715   ///
    716   /// FIXME: add support for re-entrant locking and lock up/downgrading
    717   LockKind LKind;
    718   bool     Managed;            // for ScopedLockable objects
    719   SExpr    UnderlyingMutex;    // for ScopedLockable objects
    720 
    721   LockData(SourceLocation AcquireLoc, LockKind LKind, bool M = false)
    722     : AcquireLoc(AcquireLoc), LKind(LKind), Managed(M),
    723       UnderlyingMutex(Decl::EmptyShell())
    724   {}
    725 
    726   LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu)
    727     : AcquireLoc(AcquireLoc), LKind(LKind), Managed(false),
    728       UnderlyingMutex(Mu)
    729   {}
    730 
    731   bool operator==(const LockData &other) const {
    732     return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
    733   }
    734 
    735   bool operator!=(const LockData &other) const {
    736     return !(*this == other);
    737   }
    738 
    739   void Profile(llvm::FoldingSetNodeID &ID) const {
    740     ID.AddInteger(AcquireLoc.getRawEncoding());
    741     ID.AddInteger(LKind);
    742   }
    743 
    744   bool isAtLeast(LockKind LK) {
    745     return (LK == LK_Shared) || (LKind == LK_Exclusive);
    746   }
    747 };
    748 
    749 
    750 /// \brief A FactEntry stores a single fact that is known at a particular point
    751 /// in the program execution.  Currently, this is information regarding a lock
    752 /// that is held at that point.
    753 struct FactEntry {
    754   SExpr    MutID;
    755   LockData LDat;
    756 
    757   FactEntry(const SExpr& M, const LockData& L)
    758     : MutID(M), LDat(L)
    759   { }
    760 };
    761 
    762 
    763 typedef unsigned short FactID;
    764 
    765 /// \brief FactManager manages the memory for all facts that are created during
    766 /// the analysis of a single routine.
    767 class FactManager {
    768 private:
    769   std::vector<FactEntry> Facts;
    770 
    771 public:
    772   FactID newLock(const SExpr& M, const LockData& L) {
    773     Facts.push_back(FactEntry(M,L));
    774     return static_cast<unsigned short>(Facts.size() - 1);
    775   }
    776 
    777   const FactEntry& operator[](FactID F) const { return Facts[F]; }
    778   FactEntry&       operator[](FactID F)       { return Facts[F]; }
    779 };
    780 
    781 
    782 /// \brief A FactSet is the set of facts that are known to be true at a
    783 /// particular program point.  FactSets must be small, because they are
    784 /// frequently copied, and are thus implemented as a set of indices into a
    785 /// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
    786 /// locks, so we can get away with doing a linear search for lookup.  Note
    787 /// that a hashtable or map is inappropriate in this case, because lookups
    788 /// may involve partial pattern matches, rather than exact matches.
    789 class FactSet {
    790 private:
    791   typedef SmallVector<FactID, 4> FactVec;
    792 
    793   FactVec FactIDs;
    794 
    795 public:
    796   typedef FactVec::iterator       iterator;
    797   typedef FactVec::const_iterator const_iterator;
    798 
    799   iterator       begin()       { return FactIDs.begin(); }
    800   const_iterator begin() const { return FactIDs.begin(); }
    801 
    802   iterator       end()       { return FactIDs.end(); }
    803   const_iterator end() const { return FactIDs.end(); }
    804 
    805   bool isEmpty() const { return FactIDs.size() == 0; }
    806 
    807   FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) {
    808     FactID F = FM.newLock(M, L);
    809     FactIDs.push_back(F);
    810     return F;
    811   }
    812 
    813   bool removeLock(FactManager& FM, const SExpr& M) {
    814     unsigned n = FactIDs.size();
    815     if (n == 0)
    816       return false;
    817 
    818     for (unsigned i = 0; i < n-1; ++i) {
    819       if (FM[FactIDs[i]].MutID.matches(M)) {
    820         FactIDs[i] = FactIDs[n-1];
    821         FactIDs.pop_back();
    822         return true;
    823       }
    824     }
    825     if (FM[FactIDs[n-1]].MutID.matches(M)) {
    826       FactIDs.pop_back();
    827       return true;
    828     }
    829     return false;
    830   }
    831 
    832   LockData* findLock(FactManager &FM, const SExpr &M) const {
    833     for (const_iterator I = begin(), E = end(); I != E; ++I) {
    834       const SExpr &Exp = FM[*I].MutID;
    835       if (Exp.matches(M))
    836         return &FM[*I].LDat;
    837     }
    838     return 0;
    839   }
    840 
    841   LockData* findLockUniv(FactManager &FM, const SExpr &M) const {
    842     for (const_iterator I = begin(), E = end(); I != E; ++I) {
    843       const SExpr &Exp = FM[*I].MutID;
    844       if (Exp.matches(M) || Exp.isUniversal())
    845         return &FM[*I].LDat;
    846     }
    847     return 0;
    848   }
    849 
    850   FactEntry* findPartialMatch(FactManager &FM, const SExpr &M) const {
    851     for (const_iterator I=begin(), E=end(); I != E; ++I) {
    852       const SExpr& Exp = FM[*I].MutID;
    853       if (Exp.partiallyMatches(M)) return &FM[*I];
    854     }
    855     return 0;
    856   }
    857 };
    858 
    859 
    860 
    861 /// A Lockset maps each SExpr (defined above) to information about how it has
    862 /// been locked.
    863 typedef llvm::ImmutableMap<SExpr, LockData> Lockset;
    864 typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
    865 
    866 class LocalVariableMap;
    867 
    868 /// A side (entry or exit) of a CFG node.
    869 enum CFGBlockSide { CBS_Entry, CBS_Exit };
    870 
    871 /// CFGBlockInfo is a struct which contains all the information that is
    872 /// maintained for each block in the CFG.  See LocalVariableMap for more
    873 /// information about the contexts.
    874 struct CFGBlockInfo {
    875   FactSet EntrySet;             // Lockset held at entry to block
    876   FactSet ExitSet;              // Lockset held at exit from block
    877   LocalVarContext EntryContext; // Context held at entry to block
    878   LocalVarContext ExitContext;  // Context held at exit from block
    879   SourceLocation EntryLoc;      // Location of first statement in block
    880   SourceLocation ExitLoc;       // Location of last statement in block.
    881   unsigned EntryIndex;          // Used to replay contexts later
    882 
    883   const FactSet &getSet(CFGBlockSide Side) const {
    884     return Side == CBS_Entry ? EntrySet : ExitSet;
    885   }
    886   SourceLocation getLocation(CFGBlockSide Side) const {
    887     return Side == CBS_Entry ? EntryLoc : ExitLoc;
    888   }
    889 
    890 private:
    891   CFGBlockInfo(LocalVarContext EmptyCtx)
    892     : EntryContext(EmptyCtx), ExitContext(EmptyCtx)
    893   { }
    894 
    895 public:
    896   static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
    897 };
    898 
    899 
    900 
    901 // A LocalVariableMap maintains a map from local variables to their currently
    902 // valid definitions.  It provides SSA-like functionality when traversing the
    903 // CFG.  Like SSA, each definition or assignment to a variable is assigned a
    904 // unique name (an integer), which acts as the SSA name for that definition.
    905 // The total set of names is shared among all CFG basic blocks.
    906 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
    907 // with their SSA-names.  Instead, we compute a Context for each point in the
    908 // code, which maps local variables to the appropriate SSA-name.  This map
    909 // changes with each assignment.
    910 //
    911 // The map is computed in a single pass over the CFG.  Subsequent analyses can
    912 // then query the map to find the appropriate Context for a statement, and use
    913 // that Context to look up the definitions of variables.
    914 class LocalVariableMap {
    915 public:
    916   typedef LocalVarContext Context;
    917 
    918   /// A VarDefinition consists of an expression, representing the value of the
    919   /// variable, along with the context in which that expression should be
    920   /// interpreted.  A reference VarDefinition does not itself contain this
    921   /// information, but instead contains a pointer to a previous VarDefinition.
    922   struct VarDefinition {
    923   public:
    924     friend class LocalVariableMap;
    925 
    926     const NamedDecl *Dec;  // The original declaration for this variable.
    927     const Expr *Exp;       // The expression for this variable, OR
    928     unsigned Ref;          // Reference to another VarDefinition
    929     Context Ctx;           // The map with which Exp should be interpreted.
    930 
    931     bool isReference() { return !Exp; }
    932 
    933   private:
    934     // Create ordinary variable definition
    935     VarDefinition(const NamedDecl *D, const Expr *E, Context C)
    936       : Dec(D), Exp(E), Ref(0), Ctx(C)
    937     { }
    938 
    939     // Create reference to previous definition
    940     VarDefinition(const NamedDecl *D, unsigned R, Context C)
    941       : Dec(D), Exp(0), Ref(R), Ctx(C)
    942     { }
    943   };
    944 
    945 private:
    946   Context::Factory ContextFactory;
    947   std::vector<VarDefinition> VarDefinitions;
    948   std::vector<unsigned> CtxIndices;
    949   std::vector<std::pair<Stmt*, Context> > SavedContexts;
    950 
    951 public:
    952   LocalVariableMap() {
    953     // index 0 is a placeholder for undefined variables (aka phi-nodes).
    954     VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext()));
    955   }
    956 
    957   /// Look up a definition, within the given context.
    958   const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
    959     const unsigned *i = Ctx.lookup(D);
    960     if (!i)
    961       return 0;
    962     assert(*i < VarDefinitions.size());
    963     return &VarDefinitions[*i];
    964   }
    965 
    966   /// Look up the definition for D within the given context.  Returns
    967   /// NULL if the expression is not statically known.  If successful, also
    968   /// modifies Ctx to hold the context of the return Expr.
    969   const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
    970     const unsigned *P = Ctx.lookup(D);
    971     if (!P)
    972       return 0;
    973 
    974     unsigned i = *P;
    975     while (i > 0) {
    976       if (VarDefinitions[i].Exp) {
    977         Ctx = VarDefinitions[i].Ctx;
    978         return VarDefinitions[i].Exp;
    979       }
    980       i = VarDefinitions[i].Ref;
    981     }
    982     return 0;
    983   }
    984 
    985   Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
    986 
    987   /// Return the next context after processing S.  This function is used by
    988   /// clients of the class to get the appropriate context when traversing the
    989   /// CFG.  It must be called for every assignment or DeclStmt.
    990   Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
    991     if (SavedContexts[CtxIndex+1].first == S) {
    992       CtxIndex++;
    993       Context Result = SavedContexts[CtxIndex].second;
    994       return Result;
    995     }
    996     return C;
    997   }
    998 
    999   void dumpVarDefinitionName(unsigned i) {
   1000     if (i == 0) {
   1001       llvm::errs() << "Undefined";
   1002       return;
   1003     }
   1004     const NamedDecl *Dec = VarDefinitions[i].Dec;
   1005     if (!Dec) {
   1006       llvm::errs() << "<<NULL>>";
   1007       return;
   1008     }
   1009     Dec->printName(llvm::errs());
   1010     llvm::errs() << "." << i << " " << ((const void*) Dec);
   1011   }
   1012 
   1013   /// Dumps an ASCII representation of the variable map to llvm::errs()
   1014   void dump() {
   1015     for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
   1016       const Expr *Exp = VarDefinitions[i].Exp;
   1017       unsigned Ref = VarDefinitions[i].Ref;
   1018 
   1019       dumpVarDefinitionName(i);
   1020       llvm::errs() << " = ";
   1021       if (Exp) Exp->dump();
   1022       else {
   1023         dumpVarDefinitionName(Ref);
   1024         llvm::errs() << "\n";
   1025       }
   1026     }
   1027   }
   1028 
   1029   /// Dumps an ASCII representation of a Context to llvm::errs()
   1030   void dumpContext(Context C) {
   1031     for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
   1032       const NamedDecl *D = I.getKey();
   1033       D->printName(llvm::errs());
   1034       const unsigned *i = C.lookup(D);
   1035       llvm::errs() << " -> ";
   1036       dumpVarDefinitionName(*i);
   1037       llvm::errs() << "\n";
   1038     }
   1039   }
   1040 
   1041   /// Builds the variable map.
   1042   void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph,
   1043                      std::vector<CFGBlockInfo> &BlockInfo);
   1044 
   1045 protected:
   1046   // Get the current context index
   1047   unsigned getContextIndex() { return SavedContexts.size()-1; }
   1048 
   1049   // Save the current context for later replay
   1050   void saveContext(Stmt *S, Context C) {
   1051     SavedContexts.push_back(std::make_pair(S,C));
   1052   }
   1053 
   1054   // Adds a new definition to the given context, and returns a new context.
   1055   // This method should be called when declaring a new variable.
   1056   Context addDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
   1057     assert(!Ctx.contains(D));
   1058     unsigned newID = VarDefinitions.size();
   1059     Context NewCtx = ContextFactory.add(Ctx, D, newID);
   1060     VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
   1061     return NewCtx;
   1062   }
   1063 
   1064   // Add a new reference to an existing definition.
   1065   Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
   1066     unsigned newID = VarDefinitions.size();
   1067     Context NewCtx = ContextFactory.add(Ctx, D, newID);
   1068     VarDefinitions.push_back(VarDefinition(D, i, Ctx));
   1069     return NewCtx;
   1070   }
   1071 
   1072   // Updates a definition only if that definition is already in the map.
   1073   // This method should be called when assigning to an existing variable.
   1074   Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
   1075     if (Ctx.contains(D)) {
   1076       unsigned newID = VarDefinitions.size();
   1077       Context NewCtx = ContextFactory.remove(Ctx, D);
   1078       NewCtx = ContextFactory.add(NewCtx, D, newID);
   1079       VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
   1080       return NewCtx;
   1081     }
   1082     return Ctx;
   1083   }
   1084 
   1085   // Removes a definition from the context, but keeps the variable name
   1086   // as a valid variable.  The index 0 is a placeholder for cleared definitions.
   1087   Context clearDefinition(const NamedDecl *D, Context Ctx) {
   1088     Context NewCtx = Ctx;
   1089     if (NewCtx.contains(D)) {
   1090       NewCtx = ContextFactory.remove(NewCtx, D);
   1091       NewCtx = ContextFactory.add(NewCtx, D, 0);
   1092     }
   1093     return NewCtx;
   1094   }
   1095 
   1096   // Remove a definition entirely frmo the context.
   1097   Context removeDefinition(const NamedDecl *D, Context Ctx) {
   1098     Context NewCtx = Ctx;
   1099     if (NewCtx.contains(D)) {
   1100       NewCtx = ContextFactory.remove(NewCtx, D);
   1101     }
   1102     return NewCtx;
   1103   }
   1104 
   1105   Context intersectContexts(Context C1, Context C2);
   1106   Context createReferenceContext(Context C);
   1107   void intersectBackEdge(Context C1, Context C2);
   1108 
   1109   friend class VarMapBuilder;
   1110 };
   1111 
   1112 
   1113 // This has to be defined after LocalVariableMap.
   1114 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
   1115   return CFGBlockInfo(M.getEmptyContext());
   1116 }
   1117 
   1118 
   1119 /// Visitor which builds a LocalVariableMap
   1120 class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
   1121 public:
   1122   LocalVariableMap* VMap;
   1123   LocalVariableMap::Context Ctx;
   1124 
   1125   VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
   1126     : VMap(VM), Ctx(C) {}
   1127 
   1128   void VisitDeclStmt(DeclStmt *S);
   1129   void VisitBinaryOperator(BinaryOperator *BO);
   1130 };
   1131 
   1132 
   1133 // Add new local variables to the variable map
   1134 void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
   1135   bool modifiedCtx = false;
   1136   DeclGroupRef DGrp = S->getDeclGroup();
   1137   for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
   1138     if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
   1139       Expr *E = VD->getInit();
   1140 
   1141       // Add local variables with trivial type to the variable map
   1142       QualType T = VD->getType();
   1143       if (T.isTrivialType(VD->getASTContext())) {
   1144         Ctx = VMap->addDefinition(VD, E, Ctx);
   1145         modifiedCtx = true;
   1146       }
   1147     }
   1148   }
   1149   if (modifiedCtx)
   1150     VMap->saveContext(S, Ctx);
   1151 }
   1152 
   1153 // Update local variable definitions in variable map
   1154 void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
   1155   if (!BO->isAssignmentOp())
   1156     return;
   1157 
   1158   Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
   1159 
   1160   // Update the variable map and current context.
   1161   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
   1162     ValueDecl *VDec = DRE->getDecl();
   1163     if (Ctx.lookup(VDec)) {
   1164       if (BO->getOpcode() == BO_Assign)
   1165         Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
   1166       else
   1167         // FIXME -- handle compound assignment operators
   1168         Ctx = VMap->clearDefinition(VDec, Ctx);
   1169       VMap->saveContext(BO, Ctx);
   1170     }
   1171   }
   1172 }
   1173 
   1174 
   1175 // Computes the intersection of two contexts.  The intersection is the
   1176 // set of variables which have the same definition in both contexts;
   1177 // variables with different definitions are discarded.
   1178 LocalVariableMap::Context
   1179 LocalVariableMap::intersectContexts(Context C1, Context C2) {
   1180   Context Result = C1;
   1181   for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
   1182     const NamedDecl *Dec = I.getKey();
   1183     unsigned i1 = I.getData();
   1184     const unsigned *i2 = C2.lookup(Dec);
   1185     if (!i2)             // variable doesn't exist on second path
   1186       Result = removeDefinition(Dec, Result);
   1187     else if (*i2 != i1)  // variable exists, but has different definition
   1188       Result = clearDefinition(Dec, Result);
   1189   }
   1190   return Result;
   1191 }
   1192 
   1193 // For every variable in C, create a new variable that refers to the
   1194 // definition in C.  Return a new context that contains these new variables.
   1195 // (We use this for a naive implementation of SSA on loop back-edges.)
   1196 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
   1197   Context Result = getEmptyContext();
   1198   for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
   1199     const NamedDecl *Dec = I.getKey();
   1200     unsigned i = I.getData();
   1201     Result = addReference(Dec, i, Result);
   1202   }
   1203   return Result;
   1204 }
   1205 
   1206 // This routine also takes the intersection of C1 and C2, but it does so by
   1207 // altering the VarDefinitions.  C1 must be the result of an earlier call to
   1208 // createReferenceContext.
   1209 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
   1210   for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
   1211     const NamedDecl *Dec = I.getKey();
   1212     unsigned i1 = I.getData();
   1213     VarDefinition *VDef = &VarDefinitions[i1];
   1214     assert(VDef->isReference());
   1215 
   1216     const unsigned *i2 = C2.lookup(Dec);
   1217     if (!i2 || (*i2 != i1))
   1218       VDef->Ref = 0;    // Mark this variable as undefined
   1219   }
   1220 }
   1221 
   1222 
   1223 // Traverse the CFG in topological order, so all predecessors of a block
   1224 // (excluding back-edges) are visited before the block itself.  At
   1225 // each point in the code, we calculate a Context, which holds the set of
   1226 // variable definitions which are visible at that point in execution.
   1227 // Visible variables are mapped to their definitions using an array that
   1228 // contains all definitions.
   1229 //
   1230 // At join points in the CFG, the set is computed as the intersection of
   1231 // the incoming sets along each edge, E.g.
   1232 //
   1233 //                       { Context                 | VarDefinitions }
   1234 //   int x = 0;          { x -> x1                 | x1 = 0 }
   1235 //   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
   1236 //   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
   1237 //   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
   1238 //   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
   1239 //
   1240 // This is essentially a simpler and more naive version of the standard SSA
   1241 // algorithm.  Those definitions that remain in the intersection are from blocks
   1242 // that strictly dominate the current block.  We do not bother to insert proper
   1243 // phi nodes, because they are not used in our analysis; instead, wherever
   1244 // a phi node would be required, we simply remove that definition from the
   1245 // context (E.g. x above).
   1246 //
   1247 // The initial traversal does not capture back-edges, so those need to be
   1248 // handled on a separate pass.  Whenever the first pass encounters an
   1249 // incoming back edge, it duplicates the context, creating new definitions
   1250 // that refer back to the originals.  (These correspond to places where SSA
   1251 // might have to insert a phi node.)  On the second pass, these definitions are
   1252 // set to NULL if the variable has changed on the back-edge (i.e. a phi
   1253 // node was actually required.)  E.g.
   1254 //
   1255 //                       { Context           | VarDefinitions }
   1256 //   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
   1257 //   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
   1258 //     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
   1259 //   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
   1260 //
   1261 void LocalVariableMap::traverseCFG(CFG *CFGraph,
   1262                                    PostOrderCFGView *SortedGraph,
   1263                                    std::vector<CFGBlockInfo> &BlockInfo) {
   1264   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
   1265 
   1266   CtxIndices.resize(CFGraph->getNumBlockIDs());
   1267 
   1268   for (PostOrderCFGView::iterator I = SortedGraph->begin(),
   1269        E = SortedGraph->end(); I!= E; ++I) {
   1270     const CFGBlock *CurrBlock = *I;
   1271     int CurrBlockID = CurrBlock->getBlockID();
   1272     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
   1273 
   1274     VisitedBlocks.insert(CurrBlock);
   1275 
   1276     // Calculate the entry context for the current block
   1277     bool HasBackEdges = false;
   1278     bool CtxInit = true;
   1279     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
   1280          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
   1281       // if *PI -> CurrBlock is a back edge, so skip it
   1282       if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) {
   1283         HasBackEdges = true;
   1284         continue;
   1285       }
   1286 
   1287       int PrevBlockID = (*PI)->getBlockID();
   1288       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
   1289 
   1290       if (CtxInit) {
   1291         CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
   1292         CtxInit = false;
   1293       }
   1294       else {
   1295         CurrBlockInfo->EntryContext =
   1296           intersectContexts(CurrBlockInfo->EntryContext,
   1297                             PrevBlockInfo->ExitContext);
   1298       }
   1299     }
   1300 
   1301     // Duplicate the context if we have back-edges, so we can call
   1302     // intersectBackEdges later.
   1303     if (HasBackEdges)
   1304       CurrBlockInfo->EntryContext =
   1305         createReferenceContext(CurrBlockInfo->EntryContext);
   1306 
   1307     // Create a starting context index for the current block
   1308     saveContext(0, CurrBlockInfo->EntryContext);
   1309     CurrBlockInfo->EntryIndex = getContextIndex();
   1310 
   1311     // Visit all the statements in the basic block.
   1312     VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
   1313     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
   1314          BE = CurrBlock->end(); BI != BE; ++BI) {
   1315       switch (BI->getKind()) {
   1316         case CFGElement::Statement: {
   1317           const CFGStmt *CS = cast<CFGStmt>(&*BI);
   1318           VMapBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
   1319           break;
   1320         }
   1321         default:
   1322           break;
   1323       }
   1324     }
   1325     CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
   1326 
   1327     // Mark variables on back edges as "unknown" if they've been changed.
   1328     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
   1329          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
   1330       // if CurrBlock -> *SI is *not* a back edge
   1331       if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
   1332         continue;
   1333 
   1334       CFGBlock *FirstLoopBlock = *SI;
   1335       Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
   1336       Context LoopEnd   = CurrBlockInfo->ExitContext;
   1337       intersectBackEdge(LoopBegin, LoopEnd);
   1338     }
   1339   }
   1340 
   1341   // Put an extra entry at the end of the indexed context array
   1342   unsigned exitID = CFGraph->getExit().getBlockID();
   1343   saveContext(0, BlockInfo[exitID].ExitContext);
   1344 }
   1345 
   1346 /// Find the appropriate source locations to use when producing diagnostics for
   1347 /// each block in the CFG.
   1348 static void findBlockLocations(CFG *CFGraph,
   1349                                PostOrderCFGView *SortedGraph,
   1350                                std::vector<CFGBlockInfo> &BlockInfo) {
   1351   for (PostOrderCFGView::iterator I = SortedGraph->begin(),
   1352        E = SortedGraph->end(); I!= E; ++I) {
   1353     const CFGBlock *CurrBlock = *I;
   1354     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
   1355 
   1356     // Find the source location of the last statement in the block, if the
   1357     // block is not empty.
   1358     if (const Stmt *S = CurrBlock->getTerminator()) {
   1359       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
   1360     } else {
   1361       for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
   1362            BE = CurrBlock->rend(); BI != BE; ++BI) {
   1363         // FIXME: Handle other CFGElement kinds.
   1364         if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
   1365           CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
   1366           break;
   1367         }
   1368       }
   1369     }
   1370 
   1371     if (!CurrBlockInfo->ExitLoc.isInvalid()) {
   1372       // This block contains at least one statement. Find the source location
   1373       // of the first statement in the block.
   1374       for (CFGBlock::const_iterator BI = CurrBlock->begin(),
   1375            BE = CurrBlock->end(); BI != BE; ++BI) {
   1376         // FIXME: Handle other CFGElement kinds.
   1377         if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
   1378           CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
   1379           break;
   1380         }
   1381       }
   1382     } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
   1383                CurrBlock != &CFGraph->getExit()) {
   1384       // The block is empty, and has a single predecessor. Use its exit
   1385       // location.
   1386       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
   1387           BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
   1388     }
   1389   }
   1390 }
   1391 
   1392 /// \brief Class which implements the core thread safety analysis routines.
   1393 class ThreadSafetyAnalyzer {
   1394   friend class BuildLockset;
   1395 
   1396   ThreadSafetyHandler       &Handler;
   1397   LocalVariableMap          LocalVarMap;
   1398   FactManager               FactMan;
   1399   std::vector<CFGBlockInfo> BlockInfo;
   1400 
   1401 public:
   1402   ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
   1403 
   1404   void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat);
   1405   void removeLock(FactSet &FSet, const SExpr &Mutex,
   1406                   SourceLocation UnlockLoc, bool FullyRemove=false);
   1407 
   1408   template <typename AttrType>
   1409   void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
   1410                    const NamedDecl *D);
   1411 
   1412   template <class AttrType>
   1413   void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
   1414                    const NamedDecl *D,
   1415                    const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
   1416                    Expr *BrE, bool Neg);
   1417 
   1418   const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
   1419                                      bool &Negate);
   1420 
   1421   void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
   1422                       const CFGBlock* PredBlock,
   1423                       const CFGBlock *CurrBlock);
   1424 
   1425   void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
   1426                         SourceLocation JoinLoc,
   1427                         LockErrorKind LEK1, LockErrorKind LEK2,
   1428                         bool Modify=true);
   1429 
   1430   void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
   1431                         SourceLocation JoinLoc, LockErrorKind LEK1,
   1432                         bool Modify=true) {
   1433     intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
   1434   }
   1435 
   1436   void runAnalysis(AnalysisDeclContext &AC);
   1437 };
   1438 
   1439 
   1440 /// \brief Add a new lock to the lockset, warning if the lock is already there.
   1441 /// \param Mutex -- the Mutex expression for the lock
   1442 /// \param LDat  -- the LockData for the lock
   1443 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex,
   1444                                    const LockData &LDat) {
   1445   // FIXME: deal with acquired before/after annotations.
   1446   // FIXME: Don't always warn when we have support for reentrant locks.
   1447   if (Mutex.shouldIgnore())
   1448     return;
   1449 
   1450   if (FSet.findLock(FactMan, Mutex)) {
   1451     Handler.handleDoubleLock(Mutex.toString(), LDat.AcquireLoc);
   1452   } else {
   1453     FSet.addLock(FactMan, Mutex, LDat);
   1454   }
   1455 }
   1456 
   1457 
   1458 /// \brief Remove a lock from the lockset, warning if the lock is not there.
   1459 /// \param Mutex The lock expression corresponding to the lock to be removed
   1460 /// \param UnlockLoc The source location of the unlock (only used in error msg)
   1461 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet,
   1462                                       const SExpr &Mutex,
   1463                                       SourceLocation UnlockLoc,
   1464                                       bool FullyRemove) {
   1465   if (Mutex.shouldIgnore())
   1466     return;
   1467 
   1468   const LockData *LDat = FSet.findLock(FactMan, Mutex);
   1469   if (!LDat) {
   1470     Handler.handleUnmatchedUnlock(Mutex.toString(), UnlockLoc);
   1471     return;
   1472   }
   1473 
   1474   if (LDat->UnderlyingMutex.isValid()) {
   1475     // This is scoped lockable object, which manages the real mutex.
   1476     if (FullyRemove) {
   1477       // We're destroying the managing object.
   1478       // Remove the underlying mutex if it exists; but don't warn.
   1479       if (FSet.findLock(FactMan, LDat->UnderlyingMutex))
   1480         FSet.removeLock(FactMan, LDat->UnderlyingMutex);
   1481     } else {
   1482       // We're releasing the underlying mutex, but not destroying the
   1483       // managing object.  Warn on dual release.
   1484       if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) {
   1485         Handler.handleUnmatchedUnlock(LDat->UnderlyingMutex.toString(),
   1486                                       UnlockLoc);
   1487       }
   1488       FSet.removeLock(FactMan, LDat->UnderlyingMutex);
   1489       return;
   1490     }
   1491   }
   1492   FSet.removeLock(FactMan, Mutex);
   1493 }
   1494 
   1495 
   1496 /// \brief Extract the list of mutexIDs from the attribute on an expression,
   1497 /// and push them onto Mtxs, discarding any duplicates.
   1498 template <typename AttrType>
   1499 void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
   1500                                        Expr *Exp, const NamedDecl *D) {
   1501   typedef typename AttrType::args_iterator iterator_type;
   1502 
   1503   if (Attr->args_size() == 0) {
   1504     // The mutex held is the "this" object.
   1505     SExpr Mu(0, Exp, D);
   1506     if (!Mu.isValid())
   1507       SExpr::warnInvalidLock(Handler, 0, Exp, D);
   1508     else
   1509       Mtxs.push_back_nodup(Mu);
   1510     return;
   1511   }
   1512 
   1513   for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
   1514     SExpr Mu(*I, Exp, D);
   1515     if (!Mu.isValid())
   1516       SExpr::warnInvalidLock(Handler, *I, Exp, D);
   1517     else
   1518       Mtxs.push_back_nodup(Mu);
   1519   }
   1520 }
   1521 
   1522 
   1523 /// \brief Extract the list of mutexIDs from a trylock attribute.  If the
   1524 /// trylock applies to the given edge, then push them onto Mtxs, discarding
   1525 /// any duplicates.
   1526 template <class AttrType>
   1527 void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
   1528                                        Expr *Exp, const NamedDecl *D,
   1529                                        const CFGBlock *PredBlock,
   1530                                        const CFGBlock *CurrBlock,
   1531                                        Expr *BrE, bool Neg) {
   1532   // Find out which branch has the lock
   1533   bool branch = 0;
   1534   if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
   1535     branch = BLE->getValue();
   1536   }
   1537   else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
   1538     branch = ILE->getValue().getBoolValue();
   1539   }
   1540   int branchnum = branch ? 0 : 1;
   1541   if (Neg) branchnum = !branchnum;
   1542 
   1543   // If we've taken the trylock branch, then add the lock
   1544   int i = 0;
   1545   for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
   1546        SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
   1547     if (*SI == CurrBlock && i == branchnum) {
   1548       getMutexIDs(Mtxs, Attr, Exp, D);
   1549     }
   1550   }
   1551 }
   1552 
   1553 
   1554 bool getStaticBooleanValue(Expr* E, bool& TCond) {
   1555   if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
   1556     TCond = false;
   1557     return true;
   1558   } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
   1559     TCond = BLE->getValue();
   1560     return true;
   1561   } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) {
   1562     TCond = ILE->getValue().getBoolValue();
   1563     return true;
   1564   } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
   1565     return getStaticBooleanValue(CE->getSubExpr(), TCond);
   1566   }
   1567   return false;
   1568 }
   1569 
   1570 
   1571 // If Cond can be traced back to a function call, return the call expression.
   1572 // The negate variable should be called with false, and will be set to true
   1573 // if the function call is negated, e.g. if (!mu.tryLock(...))
   1574 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
   1575                                                          LocalVarContext C,
   1576                                                          bool &Negate) {
   1577   if (!Cond)
   1578     return 0;
   1579 
   1580   if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
   1581     return CallExp;
   1582   }
   1583   else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) {
   1584     return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
   1585   }
   1586   else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
   1587     return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
   1588   }
   1589   else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) {
   1590     return getTrylockCallExpr(EWC->getSubExpr(), C, Negate);
   1591   }
   1592   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
   1593     const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
   1594     return getTrylockCallExpr(E, C, Negate);
   1595   }
   1596   else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
   1597     if (UOP->getOpcode() == UO_LNot) {
   1598       Negate = !Negate;
   1599       return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
   1600     }
   1601     return 0;
   1602   }
   1603   else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) {
   1604     if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
   1605       if (BOP->getOpcode() == BO_NE)
   1606         Negate = !Negate;
   1607 
   1608       bool TCond = false;
   1609       if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
   1610         if (!TCond) Negate = !Negate;
   1611         return getTrylockCallExpr(BOP->getLHS(), C, Negate);
   1612       }
   1613       else if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
   1614         if (!TCond) Negate = !Negate;
   1615         return getTrylockCallExpr(BOP->getRHS(), C, Negate);
   1616       }
   1617       return 0;
   1618     }
   1619     return 0;
   1620   }
   1621   // FIXME -- handle && and || as well.
   1622   return 0;
   1623 }
   1624 
   1625 
   1626 /// \brief Find the lockset that holds on the edge between PredBlock
   1627 /// and CurrBlock.  The edge set is the exit set of PredBlock (passed
   1628 /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
   1629 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
   1630                                           const FactSet &ExitSet,
   1631                                           const CFGBlock *PredBlock,
   1632                                           const CFGBlock *CurrBlock) {
   1633   Result = ExitSet;
   1634 
   1635   if (!PredBlock->getTerminatorCondition())
   1636     return;
   1637 
   1638   bool Negate = false;
   1639   const Stmt *Cond = PredBlock->getTerminatorCondition();
   1640   const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
   1641   const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
   1642 
   1643   CallExpr *Exp =
   1644     const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate));
   1645   if (!Exp)
   1646     return;
   1647 
   1648   NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
   1649   if(!FunDecl || !FunDecl->hasAttrs())
   1650     return;
   1651 
   1652 
   1653   MutexIDList ExclusiveLocksToAdd;
   1654   MutexIDList SharedLocksToAdd;
   1655 
   1656   // If the condition is a call to a Trylock function, then grab the attributes
   1657   AttrVec &ArgAttrs = FunDecl->getAttrs();
   1658   for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
   1659     Attr *Attr = ArgAttrs[i];
   1660     switch (Attr->getKind()) {
   1661       case attr::ExclusiveTrylockFunction: {
   1662         ExclusiveTrylockFunctionAttr *A =
   1663           cast<ExclusiveTrylockFunctionAttr>(Attr);
   1664         getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
   1665                     PredBlock, CurrBlock, A->getSuccessValue(), Negate);
   1666         break;
   1667       }
   1668       case attr::SharedTrylockFunction: {
   1669         SharedTrylockFunctionAttr *A =
   1670           cast<SharedTrylockFunctionAttr>(Attr);
   1671         getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
   1672                     PredBlock, CurrBlock, A->getSuccessValue(), Negate);
   1673         break;
   1674       }
   1675       default:
   1676         break;
   1677     }
   1678   }
   1679 
   1680   // Add and remove locks.
   1681   SourceLocation Loc = Exp->getExprLoc();
   1682   for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
   1683     addLock(Result, ExclusiveLocksToAdd[i],
   1684             LockData(Loc, LK_Exclusive));
   1685   }
   1686   for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
   1687     addLock(Result, SharedLocksToAdd[i],
   1688             LockData(Loc, LK_Shared));
   1689   }
   1690 }
   1691 
   1692 
   1693 /// \brief We use this class to visit different types of expressions in
   1694 /// CFGBlocks, and build up the lockset.
   1695 /// An expression may cause us to add or remove locks from the lockset, or else
   1696 /// output error messages related to missing locks.
   1697 /// FIXME: In future, we may be able to not inherit from a visitor.
   1698 class BuildLockset : public StmtVisitor<BuildLockset> {
   1699   friend class ThreadSafetyAnalyzer;
   1700 
   1701   ThreadSafetyAnalyzer *Analyzer;
   1702   FactSet FSet;
   1703   LocalVariableMap::Context LVarCtx;
   1704   unsigned CtxIndex;
   1705 
   1706   // Helper functions
   1707   const ValueDecl *getValueDecl(Expr *Exp);
   1708 
   1709   void warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp, AccessKind AK,
   1710                           Expr *MutexExp, ProtectedOperationKind POK);
   1711   void warnIfMutexHeld(const NamedDecl *D, Expr *Exp, Expr *MutexExp);
   1712 
   1713   void checkAccess(Expr *Exp, AccessKind AK);
   1714   void checkDereference(Expr *Exp, AccessKind AK);
   1715   void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = 0);
   1716 
   1717 public:
   1718   BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
   1719     : StmtVisitor<BuildLockset>(),
   1720       Analyzer(Anlzr),
   1721       FSet(Info.EntrySet),
   1722       LVarCtx(Info.EntryContext),
   1723       CtxIndex(Info.EntryIndex)
   1724   {}
   1725 
   1726   void VisitUnaryOperator(UnaryOperator *UO);
   1727   void VisitBinaryOperator(BinaryOperator *BO);
   1728   void VisitCastExpr(CastExpr *CE);
   1729   void VisitCallExpr(CallExpr *Exp);
   1730   void VisitCXXConstructExpr(CXXConstructExpr *Exp);
   1731   void VisitDeclStmt(DeclStmt *S);
   1732 };
   1733 
   1734 
   1735 /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
   1736 const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
   1737   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
   1738     return DR->getDecl();
   1739 
   1740   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
   1741     return ME->getMemberDecl();
   1742 
   1743   return 0;
   1744 }
   1745 
   1746 /// \brief Warn if the LSet does not contain a lock sufficient to protect access
   1747 /// of at least the passed in AccessKind.
   1748 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
   1749                                       AccessKind AK, Expr *MutexExp,
   1750                                       ProtectedOperationKind POK) {
   1751   LockKind LK = getLockKindFromAccessKind(AK);
   1752 
   1753   SExpr Mutex(MutexExp, Exp, D);
   1754   if (!Mutex.isValid()) {
   1755     SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
   1756     return;
   1757   } else if (Mutex.shouldIgnore()) {
   1758     return;
   1759   }
   1760 
   1761   LockData* LDat = FSet.findLockUniv(Analyzer->FactMan, Mutex);
   1762   bool NoError = true;
   1763   if (!LDat) {
   1764     // No exact match found.  Look for a partial match.
   1765     FactEntry* FEntry = FSet.findPartialMatch(Analyzer->FactMan, Mutex);
   1766     if (FEntry) {
   1767       // Warn that there's no precise match.
   1768       LDat = &FEntry->LDat;
   1769       std::string PartMatchStr = FEntry->MutID.toString();
   1770       StringRef   PartMatchName(PartMatchStr);
   1771       Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
   1772                                            Exp->getExprLoc(), &PartMatchName);
   1773     } else {
   1774       // Warn that there's no match at all.
   1775       Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
   1776                                            Exp->getExprLoc());
   1777     }
   1778     NoError = false;
   1779   }
   1780   // Make sure the mutex we found is the right kind.
   1781   if (NoError && LDat && !LDat->isAtLeast(LK))
   1782     Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
   1783                                          Exp->getExprLoc());
   1784 }
   1785 
   1786 /// \brief Warn if the LSet contains the given lock.
   1787 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, Expr* Exp,
   1788                                    Expr *MutexExp) {
   1789   SExpr Mutex(MutexExp, Exp, D);
   1790   if (!Mutex.isValid()) {
   1791     SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
   1792     return;
   1793   }
   1794 
   1795   LockData* LDat = FSet.findLock(Analyzer->FactMan, Mutex);
   1796   if (LDat)
   1797     Analyzer->Handler.handleFunExcludesLock(D->getName(), Mutex.toString(),
   1798                                             Exp->getExprLoc());
   1799 }
   1800 
   1801 
   1802 /// \brief This method identifies variable dereferences and checks pt_guarded_by
   1803 /// and pt_guarded_var annotations. Note that we only check these annotations
   1804 /// at the time a pointer is dereferenced.
   1805 /// FIXME: We need to check for other types of pointer dereferences
   1806 /// (e.g. [], ->) and deal with them here.
   1807 /// \param Exp An expression that has been read or written.
   1808 void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
   1809   UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
   1810   if (!UO || UO->getOpcode() != clang::UO_Deref)
   1811     return;
   1812   Exp = UO->getSubExpr()->IgnoreParenCasts();
   1813 
   1814   const ValueDecl *D = getValueDecl(Exp);
   1815   if(!D || !D->hasAttrs())
   1816     return;
   1817 
   1818   if (D->getAttr<PtGuardedVarAttr>() && FSet.isEmpty())
   1819     Analyzer->Handler.handleNoMutexHeld(D, POK_VarDereference, AK,
   1820                                         Exp->getExprLoc());
   1821 
   1822   const AttrVec &ArgAttrs = D->getAttrs();
   1823   for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
   1824     if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
   1825       warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
   1826 }
   1827 
   1828 /// \brief Checks guarded_by and guarded_var attributes.
   1829 /// Whenever we identify an access (read or write) of a DeclRefExpr or
   1830 /// MemberExpr, we need to check whether there are any guarded_by or
   1831 /// guarded_var attributes, and make sure we hold the appropriate mutexes.
   1832 void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
   1833   const ValueDecl *D = getValueDecl(Exp);
   1834   if(!D || !D->hasAttrs())
   1835     return;
   1836 
   1837   if (D->getAttr<GuardedVarAttr>() && FSet.isEmpty())
   1838     Analyzer->Handler.handleNoMutexHeld(D, POK_VarAccess, AK,
   1839                                         Exp->getExprLoc());
   1840 
   1841   const AttrVec &ArgAttrs = D->getAttrs();
   1842   for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
   1843     if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
   1844       warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
   1845 }
   1846 
   1847 /// \brief Process a function call, method call, constructor call,
   1848 /// or destructor call.  This involves looking at the attributes on the
   1849 /// corresponding function/method/constructor/destructor, issuing warnings,
   1850 /// and updating the locksets accordingly.
   1851 ///
   1852 /// FIXME: For classes annotated with one of the guarded annotations, we need
   1853 /// to treat const method calls as reads and non-const method calls as writes,
   1854 /// and check that the appropriate locks are held. Non-const method calls with
   1855 /// the same signature as const method calls can be also treated as reads.
   1856 ///
   1857 void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
   1858   const AttrVec &ArgAttrs = D->getAttrs();
   1859   MutexIDList ExclusiveLocksToAdd;
   1860   MutexIDList SharedLocksToAdd;
   1861   MutexIDList LocksToRemove;
   1862 
   1863   for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
   1864     Attr *At = const_cast<Attr*>(ArgAttrs[i]);
   1865     switch (At->getKind()) {
   1866       // When we encounter an exclusive lock function, we need to add the lock
   1867       // to our lockset with kind exclusive.
   1868       case attr::ExclusiveLockFunction: {
   1869         ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(At);
   1870         Analyzer->getMutexIDs(ExclusiveLocksToAdd, A, Exp, D);
   1871         break;
   1872       }
   1873 
   1874       // When we encounter a shared lock function, we need to add the lock
   1875       // to our lockset with kind shared.
   1876       case attr::SharedLockFunction: {
   1877         SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(At);
   1878         Analyzer->getMutexIDs(SharedLocksToAdd, A, Exp, D);
   1879         break;
   1880       }
   1881 
   1882       // When we encounter an unlock function, we need to remove unlocked
   1883       // mutexes from the lockset, and flag a warning if they are not there.
   1884       case attr::UnlockFunction: {
   1885         UnlockFunctionAttr *A = cast<UnlockFunctionAttr>(At);
   1886         Analyzer->getMutexIDs(LocksToRemove, A, Exp, D);
   1887         break;
   1888       }
   1889 
   1890       case attr::ExclusiveLocksRequired: {
   1891         ExclusiveLocksRequiredAttr *A = cast<ExclusiveLocksRequiredAttr>(At);
   1892 
   1893         for (ExclusiveLocksRequiredAttr::args_iterator
   1894              I = A->args_begin(), E = A->args_end(); I != E; ++I)
   1895           warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
   1896         break;
   1897       }
   1898 
   1899       case attr::SharedLocksRequired: {
   1900         SharedLocksRequiredAttr *A = cast<SharedLocksRequiredAttr>(At);
   1901 
   1902         for (SharedLocksRequiredAttr::args_iterator I = A->args_begin(),
   1903              E = A->args_end(); I != E; ++I)
   1904           warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
   1905         break;
   1906       }
   1907 
   1908       case attr::LocksExcluded: {
   1909         LocksExcludedAttr *A = cast<LocksExcludedAttr>(At);
   1910 
   1911         for (LocksExcludedAttr::args_iterator I = A->args_begin(),
   1912             E = A->args_end(); I != E; ++I) {
   1913           warnIfMutexHeld(D, Exp, *I);
   1914         }
   1915         break;
   1916       }
   1917 
   1918       // Ignore other (non thread-safety) attributes
   1919       default:
   1920         break;
   1921     }
   1922   }
   1923 
   1924   // Figure out if we're calling the constructor of scoped lockable class
   1925   bool isScopedVar = false;
   1926   if (VD) {
   1927     if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) {
   1928       const CXXRecordDecl* PD = CD->getParent();
   1929       if (PD && PD->getAttr<ScopedLockableAttr>())
   1930         isScopedVar = true;
   1931     }
   1932   }
   1933 
   1934   // Add locks.
   1935   SourceLocation Loc = Exp->getExprLoc();
   1936   for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
   1937     Analyzer->addLock(FSet, ExclusiveLocksToAdd[i],
   1938                             LockData(Loc, LK_Exclusive, isScopedVar));
   1939   }
   1940   for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
   1941     Analyzer->addLock(FSet, SharedLocksToAdd[i],
   1942                             LockData(Loc, LK_Shared, isScopedVar));
   1943   }
   1944 
   1945   // Add the managing object as a dummy mutex, mapped to the underlying mutex.
   1946   // FIXME -- this doesn't work if we acquire multiple locks.
   1947   if (isScopedVar) {
   1948     SourceLocation MLoc = VD->getLocation();
   1949     DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
   1950     SExpr SMutex(&DRE, 0, 0);
   1951 
   1952     for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
   1953       Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive,
   1954                                                ExclusiveLocksToAdd[i]));
   1955     }
   1956     for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
   1957       Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared,
   1958                                                SharedLocksToAdd[i]));
   1959     }
   1960   }
   1961 
   1962   // Remove locks.
   1963   // FIXME -- should only fully remove if the attribute refers to 'this'.
   1964   bool Dtor = isa<CXXDestructorDecl>(D);
   1965   for (unsigned i=0,n=LocksToRemove.size(); i<n; ++i) {
   1966     Analyzer->removeLock(FSet, LocksToRemove[i], Loc, Dtor);
   1967   }
   1968 }
   1969 
   1970 
   1971 /// \brief For unary operations which read and write a variable, we need to
   1972 /// check whether we hold any required mutexes. Reads are checked in
   1973 /// VisitCastExpr.
   1974 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
   1975   switch (UO->getOpcode()) {
   1976     case clang::UO_PostDec:
   1977     case clang::UO_PostInc:
   1978     case clang::UO_PreDec:
   1979     case clang::UO_PreInc: {
   1980       Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
   1981       checkAccess(SubExp, AK_Written);
   1982       checkDereference(SubExp, AK_Written);
   1983       break;
   1984     }
   1985     default:
   1986       break;
   1987   }
   1988 }
   1989 
   1990 /// For binary operations which assign to a variable (writes), we need to check
   1991 /// whether we hold any required mutexes.
   1992 /// FIXME: Deal with non-primitive types.
   1993 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
   1994   if (!BO->isAssignmentOp())
   1995     return;
   1996 
   1997   // adjust the context
   1998   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
   1999 
   2000   Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
   2001   checkAccess(LHSExp, AK_Written);
   2002   checkDereference(LHSExp, AK_Written);
   2003 }
   2004 
   2005 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
   2006 /// need to ensure we hold any required mutexes.
   2007 /// FIXME: Deal with non-primitive types.
   2008 void BuildLockset::VisitCastExpr(CastExpr *CE) {
   2009   if (CE->getCastKind() != CK_LValueToRValue)
   2010     return;
   2011   Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
   2012   checkAccess(SubExp, AK_Read);
   2013   checkDereference(SubExp, AK_Read);
   2014 }
   2015 
   2016 
   2017 void BuildLockset::VisitCallExpr(CallExpr *Exp) {
   2018   NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
   2019   if(!D || !D->hasAttrs())
   2020     return;
   2021   handleCall(Exp, D);
   2022 }
   2023 
   2024 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
   2025   // FIXME -- only handles constructors in DeclStmt below.
   2026 }
   2027 
   2028 void BuildLockset::VisitDeclStmt(DeclStmt *S) {
   2029   // adjust the context
   2030   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
   2031 
   2032   DeclGroupRef DGrp = S->getDeclGroup();
   2033   for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
   2034     Decl *D = *I;
   2035     if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
   2036       Expr *E = VD->getInit();
   2037       // handle constructors that involve temporaries
   2038       if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E))
   2039         E = EWC->getSubExpr();
   2040 
   2041       if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
   2042         NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
   2043         if (!CtorD || !CtorD->hasAttrs())
   2044           return;
   2045         handleCall(CE, CtorD, VD);
   2046       }
   2047     }
   2048   }
   2049 }
   2050 
   2051 
   2052 
   2053 /// \brief Compute the intersection of two locksets and issue warnings for any
   2054 /// locks in the symmetric difference.
   2055 ///
   2056 /// This function is used at a merge point in the CFG when comparing the lockset
   2057 /// of each branch being merged. For example, given the following sequence:
   2058 /// A; if () then B; else C; D; we need to check that the lockset after B and C
   2059 /// are the same. In the event of a difference, we use the intersection of these
   2060 /// two locksets at the start of D.
   2061 ///
   2062 /// \param FSet1 The first lockset.
   2063 /// \param FSet2 The second lockset.
   2064 /// \param JoinLoc The location of the join point for error reporting
   2065 /// \param LEK1 The error message to report if a mutex is missing from LSet1
   2066 /// \param LEK2 The error message to report if a mutex is missing from Lset2
   2067 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
   2068                                             const FactSet &FSet2,
   2069                                             SourceLocation JoinLoc,
   2070                                             LockErrorKind LEK1,
   2071                                             LockErrorKind LEK2,
   2072                                             bool Modify) {
   2073   FactSet FSet1Orig = FSet1;
   2074 
   2075   for (FactSet::const_iterator I = FSet2.begin(), E = FSet2.end();
   2076        I != E; ++I) {
   2077     const SExpr &FSet2Mutex = FactMan[*I].MutID;
   2078     const LockData &LDat2 = FactMan[*I].LDat;
   2079 
   2080     if (const LockData *LDat1 = FSet1.findLock(FactMan, FSet2Mutex)) {
   2081       if (LDat1->LKind != LDat2.LKind) {
   2082         Handler.handleExclusiveAndShared(FSet2Mutex.toString(),
   2083                                          LDat2.AcquireLoc,
   2084                                          LDat1->AcquireLoc);
   2085         if (Modify && LDat1->LKind != LK_Exclusive) {
   2086           FSet1.removeLock(FactMan, FSet2Mutex);
   2087           FSet1.addLock(FactMan, FSet2Mutex, LDat2);
   2088         }
   2089       }
   2090     } else {
   2091       if (LDat2.UnderlyingMutex.isValid()) {
   2092         if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) {
   2093           // If this is a scoped lock that manages another mutex, and if the
   2094           // underlying mutex is still held, then warn about the underlying
   2095           // mutex.
   2096           Handler.handleMutexHeldEndOfScope(LDat2.UnderlyingMutex.toString(),
   2097                                             LDat2.AcquireLoc,
   2098                                             JoinLoc, LEK1);
   2099         }
   2100       }
   2101       else if (!LDat2.Managed && !FSet2Mutex.isUniversal())
   2102         Handler.handleMutexHeldEndOfScope(FSet2Mutex.toString(),
   2103                                           LDat2.AcquireLoc,
   2104                                           JoinLoc, LEK1);
   2105     }
   2106   }
   2107 
   2108   for (FactSet::const_iterator I = FSet1.begin(), E = FSet1.end();
   2109        I != E; ++I) {
   2110     const SExpr &FSet1Mutex = FactMan[*I].MutID;
   2111     const LockData &LDat1 = FactMan[*I].LDat;
   2112 
   2113     if (!FSet2.findLock(FactMan, FSet1Mutex)) {
   2114       if (LDat1.UnderlyingMutex.isValid()) {
   2115         if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) {
   2116           // If this is a scoped lock that manages another mutex, and if the
   2117           // underlying mutex is still held, then warn about the underlying
   2118           // mutex.
   2119           Handler.handleMutexHeldEndOfScope(LDat1.UnderlyingMutex.toString(),
   2120                                             LDat1.AcquireLoc,
   2121                                             JoinLoc, LEK1);
   2122         }
   2123       }
   2124       else if (!LDat1.Managed && !FSet1Mutex.isUniversal())
   2125         Handler.handleMutexHeldEndOfScope(FSet1Mutex.toString(),
   2126                                           LDat1.AcquireLoc,
   2127                                           JoinLoc, LEK2);
   2128       if (Modify)
   2129         FSet1.removeLock(FactMan, FSet1Mutex);
   2130     }
   2131   }
   2132 }
   2133 
   2134 
   2135 
   2136 /// \brief Check a function's CFG for thread-safety violations.
   2137 ///
   2138 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
   2139 /// at the end of each block, and issue warnings for thread safety violations.
   2140 /// Each block in the CFG is traversed exactly once.
   2141 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
   2142   CFG *CFGraph = AC.getCFG();
   2143   if (!CFGraph) return;
   2144   const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
   2145 
   2146   // AC.dumpCFG(true);
   2147 
   2148   if (!D)
   2149     return;  // Ignore anonymous functions for now.
   2150   if (D->getAttr<NoThreadSafetyAnalysisAttr>())
   2151     return;
   2152   // FIXME: Do something a bit more intelligent inside constructor and
   2153   // destructor code.  Constructors and destructors must assume unique access
   2154   // to 'this', so checks on member variable access is disabled, but we should
   2155   // still enable checks on other objects.
   2156   if (isa<CXXConstructorDecl>(D))
   2157     return;  // Don't check inside constructors.
   2158   if (isa<CXXDestructorDecl>(D))
   2159     return;  // Don't check inside destructors.
   2160 
   2161   BlockInfo.resize(CFGraph->getNumBlockIDs(),
   2162     CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
   2163 
   2164   // We need to explore the CFG via a "topological" ordering.
   2165   // That way, we will be guaranteed to have information about required
   2166   // predecessor locksets when exploring a new block.
   2167   PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
   2168   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
   2169 
   2170   // Compute SSA names for local variables
   2171   LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
   2172 
   2173   // Fill in source locations for all CFGBlocks.
   2174   findBlockLocations(CFGraph, SortedGraph, BlockInfo);
   2175 
   2176   // Add locks from exclusive_locks_required and shared_locks_required
   2177   // to initial lockset. Also turn off checking for lock and unlock functions.
   2178   // FIXME: is there a more intelligent way to check lock/unlock functions?
   2179   if (!SortedGraph->empty() && D->hasAttrs()) {
   2180     const CFGBlock *FirstBlock = *SortedGraph->begin();
   2181     FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
   2182     const AttrVec &ArgAttrs = D->getAttrs();
   2183 
   2184     MutexIDList ExclusiveLocksToAdd;
   2185     MutexIDList SharedLocksToAdd;
   2186 
   2187     SourceLocation Loc = D->getLocation();
   2188     for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
   2189       Attr *Attr = ArgAttrs[i];
   2190       Loc = Attr->getLocation();
   2191       if (ExclusiveLocksRequiredAttr *A
   2192             = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
   2193         getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D);
   2194       } else if (SharedLocksRequiredAttr *A
   2195                    = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
   2196         getMutexIDs(SharedLocksToAdd, A, (Expr*) 0, D);
   2197       } else if (isa<UnlockFunctionAttr>(Attr)) {
   2198         // Don't try to check unlock functions for now
   2199         return;
   2200       } else if (isa<ExclusiveLockFunctionAttr>(Attr)) {
   2201         // Don't try to check lock functions for now
   2202         return;
   2203       } else if (isa<SharedLockFunctionAttr>(Attr)) {
   2204         // Don't try to check lock functions for now
   2205         return;
   2206       } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
   2207         // Don't try to check trylock functions for now
   2208         return;
   2209       } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
   2210         // Don't try to check trylock functions for now
   2211         return;
   2212       }
   2213     }
   2214 
   2215     // FIXME -- Loc can be wrong here.
   2216     for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
   2217       addLock(InitialLockset, ExclusiveLocksToAdd[i],
   2218               LockData(Loc, LK_Exclusive));
   2219     }
   2220     for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
   2221       addLock(InitialLockset, SharedLocksToAdd[i],
   2222               LockData(Loc, LK_Shared));
   2223     }
   2224   }
   2225 
   2226   for (PostOrderCFGView::iterator I = SortedGraph->begin(),
   2227        E = SortedGraph->end(); I!= E; ++I) {
   2228     const CFGBlock *CurrBlock = *I;
   2229     int CurrBlockID = CurrBlock->getBlockID();
   2230     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
   2231 
   2232     // Use the default initial lockset in case there are no predecessors.
   2233     VisitedBlocks.insert(CurrBlock);
   2234 
   2235     // Iterate through the predecessor blocks and warn if the lockset for all
   2236     // predecessors is not the same. We take the entry lockset of the current
   2237     // block to be the intersection of all previous locksets.
   2238     // FIXME: By keeping the intersection, we may output more errors in future
   2239     // for a lock which is not in the intersection, but was in the union. We
   2240     // may want to also keep the union in future. As an example, let's say
   2241     // the intersection contains Mutex L, and the union contains L and M.
   2242     // Later we unlock M. At this point, we would output an error because we
   2243     // never locked M; although the real error is probably that we forgot to
   2244     // lock M on all code paths. Conversely, let's say that later we lock M.
   2245     // In this case, we should compare against the intersection instead of the
   2246     // union because the real error is probably that we forgot to unlock M on
   2247     // all code paths.
   2248     bool LocksetInitialized = false;
   2249     llvm::SmallVector<CFGBlock*, 8> SpecialBlocks;
   2250     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
   2251          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
   2252 
   2253       // if *PI -> CurrBlock is a back edge
   2254       if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
   2255         continue;
   2256 
   2257       // Ignore edges from blocks that can't return.
   2258       if ((*PI)->hasNoReturnElement())
   2259         continue;
   2260 
   2261       // If the previous block ended in a 'continue' or 'break' statement, then
   2262       // a difference in locksets is probably due to a bug in that block, rather
   2263       // than in some other predecessor. In that case, keep the other
   2264       // predecessor's lockset.
   2265       if (const Stmt *Terminator = (*PI)->getTerminator()) {
   2266         if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
   2267           SpecialBlocks.push_back(*PI);
   2268           continue;
   2269         }
   2270       }
   2271 
   2272       int PrevBlockID = (*PI)->getBlockID();
   2273       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
   2274       FactSet PrevLockset;
   2275       getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
   2276 
   2277       if (!LocksetInitialized) {
   2278         CurrBlockInfo->EntrySet = PrevLockset;
   2279         LocksetInitialized = true;
   2280       } else {
   2281         intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
   2282                          CurrBlockInfo->EntryLoc,
   2283                          LEK_LockedSomePredecessors);
   2284       }
   2285     }
   2286 
   2287     // Process continue and break blocks. Assume that the lockset for the
   2288     // resulting block is unaffected by any discrepancies in them.
   2289     for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size();
   2290          SpecialI < SpecialN; ++SpecialI) {
   2291       CFGBlock *PrevBlock = SpecialBlocks[SpecialI];
   2292       int PrevBlockID = PrevBlock->getBlockID();
   2293       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
   2294 
   2295       if (!LocksetInitialized) {
   2296         CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
   2297         LocksetInitialized = true;
   2298       } else {
   2299         // Determine whether this edge is a loop terminator for diagnostic
   2300         // purposes. FIXME: A 'break' statement might be a loop terminator, but
   2301         // it might also be part of a switch. Also, a subsequent destructor
   2302         // might add to the lockset, in which case the real issue might be a
   2303         // double lock on the other path.
   2304         const Stmt *Terminator = PrevBlock->getTerminator();
   2305         bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
   2306 
   2307         FactSet PrevLockset;
   2308         getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
   2309                        PrevBlock, CurrBlock);
   2310 
   2311         // Do not update EntrySet.
   2312         intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
   2313                          PrevBlockInfo->ExitLoc,
   2314                          IsLoop ? LEK_LockedSomeLoopIterations
   2315                                 : LEK_LockedSomePredecessors,
   2316                          false);
   2317       }
   2318     }
   2319 
   2320     BuildLockset LocksetBuilder(this, *CurrBlockInfo);
   2321 
   2322     // Visit all the statements in the basic block.
   2323     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
   2324          BE = CurrBlock->end(); BI != BE; ++BI) {
   2325       switch (BI->getKind()) {
   2326         case CFGElement::Statement: {
   2327           const CFGStmt *CS = cast<CFGStmt>(&*BI);
   2328           LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
   2329           break;
   2330         }
   2331         // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
   2332         case CFGElement::AutomaticObjectDtor: {
   2333           const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI);
   2334           CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>(
   2335             AD->getDestructorDecl(AC.getASTContext()));
   2336           if (!DD->hasAttrs())
   2337             break;
   2338 
   2339           // Create a dummy expression,
   2340           VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl());
   2341           DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue,
   2342                           AD->getTriggerStmt()->getLocEnd());
   2343           LocksetBuilder.handleCall(&DRE, DD);
   2344           break;
   2345         }
   2346         default:
   2347           break;
   2348       }
   2349     }
   2350     CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
   2351 
   2352     // For every back edge from CurrBlock (the end of the loop) to another block
   2353     // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
   2354     // the one held at the beginning of FirstLoopBlock. We can look up the
   2355     // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
   2356     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
   2357          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
   2358 
   2359       // if CurrBlock -> *SI is *not* a back edge
   2360       if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
   2361         continue;
   2362 
   2363       CFGBlock *FirstLoopBlock = *SI;
   2364       CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
   2365       CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
   2366       intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
   2367                        PreLoop->EntryLoc,
   2368                        LEK_LockedSomeLoopIterations,
   2369                        false);
   2370     }
   2371   }
   2372 
   2373   CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
   2374   CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
   2375 
   2376   // FIXME: Should we call this function for all blocks which exit the function?
   2377   intersectAndWarn(Initial->EntrySet, Final->ExitSet,
   2378                    Final->ExitLoc,
   2379                    LEK_LockedAtEndOfFunction,
   2380                    LEK_NotLockedAtEndOfFunction,
   2381                    false);
   2382 }
   2383 
   2384 } // end anonymous namespace
   2385 
   2386 
   2387 namespace clang {
   2388 namespace thread_safety {
   2389 
   2390 /// \brief Check a function's CFG for thread-safety violations.
   2391 ///
   2392 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
   2393 /// at the end of each block, and issue warnings for thread safety violations.
   2394 /// Each block in the CFG is traversed exactly once.
   2395 void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
   2396                              ThreadSafetyHandler &Handler) {
   2397   ThreadSafetyAnalyzer Analyzer(Handler);
   2398   Analyzer.runAnalysis(AC);
   2399 }
   2400 
   2401 /// \brief Helper function that returns a LockKind required for the given level
   2402 /// of access.
   2403 LockKind getLockKindFromAccessKind(AccessKind AK) {
   2404   switch (AK) {
   2405     case AK_Read :
   2406       return LK_Shared;
   2407     case AK_Written :
   2408       return LK_Exclusive;
   2409   }
   2410   llvm_unreachable("Unknown AccessKind");
   2411 }
   2412 
   2413 }} // end namespace clang::thread_safety
   2414