1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include "../include/v8stdint.h" 29 #include "checks.h" 30 #include "utils.h" 31 32 #include "fast-dtoa.h" 33 34 #include "cached-powers.h" 35 #include "diy-fp.h" 36 #include "double.h" 37 38 namespace v8 { 39 namespace internal { 40 41 // The minimal and maximal target exponent define the range of w's binary 42 // exponent, where 'w' is the result of multiplying the input by a cached power 43 // of ten. 44 // 45 // A different range might be chosen on a different platform, to optimize digit 46 // generation, but a smaller range requires more powers of ten to be cached. 47 static const int kMinimalTargetExponent = -60; 48 static const int kMaximalTargetExponent = -32; 49 50 51 // Adjusts the last digit of the generated number, and screens out generated 52 // solutions that may be inaccurate. A solution may be inaccurate if it is 53 // outside the safe interval, or if we ctannot prove that it is closer to the 54 // input than a neighboring representation of the same length. 55 // 56 // Input: * buffer containing the digits of too_high / 10^kappa 57 // * the buffer's length 58 // * distance_too_high_w == (too_high - w).f() * unit 59 // * unsafe_interval == (too_high - too_low).f() * unit 60 // * rest = (too_high - buffer * 10^kappa).f() * unit 61 // * ten_kappa = 10^kappa * unit 62 // * unit = the common multiplier 63 // Output: returns true if the buffer is guaranteed to contain the closest 64 // representable number to the input. 65 // Modifies the generated digits in the buffer to approach (round towards) w. 66 static bool RoundWeed(Vector<char> buffer, 67 int length, 68 uint64_t distance_too_high_w, 69 uint64_t unsafe_interval, 70 uint64_t rest, 71 uint64_t ten_kappa, 72 uint64_t unit) { 73 uint64_t small_distance = distance_too_high_w - unit; 74 uint64_t big_distance = distance_too_high_w + unit; 75 // Let w_low = too_high - big_distance, and 76 // w_high = too_high - small_distance. 77 // Note: w_low < w < w_high 78 // 79 // The real w (* unit) must lie somewhere inside the interval 80 // ]w_low; w_high[ (often written as "(w_low; w_high)") 81 82 // Basically the buffer currently contains a number in the unsafe interval 83 // ]too_low; too_high[ with too_low < w < too_high 84 // 85 // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 86 // ^v 1 unit ^ ^ ^ ^ 87 // boundary_high --------------------- . . . . 88 // ^v 1 unit . . . . 89 // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . . 90 // . . ^ . . 91 // . big_distance . . . 92 // . . . . rest 93 // small_distance . . . . 94 // v . . . . 95 // w_high - - - - - - - - - - - - - - - - - - . . . . 96 // ^v 1 unit . . . . 97 // w ---------------------------------------- . . . . 98 // ^v 1 unit v . . . 99 // w_low - - - - - - - - - - - - - - - - - - - - - . . . 100 // . . v 101 // buffer --------------------------------------------------+-------+-------- 102 // . . 103 // safe_interval . 104 // v . 105 // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . 106 // ^v 1 unit . 107 // boundary_low ------------------------- unsafe_interval 108 // ^v 1 unit v 109 // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 110 // 111 // 112 // Note that the value of buffer could lie anywhere inside the range too_low 113 // to too_high. 114 // 115 // boundary_low, boundary_high and w are approximations of the real boundaries 116 // and v (the input number). They are guaranteed to be precise up to one unit. 117 // In fact the error is guaranteed to be strictly less than one unit. 118 // 119 // Anything that lies outside the unsafe interval is guaranteed not to round 120 // to v when read again. 121 // Anything that lies inside the safe interval is guaranteed to round to v 122 // when read again. 123 // If the number inside the buffer lies inside the unsafe interval but not 124 // inside the safe interval then we simply do not know and bail out (returning 125 // false). 126 // 127 // Similarly we have to take into account the imprecision of 'w' when finding 128 // the closest representation of 'w'. If we have two potential 129 // representations, and one is closer to both w_low and w_high, then we know 130 // it is closer to the actual value v. 131 // 132 // By generating the digits of too_high we got the largest (closest to 133 // too_high) buffer that is still in the unsafe interval. In the case where 134 // w_high < buffer < too_high we try to decrement the buffer. 135 // This way the buffer approaches (rounds towards) w. 136 // There are 3 conditions that stop the decrementation process: 137 // 1) the buffer is already below w_high 138 // 2) decrementing the buffer would make it leave the unsafe interval 139 // 3) decrementing the buffer would yield a number below w_high and farther 140 // away than the current number. In other words: 141 // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high 142 // Instead of using the buffer directly we use its distance to too_high. 143 // Conceptually rest ~= too_high - buffer 144 // We need to do the following tests in this order to avoid over- and 145 // underflows. 146 ASSERT(rest <= unsafe_interval); 147 while (rest < small_distance && // Negated condition 1 148 unsafe_interval - rest >= ten_kappa && // Negated condition 2 149 (rest + ten_kappa < small_distance || // buffer{-1} > w_high 150 small_distance - rest >= rest + ten_kappa - small_distance)) { 151 buffer[length - 1]--; 152 rest += ten_kappa; 153 } 154 155 // We have approached w+ as much as possible. We now test if approaching w- 156 // would require changing the buffer. If yes, then we have two possible 157 // representations close to w, but we cannot decide which one is closer. 158 if (rest < big_distance && 159 unsafe_interval - rest >= ten_kappa && 160 (rest + ten_kappa < big_distance || 161 big_distance - rest > rest + ten_kappa - big_distance)) { 162 return false; 163 } 164 165 // Weeding test. 166 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp] 167 // Since too_low = too_high - unsafe_interval this is equivalent to 168 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] 169 // Conceptually we have: rest ~= too_high - buffer 170 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit); 171 } 172 173 174 // Rounds the buffer upwards if the result is closer to v by possibly adding 175 // 1 to the buffer. If the precision of the calculation is not sufficient to 176 // round correctly, return false. 177 // The rounding might shift the whole buffer in which case the kappa is 178 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4. 179 // 180 // If 2*rest > ten_kappa then the buffer needs to be round up. 181 // rest can have an error of +/- 1 unit. This function accounts for the 182 // imprecision and returns false, if the rounding direction cannot be 183 // unambiguously determined. 184 // 185 // Precondition: rest < ten_kappa. 186 static bool RoundWeedCounted(Vector<char> buffer, 187 int length, 188 uint64_t rest, 189 uint64_t ten_kappa, 190 uint64_t unit, 191 int* kappa) { 192 ASSERT(rest < ten_kappa); 193 // The following tests are done in a specific order to avoid overflows. They 194 // will work correctly with any uint64 values of rest < ten_kappa and unit. 195 // 196 // If the unit is too big, then we don't know which way to round. For example 197 // a unit of 50 means that the real number lies within rest +/- 50. If 198 // 10^kappa == 40 then there is no way to tell which way to round. 199 if (unit >= ten_kappa) return false; 200 // Even if unit is just half the size of 10^kappa we are already completely 201 // lost. (And after the previous test we know that the expression will not 202 // over/underflow.) 203 if (ten_kappa - unit <= unit) return false; 204 // If 2 * (rest + unit) <= 10^kappa we can safely round down. 205 if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) { 206 return true; 207 } 208 // If 2 * (rest - unit) >= 10^kappa, then we can safely round up. 209 if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) { 210 // Increment the last digit recursively until we find a non '9' digit. 211 buffer[length - 1]++; 212 for (int i = length - 1; i > 0; --i) { 213 if (buffer[i] != '0' + 10) break; 214 buffer[i] = '0'; 215 buffer[i - 1]++; 216 } 217 // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the 218 // exception of the first digit all digits are now '0'. Simply switch the 219 // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and 220 // the power (the kappa) is increased. 221 if (buffer[0] == '0' + 10) { 222 buffer[0] = '1'; 223 (*kappa) += 1; 224 } 225 return true; 226 } 227 return false; 228 } 229 230 231 static const uint32_t kTen4 = 10000; 232 static const uint32_t kTen5 = 100000; 233 static const uint32_t kTen6 = 1000000; 234 static const uint32_t kTen7 = 10000000; 235 static const uint32_t kTen8 = 100000000; 236 static const uint32_t kTen9 = 1000000000; 237 238 // Returns the biggest power of ten that is less than or equal than the given 239 // number. We furthermore receive the maximum number of bits 'number' has. 240 // If number_bits == 0 then 0^-1 is returned 241 // The number of bits must be <= 32. 242 // Precondition: number < (1 << (number_bits + 1)). 243 static void BiggestPowerTen(uint32_t number, 244 int number_bits, 245 uint32_t* power, 246 int* exponent) { 247 switch (number_bits) { 248 case 32: 249 case 31: 250 case 30: 251 if (kTen9 <= number) { 252 *power = kTen9; 253 *exponent = 9; 254 break; 255 } // else fallthrough 256 case 29: 257 case 28: 258 case 27: 259 if (kTen8 <= number) { 260 *power = kTen8; 261 *exponent = 8; 262 break; 263 } // else fallthrough 264 case 26: 265 case 25: 266 case 24: 267 if (kTen7 <= number) { 268 *power = kTen7; 269 *exponent = 7; 270 break; 271 } // else fallthrough 272 case 23: 273 case 22: 274 case 21: 275 case 20: 276 if (kTen6 <= number) { 277 *power = kTen6; 278 *exponent = 6; 279 break; 280 } // else fallthrough 281 case 19: 282 case 18: 283 case 17: 284 if (kTen5 <= number) { 285 *power = kTen5; 286 *exponent = 5; 287 break; 288 } // else fallthrough 289 case 16: 290 case 15: 291 case 14: 292 if (kTen4 <= number) { 293 *power = kTen4; 294 *exponent = 4; 295 break; 296 } // else fallthrough 297 case 13: 298 case 12: 299 case 11: 300 case 10: 301 if (1000 <= number) { 302 *power = 1000; 303 *exponent = 3; 304 break; 305 } // else fallthrough 306 case 9: 307 case 8: 308 case 7: 309 if (100 <= number) { 310 *power = 100; 311 *exponent = 2; 312 break; 313 } // else fallthrough 314 case 6: 315 case 5: 316 case 4: 317 if (10 <= number) { 318 *power = 10; 319 *exponent = 1; 320 break; 321 } // else fallthrough 322 case 3: 323 case 2: 324 case 1: 325 if (1 <= number) { 326 *power = 1; 327 *exponent = 0; 328 break; 329 } // else fallthrough 330 case 0: 331 *power = 0; 332 *exponent = -1; 333 break; 334 default: 335 // Following assignments are here to silence compiler warnings. 336 *power = 0; 337 *exponent = 0; 338 UNREACHABLE(); 339 } 340 } 341 342 343 // Generates the digits of input number w. 344 // w is a floating-point number (DiyFp), consisting of a significand and an 345 // exponent. Its exponent is bounded by kMinimalTargetExponent and 346 // kMaximalTargetExponent. 347 // Hence -60 <= w.e() <= -32. 348 // 349 // Returns false if it fails, in which case the generated digits in the buffer 350 // should not be used. 351 // Preconditions: 352 // * low, w and high are correct up to 1 ulp (unit in the last place). That 353 // is, their error must be less than a unit of their last digits. 354 // * low.e() == w.e() == high.e() 355 // * low < w < high, and taking into account their error: low~ <= high~ 356 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent 357 // Postconditions: returns false if procedure fails. 358 // otherwise: 359 // * buffer is not null-terminated, but len contains the number of digits. 360 // * buffer contains the shortest possible decimal digit-sequence 361 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the 362 // correct values of low and high (without their error). 363 // * if more than one decimal representation gives the minimal number of 364 // decimal digits then the one closest to W (where W is the correct value 365 // of w) is chosen. 366 // Remark: this procedure takes into account the imprecision of its input 367 // numbers. If the precision is not enough to guarantee all the postconditions 368 // then false is returned. This usually happens rarely (~0.5%). 369 // 370 // Say, for the sake of example, that 371 // w.e() == -48, and w.f() == 0x1234567890abcdef 372 // w's value can be computed by w.f() * 2^w.e() 373 // We can obtain w's integral digits by simply shifting w.f() by -w.e(). 374 // -> w's integral part is 0x1234 375 // w's fractional part is therefore 0x567890abcdef. 376 // Printing w's integral part is easy (simply print 0x1234 in decimal). 377 // In order to print its fraction we repeatedly multiply the fraction by 10 and 378 // get each digit. Example the first digit after the point would be computed by 379 // (0x567890abcdef * 10) >> 48. -> 3 380 // The whole thing becomes slightly more complicated because we want to stop 381 // once we have enough digits. That is, once the digits inside the buffer 382 // represent 'w' we can stop. Everything inside the interval low - high 383 // represents w. However we have to pay attention to low, high and w's 384 // imprecision. 385 static bool DigitGen(DiyFp low, 386 DiyFp w, 387 DiyFp high, 388 Vector<char> buffer, 389 int* length, 390 int* kappa) { 391 ASSERT(low.e() == w.e() && w.e() == high.e()); 392 ASSERT(low.f() + 1 <= high.f() - 1); 393 ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); 394 // low, w and high are imprecise, but by less than one ulp (unit in the last 395 // place). 396 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that 397 // the new numbers are outside of the interval we want the final 398 // representation to lie in. 399 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield 400 // numbers that are certain to lie in the interval. We will use this fact 401 // later on. 402 // We will now start by generating the digits within the uncertain 403 // interval. Later we will weed out representations that lie outside the safe 404 // interval and thus _might_ lie outside the correct interval. 405 uint64_t unit = 1; 406 DiyFp too_low = DiyFp(low.f() - unit, low.e()); 407 DiyFp too_high = DiyFp(high.f() + unit, high.e()); 408 // too_low and too_high are guaranteed to lie outside the interval we want the 409 // generated number in. 410 DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low); 411 // We now cut the input number into two parts: the integral digits and the 412 // fractionals. We will not write any decimal separator though, but adapt 413 // kappa instead. 414 // Reminder: we are currently computing the digits (stored inside the buffer) 415 // such that: too_low < buffer * 10^kappa < too_high 416 // We use too_high for the digit_generation and stop as soon as possible. 417 // If we stop early we effectively round down. 418 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); 419 // Division by one is a shift. 420 uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e()); 421 // Modulo by one is an and. 422 uint64_t fractionals = too_high.f() & (one.f() - 1); 423 uint32_t divisor; 424 int divisor_exponent; 425 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), 426 &divisor, &divisor_exponent); 427 *kappa = divisor_exponent + 1; 428 *length = 0; 429 // Loop invariant: buffer = too_high / 10^kappa (integer division) 430 // The invariant holds for the first iteration: kappa has been initialized 431 // with the divisor exponent + 1. And the divisor is the biggest power of ten 432 // that is smaller than integrals. 433 while (*kappa > 0) { 434 int digit = integrals / divisor; 435 buffer[*length] = '0' + digit; 436 (*length)++; 437 integrals %= divisor; 438 (*kappa)--; 439 // Note that kappa now equals the exponent of the divisor and that the 440 // invariant thus holds again. 441 uint64_t rest = 442 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; 443 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e()) 444 // Reminder: unsafe_interval.e() == one.e() 445 if (rest < unsafe_interval.f()) { 446 // Rounding down (by not emitting the remaining digits) yields a number 447 // that lies within the unsafe interval. 448 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(), 449 unsafe_interval.f(), rest, 450 static_cast<uint64_t>(divisor) << -one.e(), unit); 451 } 452 divisor /= 10; 453 } 454 455 // The integrals have been generated. We are at the point of the decimal 456 // separator. In the following loop we simply multiply the remaining digits by 457 // 10 and divide by one. We just need to pay attention to multiply associated 458 // data (like the interval or 'unit'), too. 459 // Note that the multiplication by 10 does not overflow, because w.e >= -60 460 // and thus one.e >= -60. 461 ASSERT(one.e() >= -60); 462 ASSERT(fractionals < one.f()); 463 ASSERT(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); 464 while (true) { 465 fractionals *= 10; 466 unit *= 10; 467 unsafe_interval.set_f(unsafe_interval.f() * 10); 468 // Integer division by one. 469 int digit = static_cast<int>(fractionals >> -one.e()); 470 buffer[*length] = '0' + digit; 471 (*length)++; 472 fractionals &= one.f() - 1; // Modulo by one. 473 (*kappa)--; 474 if (fractionals < unsafe_interval.f()) { 475 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit, 476 unsafe_interval.f(), fractionals, one.f(), unit); 477 } 478 } 479 } 480 481 482 483 // Generates (at most) requested_digits of input number w. 484 // w is a floating-point number (DiyFp), consisting of a significand and an 485 // exponent. Its exponent is bounded by kMinimalTargetExponent and 486 // kMaximalTargetExponent. 487 // Hence -60 <= w.e() <= -32. 488 // 489 // Returns false if it fails, in which case the generated digits in the buffer 490 // should not be used. 491 // Preconditions: 492 // * w is correct up to 1 ulp (unit in the last place). That 493 // is, its error must be strictly less than a unit of its last digit. 494 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent 495 // 496 // Postconditions: returns false if procedure fails. 497 // otherwise: 498 // * buffer is not null-terminated, but length contains the number of 499 // digits. 500 // * the representation in buffer is the most precise representation of 501 // requested_digits digits. 502 // * buffer contains at most requested_digits digits of w. If there are less 503 // than requested_digits digits then some trailing '0's have been removed. 504 // * kappa is such that 505 // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2. 506 // 507 // Remark: This procedure takes into account the imprecision of its input 508 // numbers. If the precision is not enough to guarantee all the postconditions 509 // then false is returned. This usually happens rarely, but the failure-rate 510 // increases with higher requested_digits. 511 static bool DigitGenCounted(DiyFp w, 512 int requested_digits, 513 Vector<char> buffer, 514 int* length, 515 int* kappa) { 516 ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); 517 ASSERT(kMinimalTargetExponent >= -60); 518 ASSERT(kMaximalTargetExponent <= -32); 519 // w is assumed to have an error less than 1 unit. Whenever w is scaled we 520 // also scale its error. 521 uint64_t w_error = 1; 522 // We cut the input number into two parts: the integral digits and the 523 // fractional digits. We don't emit any decimal separator, but adapt kappa 524 // instead. Example: instead of writing "1.2" we put "12" into the buffer and 525 // increase kappa by 1. 526 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); 527 // Division by one is a shift. 528 uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e()); 529 // Modulo by one is an and. 530 uint64_t fractionals = w.f() & (one.f() - 1); 531 uint32_t divisor; 532 int divisor_exponent; 533 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), 534 &divisor, &divisor_exponent); 535 *kappa = divisor_exponent + 1; 536 *length = 0; 537 538 // Loop invariant: buffer = w / 10^kappa (integer division) 539 // The invariant holds for the first iteration: kappa has been initialized 540 // with the divisor exponent + 1. And the divisor is the biggest power of ten 541 // that is smaller than 'integrals'. 542 while (*kappa > 0) { 543 int digit = integrals / divisor; 544 buffer[*length] = '0' + digit; 545 (*length)++; 546 requested_digits--; 547 integrals %= divisor; 548 (*kappa)--; 549 // Note that kappa now equals the exponent of the divisor and that the 550 // invariant thus holds again. 551 if (requested_digits == 0) break; 552 divisor /= 10; 553 } 554 555 if (requested_digits == 0) { 556 uint64_t rest = 557 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; 558 return RoundWeedCounted(buffer, *length, rest, 559 static_cast<uint64_t>(divisor) << -one.e(), w_error, 560 kappa); 561 } 562 563 // The integrals have been generated. We are at the point of the decimal 564 // separator. In the following loop we simply multiply the remaining digits by 565 // 10 and divide by one. We just need to pay attention to multiply associated 566 // data (the 'unit'), too. 567 // Note that the multiplication by 10 does not overflow, because w.e >= -60 568 // and thus one.e >= -60. 569 ASSERT(one.e() >= -60); 570 ASSERT(fractionals < one.f()); 571 ASSERT(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); 572 while (requested_digits > 0 && fractionals > w_error) { 573 fractionals *= 10; 574 w_error *= 10; 575 // Integer division by one. 576 int digit = static_cast<int>(fractionals >> -one.e()); 577 buffer[*length] = '0' + digit; 578 (*length)++; 579 requested_digits--; 580 fractionals &= one.f() - 1; // Modulo by one. 581 (*kappa)--; 582 } 583 if (requested_digits != 0) return false; 584 return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error, 585 kappa); 586 } 587 588 589 // Provides a decimal representation of v. 590 // Returns true if it succeeds, otherwise the result cannot be trusted. 591 // There will be *length digits inside the buffer (not null-terminated). 592 // If the function returns true then 593 // v == (double) (buffer * 10^decimal_exponent). 594 // The digits in the buffer are the shortest representation possible: no 595 // 0.09999999999999999 instead of 0.1. The shorter representation will even be 596 // chosen even if the longer one would be closer to v. 597 // The last digit will be closest to the actual v. That is, even if several 598 // digits might correctly yield 'v' when read again, the closest will be 599 // computed. 600 static bool Grisu3(double v, 601 Vector<char> buffer, 602 int* length, 603 int* decimal_exponent) { 604 DiyFp w = Double(v).AsNormalizedDiyFp(); 605 // boundary_minus and boundary_plus are the boundaries between v and its 606 // closest floating-point neighbors. Any number strictly between 607 // boundary_minus and boundary_plus will round to v when convert to a double. 608 // Grisu3 will never output representations that lie exactly on a boundary. 609 DiyFp boundary_minus, boundary_plus; 610 Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus); 611 ASSERT(boundary_plus.e() == w.e()); 612 DiyFp ten_mk; // Cached power of ten: 10^-k 613 int mk; // -k 614 int ten_mk_minimal_binary_exponent = 615 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); 616 int ten_mk_maximal_binary_exponent = 617 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); 618 PowersOfTenCache::GetCachedPowerForBinaryExponentRange( 619 ten_mk_minimal_binary_exponent, 620 ten_mk_maximal_binary_exponent, 621 &ten_mk, &mk); 622 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + 623 DiyFp::kSignificandSize) && 624 (kMaximalTargetExponent >= w.e() + ten_mk.e() + 625 DiyFp::kSignificandSize)); 626 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a 627 // 64 bit significand and ten_mk is thus only precise up to 64 bits. 628 629 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated 630 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now 631 // off by a small amount. 632 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. 633 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then 634 // (f-1) * 2^e < w*10^k < (f+1) * 2^e 635 DiyFp scaled_w = DiyFp::Times(w, ten_mk); 636 ASSERT(scaled_w.e() == 637 boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize); 638 // In theory it would be possible to avoid some recomputations by computing 639 // the difference between w and boundary_minus/plus (a power of 2) and to 640 // compute scaled_boundary_minus/plus by subtracting/adding from 641 // scaled_w. However the code becomes much less readable and the speed 642 // enhancements are not terriffic. 643 DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk); 644 DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk); 645 646 // DigitGen will generate the digits of scaled_w. Therefore we have 647 // v == (double) (scaled_w * 10^-mk). 648 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an 649 // integer than it will be updated. For instance if scaled_w == 1.23 then 650 // the buffer will be filled with "123" und the decimal_exponent will be 651 // decreased by 2. 652 int kappa; 653 bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus, 654 buffer, length, &kappa); 655 *decimal_exponent = -mk + kappa; 656 return result; 657 } 658 659 660 // The "counted" version of grisu3 (see above) only generates requested_digits 661 // number of digits. This version does not generate the shortest representation, 662 // and with enough requested digits 0.1 will at some point print as 0.9999999... 663 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and 664 // therefore the rounding strategy for halfway cases is irrelevant. 665 static bool Grisu3Counted(double v, 666 int requested_digits, 667 Vector<char> buffer, 668 int* length, 669 int* decimal_exponent) { 670 DiyFp w = Double(v).AsNormalizedDiyFp(); 671 DiyFp ten_mk; // Cached power of ten: 10^-k 672 int mk; // -k 673 int ten_mk_minimal_binary_exponent = 674 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); 675 int ten_mk_maximal_binary_exponent = 676 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); 677 PowersOfTenCache::GetCachedPowerForBinaryExponentRange( 678 ten_mk_minimal_binary_exponent, 679 ten_mk_maximal_binary_exponent, 680 &ten_mk, &mk); 681 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + 682 DiyFp::kSignificandSize) && 683 (kMaximalTargetExponent >= w.e() + ten_mk.e() + 684 DiyFp::kSignificandSize)); 685 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a 686 // 64 bit significand and ten_mk is thus only precise up to 64 bits. 687 688 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated 689 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now 690 // off by a small amount. 691 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. 692 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then 693 // (f-1) * 2^e < w*10^k < (f+1) * 2^e 694 DiyFp scaled_w = DiyFp::Times(w, ten_mk); 695 696 // We now have (double) (scaled_w * 10^-mk). 697 // DigitGen will generate the first requested_digits digits of scaled_w and 698 // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It 699 // will not always be exactly the same since DigitGenCounted only produces a 700 // limited number of digits.) 701 int kappa; 702 bool result = DigitGenCounted(scaled_w, requested_digits, 703 buffer, length, &kappa); 704 *decimal_exponent = -mk + kappa; 705 return result; 706 } 707 708 709 bool FastDtoa(double v, 710 FastDtoaMode mode, 711 int requested_digits, 712 Vector<char> buffer, 713 int* length, 714 int* decimal_point) { 715 ASSERT(v > 0); 716 ASSERT(!Double(v).IsSpecial()); 717 718 bool result = false; 719 int decimal_exponent = 0; 720 switch (mode) { 721 case FAST_DTOA_SHORTEST: 722 result = Grisu3(v, buffer, length, &decimal_exponent); 723 break; 724 case FAST_DTOA_PRECISION: 725 result = Grisu3Counted(v, requested_digits, 726 buffer, length, &decimal_exponent); 727 break; 728 default: 729 UNREACHABLE(); 730 } 731 if (result) { 732 *decimal_point = *length + decimal_exponent; 733 buffer[*length] = '\0'; 734 } 735 return result; 736 } 737 738 } } // namespace v8::internal 739