Home | History | Annotate | Download | only in IPO
      1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the mechanics required to implement inlining without
     11 // missing any calls and updating the call graph.  The decisions of which calls
     12 // are profitable to inline are implemented elsewhere.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "inline"
     17 #include "llvm/Module.h"
     18 #include "llvm/Instructions.h"
     19 #include "llvm/IntrinsicInst.h"
     20 #include "llvm/Analysis/CallGraph.h"
     21 #include "llvm/Analysis/InlineCost.h"
     22 #include "llvm/Target/TargetData.h"
     23 #include "llvm/Target/TargetLibraryInfo.h"
     24 #include "llvm/Transforms/IPO/InlinerPass.h"
     25 #include "llvm/Transforms/Utils/Cloning.h"
     26 #include "llvm/Transforms/Utils/Local.h"
     27 #include "llvm/Support/CallSite.h"
     28 #include "llvm/Support/CommandLine.h"
     29 #include "llvm/Support/Debug.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include "llvm/ADT/SmallPtrSet.h"
     32 #include "llvm/ADT/Statistic.h"
     33 using namespace llvm;
     34 
     35 STATISTIC(NumInlined, "Number of functions inlined");
     36 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
     37 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
     38 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
     39 
     40 // This weirdly named statistic tracks the number of times that, when attempting
     41 // to inline a function A into B, we analyze the callers of B in order to see
     42 // if those would be more profitable and blocked inline steps.
     43 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
     44 
     45 static cl::opt<int>
     46 InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
     47         cl::desc("Control the amount of inlining to perform (default = 225)"));
     48 
     49 static cl::opt<int>
     50 HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325),
     51               cl::desc("Threshold for inlining functions with inline hint"));
     52 
     53 // Threshold to use when optsize is specified (and there is no -inline-limit).
     54 const int OptSizeThreshold = 75;
     55 
     56 Inliner::Inliner(char &ID)
     57   : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {}
     58 
     59 Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime)
     60   : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ?
     61                                           InlineLimit : Threshold),
     62     InsertLifetime(InsertLifetime) {}
     63 
     64 /// getAnalysisUsage - For this class, we declare that we require and preserve
     65 /// the call graph.  If the derived class implements this method, it should
     66 /// always explicitly call the implementation here.
     67 void Inliner::getAnalysisUsage(AnalysisUsage &Info) const {
     68   CallGraphSCCPass::getAnalysisUsage(Info);
     69 }
     70 
     71 
     72 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> >
     73 InlinedArrayAllocasTy;
     74 
     75 /// InlineCallIfPossible - If it is possible to inline the specified call site,
     76 /// do so and update the CallGraph for this operation.
     77 ///
     78 /// This function also does some basic book-keeping to update the IR.  The
     79 /// InlinedArrayAllocas map keeps track of any allocas that are already
     80 /// available from other  functions inlined into the caller.  If we are able to
     81 /// inline this call site we attempt to reuse already available allocas or add
     82 /// any new allocas to the set if not possible.
     83 static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
     84                                  InlinedArrayAllocasTy &InlinedArrayAllocas,
     85                                  int InlineHistory, bool InsertLifetime) {
     86   Function *Callee = CS.getCalledFunction();
     87   Function *Caller = CS.getCaller();
     88 
     89   // Try to inline the function.  Get the list of static allocas that were
     90   // inlined.
     91   if (!InlineFunction(CS, IFI, InsertLifetime))
     92     return false;
     93 
     94   // If the inlined function had a higher stack protection level than the
     95   // calling function, then bump up the caller's stack protection level.
     96   if (Callee->hasFnAttr(Attribute::StackProtectReq))
     97     Caller->addFnAttr(Attribute::StackProtectReq);
     98   else if (Callee->hasFnAttr(Attribute::StackProtect) &&
     99            !Caller->hasFnAttr(Attribute::StackProtectReq))
    100     Caller->addFnAttr(Attribute::StackProtect);
    101 
    102   // Look at all of the allocas that we inlined through this call site.  If we
    103   // have already inlined other allocas through other calls into this function,
    104   // then we know that they have disjoint lifetimes and that we can merge them.
    105   //
    106   // There are many heuristics possible for merging these allocas, and the
    107   // different options have different tradeoffs.  One thing that we *really*
    108   // don't want to hurt is SRoA: once inlining happens, often allocas are no
    109   // longer address taken and so they can be promoted.
    110   //
    111   // Our "solution" for that is to only merge allocas whose outermost type is an
    112   // array type.  These are usually not promoted because someone is using a
    113   // variable index into them.  These are also often the most important ones to
    114   // merge.
    115   //
    116   // A better solution would be to have real memory lifetime markers in the IR
    117   // and not have the inliner do any merging of allocas at all.  This would
    118   // allow the backend to do proper stack slot coloring of all allocas that
    119   // *actually make it to the backend*, which is really what we want.
    120   //
    121   // Because we don't have this information, we do this simple and useful hack.
    122   //
    123   SmallPtrSet<AllocaInst*, 16> UsedAllocas;
    124 
    125   // When processing our SCC, check to see if CS was inlined from some other
    126   // call site.  For example, if we're processing "A" in this code:
    127   //   A() { B() }
    128   //   B() { x = alloca ... C() }
    129   //   C() { y = alloca ... }
    130   // Assume that C was not inlined into B initially, and so we're processing A
    131   // and decide to inline B into A.  Doing this makes an alloca available for
    132   // reuse and makes a callsite (C) available for inlining.  When we process
    133   // the C call site we don't want to do any alloca merging between X and Y
    134   // because their scopes are not disjoint.  We could make this smarter by
    135   // keeping track of the inline history for each alloca in the
    136   // InlinedArrayAllocas but this isn't likely to be a significant win.
    137   if (InlineHistory != -1)  // Only do merging for top-level call sites in SCC.
    138     return true;
    139 
    140   // Loop over all the allocas we have so far and see if they can be merged with
    141   // a previously inlined alloca.  If not, remember that we had it.
    142   for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size();
    143        AllocaNo != e; ++AllocaNo) {
    144     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
    145 
    146     // Don't bother trying to merge array allocations (they will usually be
    147     // canonicalized to be an allocation *of* an array), or allocations whose
    148     // type is not itself an array (because we're afraid of pessimizing SRoA).
    149     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
    150     if (ATy == 0 || AI->isArrayAllocation())
    151       continue;
    152 
    153     // Get the list of all available allocas for this array type.
    154     std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy];
    155 
    156     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
    157     // that we have to be careful not to reuse the same "available" alloca for
    158     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
    159     // set to keep track of which "available" allocas are being used by this
    160     // function.  Also, AllocasForType can be empty of course!
    161     bool MergedAwayAlloca = false;
    162     for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) {
    163       AllocaInst *AvailableAlloca = AllocasForType[i];
    164 
    165       // The available alloca has to be in the right function, not in some other
    166       // function in this SCC.
    167       if (AvailableAlloca->getParent() != AI->getParent())
    168         continue;
    169 
    170       // If the inlined function already uses this alloca then we can't reuse
    171       // it.
    172       if (!UsedAllocas.insert(AvailableAlloca))
    173         continue;
    174 
    175       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
    176       // success!
    177       DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: "
    178                    << *AvailableAlloca << '\n');
    179 
    180       AI->replaceAllUsesWith(AvailableAlloca);
    181       AI->eraseFromParent();
    182       MergedAwayAlloca = true;
    183       ++NumMergedAllocas;
    184       IFI.StaticAllocas[AllocaNo] = 0;
    185       break;
    186     }
    187 
    188     // If we already nuked the alloca, we're done with it.
    189     if (MergedAwayAlloca)
    190       continue;
    191 
    192     // If we were unable to merge away the alloca either because there are no
    193     // allocas of the right type available or because we reused them all
    194     // already, remember that this alloca came from an inlined function and mark
    195     // it used so we don't reuse it for other allocas from this inline
    196     // operation.
    197     AllocasForType.push_back(AI);
    198     UsedAllocas.insert(AI);
    199   }
    200 
    201   return true;
    202 }
    203 
    204 unsigned Inliner::getInlineThreshold(CallSite CS) const {
    205   int thres = InlineThreshold; // -inline-threshold or else selected by
    206                                // overall opt level
    207 
    208   // If -inline-threshold is not given, listen to the optsize attribute when it
    209   // would decrease the threshold.
    210   Function *Caller = CS.getCaller();
    211   bool OptSize = Caller && !Caller->isDeclaration() &&
    212     Caller->hasFnAttr(Attribute::OptimizeForSize);
    213   if (!(InlineLimit.getNumOccurrences() > 0) && OptSize && OptSizeThreshold < thres)
    214     thres = OptSizeThreshold;
    215 
    216   // Listen to the inlinehint attribute when it would increase the threshold.
    217   Function *Callee = CS.getCalledFunction();
    218   bool InlineHint = Callee && !Callee->isDeclaration() &&
    219     Callee->hasFnAttr(Attribute::InlineHint);
    220   if (InlineHint && HintThreshold > thres)
    221     thres = HintThreshold;
    222 
    223   return thres;
    224 }
    225 
    226 /// shouldInline - Return true if the inliner should attempt to inline
    227 /// at the given CallSite.
    228 bool Inliner::shouldInline(CallSite CS) {
    229   InlineCost IC = getInlineCost(CS);
    230 
    231   if (IC.isAlways()) {
    232     DEBUG(dbgs() << "    Inlining: cost=always"
    233           << ", Call: " << *CS.getInstruction() << "\n");
    234     return true;
    235   }
    236 
    237   if (IC.isNever()) {
    238     DEBUG(dbgs() << "    NOT Inlining: cost=never"
    239           << ", Call: " << *CS.getInstruction() << "\n");
    240     return false;
    241   }
    242 
    243   Function *Caller = CS.getCaller();
    244   if (!IC) {
    245     DEBUG(dbgs() << "    NOT Inlining: cost=" << IC.getCost()
    246           << ", thres=" << (IC.getCostDelta() + IC.getCost())
    247           << ", Call: " << *CS.getInstruction() << "\n");
    248     return false;
    249   }
    250 
    251   // Try to detect the case where the current inlining candidate caller (call
    252   // it B) is a static or linkonce-ODR function and is an inlining candidate
    253   // elsewhere, and the current candidate callee (call it C) is large enough
    254   // that inlining it into B would make B too big to inline later. In these
    255   // circumstances it may be best not to inline C into B, but to inline B into
    256   // its callers.
    257   //
    258   // This only applies to static and linkonce-ODR functions because those are
    259   // expected to be available for inlining in the translation units where they
    260   // are used. Thus we will always have the opportunity to make local inlining
    261   // decisions. Importantly the linkonce-ODR linkage covers inline functions
    262   // and templates in C++.
    263   //
    264   // FIXME: All of this logic should be sunk into getInlineCost. It relies on
    265   // the internal implementation of the inline cost metrics rather than
    266   // treating them as truly abstract units etc.
    267   if (Caller->hasLocalLinkage() ||
    268       Caller->getLinkage() == GlobalValue::LinkOnceODRLinkage) {
    269     int TotalSecondaryCost = 0;
    270     // The candidate cost to be imposed upon the current function.
    271     int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1);
    272     // This bool tracks what happens if we do NOT inline C into B.
    273     bool callerWillBeRemoved = Caller->hasLocalLinkage();
    274     // This bool tracks what happens if we DO inline C into B.
    275     bool inliningPreventsSomeOuterInline = false;
    276     for (Value::use_iterator I = Caller->use_begin(), E =Caller->use_end();
    277          I != E; ++I) {
    278       CallSite CS2(*I);
    279 
    280       // If this isn't a call to Caller (it could be some other sort
    281       // of reference) skip it.  Such references will prevent the caller
    282       // from being removed.
    283       if (!CS2 || CS2.getCalledFunction() != Caller) {
    284         callerWillBeRemoved = false;
    285         continue;
    286       }
    287 
    288       InlineCost IC2 = getInlineCost(CS2);
    289       ++NumCallerCallersAnalyzed;
    290       if (!IC2) {
    291         callerWillBeRemoved = false;
    292         continue;
    293       }
    294       if (IC2.isAlways())
    295         continue;
    296 
    297       // See if inlining or original callsite would erase the cost delta of
    298       // this callsite. We subtract off the penalty for the call instruction,
    299       // which we would be deleting.
    300       if (IC2.getCostDelta() <= CandidateCost) {
    301         inliningPreventsSomeOuterInline = true;
    302         TotalSecondaryCost += IC2.getCost();
    303       }
    304     }
    305     // If all outer calls to Caller would get inlined, the cost for the last
    306     // one is set very low by getInlineCost, in anticipation that Caller will
    307     // be removed entirely.  We did not account for this above unless there
    308     // is only one caller of Caller.
    309     if (callerWillBeRemoved && Caller->use_begin() != Caller->use_end())
    310       TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
    311 
    312     if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) {
    313       DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction() <<
    314            " Cost = " << IC.getCost() <<
    315            ", outer Cost = " << TotalSecondaryCost << '\n');
    316       return false;
    317     }
    318   }
    319 
    320   DEBUG(dbgs() << "    Inlining: cost=" << IC.getCost()
    321         << ", thres=" << (IC.getCostDelta() + IC.getCost())
    322         << ", Call: " << *CS.getInstruction() << '\n');
    323   return true;
    324 }
    325 
    326 /// InlineHistoryIncludes - Return true if the specified inline history ID
    327 /// indicates an inline history that includes the specified function.
    328 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID,
    329             const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) {
    330   while (InlineHistoryID != -1) {
    331     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
    332            "Invalid inline history ID");
    333     if (InlineHistory[InlineHistoryID].first == F)
    334       return true;
    335     InlineHistoryID = InlineHistory[InlineHistoryID].second;
    336   }
    337   return false;
    338 }
    339 
    340 bool Inliner::runOnSCC(CallGraphSCC &SCC) {
    341   CallGraph &CG = getAnalysis<CallGraph>();
    342   const TargetData *TD = getAnalysisIfAvailable<TargetData>();
    343   const TargetLibraryInfo *TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
    344 
    345   SmallPtrSet<Function*, 8> SCCFunctions;
    346   DEBUG(dbgs() << "Inliner visiting SCC:");
    347   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
    348     Function *F = (*I)->getFunction();
    349     if (F) SCCFunctions.insert(F);
    350     DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
    351   }
    352 
    353   // Scan through and identify all call sites ahead of time so that we only
    354   // inline call sites in the original functions, not call sites that result
    355   // from inlining other functions.
    356   SmallVector<std::pair<CallSite, int>, 16> CallSites;
    357 
    358   // When inlining a callee produces new call sites, we want to keep track of
    359   // the fact that they were inlined from the callee.  This allows us to avoid
    360   // infinite inlining in some obscure cases.  To represent this, we use an
    361   // index into the InlineHistory vector.
    362   SmallVector<std::pair<Function*, int>, 8> InlineHistory;
    363 
    364   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
    365     Function *F = (*I)->getFunction();
    366     if (!F) continue;
    367 
    368     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
    369       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    370         CallSite CS(cast<Value>(I));
    371         // If this isn't a call, or it is a call to an intrinsic, it can
    372         // never be inlined.
    373         if (!CS || isa<IntrinsicInst>(I))
    374           continue;
    375 
    376         // If this is a direct call to an external function, we can never inline
    377         // it.  If it is an indirect call, inlining may resolve it to be a
    378         // direct call, so we keep it.
    379         if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration())
    380           continue;
    381 
    382         CallSites.push_back(std::make_pair(CS, -1));
    383       }
    384   }
    385 
    386   DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
    387 
    388   // If there are no calls in this function, exit early.
    389   if (CallSites.empty())
    390     return false;
    391 
    392   // Now that we have all of the call sites, move the ones to functions in the
    393   // current SCC to the end of the list.
    394   unsigned FirstCallInSCC = CallSites.size();
    395   for (unsigned i = 0; i < FirstCallInSCC; ++i)
    396     if (Function *F = CallSites[i].first.getCalledFunction())
    397       if (SCCFunctions.count(F))
    398         std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
    399 
    400 
    401   InlinedArrayAllocasTy InlinedArrayAllocas;
    402   InlineFunctionInfo InlineInfo(&CG, TD);
    403 
    404   // Now that we have all of the call sites, loop over them and inline them if
    405   // it looks profitable to do so.
    406   bool Changed = false;
    407   bool LocalChange;
    408   do {
    409     LocalChange = false;
    410     // Iterate over the outer loop because inlining functions can cause indirect
    411     // calls to become direct calls.
    412     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
    413       CallSite CS = CallSites[CSi].first;
    414 
    415       Function *Caller = CS.getCaller();
    416       Function *Callee = CS.getCalledFunction();
    417 
    418       // If this call site is dead and it is to a readonly function, we should
    419       // just delete the call instead of trying to inline it, regardless of
    420       // size.  This happens because IPSCCP propagates the result out of the
    421       // call and then we're left with the dead call.
    422       if (isInstructionTriviallyDead(CS.getInstruction(), TLI)) {
    423         DEBUG(dbgs() << "    -> Deleting dead call: "
    424                      << *CS.getInstruction() << "\n");
    425         // Update the call graph by deleting the edge from Callee to Caller.
    426         CG[Caller]->removeCallEdgeFor(CS);
    427         CS.getInstruction()->eraseFromParent();
    428         ++NumCallsDeleted;
    429       } else {
    430         // We can only inline direct calls to non-declarations.
    431         if (Callee == 0 || Callee->isDeclaration()) continue;
    432 
    433         // If this call site was obtained by inlining another function, verify
    434         // that the include path for the function did not include the callee
    435         // itself.  If so, we'd be recursively inlining the same function,
    436         // which would provide the same callsites, which would cause us to
    437         // infinitely inline.
    438         int InlineHistoryID = CallSites[CSi].second;
    439         if (InlineHistoryID != -1 &&
    440             InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
    441           continue;
    442 
    443 
    444         // If the policy determines that we should inline this function,
    445         // try to do so.
    446         if (!shouldInline(CS))
    447           continue;
    448 
    449         // Attempt to inline the function.
    450         if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas,
    451                                   InlineHistoryID, InsertLifetime))
    452           continue;
    453         ++NumInlined;
    454 
    455         // If inlining this function gave us any new call sites, throw them
    456         // onto our worklist to process.  They are useful inline candidates.
    457         if (!InlineInfo.InlinedCalls.empty()) {
    458           // Create a new inline history entry for this, so that we remember
    459           // that these new callsites came about due to inlining Callee.
    460           int NewHistoryID = InlineHistory.size();
    461           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
    462 
    463           for (unsigned i = 0, e = InlineInfo.InlinedCalls.size();
    464                i != e; ++i) {
    465             Value *Ptr = InlineInfo.InlinedCalls[i];
    466             CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
    467           }
    468         }
    469       }
    470 
    471       // If we inlined or deleted the last possible call site to the function,
    472       // delete the function body now.
    473       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
    474           // TODO: Can remove if in SCC now.
    475           !SCCFunctions.count(Callee) &&
    476 
    477           // The function may be apparently dead, but if there are indirect
    478           // callgraph references to the node, we cannot delete it yet, this
    479           // could invalidate the CGSCC iterator.
    480           CG[Callee]->getNumReferences() == 0) {
    481         DEBUG(dbgs() << "    -> Deleting dead function: "
    482               << Callee->getName() << "\n");
    483         CallGraphNode *CalleeNode = CG[Callee];
    484 
    485         // Remove any call graph edges from the callee to its callees.
    486         CalleeNode->removeAllCalledFunctions();
    487 
    488         // Removing the node for callee from the call graph and delete it.
    489         delete CG.removeFunctionFromModule(CalleeNode);
    490         ++NumDeleted;
    491       }
    492 
    493       // Remove this call site from the list.  If possible, use
    494       // swap/pop_back for efficiency, but do not use it if doing so would
    495       // move a call site to a function in this SCC before the
    496       // 'FirstCallInSCC' barrier.
    497       if (SCC.isSingular()) {
    498         CallSites[CSi] = CallSites.back();
    499         CallSites.pop_back();
    500       } else {
    501         CallSites.erase(CallSites.begin()+CSi);
    502       }
    503       --CSi;
    504 
    505       Changed = true;
    506       LocalChange = true;
    507     }
    508   } while (LocalChange);
    509 
    510   return Changed;
    511 }
    512 
    513 // doFinalization - Remove now-dead linkonce functions at the end of
    514 // processing to avoid breaking the SCC traversal.
    515 bool Inliner::doFinalization(CallGraph &CG) {
    516   return removeDeadFunctions(CG);
    517 }
    518 
    519 /// removeDeadFunctions - Remove dead functions that are not included in
    520 /// DNR (Do Not Remove) list.
    521 bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) {
    522   SmallVector<CallGraphNode*, 16> FunctionsToRemove;
    523 
    524   // Scan for all of the functions, looking for ones that should now be removed
    525   // from the program.  Insert the dead ones in the FunctionsToRemove set.
    526   for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) {
    527     CallGraphNode *CGN = I->second;
    528     Function *F = CGN->getFunction();
    529     if (!F || F->isDeclaration())
    530       continue;
    531 
    532     // Handle the case when this function is called and we only want to care
    533     // about always-inline functions. This is a bit of a hack to share code
    534     // between here and the InlineAlways pass.
    535     if (AlwaysInlineOnly && !F->hasFnAttr(Attribute::AlwaysInline))
    536       continue;
    537 
    538     // If the only remaining users of the function are dead constants, remove
    539     // them.
    540     F->removeDeadConstantUsers();
    541 
    542     if (!F->isDefTriviallyDead())
    543       continue;
    544 
    545     // Remove any call graph edges from the function to its callees.
    546     CGN->removeAllCalledFunctions();
    547 
    548     // Remove any edges from the external node to the function's call graph
    549     // node.  These edges might have been made irrelegant due to
    550     // optimization of the program.
    551     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
    552 
    553     // Removing the node for callee from the call graph and delete it.
    554     FunctionsToRemove.push_back(CGN);
    555   }
    556   if (FunctionsToRemove.empty())
    557     return false;
    558 
    559   // Now that we know which functions to delete, do so.  We didn't want to do
    560   // this inline, because that would invalidate our CallGraph::iterator
    561   // objects. :(
    562   //
    563   // Note that it doesn't matter that we are iterating over a non-stable order
    564   // here to do this, it doesn't matter which order the functions are deleted
    565   // in.
    566   array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
    567   FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(),
    568                                       FunctionsToRemove.end()),
    569                           FunctionsToRemove.end());
    570   for (SmallVectorImpl<CallGraphNode *>::iterator I = FunctionsToRemove.begin(),
    571                                                   E = FunctionsToRemove.end();
    572        I != E; ++I) {
    573     delete CG.removeFunctionFromModule(*I);
    574     ++NumDeleted;
    575   }
    576   return true;
    577 }
    578